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Abstract

Polycyclic aromatic hydrocarbons (PAHSs) are persistent environmental pollutants
with significant ecological and health risks. Among them, coronene, a high molecular
weight PAH, is particularly resistant to biodegradation due to its complex structure.
This study characterizes a halophilic bacterial strain, initially identified as Halomonas
caseinilytica and later reclassified as Halomonas elongata, capable of utilizing
coronene as its sole carbon source under high salinity (10% NaCl). Whole genome
sequencing using Oxford Nanopore technology (ONT) revealed 4,308 predicted
genes, including those linked to hydrocarbon metabolism, stress adaptation, and
secondary metabolite biosynthesis. Pathway analysis identified genes associated
with xenobiotic degradation, although no canonical coronene specific degradative
enzymes were identified, implying that the bacteria may be utilising an alternative or
novel pathway. Comparative annotation uncovered operons and enzymes relevant
to aromatic compound breakdown. Notably, the presence of ectoine biosynthesis
genes suggests a robust osmoadaptation system. Features such as mobile genetic
elements and horizontal gene transfer events were also investigated. These findings
expand current knowledge on PAH-degrading halophiles and highlight the potential of
H. elongata in bioremediation of saline and hypersaline environments contaminated
with complex hydrocarbons. The study also emphasises the potential of long read
sequencing technologies in environmental genomics and bioremediation.
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Introduction

Polycyclic aromatic hydrocarbons (PAHSs) are persistent pollutants that pose serious
environmental and health risks due to their toxicity, mutagenicity, and carcinogenic-
ity [1]. These pollutants, commonly originating from the incomplete combustion of
organic materials and fossil fuels, are widespread in terrestrial and aquatic ecosys-
tems [2,3].Polycyclic aromatic hydrocarbons (PAHs) can be categorized into two
groups. The first group consists of low molecular weight PAHs (LMW-PAHSs), which
contain two or three aromatic rings. Representative compounds in this group include
naphthalene, phenanthrene, and anthracene. The second group comprises high
molecular weight PAHs (HMW-PAHS), which contain more than three rings; notable
examples include pyrene (four rings), benzo[a]pyrene (five rings), and coronene
(seven rings) [3-5]. The literature contains numerous reports on the biodegradation
of both LMW-PAHSs (e.g., naphthalene, phenanthrene, and anthracene) and HMW-
PAHs (e.g., pyrene and benzo[a]pyrene), including studies conducted under thermo-
philic, halophilic, and anaerobic conditions [1,5-12]. Bacteria capable of degrading
PAHs have been identified across a wide range of genera. A study summarizing
research on Saudi bacterial strains identified 38 different genera capable of degrad-
ing PAHs and other petroleum-derived compounds [13].

Comparatively, limited work has been carried out on the degradation of the HMW-
PAHSs coronene, due to the complexity of it’s structure, which makes it recalcitrant
to biodegradation [14]. Three studies have reported the degradation of coronene by
strains of Stenotrophomonas maltophilia (formerly known as Burkholderia cepacia)
[15—17]. However, this degradation was observed only in the presence of pyrene,
suggesting that these strains may not be capable of utilizing coronene as a sole car-
bon source. Recently, our research group identified a novel halophilic bacterial strain,
Halomonas caseinilytica 10SCRNA4D, isolated from fuel depots on the campus of
King Fahd University of Petroleum and Minerals (Dhahran, Saudi Arabia), which was
capable of degrading coronene as the sole carbon source under high salinity condi-
tions (10% NaCl w/v). The discovery of H. caseinilytica 10SCRN4D’s unique ability to
degrade coronene in highly saline environments opens new avenues for research in
PAH bioremediation, particularly in marine and hypersaline ecosystems. In addition,
this strain was also capable of degrading other high molecular weight PAHSs, includ-
ing benzo[a]pyrene, phenanthrene, and pyrene, indicating a robust and versatile
metabolic potential for PAH degradation [18].

To further elucidate the genetic and metabolic mechanisms underlying this excep-
tional capability, we have conducted a whole genome sequencing analysis of H.
caseinilytica T0SCRN4D. Whole genome sequencing has proven to be an invaluable
tool in understanding the metabolic potential and genetic adaptations of microorgan-
isms involved in biodegradation processes [19]. For instance, the genome analysis
of Mycobacterium sp. strain CH2, capable of degrading pyrene and benzo[a]pyrene,
revealed a complete set of genes responsible for the degradation pathways of these
HMW-PAHSs [20].

Previous studies relying on Short-read Sequencing Technologies (SRST), such as
lllumina, faced challenges in assembling repetitive regions, structural variations, and
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long operonic sequences, which are critical for understanding microbial genomic architecture [21]. For example, multiple
studies underlined the difficulty in assembling repetitive regions using short reads, leading to fragmented assemblies of
bacterial genomes [22—-24]. This could be because limited read lengths and lack of paired-end reads pose impediments
for assembly software in resolving repeat regions, leading to fragmented assemblies [23]. Another challenge is the inabil-
ity of short reads to accurately resolve repetitive genomic regions making it arduous to detect genetic variations [21]. In
context of our study, where our strain is expected to have a relatively higher GC content as an extremophile, SRST often
does not permit to accurately characterize DNA and RNA with extreme GC content, repetitive homologous sequences, or
epigenetic modifications, making SRST a poor choice of sequencing technology [24,25]. These shortcomings inevitably
restrict functional annotation and hamper the identification of novel pathways. In contrast, Long-read Sequencing Tech-
nologies (LRST) has demonstrated superior capabilities. It enables accurate mapping of sequencing reads to reference
genomes, facilitates diverse variant detection methodologies, and introduces innovative approaches for characterizing
epigenetic diversity [26]. The advancements in sequencing speed and accuracy, alongside the improved quality of bio-
informatics analyses, demonstrate the effectiveness of recent technological innovations and their inherent chemical

kits [27]. For instance, Koren et al. [28] in 2013 demonstrated the power of long reads in resolving complete bacterial
genomes, including plasmids and repetitive regions, enhancing our understanding of bacterial evolution and pathogenicity.
Another study used LRST for single-cell genomics of uncultivated bacteria, providing insights into microbial dark matter
and expanding our knowledge of microbial diversity [29]. In the present study, we use LRST to explore the genetic mech-
anisms underlying coronene degradation in H. caseinilytica T0SCRN4D, we seek to fill the knowledge gap in HMW-PAH
biodegradation and offer valuable insights and tools to tackle the enduring issue of PAH contamination across various
environmental contexts.

Materials and methods
DNA isolation, whole genome sequencing and quality assessment

The strain used in this study, H. caseinilytica 10SCRN4D was originally isolated from soil samples collected from a fuel
station of King Fahd University of Petroleum and Minerals, as described in Okeyode et al.(2023) [18]. In brief, research-
ers enriched the soil samples under saline conditions using coronene as the only carbon source. This process led to the
isolation of this halophilic bacterium, as detailed previously [18].

Bacterial pellet from single colony enrichment was subject to DNA isolation using giagen MagAttract HMW DNA Kit
(Qiagen, Germany). DNA was quantified using Qubit BR Assay Kits (Thermo, USA). 400-500ng DNA was used to pre-
pare sequencing library for Oxford nano-pore sequencing (ONT) using SQK-LSK109 Ligation Sequencing kit with R9.4.1
flowcell (Oxford Nanopore Technologies, Oxford, UK). The basecalling was performed in realtime using Guppy v5.1.

Bacterial genome assembly and analysis from ONT long reads was performed using the nf-core/bacass pipeline
(v2.0.0) using nextflow (v23.04.0) [30]. Raw reads initial quality control and adapter trimming was performed using
NanoPlot (v1.38.0) [31] and Porechop (v0.2.4). The de novo assembly was utilized Minimap2 (v2.21-r1071) [32] for read
alignment and Miniasm (v0.3-r179) [33] and contig generation. The draft assembly was polished using Minimap2, Racon
(v1.4.20) [34], and Medaka (v1.4.3) to improve the sequence accuracy. Finally, assembly quality was assessed using
QUAST (v5.0.2) [35], and a comprehensive multi-tool report was generated with MultiQC [36].

The completness of the assembled genome was measured using BUSCO v 5.4.6 (Benchmarking Universal
Single-Copy Orthologs) [37], with an E-value cutoff of 0.001 for BLAST searches to ensure high-confidence detection of
conserved orthologs while minimizing false positives.

Strain identification

The thorough analysis of the bacterial genome began strain identification using Kraken2 (v2.1.1), for assigning taxonomic
labels and detect contamination [38]. Parameters were set at a 0.5 confidence score to balance sensitivity and specificity.
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Additionally, a minimum hit group of 2 was used to avoid weak or ambiguous taxonomic assignments, improving the reli-
ability of strain identification.

Gene prediction and functional annotation

To ensure comprehensive and accurate gene annotation, three distinct gene prediction tools were employed, each paired
with a specific annotation tool. PROKKA [39] was the first tool employed for initial gene prediction, using an e-value cutoff
of 1e-06 to ensure highly reliable functional annotations. A 1e-06 cut off was selected to balance specificity and sensitivity
as zero is not a valid threshold in BLAST, and this cutoff also minimizes false positives while retaining biological meaning-
ful homologs. The predicted genes were promptly annotated with PROKKA's integrated annotation system. To enhance
the depth of functional insights, hypothetical proteins identified by PROKKA were subjected to CDD (Conserved Domains
Databases) searches [40,41]. These searches were performed with a stringent e-value threshold of 0.001 and a maximum
of 500 hits to allow for the identification of conserved functional domains even in hypothetical proteins, thereby enhanc-
ing the depth and biological relevance of the genomic annotations. The functional insights gained from CDD analysis
were then integrated with PROKKA's annotations, creating a more comprehensive and detailed overview of the predicted
genes’ roles and their potential biological significance.

In addition to PROKKA, two other gene prediction tools were employed: PRODIGAL [42] and GeneMarkS2 [43]. The
genes predicted by these tools were subsequently annotated using EggNOG-mapper v2, a powerful functional annotation
tool. [44]. MAFFT, a multiple sequence alignment program, was utilized to align the gene sequences predicted by all three
tools to identify potential discrepancies between the different prediction methods and enhancing the overall accuracy of
the annotation process [45]. Finally, gene ontology-based functional annotation was performed using InterProScan and
Blast2GO [46].

Identification of genomic features

To gain insights into gene organization and regulatory mechanisms within the genome, Operon Mapper was utilized to
identify potential operons, providing information on gene clustering and regulation [47]. CRISPR (Clustered Regularly
Interspaced Short Palindromic Repeats) arrays, known for their role in bacterial immunity and genome editing, were
detected using CRISPRCasFinder [48]. This step was crucial to understand the adaptive immune mechanisms of the
organism. Additionally, the resistance gene Identifier program of the database CARD (Comprehensive Antibiotic Resis-
tance Database) was used to spot any genes of antibiotic resistance [49].

To further investigate the genome’s structure and evolutionary dynamics, RepeatMasker v4.1.5 [50] was employed to
identify repeat elements, and RepeatModeler v2.0.5 [51] was used for de novo annotation of these repetitive sequences.
Additionally, Palindrome v5.0.0.1 [52] was applied to detect inverted repeats, with parameters set as follows: lengths
ranging from 10 to 100 base pairs target meaningful structural motifs; a maximum gap of 100 base pairs between repeats
to accommodate typical regulatory structures and no mismatches allowed to ensure the identification of exact inverted
repeats. Mobile genetic elements, which are pivotal in bacterial evolution and environmental adaptation, were identified
using MobileOG-DB with e-value score of 1.0e-05 and k value of 1 that would maximize sensitivity, ensuring the identi-
fication of all potentially relevant mobile genetic sequences [53]. Furthermore, potential horizontal gene transfer events,
critical for the acquisition of novel traits and rapid adaptation, were detected using Alien Hunter [54].Lastly, the presence of
secondary metabolite biosynthesis genes, was identified using the antiSMASH web-based tool [54].

Pathway analysis

Two complementary approaches were used for pathway analysis: the RAST (Rapid Annotations using Subsystems
Technology) server and KAAS (KEGG Automatic Annotation Server). The RAST server was employed to annotate genes
based on curated subsystems and protein families [55,56]. KAAS was utilized for functional annotation of genes [57].
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KAAS employed the bi-directional best hit (BBH) method, a reliable technique for identifying orthologous relationships.
KO (KEGG Orthology) identifiers assigned through this process were subsequently used to automatically generate KEGG
pathways and functional classifications.

Results
Whole genome sequencing and quality assessment

ONT allowed real time detection and generated long reads of 6 contigs combining to a total length of 3966854 bp, of which
the largest contig made up 1702422 bp (maybe repot in Mbp or Kbp). The number of N’s per 100 kbp was reported to be
zero implying that no ambiguous ‘N’ bases were in in 100,000bp (Kbp or Mbp) of the assembly, suggesting an assembly
with high sequence continuity without gaps. Table 1 summarises the quality assessment report. Overall, the statistics indi-
cated a high-quality genome assembly with few, large, and contiguous sequences, minimal gaps, and a good representa-
tion of the genome’s total length (Fig 1). The GC content was reported to be 63.04% which, although within the desirable
range of 40%—-80%, is still relatively high. Higher GC content often correlates with thermal stability, which suggests that
our organism is adapted to high-temperature environments, an information we can confirm from our previous study [18].

The completeness of the genome assembly was then analyzed with BUSCO which validates the quality of genome
assemblies based on the presence of highly conserved genes. In Fig 2, our results show that out of a total of 619 BUS-
COs searched, 506 were complete. This included 505 that are present as a single copy and 1 that is duplicated. This
implies that 81% of orthologs that were found in the genome assembly are intact without missing any important regions.
The predominance of single-copy BUSCOs and the minimal duplication suggest that our assembly is accurate and largely
free from redundancy or misassembly. Additionally, 72 orthologs were fragmented while 41 were missing from the assem-
bly. Low number of missing genes mean only a small proportion of expected genes are absent. This indicates the genome
assembly is mostly comprehensive.

Taxonomical classification

Taxonomical classification of the sequence was done using Kraken2 software [58] that reclassified the bacteria as H.
elongata contradicting the previous 16s rRNA based identification of the strain as H. caseinilytica T0SCRN4D. Fig 3
represents the hierarchical taxonomical classification of the strain. S1 Table shows the output result of the taxonomical
identification when the H. elongata had the highest score of association.

Table 1. Sequence quality assessment report.

Category Report Value Expected value Interpretation
Read Quality (NanoPlot) | % Reads>Q10 100% 90% basecall accuracy — 10 100% of reads are good quality
% Reads >Q12 44.8% - Nearly half the reads are over Q12
%Reads>Q15 2.0% - Few reads are over Q15
Assembly Statistics Number of contigs 6 Less than 10 A low number of contigs indicates excellent
contiguity
# N’s per 100 kbp 0.00 0 No gaps in the assembly, indicating fully
resolved sequences
GC content 63.04% 15% - 75% Normal GC content range
L50 2 2-10 Only 2 contigs cover 50% of the total
genome showing excellent assembly quality
N50 890802 - highly contiguous assembly
Overall Completeness Contigs >50 kbp 6 >10 All contigs are longer than 50 kbp, indicat-
ing high-quality assembly

https://doi.org/10.1371/journal.pone.0334420.t001
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Fig 1. Evaluation of quality of the genome assembly. A. An Nx plot showing the assembly continuity and indicating a high-quality genome assembly
with significant coverage achieved by large contigs. B. The plot shows the cumulative length of contigs from genome assembly as a function of contig
index. A steep initial slope, which then levels off, indicates that a few long contigs make up a substantial part of the genome. C. The plot shows distribu-
tion of GC content across different windows of the assembled genome having a predominant and consistent GC content around 60%. D. The plot shows
the peak of GC content across the contigs in the genome assembly and implies a uniform GC content of a little over 60%.

https://doi.org/10.1371/journal.pone.0334420.9001

Gene prediction and functional annotation

PROKKA predicted a total of 4308 genes within the genome. These genes were categorized as follows: 4227 genes anno-
tated as conserved domain sequences (CDS), 12 genes annotated as rRNA, 68 genes annotated as tRNA and 1 gene
annotated as tmRNA. Additionally, 1659 CDS were annotated as hypothetical proteins, representing genes with uniden-
tified or uncertain functions. To further characterize these hypothetical proteins, they were subjected to analysis using
Conserved Domain Database (CDD), where 737 hypothetical proteins were identified as specific proteins with defined
functions and 396 hypothetical proteins were linked to their respective superfamilies, providing functional insights. How-

ever, 526 hypothetical proteins remained uncharacterized, representing sequences with no detectable matches to known
proteins or superfamilies (S1-S4 Figs).
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Fig 2. BUSCO assessment results displaying three categories of genomic completeness. Complete (C), Fragmented (F), and Missing (M). The
Complete (C) category dominates with approximately 81% of BUSCOs, including 505 single-copy and 1 duplicated. The Fragmented (F) category
accounts for about 12%, while the Missing (M) category represents roughly 7%. The chart highlights the high quality and completeness of the genome
assembly.

https://doi.org/10.1371/journal.pone.0334420.9002
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Fig 3. Taxonomical classification of Halomonas elongata.

https://doi.org/10.137 1/journal.pone.0334420.9003

In addition to PROKKA, PRODIGAL and GeneMarkS2 were utilized for gene prediction (Table 2). PRODIGAL
predicted 4234 genes, of which 3785 genes were annotated using EggNOG-mapper. GeneMarkS2 predicted 4280
genes, with 3861 genes annotated via EQgNOG-mapper. Gene ontology (GO) assignments were carried out using
InterProScan and Blast2GO. The sequence distribution based on Biological, Cellular, and Molecular functions
is summarized in Fig 4. 100 proteins were categorized under GO:0006805, corresponding to xenobiotic degra-
dation, indicating potential involvement in detoxification processes. Notably, no proteins were categorized under
G0:0019439, which corresponds to aromatic compound catabolism, highlighting a lack of direct annotations related
to this specific function.
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Table 2. Comparison of the gene prediction and annotation results.

Gene Prediction Total No. of genes No. of genes No. of No. of No. of No. of Hypothet- No. of predicted

and Annotation Tool length predicted annotated CDSs rRNAs tRNAs ical Proteins genes not annotated
PROKKA 1152142 4308 4308 4227 12 68 1659 -

PRODIGAL+ 1157291 4234 3785 3657 - - 128 449
EggNOG-mapper

GenemarkS2+ 1161458 4280 3861 3732 - - 129 419
EggNOG-mapper

“Total length” refers to the total sequence length (in base pairs) that was processed by each tool to be annoatable; “No. of genes predicted” includes
all coding and non-coding sequences identified by the gene prediction tool; “No. of genes annotated” includes only those with functional annotation
assigned by the annotation tool; “CDS” refers to protein-coding sequences among the annotated genes; “Hypothetical proteins” are predicted proteins
without functional annotation among the predicted genes; “Predicted genes not annotated” indicates sequences that were predicted to be genes by the

gene prediction tool but were not annotated by the annotation tools.

https://doi.org/10.1371/journal.pone.0334420.t002
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Fig 4. GO analysis provides a functional snapshot of the strain’s genomic capacity. The image displays GO results distributed across three major
categories: Cellular Component, Molecular Function, and Biological Process. Cytosolic and membrane-associated proteins suggest critical metabolic
and transport-related roles; Enzymes involved in transferase, hydrolase, and oxidoreductase activities support the degradation of complex organic
compounds like coronene; The biological processes further underline the bacterium’s capacity to adapt, organize its cellular machinery and perform

specialized functions.

https://doi.org/10.1371/journal.pone.0334420.9004
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Identification of genomic features

Operon Mapper identified 2013 operons out of which at least 9 were associated with aromatic compounds degradation.
Two CRISPR sites were identified, one in utg000001I contig and the other in utg000005I contig (S2 Table). No cas sites
were detected.

In total, 436 repeat regions were identified. These regions mainly comprised of simple repeats. In addition to the sim-
ple repeats, LINEs, SINEs, rRNA and tRNA repeats were also detected (Fig 5). 1288 Palindrome, 121 mobile elements
and 47 Horizontal transfer genes were also found. antiSMASH was able to identify three secondary metabolite regions,
namely, ectoine, NRPS/ NRPS metallophore, RiPP like protein. Fig 6 shows the gene clusters of the three secondary
metabolite biosynthesis. CARD [49] detected 3 antibiotic resistance genes, namely, adeF, rsmA and qacG. Fig 7 rep-
resents the whole genome of the bacteria created using Proksee web-based tool [59].

Ectoine production

In recent years, ectoine has been extensively studied for commercial application due to its ability to stabilize cellular
components such as DNAs and proteins [60]. From the annotation results, 3 of the enzymes required for ectoine synthe-
sis, namely, Diaminobutyric acid acetyltransferase (ectA), L-2,4-diaminobutyrate-2-oxoglutarate transaminase (ectB) and
Ectoine synthase (ectC) were identified. Additionally, Ectoine hydroxylase (ectD) involved in the conversion of ectoine to
5-hydroxyectoin was also found. EctD is not commonly found in all ectoine biosynthesizing bacteria. 5-hydroxyectoin has
superior stress-relieving properties [61].

Functional and pathway analysis

The RAST analysis revealed that only 32% of the genome was associated with subsystem categories. Overall, 4393 cod-
ing sequences in the genome were Identified using RAST. Of these, 1398 coding sequences were linked to one or more
subsystems in the database. Within the category of aromatic compound metabolism, 30 features/genes were identified,
highlighting the organism’s potential role in degrading aromatic compounds. Additionally, 2 genes categorized under
miscellaneous subsystems were associated with aromatic dioxygenase activity (S3 Table). RAST also identified other
important subcategories including resistance to antibiotics and toxic compounds, Invasion and intracellular resistance,
Prophage and phage packaging machinery suggesting mechanisms for survival in challenging environments, host interac-
tion capabilities and phage related function (Fig 8).

Repeat Sequences
'

=RRR =T =l|E =P =STD

Fig 5. Repeat sequences found in the genome. T-transfer DNA, IE- Integration/excision, RRR-Replication/Recombination/Repair, P- Phage,
STD- Stability/Transfer/Defense.

https://doi.org/10.1371/journal.pone.0334420.9005
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https://doi.org/10.1371/journal.pone.0334420.9006

Pathway analysis using InterProScan results identified 266 KEGG pathways in addition to 1866 sequences that were
found to be associated to one or more pathways. KASS produced KO list which helped in mapping the pathways. A total
of 2101 genes were annotated with KO numbers. Pathway mapping allowed to see the different pathways our bacterial
genome aligns with in the KEGG databases. Under the category of xenobiotic degradation pathways, 13 partial KEGG
pathways were identified. One reason to explain this would be the probable presence of alternative pathways which may
not be a part of the standard KEGG modules. S5 Fig shows the pathway map for the degradation of PAHs mediated by
cytochrome P450.

Discussion

The advent of LRST, such as ONS used in our study, has revolutionized microbial genomics by enabling high-contiguity
assemblies and the resolution of complex genomic features. This study leverages the strengths of LRST to elucidate the
genomic adaptations of H. elongata (previously H. caseinilytica T0SCRN4D). Transitioning from 16S rRNA sequencing to
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Fig 7. Schematic circular map of the whole genome of Halomonas elongata. The map illustrates the location of the different genetic components of
the bacterial genome. Used under creative commons license.

https://doi.org/10.1371/journal.pone.0334420.9007

whole genome sequencing resulted in the reclassification of our strain from H. caseinilytica T0SCRN4D to H. elongata,
accentuating the evolving nature of bacterial taxonomy and the limitations of 16S rRNA-based identification methods [62].
This phenomenon is not unique to our study, as similar reclassifications have been observed in other bacterial genera.
For instance, WGS-based analyses led to the proposed combination of two Clostridium species in a 2021 study [63], and
another research effort reclassified an Elizabethkingia miricola strain as E. bruuniana [64]. These recurring instances of
species reclassification can be attributed to the insufficient resolution of 16S rRNA-based identification, particularly when
distinguishing closely related species within genetically complex genera like Halomonas [65]. The genetic similarity among
Halomonas species complicates accurate classification when relying solely on the 16S rRNA gene [62]. Relatively, LRST
provides a comprehensive genetic landscape, enabling more precise and nuanced species determination. Our study’s
findings highlight the advantages of LRST in uncovering subtle genomic differences crucial for accurate taxonomic classi-
fication [64].

Recent studies have highlighted the potential of halophilic bacteria in degrading HMW-PAHs under saline conditions.
Nanca et al. [66] isolated halophilic bacteria from Philippine salt beds capable of degrading pyrene, fluorene, and fluo-
ranthene, demonstrating the versatility of halophiles in PAH degradation. Other studies have demonstrated the ability of
various Halomonas sp. to degrade aromatic hydrocarbons under hypersaline conditions. For instance, H. organivorans
has been reported to degrade phenol, salicylate, and benzoate, utilizing pathways involving phenol hydroxylase and
catechol 2,3-dioxygenase enzymes [67].Similarly, Halomonas sp. strain ML-15 was shown to degrade phenanthrene
effectively under haloalkaliphilic conditions, emphasizing the adaptability of Halomonas species to extreme environments
[68]. Halomonas sp. strain C2SS100 has exhibited the capacity to degrade hydrocarbons under high salinity, highlighting
the genus’s adaptability to extreme environments [69].Our strain of study, as observed from our previous research, was
capable of degrading coronene at the same rate as that of any LMW-PAHSs and at a salinity ranging between 0.5% to
10% [18]. Renowned for their ectoine producing ability, H. elongata is a halophilic y-proteobacterium that has an optimal
growth at salt concentrations ranging from 3.5% to 20% NaCl [62]. Despite the Halomonas sp. remarkable capability, the
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degradation of HMW PAHSs such as coronene by H. elongata has not been previously reported in the literature, highlight-

ing the novelty and significance of our findings.

The gene prediction and annotation results from multiple tools (PROKKA, PRODIGAL, and GenemarkS2) provide a
comprehensive view of the H. elongata strain’s genomic content. The consistent gene count across different prediction
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algorithms (4308, 4234, and 4280, respectively) lends credibility to the overall gene density and supports the robustness
of the genome assembly. PROKKA'’s annotation revealed a high proportion of protein-coding sequences (4227 CDS) and
essential RNA genes, indicating a complete set of translational machinery crucial for cellular function [70]. However, high
number of hypothetical proteins (1659 out of 4227 CDS) initially annotated by PROKKA highlights the current limitations
in our knowledge of bacterial gene functions, particularly in less-studied genera like Halomonas. The subsequent analysis
of these hypothetical proteins using CDD reduced the number of truly uncharacterized proteins from 1659 to 526. This
significant reduction emphasizes the importance of using multiple annotation tools and databases to maximize functional
assignments as done in this study. The remaining 526 hypothetical proteins with no identified domains or superfamilies
represent potential targets for future experimental characterization. These could be genes unique to Halomonas or even
strain-specific adaptations, possibly playing roles in the organism’s specific environmental niche, and in our case, the
ability to degrade coronene [65,71].

Comparative genomic analyses have further elucidated the mechanisms underlying PAH degradation in halophilic
bacteria. Pontibacillus chungwhensis HN14, for example, possesses gene clusters associated with PAH degradation path-
ways, emphasizing the genetic basis for their catabolic capabilities [72]. These findings align with our genomic analysis of
H. elongata, which revealed genes involved in aromatic compound degradation, antibiotic resistance, and stress adap-
tation. GO analysis with InterProScan and Blast2GO provided a general overview of the genome’s functional landscape.
The identification of 100 proteins categorized under xenobiotic metabolic processes (GO:0006805) potentially addresses
the strain’s ability to degrade PAHs. However, the absence of proteins categorized under aromatic compound catabolism
(G0O:0019439) presents a contradiction that could be interpreted in several ways, including the possibility of alternative or
novel pathways for aromatic compound degradation not yet captured by current GO terms or specific genes may not be
well-represented in existing databases [62,73]. This can be backed by the knowledge that GO has not completely estab-
lished its ontology and has limited coverage of multi-functional genes [73].

RAST and KEGG pathway analyses provide insights into the strain’s functional capabilities and metabolic potential. The
relatively low percentage of genes assigned to RAST subsystems (32%) implies a substantial number of unique or poorly
characterized genes [56]. The identification of 13 partial KEGG pathways related to xenobiotic degradation is of interest,
although the absence of complete pathways could be due to the use of unique or modified pathways not defined in KEGG
modules or the genes may have slight variations resulting in them not being assigned with a KO number [74].

The results from Operon Mapper, CRISPR analysis, repeat region identification, CARD and antiSMASH provide
valuable insights into the genomic organization and functional potential. Particularly, the nine operons associated with
aromatic compound degradation corroborates the earlier Gene Ontology results indicating xenobiotic degradation poten-
tial, and at the same time suggesting that H. elongata strain under study may possess specialized pathways to break
down aromatic compounds. The detection of CRISPR site but the absence of cas genes is intriguing. This either means
the CRISPRs identified are non-functional, orphan CRISPR arrays or the cas genes are present but not identified by the
current annotation methods [75]. Antibiotic resistance to fluoroquinolone, tetracycline, diaminopyrimidine and phenolic
compounds is mainly due to the presence of efflux proteins rsmA and adeF. The gene qacG confers to it's resistance to
disinfecting agents and antiseptics [49]. Additionally, the 47 genes found to be horizontally transferred could play a role in
the strain’s ability to degrade coronene. This assumption is based off of Han and co-workers research in 2025 where they
observed that the ability of Altererythrobacter sp. H2 to degrade PAHs was due to horizontal gene transfer [76].

Secondary metabolite regions, particularly ectoine biosynthesis cluster is consistent with the halophilic nature of the
strain as ectoine is used for osmotic balance in halophilic bacteria [60,77]. The presence of NRPS clusters, including one
encoding a metallophore, would suggest the capacity to produce complex secondary metabolites participating in metal
acquisition or other ecological interactions that plays a prominent role in bioremediation. RiPP-like (Ribosomally syn-
thesized and Post-translationally modified Peptide) cluster signifies the potential for the production of bioactive peptides
which has the prospect to be explored in anti-microbial activity studies [78]. Most importantly, the presence of 4 genes
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involved in ectoine synthesis makes our strain an important candidate for research in cosmetics and medicine. On the
other hand, RAST and KEGG pathway analyses provided insights into the strain’s functional capabilities and metabolic
potential. The relatively low percentage of genes assigned to RAST subsystems (32%) implies a substantial number of
unique or poorly characterized genes [56]. The identification of 13 partial KEGG pathways related to xenobiotic degrada-
tion is of interest, although the absence of complete pathways could be due to the use of unique or modified pathways not
defined in KEGG modules or the genes may have slight variations resulting in them not being assigned with a KO number
[74].

While this study provides a detailed genomic analysis of H. elongata and its potential role in coronene degradation, it is
constrained by the lack of functional validation through transcriptomic or proteomic data. The genes and pathways iden-
tified here, though computationally annotated, require experimental confirmation to establish their specific roles in PAH
metabolism. Given the structural complexity and limited existing knowledge regarding the biodegradation pathways for
coronene, we initially hypothesized that H. elongata might utilize established degradation pathways known for other PAHSs,
such as naphthalene or phenanthrene. Surprisingly, genome analysis revealed that H. elongata lacks key enzymes com-
monly associated with these canonical PAH degradation pathways. As the degradation intermediates of coronene were
not characterized, our understanding of the complete metabolic pathway is limited. Future studies incorporating gene
knockout, heterologous expression, and metabolite profiling will be essential to verify the function of key enzymes and to
clarify the molecular mechanisms enabling coronene degradation under high salinity conditions.

Conclusion

This study presents a comprehensive genomic analysis of H. elongata (previously classified as H. caseinilytica), revealing
its exceptional potential for degrading coronene, a HMW-PAH, under saline conditions. By utilizing LRST coupled with
advanced bioinformatics tools, we identified specific genetic components and pathways related to xenobiotic metabolism,
production of secondary metabolites, and adaptive mechanisms such as horizontal gene transfer and CRISPR arrays.
These genetic insights highlight the organism’s adaptability and underscore its significant promise for environmental
applications.

Broader implications of our findings include potential utilization of H. elongata in bioremediation strategies for marine
and hypersaline ecosystems contaminated with complex hydrocarbons, as well as opportunities for industrial biotechnol-
ogy applications, particularly involving halotolerant secondary metabolite production like ectoine. However, this genomic
study faces limitations, notably the absence of functional validation through transcriptomic, proteomic, and metabolomic
analyses. Consequently, the specific biochemical mechanisms underlying coronene degradation remain hypothetical and
require confirmation through experimental studies.

Future research should explicitly focus on validating the identified metabolic pathways, characterizing unannotated
or hypothetical proteins, and exploring industrially relevant secondary metabolites. Targeted genetic experiments,
including gene knockouts and metabolite profiling, are essential next steps to fully harness the biotechnological
and environmental potentials of H. elongata. Such future studies will significantly strengthen our understanding and
enable the practical deployment of this microorganism to sustainably mitigate PAH contamination in challenging envi-
ronmental settings.
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