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Abstract

FLT3 (FMS-like tyrosine kinase 3), a receptor tyrosine kinase, is frequently mutated in
acute myeloid leukemia (AML), a hematologic malignancy marked by aggressive prolif-
eration, poor prognosis, and high relapse rates. Although FDA-approved FLT3 inhibitors
exist, their clinical efficacy is often undermined by resistance and off-target effects,
underscoring the critical necessity for more effective and selective agents. Here, we
employed a structure-based computational approach combining pharmacophore screen-
ing via Pharmit and the MolPort compound library to identify novel FLT3 inhibitors. Phar-
macophore modeling, virtual screening, and docking identified two promising leads,
MolPort-002-705-878 and MolPort-007-550-904, with binding affinities of —11.33 and —
10.66 kcal/mol, correspondingly. These compounds were further evaluated using molec-
ular dynamics (MD) simulations to assess binding stability, density functional theory
(DFT) calculations to explore electronic reactivity, and ADMET profiling to examine phar-
macokinetic and toxicity parameters. MD results, including principal component analysis
(PCA) and free energy landscape (FEL) mapping, supported the integrity of the FLT3—
lead complexes, with MM/GBSA binding free energies (AG) of —39.23 kcal/mol and —
27.03 kcal/mol for MolPort-002-705-878 and MolPort-007-550-904, respectively. DFT
analysis indicated favorable frontier molecular orbital energies and reactivity indices,
characterized by a low HOMO-LUMO energy gap and a reactive dipole moment. ADMET
predictions indicated acceptable drug-likeness and low toxicity, pending further experi-
mental confirmation. This integrated in silico pipeline highlights the therapeutic potential
of these molecules as next-generation FLT3 inhibitors and offers a scalable strategy for
targeted AML therapeutics.

Introduction

Acute myeloid leukemia (AML) is a fast-progressing blood cancer marked by the unchecked
proliferation of immature myeloid cells in the bone marrow and bloodstream [1]. This clonal
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expansion disrupts normal blood cell production, resulting in bone marrow failure and swift
decline in patient health [1,2]. Representing the most recurrent type of acute leukemia in
mature individuals, AML accounts for over half of all adult leukemia cases and is associated
with particularly poor outcomes in high-risk and elderly populations, where five-year sur-
vival rates remain below 30% [3,4]. Despite advances in identifying key genetic mutations
such as FLT3, IDH1/2, and NPM1, and the curative potential of bone marrow transplanta-
tion in select patients, AML remains largely incurable, particularly in cases of relapse or treat-
ment resistance. Moreover, AML is known for its rapid progression, and if left untreated, it
can become increasingly aggressive, further emphasizing the urgent need for more effective
and durable therapeutic strategies [5-7].

FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase predominantly expressed
in hematopoietic stem cells and plays a pivotal role in the regulation of hematopoiesis [5].
Mutations in FLT3, particularly internal tandem duplications (FLT3-ITD) and tyrosine kinase
domain point mutations (FLT3-TKD), are among the most frequent genetic abnormalities
in acute myeloid leukemia, affecting nearly 30% of patients [8,9]. As a result of these muta-
tions, the kinase remains persistently active, which promotes malignant signaling and is asso-
ciated with adverse prognosis [10]. Consequently, FLT3 has gained recognition as a proven
biological site in the therapeutic management of AML.

FLT3 inhibitors have been established as promising therapeutic agents for AML, supported
by a wide array of preclinical and clinical studies [11-13]. FDA-approved inhibitors like
Midostaurin, Quizartinib, and Gilteritinib exert their activity by targeting the ATP-binding
cavity within the FLT3 receptor, thereby preventing its phosphorylation and downstream sig-
naling [13-15]. Structurally, these inhibitors share bulky, heteroaromatic, polycyclic frame-
works: Gilteritinib features a pyrazine-carboxamide core, Quizartinib employs a heteroaryl-
aryl urea scaffold, and Midostaurin is derived from an indolocarbazole-pyrrolidone fused
framework related to staurosporine analogs. Although all of these inhibitors have gained
regulatory approval and are commercially available in the United States, their clinical effec-
tiveness is often compromised by issues such as acquired resistance, off-target effects, and
suboptimal specificity [14,16]. These limitations not only reduce therapeutic efficacy but
also affect patient safety and quality of life. Consequently, there remains a pressing need for
next-generation FLT3 inhibitors featuring novel chemical scaffolds with improved potency,
selectivity, and pharmacokinetic profiles to achieve better clinical outcomes in AML therapy.

Structure-based virtual screening (SBVYS) is a key component of modern CADD
(Computer-Aided Drug Design), enabling the identification of candidate molecules based
on their structural compatibility with the target binding site [17]. Among available platforms,
Pharmit offers distinct advantages through its interactive, cloud-based interface that integrates
pharmacophore modeling, shape screening, and energy minimization [18]. It allows real-time
refinement of pharmacophore queries directly from protein-ligand complexes and supports
rapid filtering of large compound libraries based on steric and electronic features [18].

Molecular docking estimates the most favorable binding pose and interaction strength
of ligands at receptor sites, making it a key component of structure-based drug design [19].
However, its static nature limits understanding of dynamic interactions. To address this,
molecular dynamics (MD) simulations are carried out to examine temporal stability, confor-
mational mobility, and ligand persistence under near-physiological conditions [20]. Post-MD
MM/GBSA calculations refine hit selection by quantifying binding free energies, account-
ing for solvation and entropic contributions [21]. Density functional theory (DFT) provides
deep insights into electronic properties such as frontier orbitals and charge distribution,
aiding in reactivity and binding specificity analysis [22]. Finally, in silico ADMET profiling
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evaluates pharmacokinetics and toxicity, ensuring drug-likeness and safety of the candidate
compounds [23].

This study presents an integrated computational strategy comprising pharmacophore
modeling (via the Pharmit platform), molecular docking, MD simulations with PCA and
FEL analysis, DFT calculations, and ADMET evaluation to guide the rational design of FLT3
inhibitors (Fig 1). By combining these complementary methods, the approach aims to system-
atically identify and characterize hit compounds with strong structural compatibility, binding
stability, favorable electronic properties, and suitable pharmacokinetics. The eventual objec-
tive is to discover novel chemical scaffolds with strong potential to inhibit FLT3, advancing
targeted therapies for acute myeloid leukemia.

Materials and methods
Pharmacophore modeling and virtual screening

In this study, we examined the crystallographic conformation of the FLT3 kinase complexed
with the FDA-approved drug, Gilteritinib (PDB ID: 6JQR) [24], using it as a reference to iden-
tify key molecular interactions and define relevant pharmacophoric features. A ligand-based
pharmacophore model was subsequently developed from this FLT3 crystal structure using the
Pharmit web server [18].

This pharmacophore was employed to screen the MolPort compound library, one of the
most recently curated and expansive repositories, containing 4,742,020 compounds as of
September 5, 2024. All candidates were filtered according to Lipinski’s Rule of Five [25] for
ensuring drug-likeness. Screening was performed with only the best conformer per com-
pound to maintain computational efficiency. From the resulting dataset, the top 25,000 hits
were selected, followed by energy minimization within the server to refine ligand geome-
tries. Compounds exhibiting a maximum minimized binding affinity (docking score) of
zero were retained. Finally, a threshold value of 1 A for molecular root-mean-square devia-
tion (mRMSD) was enforced, and compounds showing substantial deviation from the phar-
macophore alignment were excluded, ensuring high fidelity between the screened conforma-
tions and the original pharmacophore model.

Molecular
Docking

Ranking of selected 419
hits based on docking

Virtual
Screening

Screening of Molport
database

Pharmacophore
Modelling

Structure-Based Model
Built Using Pharmit

DFT Analysis MD Simulations

Stability Analysis of
Protein-Lead Complexes

Quantum Descriptors
study of two leads

Druglikeness and Toxicity
Study of Two Leads
Fig 1. Workflow diagram providing a concise overview of the study. The figure illustrates the overall methodology

and structure of the study, highlighting key stages.

https://doi.org/10.1371/journal.pone.0334415.9001
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Preprocessing of ligands and protein

The X-ray crystallographic structure of the FLT3 receptor (PDB ID: 6]JQR) [24] was retrieved
from the RCSB Protein Data Bank [26]. Homology modeling was performed using MOD-
ELLER to fill in missing residues and generate a structurally complete protein model [27].
Protein preparation was conducted using AutoDockTools [28], during which all water
molecules were deleted, polar hydrogens were introduced, and Kollman partial charges were
applied. Three-dimensional structures of the identified hits from pharmacophore-based vir-
tual screening were imported from the screening server. Following energy minimization and
charge assignment, PDB format files of both protein and ligands were converted into PDBQT
format using OpenBabel [29].

Molecular docking

The receptor grid for docking was constructed around key catalytic residues of FLT3; Leu616,
Val624, Ala642, Glu692, Cys694, Asp698, and Leu818 based on their involvement in the active
site [30], using grid dimensions of 20 A, 25 A, and 22 A with a grid point spacing of 1 A along
the x, y, and z axes, respectively. Docking-based virtual screening was performed within that
receptor grid using PyRx where Autodock Vina serves as the backend [29]. The cognate lig-
and was redocked into its binding site, and the RMSD between its crystallographic and pre-
dicted poses was calculated to validate the docking procedure. The resulting top protein-
ligand complexes were visually examined using PyMOL 2.5.2 [31], molecular interactions
were analyzed in BIOVIA Discovery Studio [32], and Tanimoto similarity to FDA-approved
FLT3 inhibitors was computed using RDKit [33].

Molecular dynamics simulations

GROMACS 2025.1 [34] was employed to conduct molecular dynamics simulations aimed at
probing the structural stability of the protein and its ligand-bound forms [21]. The protein
was parametrized deploying CHARMM General Force Field (CGenFF), and ligand topolo-
gies were generated via SwissParam [35]. Structures underwent energy minimization for
2500 steps using the steepest descent algorithm. The systems were solvated using the TIP3P
water model [36] and neutralized with Na* and CI” ions using gmx genion. Two equili-
bration phases followed: a 100-ps NVT run to reach 300 K, and a 100-ps NPT run for pres-
sure and density stabilization. During equilibration, all bond lengths were constrained to pre-
serve structural integrity, and water constraints facilitated solvent shell reorganization. The V-
rescale thermostat and Parrinello-Rahman barostat [37] were employed for temperature and
pressure control, respectively. The LINCS algorithm ensured bond constraints [38], and long-
range electrostatics were calculated using the PME method [39]. Production MD simulations
were executed for 100 ns to trace trajectory and stability analysis.

MM/GBSA binding free energy

Binding free energies were calculated using the Molecular Mechanics/Generalized Born Sur-
face Area (MM/GBSA) method via the gmx_MMPBSA tool (version 1.6.3), which integrates
GROMACS with AmberTools for end-state energy analysis [40]. The overall binding free
energy (AGyping) was partitioned into van der Waals (AE,qw), electrostatic (AE,), and both
polar and non-polar solvation energy contributions, as outlined in Eq (1) [21].

AGyping = AEygw + AEge + AGpolalr + AGnonpolar (1)
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Polar solvation energy was evaluated by the Generalized Born (GB) using the GB-
Neck2 implicit solvent model (1 gb=5), and the nonpolar term was estimated via the LCPO
method [41]. Entropy contributions were omitted, consistent with common practice in com-
parative MM/GBSA studies [42]. A total of 1001 snapshots were extracted at equal intervals
from the 100 ns production trajectory (MD_center . xtc) for free energy analysis.

Principal component analysis (PCA)

Trajectory pre-processing and PCA execution were performed using GROMACS 2025.1 [34].
The positional atomic covariance matrix was computed using the gmx covar command,
focusing on the Ca atoms of the protein to capture backbone motions. This step produced
eigenvectors along with their corresponding eigenvalues. Subsequently, the top three princi-
pal components were then analyzed using the gmx anaeig utility to examine root-mean-
square (RMS) fluctuations, eigenvector contributions, and 2D trajectory projections. All PCA
plots were generated using Xmgrace [43].

Free energy landscape (FEL)

The trajectory file from the 100 ns molecular dynamics simulation was taken as input for
principal component analysis (PCA), from which the top two eigenvectors (PC1 and PC2)
were selected as reaction coordinates. The free energy of each conformation was calculated on
the basis of free energy AG, Boltzmann constant (ks = 1.380649 X 10-2* J/K), absolute temper-
ature (T = 298.15 K) and natural logarithm of the normalized probability distribution across
the PC1-PC2 space (In P), using the Boltzmann relation as shown in Eq (2) [44].

AG=-kgTInP (2)

The three-dimensional FEL was visualized using the matplotlib.pyplot.plot_
surface () function to map local energy minima and transition states on a rugged confor-
mational landscape [45].

DFT analysis

The molecular structure and Gaussian input files of the leads were generated with the
GaussView 6 program [46]. The molecular geometries of the leads were fully optimized in the
gas phase employing density functional theory at the B3LYP level and the 6-311G(d,p) basis
set, facilitated by the Gaussian 09W software package [47]. Optimized molecular structures
were used to compute various molecular properties, including frontier molecular orbitals
(HOMO and LUMO), the energy gaps (AE), quantum chemical descriptors, molecular elec-
trostatic potential (MEP) map, Mulliken charges and natural bond orbital (NBO) studies.
Key global reactivity descriptors such as ionization potential (I), electron affinity (A4), chem-
ical hardness (7)), chemical softness (S), chemical potential (1), global electrophilicity index
(w) and, nucleophilicity index (N) were derived from orbital energy values on the basis of
Koopmans’ principles (Egs (3) and (4)) [48,49].

1
I=-Exomo, A=-Ewumo, 1= E(I_A) 3)
1 1 u? 1
S=—, u=--(I+A), w==—, N=-— (4)
7 2 27 w
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The NBO program [50] was employed to investigate natural bond orbitals at the same
level of theory, where delocalized interactions were analyzed using second-order perturba-
tion theory. The stabilization energy E(2) was computed from the donor orbital occupancy
(gi), donor and acceptor energies (E;, E;), and the Fock matrix off-diagonal element (F;;) as per

Eq (5) [51,52].

_aiFGi))’

E(2
2) E - E

(5)

ADMET analysis

The compounds with the most favorable docking scores were further evaluated for their phar-
macokinetic properties using the SwissADME web server [23], and for toxicity using the
ProTox-3.0 web server [53].

Results and discussion
Pharmacophore-based virtual screening

The pharmacophore query model constructed using the key interaction features of Gilteritinib
observed within the FLT3 binding site (Fig 2 and S1 Fig) incorporated four critical pharma-
cophoric features: one hydrophobic region, one hydrogen bond acceptor, and two hydrogen
bond donor groups, each of which was deemed essential for a compound to be considered a
valid hit. The precise spatial coordinates (X, Y, and Z) of these features are detailed in Table 1.
Utilizing this defined feature set, a ligand-based virtual screening was performed against the
MolPort compound library and only those molecules matching all four features were retained.
From the initial top 25,000 compounds identified as potential hits by the server, 419 com-
pounds met the screening criteria: compliance with Lipinski’s Rule of Five, minimized bind-
ing affinity less than zero, and a molecular RMSD (mRMSD) below 1 A. These 419 hits were
selected (S1 Table) and transferred for further validation and refinement through docking-
based virtual screening.

Docking-based virtual screening

A total of 419 hits from pharmacophore modeling were subjected to molecular docking with
FLT3 within the defined receptor grid. The resulting docking scores spanned from -11.330

Fig 2. Pharmacophore features generated by the Pharmit server. A: Pharmacophore features mapped within the
receptor binding pocket. B: Pharmacophore features mapped onto the ligand in the absence of the receptor struc-
ture. White spheres represent hydrogen donor regions, orange indicates hydrogen acceptor, while green indicates
hydrophobic feature.

https://doi.org/10.1371/journal.pone.0334415.9002
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Table 1. Pharmacophore features and their computed 3D coordinates from Pharmit.

Parameter Hydrogen donor (1) |Hydrogen donor (2) |Hydrogen acceptor  |Hydrophobic
X -28.282 -27.437 -27.632 -28.146

Y -7.483 -3.380 -5.511 -2.242

z -30.381 -31.714 -32.244 -27.314
Radius 1 1 1 1

https://doi.org/10.1371/journal.pone.0334415.t001

to —3.052 kcal/mol. Based on these results, the top seven highest-ranking compounds cross-
ing binding energy below -9 kcal/mol were shortlisted with their ITUPAC names and binding
energies in Table 2. The binding affinity profiles of these ligands suggest a significant potential
to suppress the functional activity of the target protein.

Docking validation was performed by re-docking the cognate ligand Gilteritinib into
its native binding zone. The resulting RMSD of 0.72 A (Fig 3), which is well below the 2 A
threshold, confirms accurate reproduction of the experimental pose [54]. This establishes the
robustness and predictive reliability of the docking workflow.

Table 2. Binding energies and IUPAC names of the top selected compounds.

Compounds IUPAC Name Binding Energy (kcal/mol)
MolPort-002-705-878 N’-[(3E)-6-bromo-5-methyl-2-o0xo0-2,3-dihydro- -11.33
1H-indol-3-ylidene]-3-hydroxynaphthalene-2-
carbohydrazide

MolPort-007-550-904 3-hydroxy-N’-[(3E)-2-o0xo-1-propyl-2,3-dihydro-1H- |-10.66
indol-3-ylidene]naphthalene-2-carbohydrazide
MolPort-002-251-242 2-chloro-5-([(5E)-1-ethyl-2,4,6-trioxo-1,3- -10.46
diazinan-5-ylidene]methylamino)benzoic
acid

MolPort-002-603-739 (5E)-5-[(2-aminophenyl)amino]methylidene-1- -10.23
(butan-2-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione
MolPort-000-431-547 1-(3,4-dichlorophenyl)-3-[2-oxo-5-(trifluoromethyl)- |-9.52
1,2-dihydropyridin-3-yl]urea
MolPort-002-602-969 (5E)-5-(1-[4-(dimethylamino)phenyl] -9.41
aminopropylidene)-1-(prop-2-en-1-yl)-1,3-diazinane-
2,4,6-trione

MolPort-002-599-502 (5E)-5-[(2-aminophenyl)amino]methylidene-1- -9.25
cyclopropyl-2-sulfanylidene-1,3-diazinane-4,6-dione

https://doi.org/10.1371/journal.pone.0334415.t002

B :\\‘/\ o= ‘\, //

Fig 3. Superposition of native ligand and best-docked conformation. Green denotes the native ligand, whereas
pink depicts the best-docked pose. The overlay yielded an RMSD of 0.72 A, thereby validating the accuracy of the
docking protocol.

https://doi.org/10.1371/journal.pone.0334415.g003
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Molecular interaction analysis

The top two compounds, MolPort-002-705-878 and MolPort-007-550-904 with binding
affinities of —11.33 kcal/mol and -10.66 kcal/mol, correspondingly (Table 2), were selected as
leads for detailed interaction analysis. MolPort-002-705-878 exhibited multiple key interac-
tions within the active site. It formed four conventional hydrogen bonds with CYS694 (1.69
A), ASP698 (2.15 A), GLU692 (2.05 A), and GLY697 (2.48 A) as shown in Fig 4 and Table 3.
A carbon-hydrogen bond was observed with GLY617 (2.59 A), along with a pi-sigma inter-
action with LEU818 (4.62 A) and an amide-pi stacked interaction with GLY831 (4.03 A).
Hydrophobic interactions included pi-alkyl contacts with LEU832 (4.92 A) and GLY831 (3.45
A), and alkyl interactions involving VAL624 (5.11, 5.32 A), VAL675 (4.12 A), ALA642 (4.30
A), LEU818 (5.09, 4.62 A), PHE691 (3.58 A), and LYS644 (4.62 A). These interactions stabi-
lize the ligand within the binding pocket, highlighting its high affinity, with the presence of
multiple hydrogen bonds further contributing to its enhanced binding energy [55].

MolPort-007-550-904 also displayed significant interactions within the active sites (Fig 5),
forming conventional hydrogen bonds with ASP698 (2.19, 2.21 A), CYS694 (2.77 A), GLU692
(1.77 A), and GLY697 (2.45 A) (Table 3). A carbon-hydrogen bond was formed with LEU832
(2.56 A). Pi-pi T-shaped stacking was observed with PHE691 (4.91 A), and amide-pi stacked
interactions were detected with GLY831 (3.69 A) and PHE691 (5.19 A). Pi-alkyl interactions
were found with VAL675 (5.20 A), VAL624 (5.03 A), ALA642 (4.46 A), and LEU818 (4.82 A),
while alkyl interactions involved LEU616 (3.70 A) and GLY831 (3.69 A). Collectively, these
interactions suggest a strong and specific binding orientation in the active site and contend for
potent inhibitor of FLT3.

Both MolPort-002-705-878 and MolPort-007-550-904 share an ortho-hydroxynaphthalene-
1-carboxamide (o-HNCA) motif, absent in FDA-approved FLT3 inhibitors (S2 Fig). This
unit is conjugated to the exocyclic imino nitrogen of an imesatin (3-imino-2-oxindole) core.

VA
: VAL

358 51 5-3%‘[‘[‘

8 31111, LEU 259
W i,
Bre //\(\

/
\3 /)\‘,J
/\\; - \
462

LYS
A6l 249

Interactions

I conventional Hydrogen Bond [0 Amide-Pi Stacked
[] carbon Hydrogen Bond [ Ayl

B Fi-sigma [ pi-alkyl

Fig 4. Interaction plots of MolPort-002-705-878 with FLT3 receptor. A: 2D interaction diagram. B: 3D interaction surface within the active site.
https://doi.org/10.1371/journal.pone.0334415.9004
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Table 3. Interaction analysis of two lead compounds with FLT3 protein.

Compound Interaction type Interacting amino acids (Distance in A)
MolPort-002-705-878 Conventional hydrogen bond |CYS694 (1.69), ASP698 (2.15), GLU692 (2.05),
GLY697 (2.48)
Carbon hydrogen bond GLY617 (2.59)
Pi-sigma LEUS818 (4.62)
Amide-Pi stacked GLY831 (4.03)
Pi-Alkyl LEU832 (4.92), GLY831 (3.45)
Alkyl VAL624 (5.11, 5.32), VAL675 (4.12), ALA642 (4.30),
LEU818 (5.09, 4.62), PHE691 (3.58), LYS644 (4.62)
MolPort-007-550-904 Conventional hydrogen bond |ASP698 (2.19, 2.21), CYS694 (2.77), GLU692 (1.77),
GLY697 (2.45)
Carbon hydrogen bond LEUS832 (2.56)
Pi-Pi T-shaped PHE®691 (4.91)
Amide-Pi stacked GLY831 (3.69), PHE691 (5.19)
Pi-Alkyl VAL675 (5.20), VAL624 (5.03), ALA642 (4.46),
LEU818 (4.82)
Alkyl LEU616 (3.70), GLY831 (3.69)

https://doi.org/10.1371/journal.pone.0334415.t003

>
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Interactions

[] van der waals I Fi-Pi T-shaped
I conventional Hydrogen Bond [ Amide-Pi Stacked
[ ] carbon Hydrogen Bond [ Piralkyl

Fig 5. Interaction plots of MolPort-007-550-904 with FLT3 receptor. A: 2D interaction diagram. B: 3D interaction surface within the active site.
https://doi.org/10.1371/journal.pone.0334415.9005

The first lead features vicinal 6-bromo and 7-methyl substitutions on the imesatin scaf-
fold, while the second contains an N-propyl group at the lactam nitrogen and lacks aryl
halogenation, indicating structural divergence. These features produce a compact, rigid,
H-bond-competent benzolactam-amide framework distinct from clinically validated FLT3
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chemotypes. Consistently, both leads showed low 2D similarity (Tanimoto <0.20) to FDA-
approved FLT3 inhibitors, reinforcing scaffold-level novelty and providing a quantitative basis
for their structural distinctiveness (S3 Fig).

MD simulations

Among the seven top-ranked docked compounds, MolPort-002-705-878 and MolPort-007-
550-904 were selected as leads based on favorable docking scores, consistent hinge-region
hydrogen bonding (CYS694, GLU692, ASP698), and key hydrophobic interactions, which
appeared more pronounced compared to the other shortlisted compounds. Molecular dynam-
ics simulations confirmed the stability of these interactions, while MM/GBSA binding ener-
gies indicated strong binding affinity. Both compounds also exhibited acceptable ADMET
profiles and favorable DFT-based electronic descriptors. These multi-parameter criteria sup-
ported their advancement for further structural and energetic evaluation.

The protein RMSD in both systems remained within a stable range, fluctuating between
0.5-3.5 A for the MolPort-002-705-878 complex and 1.0-3.25 A for the MolPort-007-550-
904 complex, indicating overall structural stability of the receptor (Figs 6A and 7A). Among
the leads, MolPort-002-705-878 exhibited an RMSD range of 0.25-2.0 A, with an initial rapid
increase to ~2 A followed by stabilization within a narrow 1.5-2.0 A band, consistent with
a rigid and tightly bound conformation. In contrast, MolPort-007-550-904, while showing
a similar overall RMSD range, exhibited greater fluctuation, gradually decreasing after an
early peak and spending most of the simulation between 0.25-1.25 A, suggesting relatively
enhanced conformational flexibility.

RMSEF (Root mean square fluctuation) analyses (Figs 6B and 7B) showed that while the
majority of residues fluctuated below 2.0 A, certain regions in the MolPort-002-705-878 com-
plex exhibited fluctuations reaching up to 6.0 A, indicating localized flexibility. The radius
of gyration (Rg) remained consistent in both simulations, with values fluctuating narrowly
around 21.0-21.7 A (Figs 6C and 7C), suggesting maintenance of a compact protein fold.

SASA (Solvent accessible surface area) trends (Figs 6D and 7D) indicated a slight decrease
for the MolPort-007-550-904 complex, whereas MolPort-002-705-878 showed a modest
increase, reflecting minor structural adjustments. Hydrogen bond analysis (Figs 6E and 7E)
revealed that the MolPort-007-550-904 complex formed 1-2 transient hydrogen bonds on
average, while the MolPort-002-705-878 complex consistently maintained 3-4 bonds, occa-
sionally peaking at 6, implying a more stable and potentially higher-affinity interaction within
the ligand-binding site of the protein [20].

MolPort-002-705-878 forms a more stable and persistent complex with 6]JQR, as evidenced
by lower ligand RMSD, stronger hydrogen bonding, and increased solvent exposure, whereas
MolPort-007-550-904 exhibits greater conformational mobility and weaker stabilizing interac-
tions, indicating a more transient binding mode [56].

MM/GBSA binding free energy

The van der Waals (VDWAALS) and electrostatic (EEL) contributions for MolPort-002-
705-878 were —43.83 kcal/mol and -19.74 kcal/mol, respectively, while for MolPort-007-
550-904 they were —41.01 kcal/mol and -3.08 kcal/mol. The polar solvation energy (EGB)
was 29.48 kcal/mol for MolPort-002-705-878 and 22.24 kcal/mol for MolPort-007-550-904,
and non-polar solvation (ESURF) contributions were —5.14 kcal/mol and -5.18 kcal/mol,
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Fig 6. Molecular dynamics simulation analysis of the 6JQR-MolPort-002-705-878 complex over 100 ns. A: RMSD plot comparing
structural stability of the protein (orange) and ligand (blue). B: RMSF plot showing residue-specific flexibility of the protein, with higher
fluctuations in loop regions. C: Radius of gyration (Rg) indicating consistent compactness of the protein. D: SASA plot reflecting solvent
accessibility changes during the simulation. E: Hydrogen bonding dynamics over time showing consistent ligand—protein interactions,
reaching up to six bonds at peak points. These results suggest strong and stable ligand binding with enhanced interaction stability.

https://doi.org/10.1371/journal.pone.0334415.9006

respectively. Gas-phase interaction (GGAS) and solvation energies (GSOLV) were —
63.57/24.34 kcal/mol for MolPort-002-705-878 and -44.08/17.05 kcal/mol for MolPort-
007-550-904. Collectively, these components yielded binding free energies (AG) of -

39.23 kcal/mol and -27.03 kcal/mol, confirming stronger overall binding for MolPort-002-
705-878. The MM/GBSA energy profiles (Fig 8, Table 4) align with dynamic and structural
stability observed in simulations, reinforcing the drug-like potential of both ligands [57].
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Fig 7. Molecular dynamics simulation analysis of the 6JQR-MolPort-007-550-904 complex over 100 ns. A: RMSD plot showing
backbone stability of the protein (blue) and ligand mobility (orange). B: RMSF plot representing residue-wise fluctuations of the protein
backbone. C: Radius of gyration (Rg) profile showing the compactness of the protein structure. D: Solvent-accessible surface area (SASA)
illustrating changes in surface exposure. E: Number of hydrogen bonds formed between the ligand and protein over the simulation time.
The data indicate moderate ligand flexibility and intermittent hydrogen bonding, with the protein maintaining overall structural stability.

https://doi.org/10.1371/journal.pone.0334415.9007

Principal component analysis (PCA)

Eigenvalues of the covariance matrix. The eigenvalue spectrum as shown in Panel A of
Fig 9 illustrates the distribution of atomic fluctuations along the principal components. Both
systems, 6JQR-(MolPort-002-705-878) complex (orange) and 6JQR-(MolPort-007-550-904)
complex (red), exhibit a steep decline in the first few eigenvalues, followed by a long tail of
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Fig 8. Illustration of MM/GBSA binding energy component analysis. A: MolPort-002-705-878. B: MolPort-007-550-904.

https://doi.org/10.1371/journal.pone.0334415.g008

Table 4. MM/GBSA binding energy components of the lead compounds, MolPort-002-705-878 and

MolPort-007-550-904, in kcal/mol.

Energy Component MolPort-002-705-878 MolPort-007-550-904
VDWAALS -43.83 -41.01

EEL -19.74 -3.08

EGB 29.48 22.24

ESURF -5.14 -5.18

GGAS -63.57 -44.08

GSOLV 24.34 17.05

TOTAL AG -39.23 -27.03

https://doi.org/10.1371/journal.pone.0334415.1004

lower-magnitude components. This trend indicates that the majority of the protein’s collec-
tive motions are captured within the first few principal components. The first complex dis-
plays slightly higher initial eigenvalues, suggesting stronger collective motions and potentially
greater conformational variability compared to that of the latter complex.

RMS fluctuations along principal components. Panel B of Fig 9 presents the root mean
square (RMS) fluctuation of atomic positions along the first three principal eigenvectors
(vecl, vec2, and vec3). The 6JQR-(MolPort-007-550-904) complex exhibits greater ampli-
tude fluctuations, particularly along vecl and vec3, with peaks exceeding 0.1 nm. These pro-
nounced fluctuations imply more dynamic movements across key residues. In contrast, the
6JQR-(MolPort-002-705-878) complex demonstrates lower atomic fluctuations, indicative of
a more rigid structure with constrained deviations along the principal axes [58].

Eigenvector component analysis. Panels C (for the 6/QR-MolPort-002-705-878 com-
plex) and D (for the 6JQR-MolPort-007-550-904 complex) of Fig 9 illustrate the x, y, and z
components of the first three eigenvectors. In both systems, the total motion (black) is pre-
dominantly governed by the x-component (red), followed by moderate contributions from
the y- (green) and z- (blue) directions. However, the MolPort-007-550-904 complex displays
greater directional variation, especially in vecl and vec2, indicating more spatially diverse
and extended motion. The MolPort-002-705-878 complex shows more uniform directional
behavior, suggesting a compact and directionally consistent dynamic profile [58].
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Fig 9. Principal component analysis (PCA) of the 6JQR-leads complexes. A: Eigenvalue distribution of the covariance matrix. B: RMS
fluctuations along the first three principal eigenvectors. C: Eigenvector components (x, ¥, z) of the 6JQR-MolPort-002-705-878 com-
plex. D: Eigenvector components (X, ¥, z) of the 6JQR-MolPort-007-550-904 complex. E: Two-dimensional projection of the trajectories
along the first two principal components (vecl vs. vec2). Overall, the PCA results indicate that MolPort-007-550-904 explores a broader
conformational space with greater flexibility, whereas MolPort-002-705-878 exhibits more compact and stable dynamics.

https://doi.org/10.1371/journal.pone.0334415.g009
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2D projection of trajectory. Panel E of Fig 9 provides a two-dimensional projection
of the atomic motions along the first two principal components (vecl vs. vec2). The 6JQR-
(MolPort-007-550-904) complex (in red) explores a wider and more dispersed conforma-
tional space, indicating the sampling of multiple structural states during the simulation. Con-
versely, the 6JQR-(MolPort-002-705-878) complex (in orange) remains tightly clustered
within a narrow conformational region, reflecting greater structural rigidity and limited flexi-
bility. This projection emphasizes the dynamic plasticity of the MolPort-007-550-904 complex
relative to the more stable and conformationally constrained behavior of the MolPort-002-
705-878 complex, which may correlate with differences in functional or binding characteris-

tics [59].

Free energy landscape (FEL)
FEL analysis of the 6JQR-(MolPort-007-550-904) complex (Panel A of Fig 10) exhibits a
rugged topology characterized by multiple shallow and deep minima dispersed across the
PC1-PC2 conformational space. This distribution indicates frequent transitions among
diverse conformational states, suggesting a higher degree of structural flexibility and the pres-
ence of several semi-stable intermediates sampled throughout the simulation [60]. In con-
trast, the FEL of the 6JQR-(MolPort-002-705-878) complex (Panel B of Fig 10) presents a
more compact yet energetically heterogeneous landscape. While several peaks and troughs
are evident, the overall topology is more condensed, featuring fewer and narrower basins.
The presence of deep energy wells suggests that the system adopts fewer, but more stable,
conformational states compared to the MolPort-007-550-904 complex.

3D Free Energy Landscape
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Fig 10. Free energy landscape (FEL) of the 6JQR-MolPort complexes. A: 6JQR-MolPort-007-550-904. B: 6JQR-MolPort-002-705-878.
https://doi.org/10.1371/journal.pone.0334415.g010
15/ 25

PLOS One | https://doi.org/10.1371/journal.pone.0334415 October 13, 2025



https://doi.org/10.1371/journal.pone.0334415.g010
https://doi.org/10.1371/journal.pone.0334415

PLOS One

Discovery of novel FLT3 inhibitors for AML

Quantum properties evaluation

Geometry optimization. Geometry optimization confirmed that both leads adopt
geometrically stable conformations, as evidenced by their very low RMS Cartesian force
values [61], with the optimized molecular structures shown in Fig 11 and key geometric
and electronic parameters summarized in Table 5. MolPort-002-705-878 exhibits a sig-
nificantly lower global minimum energy (-3734.930 Hartree) than MolPort-007-550-904
(-1240.047 Hartree), indicating greater thermodynamic stability [61]. Its dipole moment
(8.027 Debye) also exceeds that of MolPort-007-550-904 (6.411 Debye), indicating a stronger
potential for polar interactions within the FLT3 binding site [62].

Frontier molecular orbitals (FMOs). Frontier molecular orbitals (FMOs) provide qual-
itative insight into the likelihood of electron transfer between the HOMO (highest occu-
pied molecular orbital) and LUMO (lowest unoccupied molecular orbital), with their spa-
tial distributions illustrated in Fig 12. MolPort-007-550-904 shows a higher HOMO energy
(-0.208 eV) and lower LUMO energy (-0.100 eV) than MolPort-002-705-878 (HOMO: -
0.227 eV, LUMO: -0.0933 eV), indicating distinct electron-donating and -accepting tenden-
cies. The HOMO-LUMO energy gaps for MolPort-007-550-904 and MolPort-002-705-878
are calculated to be 0.108 eV and 0.134 eV, respectively, with the smaller gap of MolPort-007-
550-904 indicating greater chemical softness and higher reactivity, thereby facilitating more
efficient electron transfer [63].

Global reactivity parameters. Global reactivity parameters further distinguish the two
leads, as shown in Table 6. The greater softness of MolPort-007-550-904 (18.518) suggests
higher polarizability and reactivity compared to MolPort-002-705-878 (14.970). Their low
chemical potentials (MolPort-007-550-904: —0.154 eV; MolPort-002-705-878: -0.160 eV) fur-
ther support electron-donating behavior in biological environments [64]. Both exhibit pos-
itive chemical hardness and electrophilicity index values, indicating potential to modulate

Fig 11. Optimized molecular geometries of the lead molecules. A: MolPort-002-705-878. B: MolPort-007-550-904.

https://doi.org/10.1371/journal.pone.0334415.9011

Table 5. Calculated electronic energy, dipole moment, and RMS cartesian force of the lead compounds.

Compounds Dipole Moment (1) Electronic Energy RMS Cartesian Force
(Debye) (Hartree) (Hartree/Bohr)

MolPort-002-705-878 8.027 -3734.930 0.000006

MolPort-007-550-904 6.411 -1240.047 0.000003

https://doi.org/10.1371/journal.pone.0334415.t005
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Fig 12. Frontier molecular orbitals (HOMO and LUMO) at the ground state for leads. A: MolPort-002-705-878. B:
MolPort-007-550-904. The smaller HOMO-LUMO gap of MolPort-007-550-904 indicates greater chemical softness and
higher reactivity relative to the next lead.

https://doi.org/10.1371/journal.pone.0334415.g012

Table 6. Computed global reactivity descriptors (in eV) for two leads.

Parameter MolPort-002-705-878 MolPort-007-550-904
Ionization energy (I) 0.227 0.208

Electron affinity (A) 0.093 0.100

Chemical hardness (7)) 0.069 0.054

Chemical softness (0) 14.970 18.518
Electronegativity () 0.160 0.154

Chemical potential (1) -0.160 -0.154
Electrophilicity (w) 0.192 0.219

https://doi.org/10.1371/journal.pone.0334415.t006

protein-ligand binding and participate in charge transfer [65], while the higher electroneg-
ativity and hardness of MolPort-002-705-878 suggest greater electronic stability and lower
susceptibility to perturbation compared to MolPort-007-550-904 [66]. Collectively, these
descriptors imply that while both molecules are chemically active, MolPort-007-550-904 may
exhibit stronger interaction potential through more facile electron transfer.
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Molecular electrostatic potential (MEP). The color-mapped molecular electrostatic
potential (MEP) surface visualizes local charge distribution, with red indicating electron-rich
regions favorable for electrophilic attack and blue marking electron-deficient sites prone to
nucleophilic interaction [67]. Green denotes areas of near-zero potential, while intermedi-
ate colors (orange, yellow, green) represent the gradient between extremes. As depicted in
Fig 13, both leads exhibit negative electrostatic potential localized around electronegative
atoms such as nitrogen and oxygen, indicating prominent nucleophilic sites. In contrast, pos-
itive potential appears near hydrogen atoms, suggesting electrophilic character, while car-
bon atoms display mixed behavior depending on their local chemical context. These regions,
prone to nucleophilic and electrophilic attacks, inform possible interaction modes with bio-
logical macromolecules by complementing the electrostatic landscape of the protein binding
pocket [68].

Natural bond orbital analysis (NBO). NBO analysis revealed significant intramolec-
ular charge transfer (ICT) interactions in both lead compounds, contributing to electronic
stability (S2 Table and S3 Table). In MolPort-002-705-878, the dominant donor-acceptor
interaction was LP(1)N6 — 7*(C3-019), with a stabilization energy of 48.74 kcal/mol,
alongside other notable interactions; LP(1)N13 — 7*(C8-020), LP(1)N6 — 7*(C4-C12),
and LP(2)0O19 — ¢*(C3-N6), ranging from 28.74 to 46.92 kcal/mol. In MolPort-007-550-
904, a strong LP(1)C14 — 7*(C5-C9) interaction was observed, with an E(2) value of
84.40 kcal/mol, alongside additional stabilizing transitions from LP(1)N3 and LP(1)N11 into
conjugated 7* orbitals. High second-order perturbation energies (E(2)) indicate significant
lone pair to 77* and o* delocalization and resonance stabilization, particularly in heteroatom-
rich regions, contributing to molecular rigidity and thermodynamic stability [51,68]. These
conjugation patterns may enhance pharmacophoric alignment and binding complemen-
tarity with the FLT3 active site through hydrogen bonding, 77-7 stacking, and electrostatic
interactions [69].

Mulliken and natural population analyses. Mulliken and natural population charge
analyses are widely used to identify reactive sites, model electrostatic interactions, and sup-
port force field parameterization in molecular simulations [70]. In both leads, C8 was identi-
fied as the most electron-deficient atom, while the most electron-rich centers varied according
to Mulliken and NBO-based natural charge analyses: N3 and O18 in MolPort-007-550-904,
and N6 and 022 in MolPort-002-705-878 (Fig 14 and 5S4 Table), reflecting substantial charge
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Fig 13. Molecular electrostatic potential (MEP) maps of leads. A: MolPort-002-705-878. B: MolPort-007-550-904. The color-coded
isodensity surfaces highlight regions of electron-rich (red, nucleophilic) and electron-poor (blue, electrophilic) potential, providing insight
into possible reactive sites and intermolecular interactions.

https://doi.org/10.1371/journal.pone.0334415.g013
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Fig 14. Illustrations of Mulliken and natural atomic charges of the leads. A: MolPort-002-705-878. B: MolPort-007-550-904. Posi-
tive and negative charges are plotted in diverging directions from zero, with stacked bars for same-signed contributions. These charge
distributions reveal differences in electron localization and polarity, highlighting potential reactive centers within each molecule.

https://doi.org/10.1371/journal.pone.0334415.g014

localization at key electronegative centers relevant for binding [71]. These sites were also
involved in interactions during docking analysis, consistent with charge-based predictions.

The bromine atom (Br21) in MolPort-002-705-878 carried a small positive Mulliken and
natural charge, suggesting reduced electronic reactivity compared to typical halogen atoms,
likely due to electron delocalization or shielding by adjacent functional groups [72]. Among
hydrogen atoms, H34 in MolPort-007-550-904 and H32 in MolPort-002-705-878 exhibited
the highest Mulliken charges, suggesting potential roles in electrostatic or hydrogen bonding
interactions [73], while carbon atoms displayed both positive and negative charges reflecting
their diverse electronic environments.

ADMET analysis

The pharmacokinetic and toxicological characteristics of the lead compounds were evaluated
through comprehensive in silico analyses to assess their potential as drug-like molecules suit-
able for preclinical development. MolPort-002-705-878 exhibits a favorable absorption pro-
file, with high predicted gastrointestinal (GI) permeability and compliance with key criteria
for drug-likeness, as set by Lipinski, Ghose, Veber, and Egan rules. The compound exhibits
moderate lipophilicity (consensus LogP = 3.47), a topological polar surface area (TPSA) of
90.79 A%, and contains three rotatable bonds, which collectively support passive diffusion
across biological membranes [25,74]. Despite being moderately soluble by ESOL and poorly
soluble by AliLogS and Silicos-IT models, its drug-likeness is reinforced by favorable bioavail-
ability (score: 0.55) and minimal synthetic complexity. Importantly, the compound is pre-
dicted to be a non-substrate for P-glycoprotein and lacks blood-brain barrier permeability (S4
Fig). The predicted Lethal Dose 50 (LDs) for this lead is approximately 3009 mg/kg, corre-
sponding to toxicity class V under the Globally Harmonized System (GHS), indicative of low
acute toxicity [75]. It is estimated to be non-carcinogenic, non-mutagenic, and non-cytotoxic.
Organ-specific toxicity predictions suggest a low likelihood of cardiotoxicity and respiratory
toxicity, whereas potential hepatotoxicity, nephrotoxicity, and neurotoxicity merit careful
consideration in future experimental studies. Additionally, molecular initiating event (MIE)
analyses further indicate activation of the aryl hydrocarbon receptor (AhR) and potential
mitochondrial membrane disruption, both of which may warrant further investigation during
safety profiling.
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MolPort-007-550-904, similarly, demonstrates high predicted GI absorption and com-
plies with all major drug-likeness rules, aside from a single Muegge violation. It shows slightly
higher structural flexibility, with five rotatable bonds and a TPSA of 82.00 A2. Although its
consensus LogP (3.46) and solubility predictions mirror the first compound, its slightly ele-
vated fraction of sp® carbons may suggest better metabolic stability [76]. As with MolPort-
002-705-878, it is not BBB-permeant and avoids P-glycoprotein-mediated efflux (54 Fig).
However, it displays a broader cytochrome P450 (CYP) inhibition profile in silico, inhibiting
CYP1A2, CYP2C19, CYP2C9, and CYP3A4, raising concerns regarding metabolic interac-
tions and potential drug—drug interactions [77]. Given these findings, experimental valida-
tion through cytotoxicity assays and metabolic interaction studies is essential to assess clin-
ical relevance and mitigate potential risks during development. In toxicity evaluation, this
lead has comparatively lower LDs, of 1400 mg/kg and it is classified as toxicity class IV, sug-
gesting moderate acute toxicity [75]. While it exhibits low predicted probability of causing
carcinogenicity, immunotoxicity, or endocrine disruption, it demonstrates broader toxicity
liabilities, with predicted neurotoxicity, nephrotoxicity, respiratory toxicity, and mutagenic-
ity. Although activation of nuclear receptor pathways appears minimal, this compound also
engages in mitochondrial toxicity mechanisms. Taken together, these findings underscore
the need for comprehensive in vitro safety profiling to confirm computational estimates and
clarify the clinical relevance of observed liabilities.

Conclusion

This investigation focuses on FLT3, aiming to discover innovative small molecules with sig-
nificant therapeutic potential. In this study, the structure-based screening tool Pharmit and
the comprehensive commercial chemical library MolPort were leveraged to maximize chem-
ical diversity and increase the likelihood of identifying highly potent and selective FLT3
inhibitors. The rigorous process began with an initial virtual screening using Pharmit, fol-
lowed by docking-based screening of 419 selected hits, resulting in the identification of two
promising lead molecules: MolPort-002-705-878 and MolPort-007-550-904. Additional val-
idation of these leads was performed using molecular dynamics simulations to probe the
stability of protein-ligand binding, density functional theory (DFT) exploration to charac-
terize quantum chemical behavior, and ADMET profiling to evaluate drug-likeness, all of
which collectively support these leads as potential FLT3 antagonists. Importantly, these com-
pounds occupy chemical space distinct from FDA-approved FLT3 inhibitors, particularly in
their scaffold architecture, which features rigid benzolactam-amide frameworks and a char-
acteristic o-HNCA motif, replacing the bulky, nitrogen-rich polycyclic cores of existing drugs.
This structural novelty underscores their potential for differentiated binding profiles and sup-
ports their prioritization for further pharmacological assessment. However, it must be clearly
stated that these are computationally derived leads. While the multi-tier validation provides
strong preliminary evidence, biological testing is essential to confirm their activity, specificity,
and safety before they can be considered viable preclinical candidates. This study exempli-
fies a scalable, data-driven framework for next-generation drug discovery with broad appli-
cability to other biomolecular targets across diverse disease areas. Nevertheless, key limita-
tions remain, including high computational demands, reliance on in silico predictions with-
out experimental confirmation, and the potential incompleteness of commercial chemical
libraries. Addressing these challenges will require future efforts to integrate high-performance
computing infrastructure, strengthen collaboration with experimental pharmacology, and
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incorporate emerging non-commercial compound repositories. As the field evolves, har-
monizing computational insights with experimental rigor will be essential for transforming
virtual hits into clinically meaningful candidates.
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