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Abstract

Air pollution is a global problem that threatens environmental sustainability and
severely affects public health. Monitoring air quality and predicting future pollution
levels are critical for creating effective environmental policies and enabling individuals
to take precautions against air pollution. This study presents a long-term assessment
of daily Air Quality Index (AQI) prediction using machine learning models based on
meteorological and pollutant data collected in eastern Turkiye from 2016 to 2024.
The dataset includes four major air pollutants (PM,,, SO,, NO,, Os) and five mete-
orological variables (temperature, precipitation, relative humidity, wind direction,

wind speed). Three models—eXtreme Gradient Boosting (XGBoost), Light Gradient
Boosting Machine (LightGBM), and Support Vector Machine (SVM)—were eval-
uated using the coefficient of determination (R?), root mean square error (RMSE)

and mean absolute error (MAE) as performance metrics. Among these, XGBoost
achieved the highest prediction accuracy (R?=0.999, RMSE =0.234, MAE=0.158).
The results demonstrate that ensemble-based machine learning approaches, particu-
larly XGBoost, can effectively model AQI fluctuations using environmental predictors.
These results provide valuable insights for air quality forecasting systems and sug-
gest practical implications for regional air pollution management and early warning
systems, supporting public health protection and the development of environmental
health policies.

Introduction

Air is an indispensable resource for the sustainability of life, and its quality is critical
to human health and the environment. However, air pollution has become a serious
global environmental problem that negatively affects atmospheric quality and public
health [1,2]. Rapid industrialization and urbanization have significantly increased the
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concentration of harmful substances in the atmosphere, especially in industrial areas,
resulting in increased pollutant emissions [3,4]. This trend has increased public
awareness and concern about air quality, as well as triggered calls for the develop-
ment of effective air quality management and pollution control strategies [5].

The urbanization process plays a decisive role in air pollution levels. The spatial
arrangement of urban areas affects the distribution and concentration of pollutants,
causing denser urban environments to be exposed to higher pollution levels, usually
due to traffic emissions and industrial activities [4,5]. In the 1gdir province of Turkiye,
rapid economic expansion and urbanization processes also lead to a severe deterio-
ration in air quality. In many regions of Tlrkiye, especially in the winter months, using
fossil fuels for heating is one of the main factors increasing air pollution. In regions
such as 1gdir, this situation becomes more pronounced in the winter months, and air
quality deteriorates significantly [6,7].

The effects of air pollution on public health are profound. Various studies have
shown that exposure to major air pollutants — including particulate matter (PM,.s and
PM,), sulfur dioxide (SO,), nitrogen oxides (NOXx), carbon monoxide (CO), and ozone
(O;) — is associated with serious health problems such as respiratory diseases,
cardiovascular diseases, and even cancer [8,9]. In this regard, Kumar et al. [10]
highlighted how particulate matter, together with meteorological conditions, critically
contributes to poor air quality and adverse health outcomes. The world health organi-
zation emphasizes the urgent need for comprehensive monitoring and management
strategies because of premature deaths from air pollution [11]. Increasing urban
populations makes air quality protection more critical, necessitating addressing both
local and transboundary pollution sources [12]. In this context, authorities are trying
to combat air pollution by developing long-term strategies. However, since these
solutions require large-scale implementation, they can be costly in terms of time
and financial resources. Providing air quality estimates and air quality index (AQlI)
values is important for individuals to develop protection strategies [13]. Air quality is
influenced by the interactions among economic development, urban planning, and
public health. Forecasting air pollution can support local governments and vulnerable
groups (e.g., individuals with respiratory diseases, pregnant women, and children) by
indicating when and where air quality may deteriorate and enabling timely protective
measures.

As a widely used index, the AQI provides an overall assessment of environmental
air quality. It expresses the overall air quality with a single numerical value by com-
bining the concentrations of specific pollutants (Particulate Matter smaller than 2.5
micrometers (PM, ), Particulate Matter smaller than 10 micrometers (PM, ), Ozone
(O3), Carbon Monoxide (CO), Nitrogen Dioxide (NO,), and Sulfur Dioxide (SO,))
[14,15]. The Turkish National Air Quality Index (TNAQI) is the version of AQI devel-
oped by the US Environmental Protection Agency (EPA) and adapted to national
legislation and limit values [16]. On a scale from 0 to 500, the AQl is divided into
six categories — good, moderate, unhealthy for sensitive groups, unhealthy, very
unhealthy, and hazardous — with corresponding health warnings provided in Table 1
[16]. As the AQI value increases, the threat to human health also increases.
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Table 1. Value ranges of AQIl and corresponding health warnings.

Values of index ‘ Levels of concern AQl colour Description of air quality

Good Green Air quality is satisfactory and air pollution poses little or no risk.
51-100 Moderate Yellow Air quality is acceptable, but some pollutants may pose a moderate health con-

cern for a small number of people who are unusually sensitive to air pollution.

Unhealthy for sensitive Orange Health impacts may occur for sensitive groups. The general public is unlikely

groups to be affected.

Unhealthy Red Everyone may begin to experience health effects, with serious health effects
for sensitive groups.

Very unhealthy Purple May constitute a health emergency. The entire population is likely to be
affected.

Hazardous Maroon Health alert: Everyone may experience more serious health effects.

https://doi.org/10.1371/journal.pone.0334252.t001

The relationship between air quality and meteorological factors is shaped by complex chemical and dynamic atmo-
spheric reactions. Concentrations of air pollutants are highly sensitive to meteorological conditions such as wind speed
and direction, relative humidity, and temperature, which have been shown in various studies to directly affect local air pol-
lution levels [7—17]. Sekula et al. [18] evaluated the effect of atmospheric circulation on air quality, emphasizing the impor-
tance of humidity and temperature gradients, especially in the lower troposphere. Therefore, meteorological conditions
should be taken into account in air quality assessments and forecasting, since they critically influence pollutant dispersion
rather than being controllable factors for improving air quality.

In recent years, the use of machine learning algorithms in air quality prediction has become increasingly widespread,
and significant progress has been made in this field. Studies conducted in this field in recent years are summarized in
Table 2, where model performances are primarily assessed using Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and the coefficient of determination (R?). The table includes a variety of machine learning methods such as
Random Forest (RF), Random Forest Regression (RFR), Cubist Regression (CR), Decision Tree (DT), Multilayer Per-
ceptron (MP), Gradient Boosting (GB), Linear Regression (LR), Stacked Models (SM), k-Nearest Neighbor (KNN), Light
Gradient Boosting Machine (LightGBM), Support Vector Regression (SVR), Long Short-Term Memory (LSTM), Logistic
Regression (LogR), Artificial Neural Network (ANN), Improved Long Short-Term Memory (ILSTM), and Bayesian Regu-
larized Neural Networks (BRNN). Meteorological variables are abbreviated as Temperature (T), Precipitation (P), Relative
Humidity (RH), Wind Direction (WD), and Wind Speed (WS). This progress results from collaborative efforts, as various
studies examine the methods developed to increase the effectiveness of machine learning techniques in air quality predic-
tion [19-21].

As shown in Table 2, ensemble learning methods such as XGBoost, and LightGBM frequently achieved the highest
accuracy in AQI prediction across different regions. Support vector-based models also provided competitive results in
several studies, particularly for PM-based predictions. In most cases, particulate matter (PM, . and PM, ) emerged as
the dominant factor influencing air quality, highlighting its critical role in AQI forecasting. These studies demonstrate the
growing interest in AQI prediction using machine learning. However, most of them focus on short-term datasets, metro-
politan regions, or limited sets of pollutants and meteorological variables. To the best of our knowledge, no long-term,
region-specific study has been conducted in a geopolitically sensitive area like 1gdir, Turkiye. In addition, existing models
rarely integrate both pollutant and meteorological data over extended periods. This gap further highlights the novelty of the
present research.

Air pollution prediction varies across different regions and climatic conditions due to the complex, nonlinear interac-
tions between atmospheric pollutants and meteorological parameters, posing a significant challenge on a global scale
[34—36]. Although machine learning models are widely used for AQI prediction, comprehensive evaluations of the forecast
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Table 2. Summary of studies applying machine learning models to predict the AQl.

Method Result(s) for best model Regions Factors Author(s)
and Year
Adaboost, Catboost, For AQI: R2=0.9850, RMSE =11.2696, MAE =8.3845 (XGBoost) | Azamgarh, India PM, ., PM,, NO,, SO, T, |[22]
GB, KNN, Linear Humidity, WD, WS, UV
Regression, RF, SVM, Radiation
XGBoost
KNN, SVM, DT, RF, For AQl: R?=0.973, RMSE=7.568, MAE=4.596 (SM) Beijing, China PM, ., PM,, NO,, SO,, [23]
MP, GB, LR, SM CO, O,
LightGBM, RF, For AQI: R?=0.9998, RMSE=0.76, Visakhapatnam, PM, ., PM,, NO,, NH,, [24]
CatBoost, AdaBoost, MAE=0.60 India SO, CO, O,, Benzene,
XGBoost (CatBoost) Toluene, Xylene, and
meteorological factors
SVR, RFR, CR For AQl: RMSE =0.2792, Accuracy =79.8622% of New Delhi New Delhi, Ban- PM, ., PM,, NO, NO,, [25]
(CR), RMSE =0.5674 Accuracy =68.6860% of Bangalore galore, Kolkata, NO,, NH,, CO, 80,, O,,
(CR), RMSE=0.0988, Accuracy =93.7438% of Kolkata (RFR), Hyderabad (India) | Benzene, Toluene
RMSE =0.0628, Accuracy =97.6080% of Hyderabad (RFR)
SARIMA, SVM (RBF For AQl: R2=0.9989, RMSE =4.944 (SVM with RBF kernel) Ahmedabad city of | PM, ., PM, , NO,, SO,, [26]
Kernel), LSTM Gujarat, India CO, O,, NH,, Pb
LR, KNN, SVR, LSTM, | For AQl: R?2=0.994, RMSE =3.277, Six major PM,,, PM,, NO,, SO,, [27]
RF, XGBT, LightGBM, | MAE=1.754 Chinese urban CO, O,, T, Pressure, Dew
LSTM-SVR (Hybrid) (LSTM-SVR) agglomerations Temperature, WS, P
DT, RF, XGBoost For AQl: R?=0.9214, RMSE =29.6953, MAE =18.9839 (XGBoost) | India Xylene, PM,, NH,, Tolu- [13]
ene, Benzene, PM, ., NO,,
0,, 8O,, NO,, NO, CO
LR, KNN, SVM, For AQl: MAE=36.11, RMSE =52.03, R?=0.84 (Hybrid Delhi, India PM, ., NO,, O,, SO,, NO,, |[28]
LSTM, GRU, Hybrid LSTM-GRU) NO, CO, T, WS, RH, Solar
LSTM-GRU Radiation
DT, LogR, RF For AQI: Accuracy=98.63% (DT) Uttarakhand state, | PM, , PM,, SO,, NO, [29]
India
ANN, MLR, ILSTM, For AQI: R?=0.981 (MLR) Tamil Nadu PM, ., PM, , SO,, NO,, [30]
SVR State, India NH,, CO and O,
SVR and LSTM For AQl: RMSE =10.995, R2=0.570 (LSTM) Chennai city, India | PM,, NO,, SO,, CO, Ozon | [31]
SVR-RBF and PCA For AQI: accuracy=94.1% California CO, NO,, SO,, Ozone, [32]
SVR-RBF (SVR-RBF) PM,, WS, T, RH
SVR and RFR For AQIl: R?2=0.9766 RMSE =7.666 (SVR) Beijing and Italian | PM,, PM, , O,, SO,, NO, |[33]

https://doi.org/10.1371/journal.pone.0334252.t002

performance of these models are often limited to short-term datasets or specific subsets of pollutants [37—-39]. This study
aims to (i) reveal the long-term status and temporal dynamics of air pollution in Igdir, Turkiye, during 2016—2024 using the
TNAQI together with pollutant and meteorological records and (ii) systematically compare the predictive performances of
advanced machine learning models (XGBoost, LightGBM and SVM) for daily AQI prediction and quantitatively evaluate the
impacts of air pollutants and meteorological factors. Unlike traditional studies that usually focus on short-term datasets or

specific subsets of pollutants, this research presents a comprehensive evaluation by integrating multiple air pollutants (PM

10’

S0,, NO,, O,) with key meteorological variables to improve the forecast accuracy. The findings provide valuable insights into
the adaptability of machine learning models under different environmental conditions, suggesting a scalable and generaliz-

able AQI prediction framework that can contribute to developing data-driven air quality management policies globally.

The study’s objectives are based on these observations:

a) Calculate daily AQI using data from four air pollutants (PM
perature, precipitation, relative humidity, wind direction, wind speed) from 2016 to 2024.

10?

S0O,, NO,, O,) and five meteorological parameters (tem-
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b) Apply and compare advanced machine learning models, including XGBoost, LightGBM, and SVM, to predict the AQl
with high precision.

c) Evaluate the performance of the machine learning models using metrics such as R?2, RMSE and MAE and assess their
predictive capabilities.

d) Train the models on 80% of the dataset and validate them using the remaining 20% to ensure reliability and accuracy
in AQI prediction.

e) Perform a comparative analysis to identify the most suitable model for AQI prediction, highlighting XGBoost’s consis-
tent performance across all metrics.

f) Analyze model results to determine influential parameters impacting AQI predictions and offer insights for efficient air
quality management.

This study offers a novel contribution to the field of air quality modeling by focusing on Igdir province, a border region of
Turkiye adjacent to three countries—Iran, Armenia, and Nakhchivan (Azerbaijan). Despite its strategic geopolitical location
and vulnerability to cross-border pollution transport, the region has remained underrepresented in empirical AQI forecast-
ing studies. By integrating eight years of daily meteorological and pollutant data (2016—2024), this study systematically
compares the predictive performance of three advanced machine learning models—XGBoost, LightGBM, and SVM. The
findings demonstrate that XGBoost significantly outperforms the other models in terms of accuracy and generalizability.
This comprehensive regional analysis not only fills a critical gap in the existing literature but also provides a scalable
framework for AQI prediction in other transboundary or climatically similar regions.

Materials and methods
Study area and data description

The current study examined the AQI of Igdir City of Turkiye. Igdir province is a settlement located east of Turkiye and
borders three countries (Iran, Armenia, and Nakhchivan). The coordinates of I1gdir province are recorded as latitude: 39°
55’ 25.36" N and longitude: 44° 02’ 42.00" E. Its surface area is 3588 km?. Also, Igdir, located at an altitude of 800—900 m,
has a provincial population of approximately 210000. The geographical location of the study area is illustrated in Fig 1.

Air quality and meteorological data, including PM, , NO,, SO,, O,, wind speed, wind direction, relative humidity, tem-
perature, and precipitation, were collected from air quality and meteorology stations operated by the Republic of Tlrkiye
Ministry of Environment, Urbanization and Climate Change. The dataset comprises eight year daily air pollutants data
(2016-2024) for 1gdir.

Methodology for AQI calculation and indexing

In this study, AQI values were calculated using pollutant concentrations measured at the air monitoring station in Igdir
province. The TNAQI system, adapted to Turkiye’s national standards, was applied. According to this approach, the AQl is
determined as the maximum sub-index among five pollutants (SO,, NO,, PM, , O,, CO). Reference intervals for pollutant
concentrations and their corresponding AQI values are provided in Table 3 [16].

The AQI calculation follows Equations (1) and (2). For this purpose, four pollutants (PM,,, SO,, NO,, O;) measured in
Igdir were used:

AQI = max (IAQl4, IAQL,, ..., IAQI) (1)
Ci-C
/AQI,‘ = /low + lilow (/high - Ilow)
Chigh = Clow (2)
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Fig 1. Location map of the study area and flowchart of the methodology. The study area is located in Igdir Province, Tirkiye. The base map
is sourced from Natural Earth (public domain; http://www.naturalearthdata.com) and elevation data are from the USGS National Map Viewer (public
domain; https://www.usgs.gov).

https://doi.org/10.1371/journal.pone.0334252.9001

where i represents the air pollutant. IAQI, is the air quality sub-index for pollutant i; C, is the concentration of pollutant
i, C,,and Cian denote the minimum and maximum concentration values of the AQI category corresponding to the spe-
cific pollutant; 1, and L. denote the minimum and maximum AQI values for that category (see Table 3). The following
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Table 3. Reference intervals used in AQI calculation.

AQl scale Index value SO, [ug m?] NO, [ug m3] CO [pug m?] O, [ug m?] PM,; [pg m?]
1h. Avg. 1h. Avg. 8h. Avg. 8h. Avg. 24h. Avg.

0-50 0-100 0-100 0-5500 0-120 0-50

Moderate ‘ 51-100 101-250 101-200 5501-10000 121-160 51-100
101-150 251-500 201-500 10001-16000 161-180 101-260
151-200 501-850 501-1000 16001-24000 181-240 261-400
201-300 851-1100 1001-2000 24001-32000 241-700 401-520
301-500 >1101 >2001 >32001 >701 >521

https://doi.org/10.1371/journal.pone.0334252.t003

calculations were used in the study: maximum one-hour average values (ug m?) for NO, and SO,, maximum eight-hour
average values (ug m?) for O,, and daily average values for PM,  (ug m?). These daily AQI values, along with the daily
average pollutant concentrations and meteorological parameters, were subsequently used as input for the machine learn-
ing models. The overall methodology is illustrated in Fig 1.

Machine learning models

Light gradient boosting machine algorithm (LightGBM). The LightGBM algorithm is a framework offering a gradient
boosting method using tree-based learning methods [40]. It was developed by Microsoft researchers in 2017 [41]. This
algorithm has a distributed structure and provides a faster training process and higher performance compared to other
algorithms. LightGBM is based on a leaf-based growth strategy using one-sided gradient sampling, special feature
grouping, and depth-limited histograms. This algorithm aims to achieve high prediction success by creating a strong
learner from the combination of weak learners. In particular, LightGBM uses maximum depth-limited leaf-based growth
and histogram-based methods to shorten the training time and reduce memory usage [42]. In addition, the histogram
subtraction technique enables the use of a large number of histograms by dividing continuous explanatory variables, thus
increasing statistical efficiency and accelerating convergence [43]. The LightGBM algorithm is a gradient boosting model
built using tree-based classifiers [27,44,45]. Trees are constructed iteratively such that each step minimizes the loss
function. However, traditional approaches often struggle with speed and capacity. To address these challenges, LightGBM
efficiently handles large datasets and categorical features using techniques such as histogram-based splitting and leaf-
wise tree growth [46].

eXtreme gradient boosting algorithm (XGBoost). The XGBoost algorithm is a gradient boosting method proposed
by Chen and Guestrin in 2016 [47]. The XGBoost aims to make more accurate predictions by adding a regularization
term to the objective function to prevent overfitting [48]. The XGBoost algorithm constructs an ensemble containing a set
of decision trees trained on different dataset partitions [49]. When splitting trees by depth or level, XGBoost determines
the best branch splitting effect of each tree (decision) feature and the appropriate threshold for this feature. The XGBoost
performs successive splits to make the tree structures more distinct [48]. Finally, the scores of the stable trees obtained
during the training process are summed, and the final predicted value of the response variable is calculated [50].

Support vector machine algorithm (SVM). The SVR algorithm is an important subgroup of support vector machine,
one of the machine learning algorithms [51]. While the support vector machine algorithm used for classification operations
is called support vector classification, the part that deals with modeling and prediction operations is called SVR [52,53].
Since SVR is a supervised learning method, the success of the predictions made with SVR varies depending on the
training and test data sets [54]. The main goal of SVR in the linear SVR model is to define a function f(x) with the
maximum deviation (€) value from the training set and is as flat as possible. The training data lies within the limits between
—¢ and +¢ [51]. However, many studies cannot be modeled within the framework of linear features. Therefore, in nonlinear
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SVR cases, the input data is transformed into a higher dimensional hilbert space so the regression line can be linear [54].
There are many nonlinear kernel functions, including the Gaussian radial basis function kernel. The kernel function used
in this study is the Gaussian radial basis function kernel.

Model comparison criteria. In this study, the performance of the models was assessed using three criteria: RMSE,
MAE, and R2.
Root-mean-square error. The RMSE is calculated as the square root of the Mean Squared Error (MSE), which represents
the average squared difference between the observed actual output values and the model’s predicted values. RMSE pro-
vides a measure of how much the predictions deviate from the actual values, effectively serving as the standard deviation of
these differences. It ranges from 0 to positive infinity, where a lower RMSE indicates predictions that are closer to the target
values. In comparison, a higher RMSE reflects a more significant deviation and a wider distribution of values.

1T 2
RMSE = \/ DR/ (3)

Mean Absolute Error. The MAE quantifies the error in model predictions by calculating the mean of the absolute differ-
ences between the actual and predicted values. It is obtained by summing the absolute differences for all observations in
the dataset and dividing this sum by the total number of observations. The MAE ranges from 0 to positive infinity, where
smaller values closer to 0 indicate better performance, as they reflect that the predicted values are more closely aligned
with the actual target values.

MAE — 2721 ’5;' - yi’

(4)

R-Squared. The R? represents how well the model predicts the target variable. This criterion ranges from 0 to 1. When R?
equals 1, the predictions perfectly align with the data, indicating absolute accuracy, while lower R? values suggest weaker
predictive performance.

~ 2
R2 —1— ZIn:1 (yi_yi)

St W=y (5)

In the above equations, y represents the predicted AQI variable, y denotes the actual AQl variable, ¥ symbolizes the
average value of AQI, and i refers to the index of each data point in the dataset. The upper bounds of MAE and RMSE
extend to positive infinity, which makes them less effective in fully reflecting a model’s overall performance across different
datasets. In contrast, R?, with its range confined between 0 and 1, provides a more reliable metric for comparing model
performance on varying datasets. A model is considered effective when its RMSE and MAE values are low, and its R?
value approaches 1. Furthermore, while all three metrics are suitable for evaluating a model’s performance on the same
dataset, R? is particularly useful for comparing models across different datasets.

Software information

The dataset was randomly split into 80% training and 20% testing. 10-fold cross-validation was used for all algorithms,
and although different k values were tested, the most robust results were obtained with 10-fold validation. All statistical
analyses were performed using R software [55]. The “psych” package was used for descriptive statistics, and the “corr-
plot” package was used to visualize the relationships between explanatory and response variables, and the “caret” pack-
age was used to separate the dataset into training and test sets [56—58]. For the implementation of LightGBM, XGBoost,
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and SVR algorithms, the “lightgbm”, “xgboost”, and “e1071” packages were preferred, respectively [59-61]. The feature
importances of all models were visualized using the “ggplot2” package [62].

Results

To estimate AQI, eight years daily air pollutant data (2016—2024) for Igdir were used to compare different machine learn-
ing models. Table 4 presents descriptive statistics such as mean, standard deviation, minimum, and maximum values

for all air quality criteria and meteorological features used in this study. For descriptive analysis and interpretation, daily
measurements were aggregated into monthly averages, and the values shown in the table represent the mean monthly
values across the eight-year dataset (2016—2024). This approach highlights seasonal variations and long-term trends. In
the Table 4, n denotes the number of observations (sample sizes) used in the analysis within the scope of the statistical
approach. For example, the average temperature in January was 1.67°C, with the lowest temperature being —11.8°C and
the highest temperature being 7.7°C. In February, the average temperature increased slightly to 2.66°C. A significant rise
in temperature was observed from March onwards, with the highest values recorded in July and August (27.28°C and
27.54°C). The temperature decreased from September onwards and was measured as 1.66°C in December (Table 4).

The precipitation parameter generally remained at low levels, with a maximum value of 29.1 mm measured in Novem-
ber. Relative humidity varied throughout the year, reaching its highest average of 75.44% in December. Wind speed
generally remained low, with a maximum of 3.8 m s measured in December. Wind direction generally varied between
200°-250° (Table 4).

The PM,, concentrations increased during the winter months and were determined to be 181.61 ug m™ on average in
January. The PM, values decreased during the summer months but remained at high levels. SO,, NO,, and O, concentra-
tions also showed seasonal variation, with SO, values increasing significantly during the winter months. The SO, average
was measured as 13.05 yg m= in December (Table 4).

When evaluated regarding AQI, the highest values were seen in January (172.91) and November (168.16), indicat-
ing that air quality was negatively affected in winter months. During the summer months, AQI remained at lower levels.
All these results reveal that air quality in the region is strongly affected by seasonal changes and deteriorates in winter
months. This situation can be attributed to increased fossil fuel use and meteorological conditions in winter months. The
study makes a significant contribution to determining measures that can be taken to improve air quality in the region
(Table 4).

Fig 2 illustrates the correlation coefficients among environmental factors (temperature, precipitation, relative humidity,
wind direction, wind speed, PM, ;, SO,, NO,, and O,) and their relationship with AQI. The coefficients range between -1
and +1, where the magnitude indicates the strength and the sign shows the direction of the relationship.

According to the correlation matrix, the highest correlation coefficient is between PM,  and AQlI, with a coefficient of
0.81. In addition, a relatively high and positive correlation of 0.56 between NO, and AQlI indicates that increases in NO,
levels may be associated with increased AQI values. Similarly, the correlation coefficient 0.40 between SO, and AQl is
also noteworthy. However, the correlation of —0.25 between temperature and AQI suggests that temperature increases
may be associated with decreased AQI values. Lower correlation values are observed between other variables (e.g.,
precipitation, relative humidity, wind direction) and AQI, indicating that the effect of these variables on AQI may be less
pronounced.

Hyperparameter optimization is a critical step in machine learning model development, as it directly influences predic-
tive performance and generalization ability. Identifying the optimal parameter combinations ensures that the models are
neither underfitted nor overfitted, thereby improving the reliability of AQI forecasts. Fig 3 presents the three-dimensional
surface plots for the optimized model results on the train set, including the XGBoost (top), LightGBM (middle), and SVM
(bottom) models. These plots illustrate the model performance under different hyperparameter combinations, where the x
and y axes represent the hyperparameters, and the z-axis represents the corresponding performance metrics.
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Table 4. Annual air pollutant and metrological factor dataset.

Parameters Month n T P RH WD ws PM,, SO, NO, o, AQl
Mean January 197 1.67 0.26 71.19 208.96 0.65 181.61 15.01 41.05 29 172.91
SD 4.58 1.1 11.21 149.83 0.45 109.95 11.3 13.97 11.95 74.23
Min -11.8 0 41.2 1 0 14.12 2.41 7.69 4.7 18.59
Max 7.7 8.3 97.2 360 2.8 648.34 80.81 74.99 65.24 552.9
Mean February 180 2.66 0.27 60.23 213.59 0.9 125.97 11.25 36.47 41.26 142.11
SD 5.1 1.91 13.89 147.04 0.63 72 6.62 15.85 15.22 56.95
Min -10.9 0 29.7 1 0.2 17.11 2.98 6.69 12.63 22.55
Max 11.7 25.1 88 360 3.4 334.95 42.19 85.41 95 391.77
Mean March 229 9.12 0.77 54.15 234.47 1.24 76.7 8.02 25.89 54.98 103.72
SD 3.62 2.8 13.93 136.51 0.7 51.67 3.91 11.67 16.77 63.26
Min 0.3 0 28.6 1 0.1 12.55 1.64 5.33 15.23 22.16
Max 194 275 92.2 360 3.4 335.37 28.71 58.3 115.04 325.47
Mean April 206 14.72 0.85 50.09 204.06 1.19 65.86 5.67 21.71 58.73 95.63
SD 3.42 2.27 13.42 149.9 0.54 35.01 2.2 10.85 20.01 55.51
Min 5 0 26 1 0.2 10.23 0.65 6.64 16.65 25.33
Max 24.2 15.2 85.8 360 3.2 183.49 17.25 54.03 108.6 325.32
Mean May 192 18.39 1.46 55.33 235.99 1.22 49.67 5.05 16.65 61.87 76.79
SD 3 2.84 13.12 141.29 0.49 25.89 2.26 6.39 22.46 52.17
Min 124 0 24.3 1 0.2 9.38 1.4 3.34 19.62 16.65
Max 26.7 19.3 84 360 3.6 142.35 12.14 36.55 115.96 304.69
Mean June 161 24.13 0.77 47.33 244.76 1.25 64.35 5.13 15.82 73.32 99.47
SD 3.03 1.88 11.7 135.32 0.41 33.04 2.5 7.1 28.67 48.53
Min 17.3 0 20.8 1 0.4 124 1.6 4.77 16.29 27.01
Max 30.5 12.9 77.3 360 2.8 197.12 10.21 58.2 145.71 304.54
Mean July 192 27.28 0.57 44.47 231.65 1.32 65.41 4.66 11.94 78.52 100.11
SD 2.55 1.69 8.79 147.7 0.52 35.81 2.06 3.67 28.38 49.72
Min 20.5 0 28.4 1 0.4 11.99 1.88 5.89 22.78 26.86
Max 33.1 14.8 78.2 360 3.1 189.75 11.45 23.36 137.95 325.14
Mean August 211 27.54 0.19 42.89 214.02 1.06 85.85 4.96 15.35 70.09 128.83
SD 1.71 0.7 6.76 155.08 0.37 39.77 2.26 5.29 28.83 51.76
Min 21.1 0 28.5 1 0.2 25.07 1.76 5.76 15.43 34.87
Max 31.4 5.7 69.8 359 2.5 230.12 14.36 31.23 131.74 325.22
Mean September 160 22.56 0.18 45.77 259.97 1.03 95 5.33 19.09 51.88 125.86
SD 3.2 0.98 8.67 129.88 0.57 52.45 3.31 7.01 20.53 54.63
Min 13.9 0 22.3 1 0.1 12.94 2.31 6.32 9.17 21.72
Max 29.8 10.3 81 360 2.8 234.37 15.8 41.11 92.53 325.26
Mean October 137 14.46 0.66 63.35 229.42 0.59 94.87 5.57 27.78 30.57 118.27
SD 3.54 1.7 13.01 153.13 0.49 58.7 3.27 9.13 14.44 57.5
Min 5.1 0 36 1 0 12.22 2.1 6.73 7.43 16.46
Max 22.6 8.7 92.2 360 2.5 312.38 22.73 57.7 68.94 325.2
Mean November 142 7.51 0.76 71.29 229.46 0.38 181.42 9.99 38.89 23.45 168.16
SD 3.14 3.05 11.72 158.82 0.36 89.11 6.29 11.56 13.35 52.11
Min -1.7 0 38 1 0 14.06 2.4 7.62 4.38 22.05
Max 16.1 29.1 95.7 360 1.9 398.5 27.57 64.07 69.44 325.49
Mean December 162 1.66 0.39 75.44 201.98 0.56 190.7 13.05 41.79 22.15 173.55
SD 4.36 1.58 12.47 158.47 0.57 105.89 7.39 16.83 13.03 59.69
(Continued)
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Table 4. (Continued)

Parameters Month n T P RH WD ws PM,, SO, NO, o, AQl
Min -13.2 0 36.1 1 0 31.13 3.95 5.95 3.27 31.13
Max 10.6 15.9 98.5 360 3.8 545.13 46.58 125.03 66.78 510.02

https://doi.org/10.1371/journal.pone.0334252.t004

In the XGBoost section (top), the model performance shows relatively low variance across different hyperparame-
ter settings, indicating stable results under specific parameter selections. The performance metric exhibits significant
improvement and reaches peak values for certain hyperparameter combinations, highlighting the optimal conditions for
the model (Fig 3). Additionally, error values are lower where the R? value is maximized, confirming the importance of
model-specific hyperparameter tuning (Fig 3).

The LightGBM section (middle) includes three plots representing R?, RMSE, and MAE metrics. The R? plot demon-
strates how well the model explains variance in the dataset, with high values for specific parameter settings. The RMSE
and MAE plots indicate the magnitude of prediction errors, where consistently low values across a wide range of hyperpa-
rameters suggest the model’s ability to make accurate and reliable predictions (Fig 3).

The SVM section (bottom) also displays R?, RMSE, and MAE values, providing critical insights for optimizing the hyper-
parameters of the SVM model. The variations in these metrics highlight the model’s sensitivity to hyperparameter tuning,
showing that proper selection of hyperparameters significantly impacts overall performance (Fig 3). The trends in these
plots guide further optimization efforts to enhance the model’s predictive accuracy.

This comprehensive visualization allows for a comparative evaluation of the models, facilitating a deeper understanding
of their respective performances under different parameter settings (Fig 3).

Fig 4 presents the three-dimensional surface plots for the optimized model results on the test set, showcasing the
XGBoost (top), LightGBM (middle), and SVM (bottom) models. These visualizations demonstrate how model performance
varies with different hyperparameter settings, where the x- and y-axes correspond to the selected hyperparameters and
the z-axis reflects the associated performance metric, thereby highlighting the sensitivity of each model to parameter
tuning.

In the XGBoost section (top), the performance metrics—R?, RMSE, and MAE—demonstrate a pattern similar to the
training set results. The consistency between the train and test sets indicates that the model maintains stable predictive
capabilities across different datasets. Specifically, the plots reveal that high R? values correspond to lower RMSE and
MAE, confirming that the selected hyperparameter combinations contribute to accurate model predictions (Fig 4).

The LightGBM section (middle) also provides insights into the model’s predictive success using R?, RMSE, and MAE
metrics. The R? plot highlights regions where the model effectively explains variance, particularly for certain hyperparam-
eter settings. The RMSE and MAE plots indicate how prediction errors fluctuate under different conditions, with lower val-
ues signifying better performance (Fig 4). The model demonstrates robust generalization ability as it maintains low error
rates across a broad range of hyperparameter settings.

The SVM section (bottom) displays performance variations based on different hyperparameter choices. The R? plot
illustrates the model’s explanatory power, while RMSE and MAE plots highlight fluctuations in prediction errors. Notably,
the wave-like structures in the plots indicate that the model is highly sensitive to specific hyperparameter selections. This
sensitivity emphasizes the importance of fine-tuning to achieve optimal performance. Additionally, the results provide valu-
able insights into the model’s generalization capacity on test data, aiding in hyperparameter optimization (Fig 4).

By consolidating these models into a single Fig, Fig 3 facilitates a comparative evaluation, allowing for a clearer under-
standing of how each model performs on the test dataset under various hyperparameter settings.

Table 5 compares the goodness of fit criteria obtained with optimal hyperparameter values when LightGBM,
XGBoost, and SVM algorithms are used in AQI estimation. LightGBM algorithm observed R? values as 0.922 and 0.889
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Fig 2. Correlation matrix for response and explanatory variables.
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in training and test datasets, respectively, indicating that the model can explain the variance in the dataset to a large
extent. RMSE and MAE values for the training set were measured as 18.661 and 5.666, respectively, while for the test
set, these values were measured as 20.764 and 6.777, indicating that the model has slightly higher error rates in the
test set.

The XGBoost algorithm performs better than other models, with R? values indicating an almost perfect fit (0.999 in
training, 0.994 in test). RMSE and MAE values are extremely low especially in the training set (RMSE 0.234, MAE 0.158),
while these values are measured as 4.84 and 0.972 in the test set, suggesting that the model may have overfitted the
training data. The SVM model showed an average fit with an R? value of 0.782, which remained constant in both training
and test sets; RMSE and MAE values were determined as 28.824 and 12.233 in the training set and 31.136 and 13.546 in
the test set. These results show that the SVM model performs less than the other two models on this particular data set.
As a result, the XGBoost algorithm stands out as the best-performing model in AQI estimation with high R? values and low
error metrics. The performances of LightGBM and SVM should be evaluated with more comprehensive analyses, espe-
cially in terms of generalization capabilities and error rates.
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Fig 5 presents the variable importance levels for the three models—XGBoost (Fig 5a), LightGBM (Fig 5b), and SVM
(Fig 5c)—and their respective impacts on AQIl estimates. These plots highlight the significance of different variables in

predicting AQlI, offering insights into how each model prioritizes features.

In the XGBoost section (Fig 5a), PM,, emerges as the most influential variable with an importance score of 0.974,
followed by Os;, SO,, and NO, with scores of 0.008, 0.007, and 0.004, respectively. Other features, such as Wind Direc-
tion, Relative Humidity, and Temperature, hold lower importance levels, indicating their relatively minor impact on AQl

predictions.
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The LightGBM section (Fig 5b) presents a variable importance distribution similar to that of XGBoost. PM, ; remains the
most critical predictor with a score of 0.955, while O;, SO,, and NO, follow with importance values of 0.011, 0.010, and
0.009, respectively. Wind Direction, Wind Speed, and Temperature are identified as less significant features in the AQl
estimation process.

The SVM section (Fig 5c) exhibits a different variable importance distribution compared to the other models. In this
case, PM, maintains the highest importance with a score of 0.330, but the ranking of secondary variables shifts. Pre-
cipitation, Wind Speed, and Relative Humidity gain prominence, with scores of 0.103, 0.081, and 0.080, respectively.
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Table 5. The goodness of fit criteria results in all algorithms for optimal hyperparameter values.

Hyperparameter values for each model

LightGBM XGBoost SVM
Learning rate 0.04 eta 0.1 C 1
Num leaves 30 Max depth 10 sigma 0.1
Min data in leaf 20 Min child weight 1 kernel radial
Goodness of fit criteria

LightGBM XGBoost SVM
Criterion Train Test Train Test Train Test
R? 0.922 0.889 0.999 0.994 0.782 0.782
RMSE 18.661 20.764 0.234 4.84 28.824 31.136
MAE 5.666 6.777 0.158 0.972 12.233 13.546

https://doi.org/10.1371/journal.pone.0334252.t005

Conversely, Temperature, SO,, and O; hold lower importance levels, suggesting their diminished role in AQI predictions
within this model. This finding is consistent with Choudhary et al. [63], who reported that various machine learning algo-
rithms such as RF, SVM, Bagged MARS, and BRNN provided reliable predictions of particulate matter and gaseous pollut-

ants, supporting the overall effectiveness of ML-based approaches in air quality studies.

A comparative analysis of these models indicates that XGBoost and LightGBM yield highly similar variable importance
rankings, identifying the same key predictors for AQI estimation. This alignment reinforces the reliability of these models
in accurately capturing influential environmental factors. Meanwhile, SVM assigns relatively lower importance to PM,, and
emphasizes different meteorological variables, reflecting variations in how models process and interpret input features.

By consolidating these variable importance analyses into a single Fig, Fig 5 facilitates a clearer comparison across
models, offering a comprehensive understanding of how each algorithm prioritizes different features in AQI estimation.

In the present study, the XGBoost model exhibits impressive goodness of fit with R? values of 99.9% and 99.4% on the
training and test sets, respectively, in various hyperparameter combinations. These high R? values indicate that the model
explains the variance in the data set extraordinarily well. The RMSE and MAE values of the XGBoost model are much
lower than the other models, indicating that the estimates are closer to the actual values. Therefore, the model is more
reliable. While the LightGBM and SVM models also exhibit consistent results, the superior performance of the XGBoost
model suggests that it should be preferred more, especially in terms of the accuracy of the estimates and the general
reliability of the model. In this context, it is concluded that the XGBoost model offers higher reliability and accuracy when

making AQI estimates.

Discussion

Monitoring and improving air quality is essential for both public authorities and individuals seeking to reduce environmen-
tal and health risks. Accurate AQI estimation supports these efforts, and machine learning algorithms provide powerful
tools for this task. In this study, three algorithms—SVM, LightGBM, and XGBoost—were applied to AQI prediction using
pollutant and meteorological data from Igdir, Turkiye. All three models achieved satisfactory performance, but XGBoost
consistently outperformed the others, yielding R?=0.999, RMSE =0.234, and MAE =0.158. These results demonstrate
that XGBoost is an effective and reliable model for AQI prediction, with reduced risk of overfitting compared to previous

approaches.

These findings confirm that XGBoost has a superior ability to handle particularly complex datasets and understand the
interactions between multidimensional features. Similar performance of XGBoost has also been reported in other stud-
ies [64,65]. For example, Van et al. [13] compared the performances of Decision Tree, Random Forest, and XGBoost
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algorithms. They stated that the XGBoost model gave the best results in accuracy (R?=0.9993), error (RMSE =2.5359),

and MAE (1.2844) metrics on two different datasets.
Although the LightGBM model showed lower performance than XGBoost, it provided a good level of accuracy in AQlI

prediction. R? values for LightGBM were recorded as 0.922 in the training set and 0.889 in the test set. RMSE values were
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18.661 and 20.764, and MAE values were 5.666 and 6.777, respectively. These findings show that LightGBM offers an
important alternative for relatively less complex models. Ravindiran et al. [25], in particular, stated that CatBoost stood out
in their similar studies, but LightGBM also produced reliable results in most cases.

The SVM model, on the other hand, exhibited lower performance compared to the other two models. The R? value was
recorded as 0.782 in both training and test sets. The RMSE values were 28.824 and 31.136, and the MAE values were
12.233 and 13.546, respectively. These results indicate that SVM should be optimized for more complex datasets and
multidimensional features. Liu et al. [33] emphasized that an SVR-based model was successful in some cases, but its
generalizability may be limited.

The challenges associated with traditional air quality monitoring methods further emphasize the importance of using
machine learning for AQI estimation. Traditional approaches often rely on fixed monitoring stations, which can provide
limited spatial coverage and cannot effectively capture local pollution events [66,67]. In contrast, machine learning mod-
els play a pivotal role in integrating diverse datasets, including real-time sensor data and historical pollution records, to
improve the accuracy of predictions. This comprehensive approach is particularly important in urban environments, where
pollution sources can vary significantly in different areas [68,69]. Moreover, integrating meteorological parameters into
predictive models is crucial because weather conditions such as temperature, humidity, and wind speed can significantly
affect pollutant distribution and concentration levels [70,71]. The impact of meteorological parameters (temperature,
precipitation, wind direction, wind speed, and humidity) on air quality is important in this study. The findings showed that
meteorological factors are important inputs for AQI estimation, and air pollution varies depending on environmental condi-
tions. Sigamani and Venkatesan [30] stated that meteorological factors play an important role in AQI estimation, affecting
pollution concentrations by 60—74%.

This study’s findings align with various machine learning-based AQI prediction studies in literature. Ravindiran et al.
[24] highlighted that the CatBoost model performed best with R2=0.9998 and RMSE =0.76; however, in this study, the per-
formance of XGBoost is close to CatBoost. Similarly, Liu et al. [33] found that an SVR-based model was superior in AQlI
prediction (R2=0.9766), but the study did not cover newer algorithms such as XGBoost.

The study’s findings also contribute to the ongoing discourse on overfitting in machine learning models. Overfitting
occurs when a model learns from the noise in the training data rather than the underlying patterns, leading to poor gen-
eralization of unseen data. The ability of the XGBoost model to maintain consistent performance across a range of metric
scores suggests that it effectively mitigates overfitting, a concern noted in previous research on machine learning appli-
cations in environmental science [72,73]. This feature is particularly valuable in the context of air quality prediction, where
accurate prediction is essential for public health interventions and policymaking.

Moreover, the implications of improved AQI prediction extend beyond purely academic interest; there are real-world
applications in public health and urban planning. Accurate AQI predictions can inform government responses to pollution
events, enabling timely public health warnings and interventions. For example, during periods of high pollution, authorities
can impose traffic restrictions or encourage public transportation to reduce exposure risks [74,75]. Additionally, individuals
can use AQI predictions to make informed decisions about outdoor activities, reducing the health risks associated with
poor air quality [76—77]. In this regard, Kumar et al. [78] further noted that conventional AQI measures may underestimate
actual health risks, highlighting the importance of developing reliable forecasting systems that can better inform public
protection strategies.

The study’s results are significant, particularly in the context of recent global events such as the COVID-19 pandemic.
During the pandemic, several studies demonstrated that poor air quality aggravated respiratory conditions and increased
vulnerability to severe outcomes from SARS-CoV-2 infection [79,80]. In this regard, the ability to accurately predict AQl is
especially valuable, as it can support early interventions and public health strategies aimed at reducing exposure to harm-
ful pollutants during health crises. This makes the study’s findings highly relevant for protecting public health, particularly
in densely populated urban areas where pollution levels are often elevated.
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Most of the studies summarized in Table 2 focus on short-term datasets, a limited number of pollutant variables, or
exclusively metropolitan regions. Moreover, many of these studies do not incorporate the long-term combined evaluation
of meteorological and pollutant parameters. In this context, our study contributes to literature by using a long-term dataset
that integrates both pollutant and meteorological variables. Conducting such a long-term analysis in a geopolitically sensi-
tive and climatically unique region like Igdir further reinforces the originality and significance of our findings.

In conclusion, the application of machine learning algorithms, particularly XGBoost, to predict AQI in Igdir, Turkiye,
demonstrates the potential of these technologies to improve air quality management. The study’s findings not only high-
light the effectiveness of machine learning in this area but also highlight the importance of integrating diverse datasets
and addressing overfitting to increase model reliability. As urbanization continues to increase and air pollution remains a
pressing global issue, developing robust predictive models will be important to create healthier environments and support
public well-being.

Conclusion

Air pollution levels in Igdir have increased significantly, particularly during the winter months. The average AQlI values in
January and November were 172.9 and 168.2, respectively, which correspond mostly to the “Unhealthy” category accord-
ing to the TNAQI classification. PM,, was determined to be the primary pollutant in pollution.

Analysis and model comparison results indicate that the XGBoost model achieved significantly superior performance in
AQI predictions compared to the LightGBM and SVM models. While the R? values of the XGBoost model were exception-
ally high in both the training (99.9%) and test (99.4%) sets, the error metrics, such as RMSE and MAE, were also notable
with low values such as 0.234 and 0.158, respectively. These results show that the model explains the variance in the
dataset perfectly well, and the predictions are highly accurate.

On the other hand, the LightGBM model also exhibited robust results, with R? values measured as 92.2% and 88.9%
in the training and test sets, respectively. This model also provided acceptable performance with low RMSE and MAE
values. On the other hand, the SVM model exhibited lower reliability than these two models, with R? values remaining at
78.2% in both sets and relatively high RMSE and MAE values, indicating that the model is not as effective as the others.

Considering these findings, the XGBoost model offers a more reliable and effective alternative for AQI estimations than
other models. These results underline XGBoost’s high adaptability and accuracy capacity, especially in complex data
structures and when evaluating the interaction of various environmental parameters. The proposed approach can serve as
a valuable guide for future modeling studies and constitute a basis for applications on larger data sets.
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