PLO\S\*\'- One

L)

Check for
updates

E OPEN ACCESS

Citation: McKinley SJ, Hansen SF, Fierro-Arcos
D, Cundy ME, Mossbrucker M, Vianna GMS,

et al. (2025) Relative abundance and diversity
of sharks and predatory fishes across Marine
Protected Areas of the Tropical Eastern Pacific.
PLoS One 20(11): e0334164. https://doi.
0rg/10.1371/journal.pone.0334164

Editor: Claudio D'Iglio, University of Messina,
ITALY

Received: May 27, 2025
Accepted: September 23, 2025
Published: November 26, 2025

Copyright: © 2025 McKinley et al. This is an
open access article distributed under the terms
of the Creative Commons Attribution License,
which permits unrestricted use, distribution,
and reproduction in any medium, provided the
original author and source are credited.

Data availability statement: Data cannot be
shared publicly because of Galapagos National
Park research permit conditions. A previous
authorization from the Galapagos National Park
Directorate is required for further use of this
data. Access to data can be requested via this

RESEARCH ARTICLE

Relative abundance and diversity of sharks and
predatory fishes across Marine Protected Areas
of the Tropical Eastern Pacific

Simon J. McKinley', Sarah F. Hansen', Denisse Fierro-Arcos ', Megan E. Cundy@®'™®,
Magdalena Mossbrucker', Gabriel M. S. Vianna', Jenifer Suarez-Moncada?,
Mauricio Hoyos-Padilla(**, Sandra Bessudo-Lion’, Enric Sala®, Pelayo Salinas-de-Le6n"7*

1 Charles Darwin Foundation, Charles Darwin Research Station, Puerto Ayora, Galapagos Islands,
Ecuador, 2 Galapagos National Park Directorate, Puerto Ayora, Galapagos Islands, Ecuador, 3 Pelagios-
Kakunja A.C., La Paz, Baja California Sur, Mexico, 4 Fins Attached Marine Research and Conversation,
Colorado Springs, Colarado, United States of America, 5 Fundacion Malpelo y Otros Ecosistemas
Marinos, Bogotd, Colombia, 6 Pristine Seas, National Geographic Society, Washington DC, United States
of America, 7 Guy Harvey Research Institute and Save Our Seas Foundation Shark Research Center,
Nova Southeastern University, Dania Beach, Florida, United States of America

ag Current address: Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point,
Australia

ab Current address: Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Ocean
Institute, The University of Western Australia, Perth, Australia

* pelayo.salinas@fcdarwin.org.ec

Abstract

Marine Protected Areas (MPASs) in the Tropical Eastern Pacific (TEP) support globally
distinct reef fish populations, which exhibit differences between the remote oceanic
islands and continental coast. While oceanic island MPAs typically support large
abundances of sharks and large predatory teleost (bony) fishes, coastal MPAs show
increasing signs of depletion. We deployed stereo-Baited Remote Underwater Video
systems (stereo-BRUVs) to assess reef fish community structure across seven MPAs
in the region. Oceanic island MPAs had considerably greater species richness and
relative abundances than coastal MPAs across all trophic levels. Within the biogeo-
graphic subprovinces, fish assemblages were differentiated from each other corre-
sponding to latitude, aligning with the established patterns and supporting finer scale
bioregionalization within the TEP. Notably, oceanic MPAs supported some of the larg-
est relative abundances (MaxN hr') of sharks on nearshore reefs reported globally.
This is likely driven by the regional oceanographic processes enhancing productivity
and trophic diversity and sustained by reduced anthropogenic disturbances associ-
ated with MPA remoteness and protection. Therefore, we highlight the critical role of
MPAs in the TEP as refuges for sharks. However, we also found evidence of fishing
pressure on predatory fishes within MPAs across the region. Coastal MPAs in Ecua-
dor exhibit low fish abundances across all trophic levels, with large predators notably
absent, indicative of ‘fishing down the food web’. Our results highlight the need for
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fishing impact assessments and improved conservation measures, such as strength-
ened enforcement, within MPAs to conserve globally significant marine biodiversity.

Introduction

The Tropical Eastern Pacific (TEP), spanning the coastline from the Baja California
Peninsula to northern Peru and encompassing many oceanic islands, represents a
global biogeographic province characterized by distinct oceanographic processes
and marine communities [1,2]. The TEP can be further subdivided into three sub-
provinces based on reef fish taxonomic and biomass patterns, with particularly
pronounced differences in communities between the oceanic islands and continental
coasts [2—4]. Oceanic islands exhibit higher levels of endemism in reef fish commu-
nities due to their isolation [2], while strong upwellings generated by ocean currents
interacting with bathymetry around islands create localized high productivity hotspots
that support dynamic food webs and sustain large populations of predatory fishes,
including sharks [5-9]. In contrast, coastal reef fish communities in the TEP are
influenced differently by oceanographic processes, including areas of weaker topo-
graphically induced upwellings and lower productivity, resulting in distinct species
compositions [1,2]. Across the coastline, reef fish species richness gradually declines
to the north and south of Costa Rica [2]. While predatory fish abundances are lower
within coastal MPAs than the oceanic islands, some areas near the coast support
notable predatory fish populations, such as Cafo Island [10].

The TEP has a growing network of Marine Protected Areas (MPAs) aimed at
conserving globally significant marine biodiversity and ecosystem functioning in the
face of accelerating anthropogenic pressure [11—13]. Over the past decades, more
than 77 MPAs have been designated in Mexico, Costa Rica, Panama, Colombia, and
Ecuador, as well as oceanic islands within their Exclusive Economic Zones (EEZs).
The MPAs vary in their level of protection, ranging from allowing extractive activities
(e.g., Galera San Francisco Marine Reserve, Ecuador), to mixed-use management
approaches (e.g., Galapagos Marine Reserve, Ecuador), to fully protected no-take
zones (e.g., Malpelo Fauna and Flora Sanctuary, Colombia).

Reef fish assemblages across MPAs within the TEP are subject to distinct biogeo-
graphic, oceanographic and anthropogenic influences, which collectively shape and
sustain the structure and function of these marine communities [1,2,4]. Due to the
complex interplay of these factors, the effectiveness of these MPAs in conserving reef
fish assemblages — particularly predatory fishes — remains inadequately assessed
across the region’s distinct biogeographic subprovinces. Notably, anthropogenic
pressure, including fishing, has impacted reef fish communities across MPAs in the
subprovinces differently [4]. Coastal MPAs often experience high fishing pressure
due to their proximity to human populations, while oceanic MPAs often benefit from
remoteness [4,10,14,15]. But both experience challenges of effective enforcement
[16,17], and illegal, unreported, and unregulated (IUU) fishing continues to impact
fish populations, particularly predatory fishes [18—20].
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Predatory fishes, including sharks and large teleost (bony) fishes, play crucial roles in maintaining ecosystem
function and resilience, primarily by regulating food webs and recycling nutrients [ [21,22]]. However, these
species are also among the most vulnerable due to their low resilience to fishing pressure [23,24]. In the TEP,
predatory fish populations face significant fishing pressure from both targeted and incidental capture in fisheries
[20,25-27]. Given the biogeographic, oceanographic and anthropogenic complexities, a comprehensive assess-
ment of shark and predatory fish assemblages across MPAs of this diverse region may considerably assist con-
servation management. Fish census methods (e.g., underwater visual census and diver-operated video) are often
used to sample reef fish but underestimate abundances of highly mobile and elusive species, such as sharks and
predatory teleost fishes [28]. Alternatively, Baited Remote Underwater Video Systems (BRUVs) offer a standard-
ized, non-extractive alternative that better represents predatory fishes in community analyses, including assess-
ments of relative abundance and size structure [29]. Studies utilizing BRUVs across the globe have revealed
variations in predatory fish populations across protection gradients, fishing pressures, including at regional scales
and remote islands [30-33].

In the TEP, studies have documented reef fish relative abundance and size structure within individual MPAs or across
fine-scale regions showing that MPAs generally support healthier marine populations than unprotected areas, even with
limited enforcement [10,34—36]. Yet coastal MPAs in some regions, such as Ecuador, remain significantly underrepre-
sented in research. This knowledge gap raises concerns about the overall health of reef fish communities and the popu-
lation status of predatory fishes along much of the TEP coastline that experiences heavy fishing pressure [4]. Moreover,
despite TEP’s recognition as a global shark hotspot [7,37,38], a standardized assessment of shark relative abundances
and size structures across MPAs is yet to be conducted [33,39].

Therefore, we conducted the first assessment of sharks and predatory teleost fish communities using BRUVS across
MPAs in the TEP. Specifically, our study aimed to compare community composition, abundances, and size structure
between coastal and oceanic MPAs. We hypothesized that sharks and predatory teleost fish assemblages:

(1) would differ between coastal and oceanic MPAs, reflecting broad-scale biogeographical and oceanographic
differences;

(2) would vary according to local environmental conditions and level of protection among MPAs within each biogeographic
subprovince;

(3) composition and length frequency distributions would potentially indicate fishing pressure on sharks and commercially
valuable teleost fishes.

Materials and methods
Ethics statement

This research was conducted under permits from the Galapagos National Park Directorate for the Galapagos
Marine Reserve (PC-28-16 & PC-27-17); the Ecuadorian Minister of Environment for Machalilla National Park
(006—2019-DP-DPAM-MAE) and Galera San Francisco Marine Reserve (007-2019-IC-FLO-FAU-DPE-MAE); the
Haut commissariat de la République en Polynésie Francaise French (HC167CABBSIRIMG) and Direction générale
de la mondialisation, de la culture, de I'enseignement et du development international (2016_177320/DGM/DCERR/
ESR) for Clipperton Atoll; the Direction of the Revillagigedo Archipelago Biosphere Reserve for Revillagigedo
(FOO.DRPBCPN.DIR.RBAR.-032/2016); the Direction of the Natural National Parks of Colombia and Malpelo Foun-
dation (Convenio de Asociacion 003/2013-2018) for the Malpelo Flora and Fauna Sanctuary; the National System
of Conservation Areas (SINAC-ACOSA-INV-010-19 & SINAC-ACOSA-PI-PC-025-19) for Isla del Cafo Biological
Reserve.
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Fish were recorded in their natural habitat by video cameras using a non-invasive technique without capture, handling
or physical disturbance. No animal ethics approval was required for such observational research. Bait used to attract fish

was sourced locally using permitted fishing techniques.

Fish community data

Study sites. This study assessed reef fish assemblages within MPAs across the TEP, a biogeographically distinct

marine region globally (Fig 1). The TEP extends from the Baja California Peninsula (Mexico) in the north (~25°N) to the

northern coast of Peru (~4°S), encompassing coastal areas and oceanic islands out to approximately 120°W, which

comprise distinct coastal and oceanic subprovinces [2,40].

Our study sampled reef fish assemblages within seven MPAs across the coastal and oceanic subprovinces of the TEP
(Fig 1 and Table 1). The Galera San Francisco Marine Reserve (herein, Galera) and Cantagallo-Machalilla Marine Zone
(herein, Machalilla) are located along Ecuador’s continental coast, and the Cafo Island Biological Reserve (herein, Cafio)
is located within 15 kilometres of Costa Rica’s coast so were classified as coastal MPAs. The other four sites in Revilla-
gigedo Archipelago National Park (herein, Revillagigedo), Clipperton Island Marine Protected Area (herein, Clipperton),
Malpelo Fauna and Flora Sanctuary (herein, Malpelo), and Darwin and Wolf Marine Sanctuary in the Galapagos Marine
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Fig 1. The seven Marine Protected Areas (MPAs) sampled by stereo-BRUVs within the Tropical Eastern Pacific (TEP). Base map made with

Natural Earth data (Free vector and raster map data @ naturalearthdata.com); MPA boundaries from the World Database of Protected Areas (IUCN

and UNEP-WCMC (2025), The World Database on Protected Areas (WDPA) [On-line], August 2025, Cambridge, UK: UNEP-WCMC. Available at: www.

protectedplanet.net. WDPA Updates).

https://doi.org/10.1371/journal.pone.0334164.9001
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Table 1. Summary of the seven Marine Protected Areas (MPAs) sampled using stereo-BRUVs in the oceanic island and coastal biogeographic
subprovinces of the Tropical Eastern Pacific (TEP). Multiple use areas are not fully protected including designated zones for science, tourism

or fishing.

Marine Protected Area (Country) Level of protection Area Protected (Year BRUVS Month Year
Established/Expanded) sampled
Oceanic island | Revillagigedo Archipelago National Multiple use area 4.4 km? (1994) 10 April 2016
Park (Mexico) No-take 148,800 km? (2017)
Clipperton Island Marine Protected No-take 1,811 km? (2016) 21 March 2016
Area (France)
Malpelo Fauna & Flora Sanctuary No-take 651 km? (1995) 19 September
(Colombia) 8,575 km? (2005) 2015 & April
27,096km? (2017) 2018
Darwin & Wolf Islands, Galapagos Multiple use area 133,000 km? (1998) 15 May 2016 &
Marine Reserve (Ecuador) (0.96% no-take) March 2017
No-take 40,000 km? (2016)
Coastal Cafio Island Biological Reserve (Costa | No-take 55.3 km? (1978) 10 March 2019
Rica)
Galera San Francisco Marine Reserve | Multiple use area 546 km? (2009) 11 April 2019
(Ecuador)
Cantagallo-Machalilla Marine Zone Multiple use area 144.3 km? (1979) 25 August 2019
(Ecuador) Multiple use area 1,423 km? (2015)

https://doi.org/10.1371/journal.pone.0334164.t001

Reserve (herein, Galapagos), are located at oceanic islands with a minimum distance of 380 km from the coast and were
classified as oceanic MPAs.

The coastal MPAs were all located within the equatorial climate zone from Costa Rica to Ecuador, a region that expe-
riences strong geographic variation in marine environmental conditions driven by current systems and ENSO events [41].
Reef fish communities include tropical and sub-tropical species, with species composition and richness gradually declining
to the north of Costa Rica and south of Panama [2]. Cafio marine habitats are composed of rocky and coral reefs, with
water temperatures ranging from 26—30°C throughout the year [42]. The Ecuadorian MPAs feature less coral and more
rocky reef substrate than Cafo, and water temperatures are generally cooler [43]. Due to their proximity to large human
populations and fishing ports, and less management enforcement than the oceanic MPAs, these coastal MPAs are likely
subject to more fishing pressure.

Oceanic MPA's ranged in latitude from 0.6°S to 18.84°N with distances of between 380 and 1075 km from the conti-
nental coastline [2]. Each oceanic MPA has distinct marine conditions characterized by its geographic position and influ-
ences of regional ocean currents [1,44]. Reef habitats consist of insular shelves, with Clipperton having more extensive
coral reef development than Revillagigedo, Malpelo and Galapagos where rocky substrate is more prominent [45,46]. The
remoteness of these MPAs is assumed to reduce fishing pressure on reef fish assemblages when compared to coastal
MPAs [4]. Notably, sampling occurred prior to the expansion of protected areas at Clipperton (2016), Revillagigedo (2017),
and implementation of the no-take Darwin and Wolf Marine Sanctuary at Galapagos (2016).

Sampling design

Reef fish assemblages were opportunistically sampled at the seven MPA’'s between September 2015 and August 2019
using stereo Baited Remote Underwater Stereo-Video (stereo-BRUVs) (Table 1). The soak time and minimum number

of BRUV deployments per site followed recommendations for sampling shark and fish assemblages in the Galapagos,
aiming to obtain adequate spatial coverage while maintaining minimum site-level replication (n=4 deployments per site),
including at small islands with limited available reef habitat [34,47]. Sampling always used a spatially stratified design with
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random replicate samples within each of the MPAs. Stereo-BRUVS were deployed at approximately 20—25 meters depth
and with a minimum distance of 500 m between replicate deployments to avoid overlapping of bait plumes and minimize
the risk of the same individual appearing in videos of successive deployments [48,49]. Deployments had at least 100 min-
utes of bottom time to provide 90 minutes of video for analysis as the first 5 and last 5 minutes of footage were discarded
to mitigate the disturbance caused by the boat to the fish community sampled during deployment [34]. All deployments
were completed during daytime hours between 7:00 and 14:00.

Stereo-BRUVs

Stereo-BRUVs are a non-intrusive tool to sample reef fish assemblages [50]. They have been shown to observe larger
abundances of predatory species than diver-operated videos or underwater visual census without impacting observa-
tions of lower trophic level species [28,48]. Each of our stereo-BRUVs consisted of a triangular stainless-steel frame and
two GoPro Hero 4 cameras in waterproof housings mounted to the base bar 70 cm apart, angled inwards at 7° degrees
and orientated horizontally to the seafloor. GoPro’s recorded video footage at medium field of view, 1080 pixels and 60
frames per second. A bait canister holding 800 grams of chopped yellow fin tuna (Thunnus albacares) with the skin was
positioned in the cameras field of view attached at the end of a 1.3-meter PVC pipe. The frame was attached to a buoy at
the surface and anchored a 20 kg weight on the seabed to keep the stereo-video system floating approximately 1 meter
above the substrate, a design shown to reduce entanglements in structurally complex and exposed habitats, and with
large animals [34,47]. This was particularly important for the high current areas in Galapagos and at the coral reef sur-
rounding Clipperton Islands.

Video analysis

Stereo-BRUVs were calibrated before each fieldtrip using SeaGIS CAL software (https://www.seagis.com.au/bundle.html)
following standardised procedures [51]. For each stereo-BRUV deployment, 90 minutes of video footage was analyzed
using EventMeasure software (https://www.seagis.com.au/event.html). All cartilaginous and teleost (bony) fishes were
identified to the lowest possible taxonomic level and the relative abundance of each species in a video was determined as
the maximum number of individuals of taxa visible in one still frame (MaxN). Fish that could not be confidently identified to
species were identified to genus or family. MaxN is used to avoid counting an individual more than once during the video
and is therefore a conservative estimate of species relative abundance [50]. To standardize sampling effort, the MaxN of
species in each deployment was divided by the time used for video analysis and expressed as MaxN hr'. This was nec-
essary because three systems stopped filming before reaching 90 minutes, while also allowing for comparisons of shark’s
abundances globally (Table 5). Fork lengths of teleost and shark species and disc width of ray species were measured in
stereo-videos at the time the species MaxN was counted. Measurements with a root mean square (RMS) value greater
than 20 mm were considered imprecise and excluded.

Trophic groups

Species were categorized into five trophic groups using diet and feeding information from FishBase [58]. Sharks and
high-order teleost fishes were considered as two distinct groups that predominantly feed on large prey fishes and inverte-
brates and focal species of the study due to being fished in the region or being of conservation concern [59-61]. Sharks
were separated because they generally grow larger and have different life-histories compared to reef-associated teleost
fishes [62]. The high-order group consisted of large predatory teleost fishes (i.e., generally growing larger than 80 cm),
and included benthopelagic carangids, lutjanids, and serranids. Meso-predators feed on a wide range of prey species,
generally smaller than those consumed by high-order species. This group therefore included benthic and demersal
predators, as well as smaller species from high-order predator families. Planktivores predominantly feed on organisms
suspended in the water column. This group included filter-feeding elasmobranchs, benthopelagic schooling species (e.g.,
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some balistids and Cephalopholis colonus), and certain pomacentrids. Herbivores predominantly feed on macroalgae on
the substrate. This group generally consisted of demersal species that roam reefs (e.g., some acanthurids, kyphosids, and
scarids) or exhibit site fidelity (e.g., some pomacanthids, chaetodonids, and pomacentrids).

Statistical analysis

Univariate statistics. To describe reef fish communities, species richness hr' and MaxN hr' were calculated for each
trophic group in each deployment. Bar and boxplots were then constructed using the ggplot2 package in R comparing
these means of these metrics across MPA’s [63]. Both metrics were recalculated for the whole community in each
deployment, Euclidean distances calculated between deployments, and differences between fish communities tested
using a two-way nested Permutational Multivariate Analysis of Variances (PERMANOVA, a=0.05) with the factor’s
biogeographic ‘subprovince’ (fixed, two levels) and MPA (random, 7 levels) nested within subprovince. PERMANOVA
procedures were performed using PRIMER v7 with the PERMANOVA+ package [64,65].

Multivariate patterns. The same two-way nested factor design was used to assess multivariate patterns in the
whole fish community data and datasets for each trophic group. Fish species relative abundances (MaxN hr) in each
dataset were square-root transformed to reduce the influence of highly abundant species on dissimilarity calculations
and distances between deployments calculated using the Bray-Curtis index of dissimilarity with a dummy variable (+1)
added to each deployment. The zero-adjusted Bray-Curtis index was used as it allows for distances to be calculated
in assemblage data that naturally has many 0’s while avoiding undefined values when deployments had no species
in common [66,67]. Assessments of the terms in the full PERMANOVA models were conducted using Type Il sum of
squares using 9999 permutations under a reduced model [68]. To address potential confounding effects of biogeographic
variation on MPA comparisons, we conducted separate PERMANOVA analyses within each biogeographic subprovince to
further assess differences in fish assemblages among MPAs. Assessments of terms in the full PERMANOVA models and
pairwise tests were conducted using Type Il sum of squares with 9999 permutations under unrestricted permutations of
raw data and Monte Carlo bootstrapping for low sample sizes [69].

The whole fish community data was further assessed using Canonical Analysis of Principal Coordinates (CAP, a=0.05)
with leave-one-out allocation to distinguish hypothesised groups (MPAs) in multivariate space. Species contributing to
the observed differences between MPAs were considered to have strong Pearson correlations when canonical axes were
above |r|>0.7. Of these species, focal species were plotted on the CAP plot. All multivariate procedures were performed
using PRIMER v7 with the PERMANOVA+ package [64,65].

Fork length frequency distributions. The length frequency distributions of focal species were also plotted using
the ggplot2 package in R [63]. These species included Galapagos sharks (Carcharhinus galapagensis), scalloped
hammerhead sharks (Sphyrna lewini), Dermatolepis dermatolepis, Mycteroperca olfax, Caranx lugubris, C. melampygus,
and C. sexfasciatus. The proportion of immature individuals of species with ten or more measurements in an MPA were
described using the smallest published length of sexual maturity estimates [70-75]. No reliable maturity estimate was
available for D. dermatolepis.

Results

The 111 benthic BRUVs deployed detected a total of 18771 individual fishes belonging to 52 families and 181 species. Overall,
8 species were sharks, 9 were classified as high-orders, 107 as meso-predators, 17 as planktivores and 40 as herbivores.

Differences in fish assemblages

Univariate statistics. The species richness hr' differed significantly between the biogeographic subprovinces and
MPAs within them (Table 2). MPAs in the oceanic subprovince had a higher species richness hr', on average, than the
coastal subprovince (Fig 2). There was also higher species richness hr', on average, in each trophic group in the oceanic
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subprovince than in the coastal, where there were only two shark and three high-order teleost species detected (Fig 2).
Within the oceanic subprovince, mean species richness hr' in each trophic group was generally similar across MPAs,
albeit with some variation in the meso-predator group across MPAs. Within the coastal subprovince, species richness hr
was slightly higher, on average, in Cafio. Notably, no high-order teleost species were detected in Galera.

On average, relative abundances of all trophic groups were larger in MPAs in the oceanic than in the coastal subprov-
ince (Fig 3). A statistically significant difference in mean MaxN hr' was detected between the MPA’s within the subprov-
inces. While MaxN hr' was higher, on average, in MPA’s of the oceanic subprovince, there was no statistical difference
detected in mean MaxN hr' between subprovinces (Table 2). Within the oceanic subprovince, relative abundances of all
trophic groups were, on average, largest in Clipperton. Within the coastal subprovince, relative abundances of plankti-
vores and herbivores were, on average, larger in Cafio. Shark relative abundances (mean MaxN hr') in the TEP oceanic
MPAs were some of the largest reported globally when compared to other studies in reef habitats using BRUVs at compa-
rable depths (Table 5).

Multivariate patterns

Results of the multivariate PERMANOVA for relative abundances were similar for most tests of the fish community and
trophic group datasets (Table 3). The whole community, shark, high-order teleost, meso-predator and planktivore fish
assemblages differed significantly among and within subprovinces. Herbivore fish assemblages differed significantly
between MPAs but not subprovinces. Multivariate PERMANOVA and pairwise tests within each subprovince found fish
communities differed significantly among all oceanic and among all coastal MPAs (S1 Table).

The CAP plot for the whole fish community showed four groups (Fig 4). The oceanic island MPAs were separated
into two groups, one included Revillagigedo and Clipperton and the other, Galapagos and Malpelo. The coastal MPAs
were also separated into two groups, one included the Ecuadorian MPAs of Galera and Machalilla, and the other Cafio.
All Revillagigedo and Clipperton deployments were correctly reclassified by the CAP procedure (Table 4). Misclassifica-
tions included two Malpelo deployments assigned to Galapagos, and a Galapagos deployment assigned to Malpelo and
Revillagigedo, respectively. Among coastal MPAs, one Cafo deployment was misclassified as Machalilla, three Machalilla
deployment were misclassified as Galera and one as Galapagos, and three Galera deployment were misclassified as
Machalilla.

Eighteen species were strongly correlated (>0.7) with the first or second canonical axes (S1 Table), including focal spe-
cies (Fig 4). Myteroperca olfax and Sphyrna lewini were positively correlated to the second axis directed towards where
Malpelo and Galapagos were grouped. Caranx lugubris and C. melampygus were negatively correlated to the first canon-
ical axis directed towards where Revillagigedo and Clipperton were grouped. Carcharhinus galapagensis and Dermatole-
pis dermatolepis were negatively correlated to the first canonical axis and away from the coastal MPAs.

Table 2. Two-factor nested PERMANOVA for differences in reef fish species richness hr' and relative abundance (mean MaxN hr') across
seven MPAs within the TEP. Biogeographic subprovince is a fixed factor and MPA is a random factor nested within subprovince. Both metrics
dissimilarity between stereo-BRUV deployments was calculated using Euclidean distances. Bold emphasise significant differences at a=0.05.

Metric Factor Degrees of freedom Mean squares Pseudo-F statistic Permutational P-value
Species richness hr-' Subprovince 1 2892.8 35.407 0.018
MPA(Subprovince) 5 87.414 4.3623 0.002
Mean MaxN hr-* Subprovince 1 260.19 2.351 0.108
0.151
MPA(Subprovince) 5 119.57 8.109 <0.001

https://doi.org/10.137 1/journal.pone.0334164.t002
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Fig 3. Relative abundances (MaxN hr) of reef fish trophic groups sampled by stereo-BRUVS across seven TEP MPAs. Boxplots display means
(red circle), medians (black line), upper and lower quantiles (boxes), minimum and maximum + - 1.5%interquartile range (whiskers) and outliers (black
dots).

https://doi.org/10.1371/journal.pone.0334164.9003

Focal species length frequency distributions

Focal species were mostly measured at oceanic island MPAs, while measurements were not recorded for these species
at coastal MPAs due to low relative abundances or absences from samples, except for 5 Caranx melampygus at Cafio
(Fig 5). Fork length-frequency distributions patterns varied among species and MPAs (Fig 5). Focal species with ten or
more measurements and more than 50% of individuals measuring below estimated sizes of sexual maturity included Myc-
teroperca olfax at Malpelo (69%) and Galapagos (93%), Caranx sexfasciatus at Clipperton (81%), C. melampygus (59%)
and C. lugabris at Revillagigedo (57%) and Carcharhinus galapagensis (97.1%) at Clipperton (59,110-114).

Discussion

Our study found significant differences in shark and predatory fish assemblages between oceanic island and coastal

MPAs. Oceanic islands MPAs had higher species richness and larger relative abundances across all trophic levels, includ-
ing some of the largest shark abundances reported globally (Table 5), highlighting the region’s distinct oceanographic and
ecological processes that support larger reef fish populations. Similar to the results of Edgar et al. [11], we also argue that
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Table 3. Two-factor nested PERMANOVA for differences in whole reef fish community and five trophic group multivariate composition across
seven MPAs in the TEP. Subprovince is a fixed factor and MPA is a random factor nested within subprovince. Relative abundances (MaxN
hrs') were square-root transformed and dissimilarity between stereo-BRUV deployments calculated using Bray-Curtis with a dummy variable
(+1). Bold emphasise significant differences at a=0.05.

Dataset Factor Degrees of freedom Mean Squares Pseudo-F statistic Permutational P-value
Whole community Subprovince 1 68,751 4.837 0.001
MPA(Subprovince) 5 15,353 7.954 <0.001
Sharks Subprovince 1 35,878 6.732 <0.001
MPA(Subprovince) 5 5,781.70 12.783 <0.001
High-order teleosts Subprovince 1 40,681 4.074 0.028
MPA(Subprovince) 5 54,301 16.798 <0.001
Meso-predators Subprovince 1 60,348 5.175 0.011
MPA(Subprovince) 5 12,572 6.812 <0.001
Planktivores Subprovince 1 90,718 15.739 0.013
MPA(Subprovince) 5 6,219.60 7.354 <0.001
Herbivores Subprovince 1 41,738 2.279 0.052
MPA(Subprovince) 5 19,903 16.449 <0.001

https://doi.org/10.1371/journal.pone.0334164.t003

Table 4. Success of the leave-one-out allocation of sites to the seven TEP MPAs. Total misclassification error was 11.7%.

Subprovince Original MPA Classified MPA
Revillagigedo Clipperton Malpelo Galapagos Cano Galera Machalilla Correct (%)
Oceanic island Revillagigedo 10 0 0 0 0 0 0 100
Clipperton 0 21 0 0 0 0 0 100
Malpelo 0 0 16 2 0 0 1 84.211
Galapagos 1 0 1 13 0 0 0 86.667
Coastal Cano 0 0 0 0 9 0 1 90
Galera 0 0 0 0 0 8 3 72.727
Machalilla 0 0 0 1 0 3 21 84

https://doi.org/10.1371/journal.pone.0334164.t004

there is evidence of fishing pressure in MPAs of the TEP. Within coastal MPAs in Ecuador, sharks and large predatory
fishes were mostly absent despite using a methodology designed to effectively survey them, while fish abundances across
trophic levels were low indicating ‘fishing down the food web’ [4,76].

Shark abundances in oceanic MPAs

We report some of the largest relative abundances of sharks at the oceanic MPAs in the TEP compared to reports at
comparable depths from other regions globally (Table 5; [39,52]). Some of these studies focused on coastal reefs or areas
nearer to human populations, where shark populations are more likely to be depleted by overfishing and other anthropo-
genic disturbances [77,78]. Other studies examined isolated island reefs that are less impacted by direct human activity
[31,32,79,80] and reported lower shark abundances than we observed. We suggest that the combination of remoteness,
reduced direct human impact, and the unique biophysical setting of oceanic islands in the TEP allows sharks to exhibit
such large abundances.

We also found variations in shark assemblages among the oceanic MPAs. Notably, the silvertip shark (Carcharhinus
albimarginatus) was exclusively observed at the northern MPAs, while the scalloped hammerhead shark (Sphyrna lewini)
exhibited substantially larger relative abundances at the equatorial MPAs. While having a broad distribution across the
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Pacific and Indian Oceans [81], the silvertip shark is more commonly recorded in areas north of Galapagos and Malpelo,
including our study sites and Cocos Island National Park [82]. This suggests a limited latitudinal range of the species within
the TEP. The large abundance of scalloped hammerhead sharks at the equatorial MPAs align with previous studies report-
ing large aggregations at these locations [7,10,83]. These areas, characterised by strong upwelling and productive waters,
as well as the presence of deep seamounts and coastal drop-offs, provide ideal conditions for schooling behaviour, feeding,
cleaning and mating, likely explaining the observed large abundances at specific times during the year [84—-87].

Differences between biogeographic subprovinces

Fish assemblages in oceanic island MPAs differed significantly from those in coastal MPAs, with oceanic islands hav-
ing higher relative species richness across most trophic groups. This aligns with the island biogeography theory, which
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predicts that isolation promotes speciation over evolutionary timescales, resulting in more distinct species and higher
species richness [88]. This increased endemism distinguishes oceanic island MPAs from the coastal MPAs, not only in
species diversity, but also in taxonomic composition [2,41,89].
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Table 5. Comparison of some of the largest reported shark relative abundances (mean MaxN hr') sampled in reef habitats at comparable
depths by BRUVs globally. Values of the most abundant species in each study and abundant species in our study of the TEP are presented
(i.e., Sphyrna lewini and Carcharhinus albimarginatus). Additional values are reported in Table 6 by [52].

Region Location (Year) Deployments | Mean shark MaxN Mean species MaxN hr'+SD
(mins) hr'+SD
Tropical Revillagigedo Archipelago, 10 (90) 4+22 Triaenodon obesus 2.17 £1.11, Carcharhinus albimarginatus
Eastern Mexico (2016) @ 1.8+1.14, Carcharhinus galapagensis 1.07 +0.6
Pacific Clipperton Island, France 21 (90) 3.75+2.27 Carcharhinus galapagensis 2.98+2.15, Carcharhinus albi-
(2016) @ marginatus 1.27 £0.86
Malpelo Island, Colombia 19 (90) 4.38+5.43 Sphyrna lewini 4.37 +6.62, Carcharhinus galapagensis
(2015, 2018) @ 1.53+1.48, Triaenodon obesus 1.21+1.19
Darwin & Wolf Islands, 15 (90) 4141425 Sphyrna lewini 3.67 +3.91, Carcharhinus galapagensis
Galapagos Marine Reserve, 0.94+0.6
Ecuador (2016, 2017) @
This study
Costa Rica (2016—2019) [10] | 430 (103®) NA Sphyrna lewini 7.4 £11.1, Triaenodon obesus 3.7 £3.5,
Carcharhinus albimarginatus 1.7 +1.6, Carcharhinus galapa-
gensis 1.6+1
Islas Murcielago Archipelago, | 67 (90) 1.5+0.2 (Carcharhini- | Carcharhinus falciformis 1+0, Carcharhinus leucus 1.3+£0.5,
Costa Rica (2017-2019) [36] dae spp. only) Carcharhinus limbatus 1+0, Galeocerdo cuvier 1+0, Tri-
aenodon obesus 2+1.9
Bocos del Toro Archipelago, | 149 (65) NA Ginglymostoma cirratum 0.4, Carcharhinus limbatus 0.01,
Panama (2016-2019) [53] Carcharhinus perezi 0.01, Sphyrna lewini 0.0067
Indo-Pacific Tetiaroa Atoll, French Polyne- | 42 (60) NA Carcharhinus melanopterus 1.71+1.13, Negaprion
sia (2016) [54] acutidens 0.36+0.62
French Polynesia (2016— 2015 (60) 2.45+2.27 Carcharhinus melanopterus 1.32+1.25, Carcharhinus
2017) [55] amblyrhynchos 0.74 £1.29, Triaenodon obesus 0.2+0.45,
Sphyrna lewini 0.004+0.07
2TRNP, Philippines (2015— 26 (60) 1.96 £2.05° Carcharhinus amblyrhynchos 1.31+2.94 ¢, Trianodon obe-
2016) [56] sus 1.04+0.45 ¢, Sphyrna lewini 0.04+0.2 ©
46 (60) Carcharhinus amblyrhynchos 0.52+1.01 °, Trianodon obe-
sus 0.74+0.44 ¢
Middleton Reef, Australia 71 (60) NA Carcharhinus galapagensis 2.54, Galeocerdo cuvier 0.11
(2020) [57]
Indian Ocean BIOT, (2012) [32] 138 (60) 1.97 £0.35 Carcharhinus amblyrhynchos 1.33+0.29, Trianodon obe-
sus 0.17+0.09, Carcharhinus albimarginatus 0.17 £0.09,
Sphyrna lewini, Sphyrna mokarran & Galeocerdo cuvier
<0.07

Note: TRNP=Tubbataha Reefs Natural Park, BIOT =British Indian Ocean Territory Marine Reserve. @ This study *=mean soak time, °=cumulative

(cMaxN) from shallow reef (<15 meters) surveys.

https://doi.org/10.1371/journal.pone.0334164.t005

Oceanic island MPAs also hosted larger relative abundances across most trophic groups than coastal MPAs. This likely
results from a combination of oceanographic processes and anthropogenic impacts. The oceanic islands often experi-
ence enhanced productivity [1,90]. This supports dynamic food webs at nearshore reef habitats, from lower trophic level

abundances of planktivorous and herbivorous fish, to higher trophic levels of meso-predator and high-order teleost’s, and
sharks [91-93]. This productivity creates marine biodiversity hotspots where migratory species aggregate alongside resi-
dent reef species, resulting in increased abundances across trophic levels.

But the most striking difference between oceanic and coastal MPAs was the near absence of sharks and large predatory
teleost fish in coastal MPAs, which is particularly noteworthy considering BRUVs typically attract predatory fishes [28,29].
Although robust scientific sampling of predatory fish populations along the coastline remains limited, our observations align
with anecdotal evidence and previous studies documenting the low abundance of large predatory fishes in coastal MPAs in
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Ecuador [4,94-96] and within neighbouring countries [97]. Non-selective fishing gears (e.g., longlines, trawls, and gillnets)
have been used near these coastlines for decades [95,98], which can rapidly deplete species populations, especially when
unmanaged or used in the same area [99]. Additionally, the prevalence of IUU fishing has likely led to depletions [94,100].
Our findings, in conjunction with the aforementioned studies, support the hypothesis that fishing pressure, exacerbated by
ineffective enforcement, is likely a driver of the observed low predatory fish abundances [4]. Future studies comparing fish
communities in protected and unprotected areas at varying distances from human populations, incorporating quantitative
fishing pressure indices (e.g., vessel tracking data and landing statistics), would provide stronger inferences about the rela-
tive contributions of biogeography versus protection in structuring reef fish assemblages.

The low fish abundances across trophic levels further supports the fishing of predatory fishes hypothesis, and the argu-
ment of “fishing down the food web” in coastal Ecuadorian MPAs [4]. While we found lower trophic level fish abundances
in Cafo that do not demonstrate fishing down effects, the notable lack of large predatory fish may suggest fishing impacts
inside or outside the MPA of some wide-ranging species [10,101].

In several oceanic MPAs, the length frequency distribution of commercially valuable species of carangids and serranids
peaked below estimated sizes of sexual maturity. This could reflect habitat preferences, as larger individuals may inhabit
deeper waters than our BRUV deployments depths of 20-25 meters [102,103], or indicate fishing pressure effects [104].
Documented fishing impacts exist for some targeted species in the region, such as declines in M. olfax abundance and
size in Galapagos [105]. However, the effects of fishing remain largely unknown for many commercially valuable spe-
cies across MPAs in the TEP due to limited data on catch and fishing effort, as well as trends of population abundance.
Prompt, comprehensive assessments of the population health of fished species within MPAs across the region, including
sampling across depth strata, are needed to inform effective conservation and fisheries management strategies.

Differences within biogeographic subprovinces

Our grouping of MPAs within the oceanic island and coastal subprovinces based on latitude aligns with established
biogeographic patterns for reef fish in the TEP [2,3,41]. While the biogeographic patterns are well-documented, some
observations are worth noting. Within the oceanic subprovince, the northern islands (Revillagigedo and Clipperton) were
distinct from the islands closer to the equator (Galapagos and Malpelo). As trophic group relative species richness and
abundances were generally similar across these locations, these findings support finer scale bioregionalization within
the TEP based on taxonomic composition rather than community structure. Clipperton exhibited the largest overall fish
abundances across trophic groups, possibly reflecting its the greater alive coral coverage reef relative to rocky reef, which
can support higher fish densities due to more structural complexity [8,43,106,107]. Conversely, while Revillagigedo and
Clipperton share similarities in taxonomic composition at a broad level, Clipperton hosts higher endemism [8], and their
marine community structure may also differ due to habitat variations.

Within the coastal subprovince, Cafio was distinct from the coastal Ecuadorian MPAs, exhibiting larger abundances
of planktivorous and herbivorous fishes. This may reflect Cafio’s greater extent of coral reef relative to rocky reef, which
typically host higher reef fish densities [108,109]. We also suggest it’s slight offshore position, bathymetry and, proxim-
ity to the Costa Rica Dome (CRD) supports reef fish assemblages with some of the characteristics of the islands further
offshore [1,110]. For example, the planktivorous schooling fish, Cephalopholis colonus, was prevalent, a species highly
abundant at offshore islands [7,8]. This reinforces that oceanographic processes are key drivers of reef fish assemblages
within the TEP. Future biogeographic studies should consider local oceanographic processes that are key in determining
community structure alongside geographic positioning when classifying biogeographic groups in analyses.

Conclusions

Our assessment of sharks and predatory fish assemblages across MPAs in the TEP identifies important considerations for
protected area management in the region. Firstly, oceanic island MPAs support some of the largest shark abundances at
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nearshore reefs reported globally, establishing these MPAs as crucial shark hotspots and refuges from industrial fishing.
While scientific research and conservation efforts of sharks has been increasing in the TEP, shark populations remain
vulnerable to overfishing and climate change [24,111,112]. Notably, a substantial portion of the global shark fin trade
originates from Eastern Pacific waters due to inadequate fisheries regulations and significant illegal, unregulated and
unreported (IUU) fishing activity [18,19]. This largely unquantified exploitation continues to impact declining populations of
shark species listed in the IUCN red list, such as the critically endangered S. lewini [59]. Well-designed fisheries manage-
ment regulations in and around MPAs and coordinated management strategies across jurisdictions considering ecological
spatial connectivity are therefore crucial to effectively conserve island shark populations which include migratory species
[84,86,113-115].

Secondly, our findings reinforce previous evidence of depleted fish populations in Ecuadorian coastal MPAs and sug-
gest potential fishing impacts in remote island MPAs. Given the slow recovery of long-lived predatory fishes depleted by
fishing and the impending impacts of climate change [116,117], we emphasize the critical need for assessments of fishing
impact in these MPAs as well as strengthened protection and enforcement. Cost-effective technologies, such as Automatic
Identification System (AIS), alongside patrols could complement the latter and help prioritise effort across large or remote
MPAs, or where they are infrequent. While assessments identifying signs of depletion in MPAs region-wide, presents a
valuable opportunity to implement proactive rather than reactive management strategies. Our regional assessment of reef
fish communities found evidence of fishing pressure effects among biogeographic patterns, highlighting the necessity to
take measures to improve conservation-outcomes in both remote oceanic island and coastal MPAs throughout the TEP.

Supporting information

S$1 Table. Multivariate composition analyses within biogeographic provinces and strong Canonical Analysis of
Principal Coordinates (CAP) axis species correlations. Fixed-factor and pairwise PERMANOVA results testing dif-
ferences in reef fish community composition among oceanic MPAs (S1A-B) and coastal MPAs (S1C-D), and reef
fish species strong correlated (Pearson>0.7) with first and second CAP axes (S1E).
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