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Abstract 

In response to high-fat-diet, excessive lipid accumulation in the liver results in chronic 

damage and inflammation. Olive oil has been studied for its health beneficial effects 

in hyperlipidemia (mainly has lipids lowering and antioxidative potential) while mes-

enchymal stem cells derived exosomes (MSCs-Exo) are investigated mainly for their 

tissue regenerative and anti-inflammatory potential. In the present study we aimed 

to combine the beneficial effects of Extra Virgin Olive Oil (EVOO) and MSCs-Exo on 

a model of high-fat-diet induced Non-Alcoholic Fatty Liver Disease (NAFLD, which 

still lacks effective treatment protocols) and detect whether an improved response 

could be achieved from this combination. Sprague Dawley rats (n = 40) were ran-

domly assigned to five groups (n = 8/group), control, hyperlipidemia (HL), HL+EVOO, 

HL + Exo and HL + Exo+EVOO. Our results show that better antihyperlipidemic effects 

were obtained in the combined group receiving Exo+EVOO treatment more than 

using EVOO or MSCs-Exo alone. This was achieved by improving plasma lipids 

profile, improving antioxidants stores and reducing lipid peroxidation, no change in 

liver function parameters which was confirmed also by the histopathological examina-

tion of the liver where a preserved normal liver architecture. To further elucidate the 

mechanisms involved, the gene expression levels of lipogenesis (SREBP-1c, ACC, 

FAS, GPAT3, SCD1, and FSP27), inflammation (IL-1β, TNF-α, IL-6, IL-18, CCL20, 

and NF-κB), lipid peroxidation (CPT1A, ACOX1) and PPAR pathway (PPARα, 

PPARγ) were all normalized. This indicates that combined Exo+EVOO harnessed the 

benefits of both, and this was much better in treating hyperlipidemia and NAFLD and 

warrants prospects for approaches that could be adopted to treat NAFLD.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is defined as steatosis or accumulation of 
fat exceeding 5% of the hepatocytes in the absence of significant alcohol intake [1]. 
It is estimated that up to 30% of the population in western countries and almost 25% 
worldwide [2]. Having excess fat accumulation in the liver and a degree of NALFD. In 
general, impaired or dysfunctional lipid metabolism is associated with a pro- 
inflammatory state and increased risk of atherosclerosis and cardiovascular diseases 
[3,4] and are one of the major risk factors for early death in humans. Also, the occur-
rence of oxidative stress exacerbates the disease condition in patients with hyperlip-
idemia [5]. Histologically (using liver biopsy), NAFLD can range from simple steatosis 
to severe non-alcoholic steatohepatitis (NASH); the latter is a combination of steato-
sis and various degrees of inflammation and fibrosis. Mechanistically, hyperlipidemia 
is closely associated with oxidative stress due to increased production of oxygen free 
radicles, defective antioxidant system and increased inflammatory state [6–8]. Con-
sequently, there is a significant increase in lipid peroxidation products and a decrease 
in antioxidant levels in the plasma of hypercholesterolemic patients [8].

Olive oil, which is a major constituent of the Mediterranean diet, is widely 
accepted as a beneficial functional food because it has a high content of mono- 
unsaturated fatty acids (MUFAs) in addition to other beneficial components such 
as polyphenols and tocopherols, and, to a lesser extent, some vitamins [9]. Studies 
have also found that polyphenols are present in higher concentration in extra virgin 
olive oil (EVOO) than in ordinary refined olive oil, giving EVOO an advantageous 
quality. In addition to its monounsaturated fatty acid content and antioxidant activity, 
the unique health benefits of extra virgin olive oil are attributed to a rich composition 
of minor compounds, including phenolic compounds (e.g., oleuropein, hydroxytyro-
sol), secoiridoids (e.g., oleocanthal), and phytosterols. These constituents contribute 
independently and synergistically to EVOO’s anti-inflammatory, antioxidant, and 
metabolic effects, and are key differentiators from refined oils or other dietary fats. 
Olive oil has been intensively studied for various beneficial effects on human health, 
such as protective cardiovascular properties, modulator of lipid metabolism, preserv-
ing antioxidant stores, has anti-inflammatory properties, has anti-tumor properties 
and many other beneficial biological functions [10]. While extra virgin olive oil is 
valued for its rich content of monounsaturated fats and bioactive compounds, includ-
ing polyphenols, it is important to note that its minimally processed nature retains 
components sometimes referred to as “impurities.” These include various phenolic 
and volatile compounds. Although these components are generally beneficial and 
contribute to EVOO’s antioxidant and anti-inflammatory properties, in very high con-
centrations, certain phenolics may exhibit mild anti-nutritional effects by interfering 
with nutrient absorption. However, such effects are not typically observed at dietary 
intake levels and do not outweigh the overall health benefits associated with EVOO 
consumption [10]. Previous studies in animal models and in humans have shown 
that olive oil administration has various health-beneficial effects preventing the 
development and/or progression of NAFLD [11–16].
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Mesenchymal stem cells (MSCs) represent a heterogeneous cell population residing in various adult tissues, such as 
bone marrow, peripheral blood, umbilical cord, adipose tissue and other tissues. These cells are in the spotlight of regen-
erative therapy-research due to their various beneficial effects on many diseases and in regenerative medicine. One of the 
characteristics of stem cells in general, and bone marrow-derived MSCs (BM-MSCs) as well, is that it can be converted 
to many other cell types including osteoblasts or adipocytes, which is one of the features used to confirm their stemness 
[17–20]. However, such adaptogenic power of stem cells could contribute more to advancing NAFLD especially that liver 
stem cells were shown to be involved in the progression of NAFLD [21,22], because of NAFLD on liver microenvironment. 
Also, the deregulation of liver stem cells can lead to increased fibrosis and stage progression of liver diseases [23]. In 
this regard, few studies in the literature were found and these provided scarce information on the use of stem cells for the 
treatment of hyperlipidemia/NAFLD.

Exosomes are a type of nanovesicles secreted by body cells, and they are key components for the intercellular com-
munication process. Exosomes derived from stem cells are similar if not superior to their cells of origin in their therapeutic 
promise, due to their cargo of various important mRNA, micro-RNA, and other factors [24,25]. More studies were found in 
the literature on the use of exosomes derived from stem cells than there was on the use of stem cells alone or combined 
with other therapeutics such as Liraglutide on the treatment of liver lesions in NAFLD [26,27]. The exact reason for this 
is not clear, but it could be explained as liver NAFLD microenvironment’s effect, which was shown to be involved in the 
deregulation of endogenous liver stem cells, could also deregulate exogenously administered stem cells [23]. In direct 
relation to this, it was shown that the first two years after allogenic hematopoietic stem cells transplantation were associ-
ated with the development of hypercholesterolemia and hypertriglyceridemia in approximately 73% of treated cases and 
29% of these patients received statins treatment as lipid lowering therapy [28]. Although stem cells represent a promis-
ing cell-based therapy for various disease conditions, their use in treating NAFLD seems controversial. However, stem 
cells-derived exotics should be a better alternative, since these exosomes cannot convert into other cell types and their 
cargo is dependent on the condition of the original cells rather than the microenvironment which exogenous stem cells 
might encounter during NAFLD.

Recently, a study highlighted several differentially expressed genes that are key for the development of NAFLD and are 
related to inflammatory reaction and lipid synthesis within the liver and can lead to the progression towards severe NASH 
and eventually the development of hepatocellular carcinoma [29]. These key genes include genes related to lipid accu-
mulation, lipid peroxidation and inflammation, such as Fatty Acid Binding Protein 5 (FABP5), Stearoyl-CoA Desaturase 
(SCD), C-C Motif Chemokine Ligand 20 (CCL20), Glycerol-3-Phosphate Acyltransferase 3 (AGPAT9 or GPAT3), Perilipin 
1 (PLIN1), and Interleukin 1 Receptor Antagonist (IL1RN), highlighting the complex etiology of this disease. There is no 
data in the literature on the effect of the combination of extra virgin olive oil with stem cells-derived factors on treating 
hyperlipidemia induced NAFLD nor on these key NAFLD genes. Therefore, we aimed to evaluate whether the combined 
use of extra virgin olive oil and MSCs-exosomes will be more beneficial than using either alone, for treating the inflamma-
tion and dyslipidemia caused by NAFLD with special focus on the key genes implicated in the lipogenesis, lipid oxidation 
and inflammation pathways.

Materials and methods

Animals

Forty apparently healthy male Sprague Dawley rats were purchased from the animal house at the Faculty of Veterinary 
medicine, Zagazig University. The rats weighed about 180 ± 22g at purchase and were accommodated for 2 weeks before 
any experimental approach was performed. The rats were housed (4 rats/cage) in standard lab conditions at a tempera-
ture of 24 ± 2°C, relative humidity 50:55% and were kept at 12 hours light/dark cycle. The rats were freely offered a stan-
dard rat chow diet with ad libitum access to drinking water. The study was conducted according to relevant regulations, 
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including ARRIVE Guidelines (2.0), and the study was conducted in strict accordance with the recommendations in the 
Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (NRC, Washington D.C., USA). The 
experimental protocol was approved by the Institutional Animal Care and Use Committee of Zagazig University (protocol 
number: ZU-IACUC/2/F/373/2023).

Experimental design

After accommodation, the rats were weighted and were randomly assigned to one of the following study groups 
(n = 8/group): healthy control group (Control) which was fed only standard rat chow diet, hyperlipidemia group (HL) 
fed high fat diet only, hyperlipidemia group fed high fat diet and treated with oral gavage of 0.5 ml extra virgin olive 
oil daily (HL+EVOO), hyperlipidemia group fed high fat diet and treated with 50 μg exosomes derived from mesen-
chymal stem cells once/week (HL + Exo), hyperlipidemia group received high fat diet and treated with both exosomes 
and extra virgin olive oil (HL + Exo+EVOO). The study continued for 8 weeks. The high fat diet consisted of 80% 
standard rat chow diet plus 18% plant-oil based margarine (a commercial margarine available in the market) and 2% 
cholesterol (Sigma Aldrich) [30]. Extra virgin olive oil was provided from Olive Oil Research Unit, Al-Jouf University, 
Al-Jouf, Saudi Arabia. Bone marrow mesenchymal stem cells (BM-MSCs) isolation and characterization was as we 
previously reported [31,32], and exosomes obtained from BM-MSCs were isolated and characterized as we previ-
ously performed and were administered once weekly by intraperitoneal injection of 50 μg of exosomes in 200 μL of 
PBS. Exosomes derived from BM-MSCs were administered intraperitoneally at a dose of 50 μg per week, based 
on total protein content, as commonly reported in preclinical studies. The i.p. route was chosen for its practicality, 
safety, and demonstrated efficacy in delivering exosomes systemically in small animal models. Exosomes derived 
from BM-MSCs were administered intraperitoneally (i.p.) at a dose of 50 µg total exosomal protein per rat in 200 µL 
PBS, given once weekly for the duration of the study. The dose was selected based on previously reported preclini-
cal dose–response and efficacy studies in rats that have used protein-based dosing (many groups quantify EV dose 
by total protein and report therapeutic effects in the 20–400 µg/animal range depending on route and model). The 
i.p. route was chosen for practicality and reproducibility in small animals and because i.p. administration results in 
systemic exposure via lymphatic absorption and subsequent systemic distribution. [33]. At the end of the study, and 
before samples’ collection, the rats were weighed and then euthanasia was performed using isoflurane in a closed 
chamber according to American Veterinary Medical Association (AVMA) Guidelines for the Euthanasia of Animals 
(2020). Blood was immediately collected by cardiac puncture for lipid profile and liver function parameters and rats’ 
abdomen were opened and the intact liver was exercised and weighed. The rats’ blood was collected by cardiac 
puncture and the obtained blood samples were kept in anticoagulant-free tubes and allowed to clot for 30 min. After 
that, the tubes were centrifuged at 350g for 15 min. The serum was collected into 1.5 ml Eppendorf tubes and stored 
at −20°C for subsequent biochemical analyses.

Lipid profile assessment

The assessment of lipid profile: including triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL-C), and 
low-density lipoprotein (LDL-C), all were performed using standard biochemical procedures and using commercially avail-
able kits (from Bio-diagnostics Co., Cairo, Egypt), following the manufacturer’s instructions and in triplicates.

Measurement of antioxidant parameters

The serum level of malondialdehyde (MDA) was assessed as an indicator for the state of lipid peroxidation. While the total 
antioxidant capacity (TAC) and levels of glutathione (GSH) were evaluated as indicators for the antioxidant stores in the 
study rats. The levels of TAC, GSH and MDA were measured using available kits (Bio-diagnostics Co., Cairo, Egypt and 
BioVision, Inc., Milpitas, CA, USA), following manufacturer’s instructions and in triplicates.
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Measurement of liver function parameters

The liver function parameters, such as aspartate transaminase (AST) and alanine aminotransferase (ALT), total proteins 
and albumin in serum samples were evaluated. These were tested in triplicate using commercially available kits and 
following manufacturer’s protocol.

Histopathological evaluations

After weighing the intact livers, a piece of the liver tissue was obtained and immediately fixed in freshly prepared 10% 
neutral buffered formalin solution for 24 hours. After that the liver specimen was histologically processed using standard 
histopathological techniques (dehydration, embedding in paraffin) as we previously reported [34]. The liver paraffin blocks 
were cut using microtome into 5μm sections which were stained with standard H&E staining procedure. The histopatho-
logical examination of the liver sections from different groups was blindly assessed by an experienced pathologist.

Gene expression analyses

Liver specimens were immediately collected post sacrifice, and the samples were immediately immersed in Qiazol Lysis 
Reagent (Cat. No.: 79306, Qiagen, USA) and then quickly stored at −20°C. After that, total RNA extraction was performed 
using RNA extraction kit (RNeasy Mini Kit, Cat. No.: 74106, Qiagen, USA) following manufacturer instructions. The 
concentration and purity of obtained total RNA was analyzed using nanodrop at 260 and 280 nm wavelengths (Quawell 
Q5000, Quawell Technology, Inc., San Jose, CA, USA). Reverse transcription of the obtained mRNA into cDNA was done 
using the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, Cat. No. 1622), following the kit’s instructions. 
The primer sequences for the studied genes are shown in Table 1, the expression levels were analyzed using StepOne-
Plus™ Real-Time PCR system (Applied Biosystems, Waltham, MA, USA) by using QuantiTect SYBR® Green PCR Kit 
(Qiagen, Cat. No. 204141), following manufacturer’s instructions. The gene expression levels were normalized against a 
housekeeping gene (GABDH), and the amplified products were relatively quantified using the −2ΔΔCt method.

Statistical analysis

The obtained data from this study was statistically analyzed using one-way ANOVA through PASW statistical package 
(SPSS v18, SPSS Inc., Chicago, IL, USA), followed by Tukey’s HSD to show between group differences. The gene 
expression data was analyzed using one-way ANOVA through GraphPad Prism 5 (GraphPad Software Inc., La Jolla, CA, 
USA). Statistical significance was considered when P value ≤ 0.05, and the data presented are means ± SD, unless other-
wise stated.

Results

Rat’s body weight and liver/rat weight ratio

Compared to the control group the rats fed high fat diet in the hyperlipidemia group showed significant increase in their 
body weight, liver weight and in liver to rat weight ratio (Table 2). The administration of olive oil, exosomes or a combina-
tion of both to rats fed high fat diet resulted in a significantly lower rats’ weight at the end of the study and decreased liver 
weight and liver/rat weight percent as well. However, there was no significant difference between olive oil, exosomes or 
olive oil + exosomes groups.

Plasma lipid parameters

In the hyperlipidemic rats fed on a high fat diet, the plasma levels of triglycerides, total cholesterol and low-density lipo-
proteins (LDL) were all significantly increased compared to the normal control rats (Fig. 1A, 1B and 1C, respectively), 
while the levels of high-density lipoproteins (HDL) were significantly lower than the normal control group fed normal diet 
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(Fig. 1D). Following the administration of olive oil, exosomes or olive oil + exosomes, the treated rats showed significantly 
lower levels of triglycerides approaching levels similar to the normal control group, with no difference between the three 
treatments. However, total cholesterol and LDL were reduced to near normal levels in the hyperlipidemia groups treated 

Table 1.  Showing the primer sequence for the studied genes.

Target gene Primer sequence (5′-3′) Accession No.

SREBP-1c F- GAGTGCGCAGGAGATGCTAT
R- GACTGAAGCTGGTGACTGCT

NM_011480

SCD-1 F- CACCTGCCTCTTCGGGATTT
R- CTTTGACAGCCGGGTGTTTG

NM_009127.4

FAS F- CAAGTGTCCACCAACAAGCG
R- GGAGCGCAGGATAGACTCAC

NM_007988.3

ACC F- CCACATGACCCAGCACATCT
R- ATCGATGGACTTGCGTCTCC

NM_133360

GPAT3 F- TCCTTTTACCCTCGGCCTTC
R- AGAGCTCGAAGTCCCTTCCT

XM_031336995.1

FSP27 F- GTGTTA GCA CCG CAG ATC G
R- CAC GAT TGT GCC ATC TTC C

XM_032905931.1

PPARα F- ACGATGCTGTCCTCCTTGATG
R- GCGTCTGACTCGGTCTTCTTG

NM_001354666.3

PPARγ F- TGAAGGCTCATATCTGTCTCCG
R- CATCGAGGACATCCAAGACAAC

NM_013124.3

CPT1A F- CTCCGCCTGAGCCATGAAG
R- CACCAGTGATGATGCCATTCT

XM_057779279.1

ACOX1 F- TTATGCGCAGACAGAGATGG
R- AGGCATGTAACCCGTAGCAC

NM_001414015.1

NF-κB F- GAGCTGGTGGAGGCCCTG
R- GACAGCGGCGTGGAGAC

NM_001276711.1

IL-1β F- TGACAGACCCCAAAAGATTAAGG
R- CTCATCTGGACAGCCCAAGTC

NM_031512.2

IL-6 F- CCACCAGGAACGAAAGTCAAC
R- TTGCGGAGAGAAACTTCATAGCT

NM_012589.2

IL-18 F- ATGGCTGCCATGTCAGAAGA
R- TTGTTAAGCTTATAAATCATGCGGCCTCAGG

XM_039080945.1

IL1RN F- AAATCTGCTGGGGACCCTAC
R- TCTTCTAGTTTGATATTTGGTCCTTG

XM_021155599.2

TNFα F- CAGCCGATTTGCCATTTCA
R- AGGGCTCTTGATGGCAGAGA

L19123.1

CCL20 F- GTGGGTTTCACAAGACAGATG
R- TTTTCACCCAGTTCTGCTTTG

XM_021174464.1

β-actin F- CGCAGTTGGTTGGAGCAAA
R- ACAATCAAAGTCCTCAGCCACAT

V01217.1

GAPDH F- TGCTGGTGCTGAGTATGTCG
R- TTGAGAGCAATGCCAGCC

NM_017008

SREBP-1c: sterol regulatory element binding transcription factor 1, SCD-1: stearoyl-Coenzyme A desaturase  
1, FAS: Fatty acid synthase, ACC: Acetyl coenzyme A Carboxylase, GPAT3: glycerol-3-phosphate  
acyltransferase 3, FSP27: fat-specific protein 27, PPARα: Peroxisome proliferator activated receptor alpha.  
PPARγ: Peroxisome proliferator activated receptor gamma, CPT1A: carnitine palmitoyl transferase IA,  
ACOX1: Peroxisomal acyl-coenzyme A oxidase 1, NF-κB: Nuclear factor kappa B, Interleukin (IL)- 1β, IL-6,  
IL-18, IL1RN: Interleukin-1 receptor antagonist, TNFα: tumor necrosis factor α, CCL20: C-C motif chemokine  
ligand 20, β-actin: Actin beta, GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

https://doi.org/10.1371/journal.pone.0333698.t001

https://doi.org/10.1371/journal.pone.0333698.t001
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with olive oil or olive oil + exosomes, which was not different from the normal control group. The hyperlipidemic group 
treated with exosomes only showed moderate reduction in the levels of total cholesterol and LDL which were significantly 
lower than the hyperlipidemia group but still significantly higher than the normal control group. Also, the HDL levels were 
restored to near normal levels in the olive oil or exosomes only groups, while its levels were much higher in the group 
treated with both olive oil + exosomes, compared to other treated or normal control groups (Fig. 1D).

Table 2.  Showing the average start weight, average end weight, average end liver weight and liver/rat weight percentage of the study groups.

Groups Initial weight (g) Final weight (g) liver weight (g) Liver/Rat weight (%)

Control 268.38 ± 5.4 354.88 ± 12.2c 12.38 ± 1.19c 3.49

HL 263.13 ± 6.7 483.75 ± 17.2a 21.13 ± 1.96a 4.37

HL+EVOO 267.5 ± 7.4 369.625 ± 14.9b 14.37 ± 0.74b 3.89

HL + Exo 263.5 ± 7.8 374.25 ± 15.1b 13.87 ± 1.13b 3.71

HL + Exo+EVOO 263.5 ± 8.4 377.75 ± 9.5b 14.75 ± 1.28b 3.90

Bars with different lowercase letters (e.g., a, b, c) indicate statistically significant differences between groups (P < 0.05), as determined by Tukey’s HSD 
post hoc test following one-way ANOVA. Groups sharing the same letter are not significantly different.. Hyperlipidemia group (HL), Hyperlipidemia + Olive 
oil group (HL+EVOO), Hyperlipidemia + Exosomes group (HL + Exo), Hyperlipidemia + Exosomes + Olive oil group (HL + Exo+EVOO).

https://doi.org/10.1371/journal.pone.0333698.t002

Fig 1.  The plasma lipid parameters of different study groups. (A) Triglycerides (TGs, mg/dL), (B) Total cholesterol (TC, mg/dL), (C) Low-density 
Lipoprotein cholesterol (LDL-C, mg/dL), and (D) High-density Lipoprotein cholesterol (HDL-C, mg/dL).

https://doi.org/10.1371/journal.pone.0333698.g001

https://doi.org/10.1371/journal.pone.0333698.t002
https://doi.org/10.1371/journal.pone.0333698.g001


PLOS One | https://doi.org/10.1371/journal.pone.0333698  October 27, 2025 8 / 20

Antioxidant parameters

High fat diet fed rats showed lower total antioxidant capacity compared to the control group rats and was also significantly 
lower than the treated groups (Fig. 2A). Also, hyperlipidemia rats showed significant higher malondialdehyde (MDA) levels 
compared to the other groups and significant lower levels of glutathione (GSH) compared to the remaining groups (Fig. 
2B, 2C, respectively). After the administration of olive oil or exosomes to high fat diet fed rats, the levels of MDA and GSH 
and total antioxidant capacity were restored to near normal levels and were not significantly different from the control 
group. While the hyperlipidemia group treated with both olive oil and exosomes showed significantly higher levels of gluta-
thione and total antioxidant capacity, even higher than the control non-hyperlipidemic group.

Liver function parameters

The levels of total protein and albumin in the hyperlipidemia group were slightly higher but insignificantly different from the 
treated or control groups (Fig. 3A & 3B). However, the levels of ALT and AST were significantly higher in the hyperlipid-
emia rats fed on a high fat diet compared to the remaining groups (Fig. 3C & 3D). Levels of ALT and AST were reduced in 

Fig 2.  The plasma antioxidant parameters of different study groups. (A) Total antioxidant capacity (TAC, μmol/mL), (B) Malondialdehyde (MDA, 
nmol/mL), and (C) Glutathione (GSH, μmol/mL).

https://doi.org/10.1371/journal.pone.0333698.g002

https://doi.org/10.1371/journal.pone.0333698.g002
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high fat diet fed rats which were treated with olive oil, exosomes or olive oil + exosomes and showed no significant differ-
ences when compared to the control group or to each other.

Histopathological examination

The healthy control group showed normal histological structures of hepatic cords, sinusoids, Kupffer cells, and central 
veins (Fig. 4A). Liver in the hyperlipidemic rats showed intense vacuolations (indicating lipid droplets) within most hepatic 
sections with visible fatty changes within some hepatocytes, in addition to the presence of focal necrotic areas which are 
encircled by inflammatory cells infiltration (Fig. 4B, 4C). In the hyperlipidemic group treated with olive oil, the liver showed 
apparently normal structure of most hepatic parenchyma, central veins except for the presence of some degenerative 
changes in a mild number of hepatocytes (Fig. 4D). While, in the hyperlipidemic rats treated with exosomes, there were 
few degenerated hepatocytes within the hepatic parenchyma beside minute areas of inflammatory cells aggregates (Fig. 
4E). Finally, the hyperlipidemic rats treated with both olive oil + exosomes showed the best histopathological picture, in all 
treated groups compared to the normal control group, with preserved hepatocytes and parenchyma architecture and in 
few occasions there were minute perivascular leukocytic infiltrates (Fig 4F).

Fig 3.  Liver function parameters of different study groups. (A) Total protein (TP, g/dL), (B) Albumin (Alb, g/dL), (C) Alanine aminotransferase (ALT, 
U/L), and (D) Aspartate aminotransferase (AST, U/L).

https://doi.org/10.1371/journal.pone.0333698.g003

https://doi.org/10.1371/journal.pone.0333698.g003
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Gene expression analyses

The expression of genes related to the production and storage of fat inside the liver (SREBP-1c, ACC, FAS, GPAT3, 
SCD1, and FSP27) were all significantly (P < 0.05, Fig 5) upregulated in the liver of hyperlipidemia group.

Following olive oil or exosomes administration, their levels were significantly decreased but still higher than the control 
group, in case of the expression of GPAT3 and SCD1 there was no difference between olive oil or exosomes adminis-
tration. In the EVOO+Exo group their levels were much reduced and were the closet to expression levels of the normal 
control group. In case of liver inflammation related genes (IL-1β, TNF-α, IL-6, IL-18, CCL20, and NF-κB) their expression 
levels were significantly (P < 0.05, Fig 6) upregulated and IL-1RN was significantly (P < 0.05, Fig 6) downregulated in 
the liver of hyperlipidemia group. Following olive oil or exosomes administration, the levels of IL-1β, TNF-α, IL-6, IL-18, 
CCL20, and NF-κB were reduced, however still higher than the normal control group and IL-1RN was increased but not as 
in normal control group.

The combined use of olive oil + exosomes resulted in a much better improvement in their expression levels approaching 
the normal control group levels. Genes related to the PPAR pathway and lipid peroxidation were significantly (P < 0.05, Fig 
7) upregulated (PPARγ) or downregulated (PPARα, CPT1A, ACOX1) in the liver of hyperlipidemia group. Following olive 

Fig 4.  Photomicrographs of H&E-stained liver sections from different study groups. (A) Control group with normal histological structures of 
hepatic cords (arrow), sinusoids, Kupffur cells, and central vein (arrowhead). (B, C) Hyperlipidemia group showing intense vacuolations within most 
hepatic sections (curved arrow) with fatty changes within some cells (arrowhead). (D) Hyperlipidemia + Olive oil group demonstrates degenerative 
changes in a mild number of hepatic cells (arrow) and apparently normal central vein (arrowhead). (E) Hyperlipidemia + Exosomes group showing some 
degenerated hepatocytes (arrowhead). (F) Hyperlipidemia + Exosomes + Olive oil group has preserved architecture of hepatic parenchyma with minute 
perivascular leukocytic infiltrates (arrow).

https://doi.org/10.1371/journal.pone.0333698.g004
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oil or exosomes administration their levels were restored to become nearer to normal expression levels; however, the best 
improvements were achieved in the combined EVOO+Exo group.

Discussion

As a constituent of the complex pathophysiology of metabolic syndrome, hyperlipidemia caused by high-fat diet is a 
major challenge. Hyperlipidemia led to liver damage (i.e., NAFLD), which progresses from simple steatosis to non- 
alcoholic steatohepatitis (NASH), and ultimately to cirrhosis [1]. Liver steatosis sensitizes hepatocytes leading to their 
damage and increasing inflammation and fibrosis inside the liver [35]. These degenerative changes are also associated 
with increased oxidative stress, cytokine imbalance and lipid peroxidation. There is no approved treatment regimen 
for NAFLD and changing nutritional habits and lifestyle and even physical activity cannot provide sufficient treatment 
especially when liver cell damage occurs. So, we aimed to relieve liver damage, reduce liver inflammation and oxida-
tive stress and reduce lipogenesis and correct the dyslipidemia caused by high-fat diet using a combined MSCs-Exo 
and EVOO approach.

Fig 5.  The relative expression of lipogenesis related genes in the liver of different study groups. (A) Sterol regulatory element binding tran-
scription factor 1 (SREBP-1c), (B) Acetyl coenzyme A carboxylase (ACC), (C) Fatty acid synthase (FAS), (D) Glycerol-3-phosphate acyltransferase 3 
(GPAT3), (E) Stearoyl-CoA desaturase 1 (SCD1), and (F) Fat-specific protein 27 (FSP27).

https://doi.org/10.1371/journal.pone.0333698.g005

https://doi.org/10.1371/journal.pone.0333698.g005
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Fig 6.  The relative expression of inflammation related genes in the liver of different study groups. (A) Interleukin-1β (IL-1β), (B) Tumor necrosis 
factor-α (TNF-α), (C) IL-6, (D) IL-18, (E) Nuclear factor kappa B (NF-κB), (F) IL-1 receptor N (IL-1RN), and (G) Chemokine ligand 20 (CCL20).

https://doi.org/10.1371/journal.pone.0333698.g006

https://doi.org/10.1371/journal.pone.0333698.g006
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Fig 7.  The relative expression of genes related to PPAR pathway and Fatty acid oxidation pathway in the liver of different study groups. (A) 
Peroxisome proliferator activated receptor alpha (PPARα), (B) Peroxisome proliferator activated receptor gamma (PPARγ), (C) Carnitine Palmitoyl trans-
ferase 1A (CPT1A), and (D) Acyl-CoA Oxidase 1 (ACOX1).

https://doi.org/10.1371/journal.pone.0333698.g007

https://doi.org/10.1371/journal.pone.0333698.g007
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Following EVOO, MSCs-Exo or MSCs-Exo+EVOO administration to hyperlipidemic rats in this study, the rat’s weight, liver 
weight and liver/rat weight percentage were all reduced and approached the normal rats values. These weight improvements 
were seen together with less lipid peroxidation (lower MDA) and improved oxidative parameters (higher TAC and GSH). In 
addition to reduction in the plasma lipid parameters (lower triglycerides, total cholesterol and LDL-C and higher HDL-C), 
while the liver function parameters (total protein, albumin, ALT, AST) remained near the normal levels of the control group. 
Histologically, the liver showed reduced degeneration, vacuolations and leukocyte infiltration indicating reduced local inflam-
mation and reduced lipid droplets accumulation inside the liver. Olive oil alone was more powerful in reducing lipids accumu-
lation in the liver, while exosomes were more powerful in reducing liver degeneration and inflammation. We chose the 50 µg/
week i.p. regimen because it falls within the dosing ranges commonly used in rodent studies and has demonstrated biologi-
cal activity in several models. Dose-response work in rats has shown significant effects with single or repeated doses starting 
at ~50 µg (protein) per animal, while other routes and models have used higher or lower protein-based doses depending 
on target tissue and administration route. The i.p. route provides a convenient, less technically demanding method than 
repeated intravenous injections in rodents and achieves systemic exposure (with a slower onset and lymphatic contribution 
compared with intravenous delivery). Nevertheless, exosome pharmacokinetics and organ tropism are influenced by route, 
dose, and source, so further PK/toxicology work would be required to translate toward larger animals or clinical use. Com-
bining both MSCs-Exo+EVOO showed a much better improvement in lipid profile, antioxidant profile and reduced inflamma-
tory and degenerative picture in the liver of hyperlipidemic rats. Better total antioxidant capacity with more GSH and much 
reduced lipid peroxidation were obtained in the group receiving combined MSCs-Exo and EVOO therapy, together with much 
higher HDL-C compared to the normal control group, indicating a better effect on reducing harmful LDL-C and increasing the 
beneficial HDL-C in addition to preserving the antioxidant stores in hyperlipidemic rats.

After olive oil administration in hypercholesterolemic patients, there was a noticeable reduction in total cholesterol and 
apolipoprotein B [14]. And, in a randomized crossover controlled trail, increasing the phenolic content of olive oil led to 
linear increase in HDL-C and linear reduction in LDL-C, triglycerides, oxidative stress markers [36]. In addition, recent 
metanalysis studies have shown the beneficial effects of olive oil on circulating metabolic factors (such as glucose and 
blood lipids) and highlighted its polyphenol antioxidative roles [4], and reduced cardiovascular mortality and stroke due 
to its MUFAs content [37]. In a different study, the intake of ozonated olive oil (which has an additional anti-inflammatory 
effects) with diet in Zucker (fa/fa) rats, led to reduced hepatic steatosis by inhibition of accumulation of triglycerides in the 
liver and suppression of inflammatory mediators [38].

We have also looked at the genes and pathways implicated in this hypolipidemic effect of combined MSCs-Exo and 
EVOO approach. Most importantly the genes associated with lipogenesis (SREBP-1c, ACC, FAS), fatty acid oxidation 
(ACOX1, CPT1A, GPAT3, SCD-1 and FSP-27), anti-inflammatory effects (NF-κB, IL-1β, IL-6, IL-18, IL-1RN, TNFα and 
CCL20) and PPAR pathway (PPARα and PPAR-γ). PPAR pathway (especially PPAR-γ) is critical to the progression of 
non-alcoholic steatohepatitis [39]. Of these genes, GPAT3, SCD-1, IL-1RN and CCL20 were considered of extreme impor-
tance to the development of NAFLD and are diagnostic for the progression towards NASH and HCC [29].

ACC, as a key enzyme with FAS, which are essential for long-chain fatty acids synthesize via catalyzing the carbox-
ylation of acetyl-CoA in a synthesis of series of malonyl CoA which generate long chain fatty acids. Moreover, hepatic 
Srebp-1c, has been demonstrated to selectively induce elevated expression of lipogenic genes such as ACC and SCD-1 
[40]. Evidence displayed that the suppression of ACC leads to reduction in synthesis of triglyceride and its accumulation in 
the liver by reduced malonyl CoA activity [41]. The current study described that overexpression of lipogenic related genes 
in HL rats, these were prominently down regulated after a combined treatment of MSCs-Exo+EVOO indicating their syner-
gistic role in inhibiting lipid accumulation and fatty acid biosynthesis in hepatocytes. In accordance, oleic acid rich plant oil 
was shown to prove that these oils beneficially control the expression of lipid metabolism associated genes [42]. Similarly 
to our results, the gene expression of key modulators for lipogenesis, Srebp-1c, SCD-1, FAS, and ACC, was significantly 
downregulated in the liver and adipose tissue of mice fed sesame oil enriched with oleic acid [43].
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Impaired fatty acid oxidation (i.e., lipid catabolism and elimination) leads to excess accumulation of lipids and many 
metabolic disorders. Meanwhile, promoting fatty acid oxidation can aid in the prevention of metabolic disorders like dys-
lipidemia, obesity, NAFLD, and even NASH. Peroxisome proliferator-activated receptors (PPARs) are primary functions to 
sustain energy balance and lipid homeostasis, by boosting the transcription of specified targets involved in fatty acid oxi-
dation [44]. In normal physiological condition, PPARα is highly expressed in the hepatocyte, and induce fatty acid oxida-
tion hereby promoting lipid catabolism [45,46]. Also, PPARα activation could protect the liver from development of NAFLD 
and NASH by promoting the target genes correlated with fatty acid oxidation [47]. In contrast, in normal hepatocytes, 
PPARγ is not expressed, and its abundance is markedly elevated in fatty livers where it induces a lipogenic phenotype in 
both humans and rodents [48]. Furthermore, hepatic PPARγ expression augmented steatosis via up-regulating various 
proteins related to the uptake of lipid, TAG storage, and lipid droplets formation [49]. Additionally, carnitine  
palmitoyltransferase-1A (CPT1A) and Acyl-CoA oxidase (ACOX) are the two enzymes accountable for the pathways of 
fatty acid oxidation, while ACOX initiates the oxidation of long-chain fatty acid and CPT1A catalyzes the rate-limiting phase 
of fatty acid β-oxidation [50]. Notably, the lowered expression of PPARα, ACOX and CPT1A in HL rats was increased after 
our treatments especially when both MSCs-Exo and EVOO were combined. These findings came in line with previous 
work describing that treatment with a balanced diet rich in olive oil contributed to the recovery of the liver from hepatic ste-
atosis [51]. It has been demonstrated that consumption of MUFAs declines blood TGs by stimulating fatty acid oxidation 
via activation of PPARα or by lowering the Srebp-1c expression and inhibiting lipogenesis [52]. Moreover, dietary MUFAs 
can activate PPARα, increasing lipid oxidation, and reducing resistance for insulin resulting in hepatic steatosis reduction 
[53]. This was achieved by decreasing activation of hepatic stellate cells by MUFAs, which are less susceptible to lipid 
peroxidation compared to PUFAs.

Unrefined or virgin olive oil has bioactive compounds with beneficial antioxidants action. Oleocanthal, a component 
found in extra virgin olive oil, is a natural anti-inflammatory compound that has a potency and profile strikingly similar to 
that of ibuprofen [54]. Oleic acid decreases the expression of genes involved in hepatic gluconeogenesis and lipogen-
esis and Srebp-1c in Zucker fatty rats [55]. Jiang et al have demonstrated that the pharmacological inhibition of SCD1 
expression has resulted in increased fatty acid oxidation and reduced de novo fatty acid synthesis and thus steatosis 
was reduced both in hepatocyte cell line and mouse models [56]. In line with our data, MSC-Exo promotes fatty acid 
oxidation and lower lipogenesis in high fat diet-induced NAFLD mice [57]. This could be attributed to the protective role 
of MSCs-Exo+EVOO against hepatic steatosis via promoting lipid oxidation related factors, PPARα, CPT-1, and ACOX, 
involved in fatty acid oxidation and suppressing synthesis of fatty acid via controlling PPARα, CPT-1A, SREBP-1, and 
FAS expression. Additionally, exosomes attenuated systemic insulin resistance, inflammation in white adipose tissue, 
and hepatic steatosis in obese mice [58]. From our results, we show that the combined role of MSCs-Exo and EVOO is 
more potent in increasing fatty acid oxidation and reducing lipid synthesis in the liver ultimately protecting it from NAFLD 
progression.

The overexpression of FSP27 in HL rats contributed to TAG storage and induction of hepatosteatosis, consistent with 
previous work [59]. Moreover, FSP27 has been shown to decrease β-oxidation of fatty acids in adipocytes [60]. These 
findings indicate that FSP27 plays an important role in lipid metabolism. Remarkably, hepatic expression of FSP27 was 
decreased following MSCs-Exo+EVOO administration in our study suggesting a better role in ameliorating the progression 
of NAFLD. Glycerol-3-phosphate acyltransferase (GPAT3) is the rate-limiting enzyme in the de novo pathway of glycer-
olipid synthesis and plays a pivotal role in the triglyceride and phospholipid synthesis regulation. It has been shown that 
GPAT3 has a key role in the development of hepatic steatosis, obesity, and insulin resistance [61] Expression of GPAT3 
gene, an enzyme catalyzing the initial step of fatty acid esterification resulting in synthesis of TG, was markedly upreg-
ulated among other genes involved in lipogenesis in HL rats [62]. In our study, GPAT3 was highly expressed in HL rats 
which indicated increased lipogenesis and TG accumulation in the hepatic tissue. In contrast its expression was remark-
ably reduced in HL rats treated with MSCs-Exo+EVOO. Taking together, the present findings in gene expression level 
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suggest that treatment with MSCs-Exo+EVOO could suppress hepatic lipogenesis and induce fatty acid oxidation in the 
liver tissue thus reducing NAFLD progression.

Accumulation of TG in hepatocytes in the course of hepatic steatosis resulted in an imbalance in their lipid metabo-
lism that was followed by an increased inflammatory mediator such as cytokines, chemokines and adipocytokines that 
causes hepatocellular injury, inflammation and fibrosis [63]. Elevated expression of the chemokine CCL20, macro-
phage inflammatory protein, that serve as chemoattractant for the immune cell’s infiltration to the injured hepatic tis-
sues correlated to NASH and further play a key role in liver fibrosis in animal models [64]. In the current study, rats fed 
HFD suffered from steatohepatitis as they exhibited excessive inflammatory reaction at both molecular level (higher 
expression of CCL20, TNFα, IL-6 and IL1β) and increased levels of inflammatory histopathological areas in the liver, 
as previously reported in HFD fed animals [65]. Similarly, hypertrophic adipocytes produce numerous pro- 
inflammatory cytokines such as TNFα, IL-6 and IL1β by activation of the NF-κB pathway [66]. However, HL rats 
received both MSCs-Exo+EVOO displayed downregulated inflammatory markers indicating their combined impact 
in reducing the activation of inflammatory pathways in HL rats. Moreover, in the current study the inhibition of NF-κB 
explains how the combination therapy based on exosomes reduces the downstream induction of cytokine expression. 
IL1RN is an antagonist of the IL-1 receptor, and it is responsible for decreasing the inflammation-related activities of 
IL-1A and IL-1B [67]. Serum and hepatic mRNA expression levels of IL1RN have been linked as a marker for NASH 
[68]. Herein, the expression levels of IL1RN were restored to near normal levels in HL rats which administered both 
MSCs-Exo+EVOO indicating their combined beneficial role for mitigating NAFLD/NASH progression in our study 
rats. Recently, MSCs-Exo-based therapy was found to restore mitochondrial function and suppress inflammation and 
apoptosis in NAFLD [69]. Therapeutic roles of exosomes from MSCs and their function in tissue repair are widely 
investigated, but few reports have addressed their immunoregulatory role in NAFLD [70,71]. MSCs-Exo can downreg-
ulate lipid metabolism-related gene expression and reduce lipid deposition in NAFLD rats [72]. Also, it was described 
that MSCs-Exo promote fatty acid oxidation and reduce lipogenesis and expression of inflammatory factors TNF-α, 
IL-1, and IL-6 in the liver in oleic–palmitic acid-treated hepatic cells and HFD-induced NAFLD mice [56]. The decrease 
in inflammatory reaction of olive oil receiving rats fed HFD was attributed to its higher content from MUFA (oleic 
acid) which reduced oxidized LDL [73], LDL cholesterol and the concentration of TG without the concurrent reduction 
in HDL these results also confirmed by previous work [74]. Additional effects of EVOO beyond its MUFA composi-
tion relate to its polyphenols. Polyphenols present in EVOO, such as oleuropin, hydroxytyrosol, tyrosol and caffeic 
acid, have an important antioxidant and anti-inflammatory effect [40]. The principal mechanisms of action of olive oil 
include the decrease in NF-κB activation and decrease in LDL oxidation [51]. The prominent impact of MSCs-Exo on 
inflammatory response in HFD rats was attributed to their role in inhibiting macrophage inflammatory response indi-
cating their role in reducing obesity-associated inflammation [74]. In addition to high MUFA content, EVOO contains 
a considerable amount of antioxidants, α-tocopherol and phytochemicals that inhibit inflammation, insulin resistance, 
mitochondrial dysfunction, endoplasmic reticulum stress, that lead to the resolution or prevention of liver injury [51].

Conclusion

The combined effect of exosomes derived from MSCs, and extra virgin olive oil had a much improved effect on the 
reduction of lipid accumulation in the liver and reduction of the inflammatory mediators and local inflammation in the liver. 
Together with improved fatty acid oxidation, improved antioxidant stores, reduced oxidative stress and reduction of gene 
expression of the most prominent hyperlipidemia associated markers. All this indicates that the combined effect of exo-
somes derived from MSCs, and extra virgin olive oil are promising in combating the worldwide spread of hyperlipidemia 
and its associated diseases such as NAFLD and NASH. Further research is required to completely elucidate the exact 
mechanisms of this synergistic combined effect.
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Limitations of the study

One limitation of this study is that the specific chemical composition of the extra virgin olive oil used was not analytically 
determined. While the EVOO met standard quality criteria and was sourced from a certified supplier, future studies should 
include detailed compositional profiling to better link specific compounds to biological effects. Also, further dose-response 
studies would be beneficial in future research.
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