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Abstract 

To dynamically identify road section risks, the research team designed an onboard 

unit to collect various dynamic driving behavior data when the Advanced Driver 

Assistance Systems (ADAS) are activated. To do this, we divided the roads into three 

categories (urban road, expressway, freeway) and established separate BN models 

to analyze the relationship between driving behavior and road section risk. These 

models were constructed based on natural driving data from 10,000 km, collected 

from vehicles equipped with ADAS. For road segment division, fixed-length intervals 

were used for freeways and urban expressways, while segments on urban roads 

were defined as the stretches between adjacent intersections. Using braking decel-

eration and time to collision, we identified near-crash events and classified them 

into high, medium, and low severity levels using the DBSCAN clustering algorithm. 

These near-crash events were then matched to the corresponding road section, 

assigning different weights based on their severity levels to evaluate the risk level of 

each segment. Additionally, driving behavior data, including velocity, lateral acceler-

ation, longitudinal acceleration, yaw rate, accelerator position, steering angle, and 

steering angle velocity, were matched to the road segments. Finally, using the Netica 

software, Bayesian network models were constructed separately for urban roads, 

expressways, and freeways to identify driving risks at road segments. The models 

exhibited high sensitivity to observed nodes.

1.  Introduction

How to identify risks, reduce traffic accidents, and improve traffic safety are key priori-
ties in traffic management. At present, most risk identification models rely on histori-
cal accident data for verification. The common approach is to employ cluster analysis 
in accident data mining [1]. This involves clustering accident black spots based on 
the accident rate index statistics of each kilometer of road section, thus revealing the 
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distribution patterns of accidents within a specific time frame. For instance, Krsto et 
al. [2] utilized both subjective methods, such as field research and expert interviews, 
and objective methods, utilizing historical and spatial distribution data of road acci-
dents, to identify hazardous road locations in Serbia. They compared and analyzed 
the strengths and weaknesses of each method, concluding that the objective data-
based discrimination method yielded greater accuracy. Zahran et al. [3] developed a 
Spatial Traffic Accident Analysis (STAA) model, which considered accident frequency, 
severity, and social cost, to identify and rank accident black spots using historical 
accident data from a road section in Brunei. The results demonstrated that STAA 
outperformed other methods in terms of accuracy. Ferit et al. [4] applied the relative 
frequency method to establish the relationship between the number of accidents and 
the environmental characteristics of a road section based on accident data from an 
expressway in Turkey. This method proved to possess excellent detection ability and 
even demonstrated accurate identification for road sections that lacked accident data. 
However, historical accident data cannot be utilized for real-time risk identification 
and predicting potential accidents.

As a substitute for actual collisions, near-crash events are increasingly utilized in 
research related to driving risk. A near-crash event refers to a situation where the 
target vehicle or any other vehicle, pedestrian, bicycle, or animal needs to rapidly 
evade, satisfying the criteria of no collision, no premeditation, the need for avoidance, 
and the need for quick response [5]. These near-crash events provide controlled 
experimental data and serve as a valuable addition to real crash data in traffic safety 
research.

Advanced driver assistance systems (ADAS) help drivers with various driving 
tasks and capture motion parameters and real-time location data during driving. 
These motion parameters are directly related to traffic safety. By using historical 
data, a model can be developed to understand how motion parameters relate to the 
safety risk of a specific road section. This model, combined with real-time motion 
parameters, allows for real-time assessment of road section safety. Formos et al 
[6] conducted a study using traffic flow and vehicle-mounted data from the UK’s M1 
highway. They developed a deep neural network (DNN) model that analyzed traffic 
conflicts by combining these data and calculating surrogate safety indicators (SSM). 
The model achieved 94% accuracy, showing that time-to-collision (TTC) varied with 
speed, weather, and traffic density. Gao et al [7] used the random forest algorithm 
and video trajectory data to identify potential collision risks during vehicle travel. Their 
multimodal deep convolutional neural network (DCNN) outperformed other models, 
achieving an AUC of 0.81. Xie et al [8] utilized networked driving data from Michi-
gan to propose the time-to-disturbance collision (TTCD) as a method for capturing 
rear-end collision risks. Chen et al [9] introduced a collaborative driving scheme for 
Internet of Vehicles (IoV) intersections, demonstrating high accuracy in driver intent 
recognition, trajectory prediction, and collision probability assessment.

The analysis reveals that near-crash events can be utilized instead of historical 
accidents to comprehensively evaluate the road risk level in terms of potential acci-
dents. There exists a potential connection between vehicle operating parameters and 
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road safety level. ADAS-equipped vehicles can gather abundant near-crash events and operating parameters, enabling 
the establishment of a Bayesian network model to establish the relationship between them. Ultimately, by utilizing real-
time vehicle operating parameters, the safety level of a road section can be evaluated.

Therefore, considering the current lack of methods that solely use a large amount of vehicle operation data for road risk 
assessment in existing traffic safety research, this study proposes a method based on connected Advanced Driver Assis-
tance Systems (ADAS) to extract Near-crash events and classify road section risks. Road sections are first divided by 
type, and their risks are categorized into three severity levels (high, medium, and low) using Near-crash events extracted 
from connected vehicle driving data. A Bayesian network model is then established with Netica software to identify risks, 
supported by a road risk identification database constructed by matching driving data to each section. The main contribu-
tions of this paper are as follows:

1)	Unlike traditional methods that rely on fixed monitoring devices such as microwave radars or video cameras for local-
ized risk assessment, this study innovatively leverages collision warning information from connected vehicles’ ADAS 
systems to construct a dynamically updated road segment risk identification database. This approach enables compre-
hensive and real-time evaluation of traffic operation risks across the entire road network.

2)	A Bayesian-based risk identification network is developed to analyze fundamental driving data such as speed, accel-
eration, and steering wheel angle, enabling real-time risk identification for each road segment. This method eliminates 
the need for costly roadside sensing infrastructure and can be seamlessly integrated into navigation apps, offering 
drivers real-time updates on road network risks and safe route planning suggestions.

2.  Method

The research methods of this paper are as follows. Firstly, road sections are categorized based on road type. Then, near-
crash events are used to classify the risk of each section into high, medium, and low severity levels as output. Driving 
data is matched to each road section, creating a road risk identification database. A Bayesian network model is developed 
using Netica software to identify the risk of road sections, and its feasibility are verified. The research process is illustrated 
in Fig 1. The data used in this study was collected on public roads and is publicly available [10]. No specific permits or 
approvals were required from regulatory authorities, as the activities complied with local traffic laws. The data was used 
solely for research purposes, with no privacy concerns, and no ethical or legal issues arose during the process.

2.1  Road segment division

The data for this study is derived from real-world driving data collected from vehicles equipped with ADAS on urban roads, 
expressways, and freeways. Due to their variations in road layout, geometric design, and the arrangement of traffic signs 
and markings, as well as differences in driving behavior and types of risks involved, separate considerations are required 
for developing accident risk prediction models.

Road sections of different lengths have varying impacts on traffic conditions and subsequently affect the risk division. 
For instance, shorter road sections enable connected vehicles to more accurately reflect changes in traffic conditions, 
especially during congestion. However, they are susceptible to errors due to latitude, longitude, and GIS software limita-
tions, resulting in poor stability and accuracy of vehicle data. Conversely, longer road sections provide more accurate and 
stable connected vehicle data, but only offer an average depiction of traffic conditions without accounting for the diffusion 
process during congestion. Therefore, the guiding principle for dividing road sections is to use the shortest length that still 
ensures accuracy and stability of the vehicle data index.

To divide urban expressways and freeways into sections, this study utilized the rule of equal intervals. However, when 
segmenting urban roads, adjacent intersections were treated as a single segment. This means that the latitude and 
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longitude (Ln , Bn) were gathered at the center point O of each intersection, and the actual distance between the two inter-
sections determined the length of the road segment. The segments were then sequentially numbered as 1, 2...n, and the 
four corner points of each segment represented its range, as shown in the formula (1) and (2).

	 Roadsegment = {L1, L2, , L3, L4, · · · Ln}	 (1)

Fig 1.  Research process.

https://doi.org/10.1371/journal.pone.0333623.g001

https://doi.org/10.1371/journal.pone.0333623.g001
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	 Liscope = {(loni1, lati1), (loni2, lati2), (loni3, lati3), (loni4, lati4)}	 (2)

2.2  Classification method of road section risk level

2.2.1  Extraction of near-crash events.  A near-crash event refers to a quick and dangerous evasive driving 
maneuver, such as sudden steering, braking, accelerating, or a combination of these actions [11]. Research [10] indicates 
that near-crash events are the most common type of collision replacement data. However, the definition of near-crash 
events differs among scholars, as they use different criteria to identify such events. Currently, near-crash events are 
primarily identified based on vehicle operating parameters and alternative safety indicators. Due to variations in these 
indicators and their threshold values across different studies, the number of near-crash events obtained from the same 
natural driving data can vary. Table 1 presents a summary of the methods employed by researchers to identify near-crash 
events.

As shown in Table 1, Braking deceleration and Time to Collision (TTC) are commonly used predictors for driving risk. 
In the same lane, the group of front and rear vehicles can be considered as a driving and following group. The rear 
vehicle’s safe braking deceleration can be calculated based on the preceding vehicle’s emergency braking deceleration. 
This means that each vehicle’s deceleration reflects the driving risk of that vehicle [18]. TTC is the duration between the 
moment when two adjacent vehicles do not take any measures and a rear-end collision occurs [19].

In this study, collision time and braking deceleration were chosen as indicators to identify near-crash events. Relevant 
researchers [20–21] have suggested that TTC < 1.5 seconds or deceleration with longitudinal acceleration ax < −3.5 m/
s² is an appropriate criterion for event extraction. Therefore, this study adopts a combined threshold of TTC < 1.5 s and 
ax < −3.5 m/s² as the standard for identifying near-crash events. If the interval between two events was less than 3 sec-
onds, they were merged. Even if only one criterion was met, the event was still considered a near-crash event.

It is worth noting that TTC is commonly used to assess rear-end collision risks. Therefore, many scholars have devel-
oped various 2-D TTC models to evaluate multi-angle collision risks during lane-changing [21]. In this study, the TTC val-
ues are directly measured using the Mobileye advanced driver-assistance system. This system can simultaneously track 
up to eight targets ahead and output the TTC value with the highest collision probability during lane-changing [22].

2.2.2  Quantification of road section risk levels.  Near-crash events have varying probabilities of progressing into 
actual collisions, with higher-risk events being more likely to result in collisions. Therefore, this study utilizes the extracted 
indicators of near-crash events, specifically braking deceleration and TTC, as parameters for clustering. The DBSCAN 
database in the Python clustering algorithm is employed to divide each near-crash event into three risk levels: high, 
medium, and low. These risk levels serve as the foundation for categorizing road sections based on their level of risk.

Table 1.  Definition of near-crash events.

Researchers Methods

Guo et al [12] Lateral acceleration; longitudinal acceleration; key events; forward collision time (TTC); rear collision time and yaw rate

Wang et al [13] When the longitudinal acceleration reaches −1.5m/s2 and the lateral acceleration reaches -1m/s2, the event is considered a 
near-crash event

Naji et al [14] The headway (THW) is less than 0.6s; the pressure of the brake booster is greater than 10Mpa; the braking acceleration is less 
than −0.4 m/s2; if one of these is satisfied, then it will be regarded as a near-crash event

Wu et al [15] Post intrusion time (PET); proportion stop distance (PSD) and crash possible index (CPI)

Lyu et al [16] THW is less than 0.5s; brake booster pressure is greater than 1.2Mpa; braking acceleration is less than −3 m/s2; if one of these 
is satisfied, then it is regarded as a near-crash event

Lyu et al [17] When the longitudinal acceleration of the vehicle reaches -2m/s2, it is marked as the trigger point of the near-crash event, and 
the data from 15s before the trigger point to 5s after the trigger point is extracted

https://doi.org/10.1371/journal.pone.0333623.t001

https://doi.org/10.1371/journal.pone.0333623.t001
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The more risk events occur on a stretch of road, the higher the level of risk events, the more dangerous the stretch. 
Based on this, this study calculated the risk score of the road section through the formula. x, y and z are the number of 
low, medium and high grade risk events respectively, and their weights are 1, 2 and 3 respectively.

The more the occurrence of risk events on a road segment, and the higher the level of those events, the more hazard-
ous the segment becomes. This study calculates the risk score for each road section using the formula(3):

	 Score = x+ 2y+ 3z 	 (3)

In the formula, x, y, and z represent the number of low, medium, and high-level risk events, respectively. The weights 
assigned to these events are 1, 2, and 3, respectively. Based on the calculated risk scores, the K-means clustering 
method was employed to classify the road segments into three risk levels: high, medium, and low.

2.3  Risk identification using the Bayesian network model

BN, commonly known as Bayesian Belief Network (BBN), possesses strong capabilities in addressing uncertain problems. 
It excels in learning and reasoning even when faced with limited and uncertain information. Furthermore, BN can effec-
tively incorporate both prior knowledge and newly acquired information, allowing for the expression and fusion of multi-
source information within the network. As a result, BN has found applications in various fields [23–24], including state 
detection, fault diagnosis, quality assessment, dynamic analysis, and risk management.

Typically, Bayesian networks are represented using a directed acyclic graph (DAG) structure. This structure encom-
passes a set of random variables that capture their respective states and their probabilistic causal relationships. It is often 
denoted as U =

{
X1,X2, ...,Xn

}
 Fig 2 presents commonly used DAG structures.

In Fig 2, X1,X2,X3,X4,X5 represent variables with multiple states. The one-way arrows between the variables illus-
trate the causal relationships, with the direction indicating the relationship between the parent node and the child node. 
The child node is situated on the receiving side of the arrow. Four types of relationships exist between nodes, classified 
as series, dispersed, shrinkage, and mixed types. The mixed type can consist of any combination of the three aforemen-
tioned forms. In a DAG, the relationship between any set of child nodes and parent nodes can be determined by referring 
to the conditional probability table.

In a DAG, each node can be in either a true or false state. The conditional probability of X1 depends on the true or false 
values of X2 and X3. Table 2 displays the conditional probability of X1.

If a parent node in a DAG has no child nodes, then the prior probability of the state of the node can be calculated from 
the joint probability function of all variables in the DAG, which becomes a marginalized formula, as shown in Equations (4).

	
P(U) = P(X1, ...,Xn) =

n∏
i=1

P(Xi|pa(Xi))
	 (4)

Fig 2.  Four typical directed acyclic graphs.

https://doi.org/10.1371/journal.pone.0333623.g002

https://doi.org/10.1371/journal.pone.0333623.g002


PLOS One | https://doi.org/10.1371/journal.pone.0333623  October 6, 2025 7 / 20

Among them, pa(Xi) represents each parent node of node Xi . If there are relevant conditional independence assumptions, 
the above calculation can be further simplified.

The identification of road segment risk using a Bayesian network involves a structured process consisting of the follow-
ing key steps:

•	 Step 1 Construction of the Directed Acyclic Graph-DAG: The first step is to establish the causal relationships between 
different nodes, which represent variables such as traffic conditions, driver behavior, and environmental factors. This 
involves defining the pointing relationships between nodes to construct a DAG, which serves as the foundational frame-
work for the Bayesian network.

•	 Step 2 Calculation of Probabilities: Next, the prior probabilities of each node and the conditional probabilities between 
nodes are calculated. These probabilities are derived from historical data or expert knowledge.

•	 Step 3 Learning and Reasoning Process: Based on the prior probabilities of the evidence nodes (observed data) and 
the conditional probabilities between the evidence nodes and intermediate nodes, the probability values of the target 
node (road risk) are computed under different risk states. This step enables the network to infer the likelihood of risk 
based on the given evidence.

•	 Step 4 Risk Identification: Finally, leveraging the reasoning capabilities of the Bayesian network, driving data is used to 
evaluate and identify road risks.

3.  Data preparation for risk identification modeling

3.1  Test route

To gather natural driving data from different types of roads, a 105 km mixed test route was chosen. The test route consists 
of a conventional urban road, two urban expressways, and a freeway. The specific route details can be found in Fig 3.

3.2  Onboard unit and connected driving data

To gather data on driver operating behavior, vehicle motion, driving environment, and surrounding vehicles during real-
world driving, the research team developed an onboard unit. This unit incorporates various equipment, including the CAN 
bus, inertial navigation system, Mobileye, DVR, and other components. Table 3 provides a partial list of the obtained data. 
For this study, only the vehicle’s longitudinal acceleration from the inertial navigation system and the Time to Collision 
(TTC) from the Mobileye were utilized as indicators to identify near-crash events. Additionally, inputs to the Bayesian 
Network (BN) model included speed, lateral acceleration, longitudinal acceleration, yaw angle, accelerator, steering wheel 
angle, and steering wheel angle velocity.

3.3  Extraction of near-crash events

Based on the near-crash event definition standard described in 2.2, a total of 1,342 near-crash events were collected 
during the 10,000 km natural driving experiment. Using the Python DBSCAN database, these events were classified into 

Table 2.  Conditional probability of node X1.

Conditional probability of X1 X2

T F

X3 T P11 P12

F P21 P22

https://doi.org/10.1371/journal.pone.0333623.t002

https://doi.org/10.1371/journal.pone.0333623.t002
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three levels: high, medium, and low, based on the Time to Collision (TTC) and longitudinal acceleration. The clustering 
algorithm achieved a good result, as indicated by a silhouette coefficient s(i) of 0.84. Table 4 presents the statistics of the 
near-crash events at different risk levels: 205 high-risk events, 367 medium-risk events, and 770 low-risk events, following 
a pyramid-shaped distribution.

3.4  Risk classification of road sections

The experimental road was divided into 617 sections, which consisted of 124 urban road sections, 218 freeway sections, 
and 274 urban expressway sections. The average length of the road sections for each road type can be found in Table 5.

During the natural driving experiment, the vehicle recorded real-time latitude and longitude information. The nearest 
neighbor analysis function in ArcGIS was used to match the risk points to the divided road segments. First, the latitude 

Fig 3.  Natural driving test route.

https://doi.org/10.1371/journal.pone.0333623.g003

https://doi.org/10.1371/journal.pone.0333623.g003
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and longitude of the risk points were converted from the geographic coordinate system to the projected coordinate system 
using the projection function in ArcGIS. Then, the projected risk points were matched to the route based on their x and y 
coordinates in the projected system. Examples of matching risk points to road segment information can be observed in 
Table 6, while the results of the matching process are depicted in Fig 4. Table 7 showcases the number of risk points for 
each risk level within each road segment and provides the total risk assessment score for each segment.

Table 3.  Data obtained from the natural driving test.

Data Sources Variable Definition Unit

Vehicle CAN Bus Accelerator Pedal (A
C
) Control the engine throttle

opening by controlling the
amount of pedaling

%

Brake Pressure The force with which the car slows down or stops by braking MPa

Steering Angle(A) The angle of rotation of
the steering wheel

d

Steering Angular Velocity(Av) The angle of rotation of the steering wheel per second d/s

Vehicle Speed(V) The distance traveled by the
vehicle per unit time

Km/h

GPS/INS Lateral Acceleration(ay) Acceleration perpendicular to the direction of the vehicle m/s2

Longitudinal Acceleration(ax) Acceleration along the
direction of the car

m/s2

Yaw Rate(Vyr) Deflection of the car about
the vertical axis

d/s

Longitude The abscissa of the spherical coordinate system d

Latitude The ordinate of the spherical
coordinate system

d

ADAS Distance from Right Lane Line Distance between vehicle
and right lane line

m

Distance from Left Lane Line Distance between vehicle
and left lane line

m

Distance Headway (sDHW) In a platoon traveling in the same direction in one lane, the
distance between the front and
rear adjacent vehicles

m

Time Headway (tTHW) The time difference between the front ends of two adjacent vehicles 
passing through the same place

s

Time to Collision (tTTC) The time when the car will collide with the car in front s

https://doi.org/10.1371/journal.pone.0333623.t003

Table 4.  Statistics of near-crash events at different levels.

Event Risk Level Number of Events Event Ratio Mean And Standard Deviation of Events

tTTC ax

Average S.D. Average S.D.

High Level 205 15.35% 0.65 0.24 −1.34 1.22

Middle Level 367 27.35% 0.63 0.26 −1.17 1.28

Low Level 770 57.37% 1.04 0.20 −0.69 0.97

https://doi.org/10.1371/journal.pone.0333623.t004

Table 5.  The average length of the road sections for each road type.

Road Type Freeways Urban Expressways Urban Roads

Average Length 200m 160m 116.7m

https://doi.org/10.1371/journal.pone.0333623.t005

https://doi.org/10.1371/journal.pone.0333623.t003
https://doi.org/10.1371/journal.pone.0333623.t004
https://doi.org/10.1371/journal.pone.0333623.t005


PLOS One | https://doi.org/10.1371/journal.pone.0333623  October 6, 2025 10 / 20

Using K-means clustering, the road segment scores were classified into three categories: high risk, medium risk, and 
low risk. The cluster center points for the three risk levels were 1.04, 29.84, and 101.25, respectively. Table 8 displays the 
number of road sections belonging to each risk level.

As shown in Table 8, the proportions of high risk, medium risk, and low risk sections in all three road types exhibit a 
pyramid distribution. This phenomenon aligns with the safety pyramid theory’s description of traffic event severity dis-
tribution [25]. Furthermore, as illustrated by the spatial distribution of risk points in Fig 3 and Fig 4, Freeway and Urban 

Table 6.  Example of matching risk points to road segment information.

Numbering Point Coordinates Adjacent Road Section Number Risk Point Level

1 (114.304,30.634) 577 Low

2 (114.304,30.633) 576 Low

3 (114.303,30.633) 576 Low

… … … …

https://doi.org/10.1371/journal.pone.0333623.t006

Fig 4.  Risk points matched to road segments.

https://doi.org/10.1371/journal.pone.0333623.g004

Table 7.  The total risk score of each road segment.

Road Section 1 2 3 4 … 614 615 616 617

Low Level Number 0 2 11 2 0 0 0 0

Middle Level Number 1 0 10 0 0 1 0 0

High Level Number 0 0 6 0 0 0 0 0

Total Score 2 2 49 2 0 2 0 0

https://doi.org/10.1371/journal.pone.0333623.t007

https://doi.org/10.1371/journal.pone.0333623.t006
https://doi.org/10.1371/journal.pone.0333623.g004
https://doi.org/10.1371/journal.pone.0333623.t007
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Expressway sections are longer, with risk points concentrated in a few critical locations. In contrast, risk points on Urban 
Roads are more evenly distributed across segment units, resulting in a higher proportion of medium-risk sections on 
Urban Roads.

3.5  Driving behavior database

For this research and analysis, the following indicators were selected: velocity, lateral acceleration, longitudinal acceler-
ation, yaw rate, accelerator, steering angle, and steering angular velocity, as shown in Table 9. Real-time data collected 
during vehicle operation included speed, lateral acceleration, longitudinal acceleration, and yaw angular velocity, which 
were referred to as vehicle operating parameters. The accelerator, steering wheel angle, and steering angular velocity 
were associated with driver operating behaviors and referred to as vehicle control parameters. To match the driving data 
of all drivers with the road segments, latitude and longitude information was used, and the nearest neighbor analysis func-
tion in GIS was employed to assign each track point to its corresponding road segment.

Before constructing the BN model, it is important to establish the thresholds for these indicators. In this study, it is 
assumed that the majority (80%) of drivers’ behavior indicators are at the intermediate level, while a minority (20%) of driv-
ers’ behavior indicators are at either the high or low level. With this assumption, the thresholds for each behavior indicator 
are determined using the 10th and 90th percentiles, resulting in three levels: High, Medium, and Low. The specific steps 
for determining these thresholds are as follows:

Step 1: Analyze the data on a certain road section by obtaining the 10% and 90% quantile data of the aforementioned 
indicators for each driver on a certain road section.

Step 2: Calculate the average value of these quantile values for all drivers on the same road section and use it as the 
percentile value of the final index for this road section.

Step 3: Take the average value obtained in step 2 on all the same road section types as the basis for the classification 
of the corresponding risk levels of the aforementioned indicators.

Following these steps, different indicators are divided into their respective high, medium, and low levels, as presented 
in Table 10.

Table 8.  Number of different types of road sections with different risk levels.

Low Risk Medium Risk High Risk Total

Urban Road 99 24 1 124

Urban Expressway 266 9 0 275

Freeway 211 4 3 218

Total 576 37 4 617

https://doi.org/10.1371/journal.pone.0333623.t008

Table 9.  Driving behavior Indicator system.

Indicator Category Indicator Name Short Name Unit

Vehicle
Operating Parameters

Velocity V km/h

Lateral Acceleration ay m/s2

Longitudinal Acceleration ax m/s2

Yaw Rate V(yr) d/s

Vehicle
Controlling Parameters

Accelerator Ac %

Steering Angle A d

Steering Angle Velocity V(a) d/s

https://doi.org/10.1371/journal.pone.0333623.t009

https://doi.org/10.1371/journal.pone.0333623.t008
https://doi.org/10.1371/journal.pone.0333623.t009
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4.  Road risk identification modeling

4.1  Construction of BN model

Feature selection for the BN model was informed by recent developments in learning-based risk prediction models [26], 
we applied a triple BN model <V, E, ɵ> in this study, constructed based on the adopted indicators. E represents a finite set 
of edges, which depict one-to-one relationships between nodes. The value of ɵ reflects the degree of causal relationship 
among each node. V represents the node, with V = (xi, yi) as a non-empty and finite set. xi denotes the hidden node in the 
network model, while yi represents the observation node. The specifics of each node are outlined in Table 11. The final 
constructed road segment risk BN structure model is illustrated in Fig 5.

4.2  Road risk identification model reasoning

4.2.1  Model parameter establishment.  In the BN models for urban roads, expressways, and freeways, each node was in 
either a risk (Y) or non-risk (N) state, except for the observation nodes. The road section risk node’s risk state was represented 

Table 10.  Value ranges corresponding to the high, medium, and low levels of different indicators.

Indicator Indicator Range Level

Urban Expressways Freeways

V V > 43.67 V > 65.43 V > 86.07 High

38.00 < V < 43.67 62.55 < V < 65.43 83.41 < V < 86.07 Medium

V < 38.00 V < 62.55 V < 83.41 Low

ay |LAA|>0.23 |LAA|>0.36 |LAA|>0.33 High

0.15<|LAA|<0.23 0.18<|LAA|<0.36 0.16<|LAA|<0.33 Medium

|LAA|<0.15 |LAA|<0.18 |LAA|<0.16 Low

ax |LOA|>0.60 |LOA|>0.30 |LOA|>0.27 High

0.20<|LOA|<0.60 0.12<|LOA|<0.30 0.10<|LOA|<0.27 Medium

|LOA|<0.2 |LOA|<0.12 |LOA|<0.10 Low

V(yr) YA > 0.024 YA > 0.009 YA > 0.008 High

0.010<|YA|<0.024 0.003<|YA|<0.009 0.003<|YA|<0.008 Medium

|YA|<0.010 |YA|<0.003 |YA|<0.003 Low

Ac ACC > 19.85 ACC > 21.96 ACC > 26.13 High

8.49 < ACC < 19.85 11.82 < ACC < 19.85 18.26 < ACC < 19.85 Medium

ACC < 8.49 ACC < 11.82 ACC < 12.86 Low

A |SWA|>5.30 |SWA|>2.00 |SWA|>1.97 High

2.00<|SWA|<5.30 0.74<|SWA|<2.00 0.82<|SWA|<1.97 Medium

|SWA|<2.00 |SWA|<0.74 |SWA|<0.82 Low

V(a) SWAV>11.30 SWAV>5.40 SWAV>4.23 High

2.46 < SWAV<11.30 0.95 < SWAV<5.40 0.62 < SWAV<4.23 Medium

SWAV<2.46 SWAV<0.95 SWAV<0.62 Low

https://doi.org/10.1371/journal.pone.0333623.t010

Table 11.  Specifics of vehicle operation risk nodes.

Node Meaning State

x1 Road Risk Level “Y”, “N”

x2 Vehicle Operating Parameters “Y”, “N”

x3 Vehicle Control Parameters “Y”, “N”

yj Impact Factor ——

https://doi.org/10.1371/journal.pone.0333623.t011

https://doi.org/10.1371/journal.pone.0333623.t010
https://doi.org/10.1371/journal.pone.0333623.t011
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by (R) =
{
Y,N

}
, the vehicle operating parameters’ risk state was represented by (OR) =

{
Y,N

}
, and the vehicle control 

parameters’ risk state by (CR) =
{
Y,N

}
. The observation nodes included speed, lateral acceleration, longitudinal acceleration, 

yaw rate, accelerator, steering wheel angle, and steering wheel angle speed, with their states categorized as Low, Medium, or 
High. The probability and conditional probability for these states appearing in different road types are shown in Table 12.

4.2.2  Inference modeling based on Netica software.  We used Netica software to establish risk identification 
models. In order to do so, we needed to create a suitable BN model and input node data that is relevant to the analysis. 
This node data can be obtained from conditional probability tables that are based on expert assessments, or acquired 
through driving experiments with cyclic training. For our study, we chose the latter approach and used the “Equation” 
function to input the probability data. We then calculated the conditional probability of the hidden node by considering the 
correlation between different factors. The Fig 6 displays the proposed BN models for the three types of roads.

Fig 5.  Structure of BN model for road segment risk identification.

https://doi.org/10.1371/journal.pone.0333623.g005

Table 12.  Occurrence probability and conditional probability of observation nodes in different road types.

Category Index Risk
Level

Probability (%) Conditional Probability (%)

Urban Express Highway Urban Express Highway

Vehicle Operating Parameters V (y
1
) Low 40.7 44.9 47.8 41 59 56

Medium 35.6 25.2 32.9 38 24 26

High 23.7 29.9 19.3 21 17 18

ay (y2
) Low 49.2 44.6 52.9 39 52 45

Medium 25.7 19.8 31.8 19 30 37

High 25.1 35.6 15.3 42 18 18

ax (y3
) Low 50.2 54.7 54.0 47 49 55

Medium 31.3 33.9 27.7 30 41 18

High 18.5 11.4 18.3 23 10 27

V(yr) (y4
) Low 39.6 47.2 42.2 44 57 51

Medium 31.9 28.9 30.1 26 28 21

High 28.5 23.9 27.7 30 15 28

Vehicle Control Parameters Ac (y5
) Low 45.6 37.8 49.7 35 39 48

Medium 43.7 40.1 32.5 17 34 21

High 10.7 22.1 17.8 48 27 29

A (y
6
) Low 44.2 42.9 51.8 28 53 48

Medium 34.2 27.6 32.9 20 27 36

High 21.6 29.5 15.3 52 20 16

V(a) (y
7
) Low 44.7 37.4 44.9 48 47 54

Medium 38.2 42.1 29.9 23 30 27

High 17.1 20.5 25.5 29 33 19

https://doi.org/10.1371/journal.pone.0333623.t012

https://doi.org/10.1371/journal.pone.0333623.g005
https://doi.org/10.1371/journal.pone.0333623.t012
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4.2.3  Probability division of operational risk levels.  The risk levels were determined by the probability of risk 
occurrence, thus resulting in high, medium, and low risk. Table 13 illustrates the classification of road section operation 
risk levels.

Fig 6.  Three types of BN models for road segment risk. (a) BN model for risk of urban road sections. (b) BN model for risk of urban expressway 
sections. (c) BN model for risk of freeway sections].

https://doi.org/10.1371/journal.pone.0333623.g006

https://doi.org/10.1371/journal.pone.0333623.g006
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4.3  Model sensitivity analysis

In the BN model, sensitivity analysis is a valuable tool for identifying the key factors that significantly impact the risk of 
road sections. Using the Netica software, we conducted sensitivity analysis on all nodes in the urban road sections BN 
model. The results are presented in Table 14. The analysis revealed that among all the observed nodes, Speed, lateral 
acceleration, and longitudinal acceleration had the greatest influence on the operational risk of urban road sections. For 
expressways and freeways, we used the same approach to determine the three observed nodes that have the most sig-
nificant impact on the risk of road sections.

Next, we moved forward with altering the parameter value of the three observed nodes that have the highest impact on 
the risk of road sections. The sensitivity of the models to these changes was assessed by observing how they affected the 
final risk probability. Sensitivity analysis was performed on all three models.

Assuming the speed, lateral acceleration, and longitudinal acceleration were set at 100% in the low-risk segment, the 
BN deduction showed a decrease in the operational risk level from 23.4% to 12.2%, as seen in Fig 7(a). Conversely, 
assuming the same settings in the high-risk segment, the BN deduction indicated an increase in the operational risk level 
from 23.4% to 69.5%, as depicted in Fig 7(b). By altering the speed, lateral acceleration, and longitudinal acceleration, 
it was observed that the risk probability of urban road operations experienced significant fluctuations, demonstrating the 
sensitivity of the proposed model.

Lateral acceleration, speed, and steering angle were found to have the greatest impact on the operational risk of urban 
expressway sections. Assuming these factors were set at 100% in the low-risk segment, the BN deduction revealed a 
decrease in the operation risk level from 18.3% to 11.1%, as shown in Fig 8(a). Conversely, assuming the same settings 
in the high-risk segment, the BN deduction indicated an increase in the operation risk level from 18.3% to 30.2%, as illus-
trated in Fig 8(b).

For freeways, longitudinal acceleration, speed, and lateral acceleration were found to have the greatest impact on 
freeway operation risk. Assuming these factors were set at 100% in the low-risk segment, the BN deduction revealed a 
decrease in the operation risk level from 14.7% to 9.8%, as shown in Fig 9(a). On the other hand, assuming the same 

Table 13.  Classification of road section operation risk levels.

Risk Level Risk Outcome Risk Probability(%)

Level 1 High Risk (75,100]

Level 2 Medium Risk (50,75]

Level 3 Low Risk (0,50]

https://doi.org/10.1371/journal.pone.0333623.t013

Table 14.  Sensitivity analysis of driving risk on urban road sections.

Node Interactive Information Sensitivity to R

R 0.98 100

OR 0.25 37.4

CR 0.16 21.9

V 1.3×10−2 9.77

LAA 1.0×10−2 5.64

LOA 8.2×10−3 3.03

AC 5.9×10−3 1.44

SWA 2.9×10−3 0.60

YA 1.2×10−3 0.20

SWAV 9.7×10−4 0.13

https://doi.org/10.1371/journal.pone.0333623.t014

https://doi.org/10.1371/journal.pone.0333623.t013
https://doi.org/10.1371/journal.pone.0333623.t014
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settings in the high-risk segment, the BN deduction indicated an increase in the operation risk level from 14.7% to 25.7%, 
as illustrated in Fig 9(b).

The changes in operation risk for the mentioned road sections are summarized in Table 15. It can be observed that as 
the risk probability of a specific sensitive factor of a road section significantly increased or decreased, the corresponding 
risk level of that section also underwent significant change. This demonstrates the strong sensitivity of the proposed BN 
models for urban road sections, urban expressway sections, and freeway sections.

5  Conclusion

This study utilizes near-crash events to determine risk levels of road sections and establishes a Bayesian network (BN) 
model to capture the relationship between driving behavior and road section risk levels. The main conclusions and contri-
butions of this study are as follows:

(1)	 This study proposes a method for extracting near – crash events and identifying road section risks using connected 
ADAS. Analyzing 10,000 km of natural driving test data, we extracted 205 high-risk, 367 medium-risk, and 770 low-risk 
events, laying a data-driven foundation for subsequent analyses.

Fig 7.  BN model when the risk index of urban road sections change. (a) When the risk index of urban road sections decreased. (b) When the risk 
index of urban road sections increased.

https://doi.org/10.1371/journal.pone.0333623.g007

https://doi.org/10.1371/journal.pone.0333623.g007
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(2)	 A novel road section risk level classification method is developed. We divided three road types (urban roads, urban 
expressways, and freeways) into sections. By matching near – crash events of different levels to road sections based 
on driving-collected longitude and latitude data and calculating risks according to event frequencies, we identified 576 
low-risk, 37 medium-risk, and 4 high-risk sections. This method provides a practical approach for quantifying road risks.

(3)	 Employing Netica software, we established separate BN models for different road types to explore the link between 
driving behavior and road section risk. These models demonstrated high sensitivity.

This study has several limitations. First, due to the challenges in obtaining accurate accident data, near-crash events were 
used as a proxy for real crash data, which may not fully capture the complexities of actual collisions. Second, our analysis 
is based on basic ADAS with risk warning functions. While sufficient for our research, these basic systems may lack the 
advanced capabilities of more sophisticated ADAS. Recent advancements like Automatic Emergency Braking (AEB), Lane 
Departure Warning (LDW), Lane Keeping Assistance (LKA), or Blind Spot Warning (BSW) [27–28] can provide more infor-
mation related to potential vehicle collision risks, thus enhancing the accuracy and applicability of our risk assessment model.

Future work will focus on integrating advanced ADAS systems to enhance risk identification precision and analyz-
ing data from moments preceding near-crash events to optimize model performance under complex traffic conditions. 

Fig 8.  BN model when the risk index of urban expressway sections increased. (a) When the risk index of urban expressway sections decreased. 
(b) When the risk index of urban expressway sections increased.

https://doi.org/10.1371/journal.pone.0333623.g008

https://doi.org/10.1371/journal.pone.0333623.g008


PLOS One | https://doi.org/10.1371/journal.pone.0333623  October 6, 2025 18 / 20

Additionally, statistical methods will be explored to quantify structural differences among BN models across road types, 
investigating the influence of road design versus driving behavior patterns. These efforts aim to improve the robustness 
and applicability of traffic safety solutions.
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Fig 9.  BN model when the risk index of freeway sections increased. (a) When the risk index of freeway sections decreased. (b) When the risk index 
of freeway sections increased.

https://doi.org/10.1371/journal.pone.0333623.g009

Table 15.  Influence of Observed Node Changes on Model Results.

Urban Roads Expressway Freeway

Normal Road Segment Risk 23.4% 18.3% 14.7%

Risk of Sensitive Factors Decreased 12.2% 11.1% 9.8%

Risk of Sensitive Factors Increased 69.5% 30.2% 25.7%

https://doi.org/10.1371/journal.pone.0333623.t015

https://doi.org/10.1371/journal.pone.0333623.g009
https://doi.org/10.1371/journal.pone.0333623.t015
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