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Abstract 

Background

The interplay between the gut microbiota axis and host immunity is pivotal in the 

pathogenesis of inflammatory bowel disease (IBD), an idiopathic inflammatory con-

dition. Molecular mimicry may be at the root of autoimmune and auto-inflammatory 

diseases, such as IBD, when microbial antigens and host proteins share structural 

and molecular similarities. However, auto-inflammation can also occur through mech-

anisms independent of molecular mimicry. The present study focused on the possible 

involvement of intestinal bacterial heat shock proteins (HSPs) in the immunopatho-

genesis of IBD as a cutting-edge issue.

Methods

We employed an immuno-informatics approach to evaluate host-microbe interactions 

and predict the involvement of bacterial HSPs 60, 70, and 90 in IBD via molecular 

mimicry as our primary objective. The substantial evolutionary conservation of HSPs 

and their presence in inflammation scenarios propelled our research. To validate 

our approach, we performed docking and molecular dynamics (MD) simulations on 

selected HLA-epitope complexes.

Results

Our analysis revealed that all studied bacteria, compared to Homo sapiens, exhibited 

meaningful sequence similarity and identity of HSPs. Thirteen bacterial species and 

their corresponding thirteen epitopes derived from HSP counterparts were selected 

for further investigation. Finally, a specific epitope of human HSP60 and three 
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epitopes of HSP70 demonstrated considerable sequence similarity to their bacterial 

counterparts, which was further corroborated through MD simulations as a primary 

outcome. The secondary outcomes encompassed various factors, including assess-

ing residues in the epitope and receptor-binding grooves within the epitope-HLA 

complex. Based on the secondary data analysis, the co-expression findings sug-

gested that HSP70 could serve as epitopes in eliciting T-cell-mediated autoimmune 

responses during infections.

Conclusion

The study provided evidence of molecular mimicry between microbial and human 

HSPs, which could serve as molecular targets for cross-reactive T cells. In addition 

to considering sequence similarity, our study emphasized the importance of structural 

interactions as essential factors in cell signaling and immunological pathways.

1  Introduction

Spondylarthritis represents a diverse spectrum of diseases characterized by dis-
tinct clinical features and varied etiologies, including inflammatory bowel disease 
(IBD). The immunopathogenesis of IBD involves a complex interaction among 
genetic, environmental, and microbial factors that leads to the dysregulation of the 
host immune system. This dysregulation of gut microbiota is associated with an 
impaired immune response and compromised mucosal barrier integrity, a condi-
tion often referred to as barrier disease [1–6]. Recent research has proven the 
essential role of the gut microbiota in maintaining immune homeostasis and in 
the development of autoimmune and immune-related conditions [2,3,7,8]. IBD is 
characterized by chronic autoinflammation, which is frequently linked to dysbiosis, 
alterations in gut bacterial composition, and a compromised gut barrier contrib-
uting to the progression of the disease. The gastrointestinal (GI) environment is 
a crucial field of research because it represents a connection between nutrition 
and environmental stimuli related to immune diseases, such as autoimmunity. 
Hence, understanding the interactions between the host and resident microbes 
is a key point to consider in elucidating the etiopathogenesis of IBD [2,8–12]. 
Active research areas include alterations in the microbiota and its metabolic 
output, the inflammatory cascade triggered by increased intestinal permeabil-
ity, and identifying specific bacterial species associated with autoimmunity and 
inflammation [2,9,10,12–15]. The hygiene hypothesis suggests that the cumulative 
burden of infections throughout an individual's life may contribute to the develop-
ment of autoimmunity, particularly in those with a genetic predisposition. On the 
other hand, certain microorganisms may prevent specific autoimmune disorders 
[4,11,14,16–18]. According to particular research findings on the link between 
infection and autoimmune disease, the infection triggers an inflammatory reaction 
to a food-borne antigen, which may lead to autoimmune and auto-inflammatory 
diseases [9,19].
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Individuals with genetic susceptibility may experience autoimmune reactions due to environmental exposure to microor-
ganisms, as well as the similarity between host, pathogen, or commensal microbes, which can compromise self-tolerance. 
T cell receptor (TCR) degeneration recognizes diverse antigens, facilitating cross-reactivity. The role of the human leuko-
cyte antigen (HLA) complex as a genetic determinant in modulating the immune system is well-established, with particular 
alleles linked to IBD and autoimmune dysbiosis [1,20–23]. The molecular mimicry hypothesis proposes that similarities 
in protein sequences between self-proteins and infectious pathogens can lead to cross-reactivity of immune cells, poten-
tially triggering the activation of autoreactive T cells, resulting in the development of an autoimmune response and tissue 
damage in IBD [2,17,24–27]. However, the exact nature of these interactions remains to be elucidated through clinical and 
experimental validation. HLAs can help us understand the immunological pathogenesis of illness by presenting epitopes 
to autoreactive T lymphocytes [1,20,23,27–32]. Among the various proteins implicated in this process, Heat Shock Pro-
teins (HSPs) have emerged as significant due to their evolutionary conservation across species and their role in cellular 
stress responses, including those preceding IBD onset, such as infection, inflammation, and thermal shock [33–37]. 
HSPs, particularly HSP60, HSP70, and HSP90, are among the most immunogenic microbial antigens.

The potential amino acid level similarity between bacterial and human HSP raises the hypothesis that molecular mim-
icry may play a role in the pathogenesis of IBD [17,33,34,38–41]. The detection of Hsp60 and Hsp70 in healthy periph-
eral blood, along with their phylogenetic conservation, indicates that immune responses to HSP are strictly regulated 
[40,42,43]. Regulatory activities of immunomodulatory antigen-presenting cells (APCs) may influence the presentation of 
HSPs to T lymphocytes without additional signals, thereby causing the inactivation of autoreactive T lymphocytes under 
stressful conditions. HSPs derived from commensal gut bacteria could stimulate autoreactive T lymphocytes, while self-
HSP regulatory T cells may develop in the tolerant gut lining [12,33,43]. Therefore, an in-depth study of the HSP and its 
function and regulation can lead to a promising approach to understanding disease immunopathogenesis and therapeutic 
discoveries.

The systemic immune disorder also impacts many human organs outside the GI tract, necessitating a cross-disciplinary 
investigation. The rapidly expanding body of biomedical knowledge has profound implications for clinical practice and 
patient well-being. Immuno-informatics, a unique interdisciplinary area, is increasingly helping researchers analyze 
high-dimensional immunological data, providing pathbreaking results for society and medicine. Immuno-informatics 
enhances our understanding of specific immune responses by studying short immunogenic peptide fragments or motifs, 
thus overcoming the limitations of traditional experimental research methods. Moreover, the in-silico approach provides a 
critical foundation for generating hypotheses and designing experiments, ultimately contributing to more effective research 
outcomes. As a branch of bioinformatics, immuno-informatics plays a considerable role in understanding the pathogen-
esis of autoimmune and auto-inflammatory conditions and guiding prevention and treatment strategies [26,44]. Current 
research on IBD focuses on the gut microbiota, their metabolic profile, and the dysregulation of gut-associated lymphoid 
tissue (GALT) [2,15,45–47]. The pathogenesis of IBD remains an area of ongoing investigation. Recent advancements 
in computational biology have introduced innovative strategies for vaccine development. Employing immuno-informatics 
methodologies can accurately predict antigenic epitopes, which may facilitate meaningful practical applications. Adopt-
ing immuno-informatics enables considerable reductions in both time and cost barriers while increasing the likelihood 
of successful immunological outcomes. Integrating immuno-informatics with conventional experimental methods rep-
resents a promising strategy for disease prevention and therapeutic outcomes [26,48]. Additionally, exploring the concept 
of molecular mimicry, a long-standing phenomenon, could yield valuable insights and advance our knowledge in this 
field, thereby opening new avenues for innovative research. Research has examined the potential of its presence in IBD 
[2,9,24,25,33,49]; however, this matter has not been thoroughly investigated via detailed immunopathological mecha-
nisms. Our study aimed to expand upon this foundational understanding by exploring the immunoinformatic approach. 
Our study hypothesizes that the amino acid level similarity between HSPs of certain bacteria implicated in IBD and 
human HSPs may contribute to the pathogenesis of IBD through molecular mimicry. This hypothesis is grounded in the 
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evolutionary conservation of HSPs and increased expression under stress conditions, such as in the pre-IBD gut environ-
ment. In the context of IBD, the concurrent presence of bacterial and human HSPs can lead to the activation of APCs via 
their Major Histocompatibility Complex class II (MHC-II) molecules. Similarly, GI and intestinal cells could present bacterial 
HSPs to T cells via MHC class I (MHC-I) pathways, leading to autoreactivity in T cells [12,33,34,43]. The structural inves-
tigation into the feasibility of presenting HSPs by MHC-I and MHC-II is noteworthy for understanding which epitopes of 
HSPs on which HLA molecules may trigger autoreactive T cells. Identifying these epitopes could provide insights into the 
initiation or acceleration of IBD and may be considered a contributing factor to the immunopathogenesis of the disease. 
Our study aimed to conduct a predictive immunoinformatic investigation into the molecular-level similarities between host 
and specific bacteria, including protein and amino acid levels. Additionally, we aimed to predict the particular epitopes that 
trigger this phenomenon in IBD using an immunological perspective and the dry lab approach. Primarily, our investiga-
tion aimed to predict which epitope of human and microbial HSPs could potentially lead to autoreactive T lymphocytes in 
genetically predisposed individuals. To accomplish this, we utilized immuno-informatics techniques to identify 9-mer and 
15-mer epitopes from HSPs of 60, 70, and 90 kDa. This study compares epitopes derived from selected bacterial HSPs 
to further explore the concept of molecular mimicry as a secondary objective. Through a thorough analysis of sequence 
similarity and identity at the amino acid level, potential epitopes associated with IBD were identified, establishing a con-
nection between molecular mimicry and the pathogenesis of IBD. Furthermore, we conducted a comprehensive investiga-
tion to identify bacterial agents that may play a role in molecular mimicry. This involved examining the similarities between 
their HSP sequences and those of self-HSPs. We have gained valuable insights that could inform future experimental 
studies on IBD by characterizing critical epitopes and analyzing their interactions with immune system receptors. This dry 
lab approach uncovered potential molecular signatures related to IBD pathogenesis and highlighted the importance of 
immuno-informatics in enhancing our understanding of autoimmune diseases.

2  Materials and methods

Our primary objective in this study was to investigate the molecular immunopathogenesis of IBD with a focus on explor-
ing potential HSP epitopes. We analyzed antigenic and non-toxic epitopes that could induce Cytotoxic T cell lymphocytes 
(CTL), Helper T cell lymphocytes (HTL), and Interferon-gamma (IFN-γ). Our investigation involved a comparative analysis 
of epitopic areas with thirteen bacteria listed in S1 Table. A visual representation of our workflow methodology for epitope 
calling is manifested in Fig 1. Then, the binding affinity and stability of identified epitopes in the epitope-HLA complex 
and the exact amino acid residues interacting in the agretope of the epitope and receptor binding pocket of epitope-HLA 
complexes were analyzed through docking and Molecular dynamics (MD) simulation as part of secondary objectives. In 
terms of antigen presentation, an agretope refers to a unique area, distinct from the epitope, that engages with the binding 
groove of the MHC molecule and is recognized by the TCR. This study was approved by the institutional review board 
(IRB) and the Ethical Committee of Ardabil University of Medical Sciences with IR.ARUMS.REC.1403.295 as ethical code.

2.1  Physicochemical, 2D structure, alignment, homology, and phylogenetic analysis of protein targets

Comparing the amino acid sequences of HSPs of Homo sapiens and bacteria using bioinformatics methods can clarify the 
degree of molecular mimicry between these HSPs and thus help us to understand the immunopathogenesis of IBD. In this 
context, the sequences of HSPs 60 (GroEL), 70 (DnaK), and 90 kDa (htpG) were acquired from the National Center for 
Biotechnology Information (NCBI) database. These sequences are presented in FASTA format and represent the peptides 
of Homo sapiens and pathogenic microorganisms at the amino acid level, serving as sources of both self- and non-self-
peptides (S1 Table). For further details on NCBI, visiting the website at http://www.ncbi.nlm.nih.gov/ was recommended. The 
studies indicated the potential role of all the investigated bacteria via their HSPs or other proteins and mechanisms in IBD 
immunopathogenesis and implicated them in common GI infections or other systems [4,5,9–11,15,33,35,41,46,47,50–56].  
These bacteria mentioned in the literature review concerning IBD were listed in S1 Table. We utilized the Basic Local 
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Fig 1.  Graphical abstract: Diagram of the workflow of the proposed methodology of the steps used to reach the possible validity of the 
molecular mimicry hypothesis in IBD disease through human HSPs and bacterial equivalents. Each part of the pyramid shows the steps of the 
method from top to bottom. The Bullitt shape next to each step of the pyramid provided practical explanations of the study results, as well as the number 
of epitopes predicted from each of the HSPs presented by HLAs at that step. The workflow of 7 steps of the proposed method to predict the epitopes is 
as follows: In step 1, Protein targets: alignment, and homology analysis (Similarity percent), all bacteria exhibited substantial resemblance similarity with 
HSP 60: 96-100% (E. coli and S. typhi revealed 100% similarity); HSP 70: Almost 99- 100% (except E. coli with 92% similarity); HSP 90: Almost 90- 93% 
(except L. monocytogenes = 70% and C. difficile = 82%. In step 2, CTL 9-mer epitopes were selected based on HLA, toxicity, and antigenicity consider-
ations. In step 3, the Optimal HTL 15-mer Epitope Mapping (overlapping in terms of CTL) includes HSP 60 = 3234 (presented by MHC-II: related = 1471; 
not related 1763), HSP 70 = 3900 (presented by MHC-II: related = 1770; not related = 2130), HSP 90 = 3991 (presented by MHC-II: related = 1813; 
not related = 2178). In step 3, the HSP 60-related overlapping HTL epitope with CTL epitope presented by related (to IBD) MHC II HLA includes 
DRB3*01:01 = 295, DQA1*05:01-DQB1*02:01 = 294, DRAB1*03:01 = 294, DRB1*04:01 = 294, DRB1*13:01 = 294. In step 3, the HSP 60-related overlap-
ping HTL epitope with CTL epitope presented by not related (to IBD) MHC II HLA includes: DRB1*01:01 = 295, DRB1*15:01 = 295, DRB1*12:01 = 295, 
DRB1*13:02 = 295, DRB1*11:01 = 295, DRB1*07:01 = 288. The HSP 70 related overlapping HTL epitope with CTL epitope presented by related (to 
IBD) MHC II HLA includes: DRB3*01:01 = 355, DQA1*05:01-DQB1*02:01 = 353, DRAB1*03:01 = 355, DRB1*04:01 = 354, DRB1*13:01 = 353. The HSP 
70 related overlapping HTL epitope with CTL epitope presented by not related (to IBD) MHC II HLA includes DRB1*01:01 = 355, DRB1*15:01 = 355, 
DRB1*12:01 = 355, DRB1*13:02 = 355, DRB1*11:01 = 355, DRB1*07:01 = 355. The HSP 90 related overlapping HTL epitope with CTL epitope pre-
sented by related (to IBD) MHC II HLA includes: DRB3*01:01 = 363, DQA1*05:01-DQB1*02:01 = 363, DRAB1*03:01 = 363, DRB1*04:01 = 361, 
DRB1*13:01 = 363. The HSP 90 related overlapping HTL epitope with CTL epitope presented by not related (to IBD) MHC II HLA includes 
DRB1*01:01 = 363, DRB1*15:01 = 363, DRB1*12:01 = 363, DRB1*13:02 = 363, DRB1*11:01 = 363, DRB1*07:01 = 363. In step 4, the Optimal HTL 15-mer 
Epitope Mapping (overlapping in terms of CTL-Percentile Rank <10) includes HSP 60 = 136 (presented by MHC-II: related = 69; not related = 67), HSP 
70 = 150 (presented by MHC-II: related = 90; not related = 60), HSP 90 = 175 (presented by MHC-II: related = 96; not related = 79). In step 5, the Opti-
mal HTL 15-mer Epitope Mapping (overlapping in terms of CTL-Percentile Rank <10-Antigenicity VaxiJen > 0.4) includes: HSP 60 = 62 (presented by 
MHC-II: related = 33; not related = 36), HSP 70 = 77 (presented by MHC-II: related = 65; not related = 33), HSP 90 = 64 (presented by MHC-II: related = 49; 
not related = 32). In step 5, as described in the results section, the candidate 15-mer epitopes were chosen according to study criteria (immunological 
filters). In step 8, 13 epitopes were chosen considering (Table 1) 1- the high dispersion of restricting HLA class II alleles and 2- related percentile rank. 
In step 9, Comparative Analysis of Epitopic Areas, the human HSPs exhibited a high degree of sequence similarity with all their bacterial counterparts, 
specifically HSP 60 (positions 269-283) and HSP 70 (positions 361-375, 386-400, and 404-418). Note: Several HLAs can present each epitope, so the 
sum of epitopes of each HSP is not necessarily obtained from the sum of epitopes in complex with related and unrelated HLAs in opposite parentheses. 
(Receptor, HLA; Ligand, Epitope). Abbreviations: HSP, heat shock protein; MHC, major histocompatibility complex; HLA, human leukocyte antigen; CTL, 
cytotoxic T lymphocyte; HTL, helper T lymphocyte; IFN-γ, interferon-gamma.

https://doi.org/10.1371/journal.pone.0333618.g001
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Alignment Search Tool (BLAST) to align the collected sequences. For more information about BLAST, please visit http://blast.
ncbi.nih.gov/. In our research effort, we utilized the online service T-Coffee of the Centre for Genomic Regulation (CRG) in 
Barcelona to analyze the structural features of expresso-alignments. Using this sophisticated tool, we efficiently aligned pro-
tein sequences and accurately determined the percentage of HSP homology in the species studied [57]. The NCBI FASTA 
format of the sequences was then aligned with various sequences using the Clustal Omega tool in UniProt to determine 
target protein conservation without adjusting any parameters.

Hits on the target proteins in the human proteome were also investigated. For this purpose, we utilized the BLASTP 
(protein-protein BLAST) server in conjunction with the Reference Proteins (RefSeq protein) database, as described in 
“Compositionally Adjusted Substitution Matrices.” The value of E, the expected threshold, was maintained at 0.05 [58]. 
Additionally, multiple sequence alignments were performed using CLUSTAL O (1.2.4) from UniProt for phylogenetic analy-
sis, which examined their evolutionary divergence. (www.uniprot.org/align/clustalo).

The ExPASy ProtParam tool was used to examine the physicochemical characteristics of the target proteins (http://
web.expasy.org/protparam/). Antigenicity was evaluated using VaxiJen 2.0, with an antigen prediction cutoff of 0.4 (http://
www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) [59,60].

Currently, DeepTMHMM, as a Deep Learning Model, is the most comprehensive and efficient method for predicting the 
topology of alpha-helical and beta-transmembrane proteins using deep neural networks. The scientific community greatly 
benefits from the ability of DeepTMHMM to scan whole proteomes for both kinds of transmembrane proteins. In this study, 
the DeepTMHMM 2.0 server was used for the cellular topology of each HSP (https://dtu.biolib.com/DeepTMHMM) [61].

Conserved domains as protein families were classified through InterPro 92.0, a part of the ELIXIR infrastructure 
(https://www.ebi.ac.uk/interpro/search/sequence/) [62]. The physicochemical characteristics of the target proteins were 
analyzed to describe the anticipated epitopes by utilizing the ExPASy ProtParam tool (Available at http://web.expasy.org/
protparam/).

We used Position-specific Iterated BLAST (PSI–BLAST) to identify homology between distant species and confirmed 
the results with BLASTP. The access link is (https://blast.ncbi.nlm.nih.gov/Blast.cgi) [63,64]. We used the accession 
number from S1 Table to perform PSI–BLAST with different initial settings compared to BLASTP. We chose the Refer-
ence Proteins database (Refseq protein). We selected the settings for the bacteria mentioned in the Organism section to 
ensure a targeted search and exclude irrelevant species, such as plants and animals. We used the BLOSUM 45 algorithm 
for our study, as it’s better to set a lower value than the default 62 when comparing sequences from distant species.

2.2  Structural similarities of HSPs and their counterparts

In the first step, retrieval and analysis of desired human and bacterial proteins were performed using their UniProt ID in 
the UniProt database. All human proteins have experimentally determined structures, obtained primarily by cryo-EM, that 
effectively cover their sequences. Before starting the structure alignment, a comprehensive quality control of the struc-
tures was carried out to confirm their high quality. Special attention was paid to the careful testing of Ramachandran’s 
cases and the minimization of the energy resulting from the AlphaFold. It was ascertained that all the obtained PDB files 
met these criteria, as no outliers were revealed in the Ramachandran plot during the Procheck analysis, and the struc-
tures were found to be acceptable in terms of errat. Only HSP60 and HSP70 from Mycobacterium tuberculosis (strain 
ATCC 25618/H37Rv) had experimental structures among the microbial proteins. As no experimental structure for bacterial 
HSP90 was available, the AlphaFold structure [65,66] for HSP90 from Campylobacter jejuni (strain RM1221), with the 
closest sequence similarity, was utilized.

In the Chimera software, the respective human and bacterial PDB files were initially opened [67]. Subsequently, the 
MatchMaker tool was utilized with the default settings: the Needleman-Wunsch algorithm, the BLOSUM-62 matrix, and a 
matching threshold of 2 Å to align all chains between the proteins. The software automatically identified the best-matching 
chain pair for files containing all chains of the target protein. Irrelevant chains were removed from files that contain a 
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specific target protein chain. The RMSD scores between pruned atom pairs (MatchMaker) for the most similar chains from 
both proteins were calculated. This process provided the RMSD scores between the matched chains, which were then 
used to identify and retain similar chains for further analysis. Sequence identity, comparable to BLAST results, was com-
puted. The Match - > Align tool was then employed with default settings and circular permutation enabled to align these 
similar chains and produce the Overall RMSD (a more robust metric than the previous RMSD), Structural Distance Mea-
sure (SDM) [68], and Q-score [69]. SDM is a linear measure of structural dissimilarity, whereas the Q-score indicates the 
level of agreement between different superpositions. The SDM cutoff does not indicate homology but refers to the compu-
tational algorithm. Specifically, the SDM method uses a cutoff threshold of five to sample and measure atomic positional 
differences. As stated on the MatchAlign help page:

(https://www.cgl.ucsf.edu/chimera/docs/ContributedSoftware/matchalign/matchalign.html). These metrics are pivotal for 
normalizing RMSD and assessing structural similarity, which is influenced by the cutoff distance used for residue equiv-
alence, as well as the quality of superposition. This provides valuable insights into the structural characteristics of the 
aligned proteins. Also, the TM-score from RCSB was used for further structural alignment analysis [70].

2.3  Epitope mapping or calling

The analysis of epitope calling involved examining potential HLA-restricted epitopes using the Immune Epitope Database 
and Analysis Resource (IEDB), available at http://www.iedb.org [71,72]. Our investigation led us to select epitopes with 
the highest binding scores and lowest IC50 for further examination. We found that the identified epitopes had a preferred 
affinity for specific MHC-I and MHC-II molecules. These immunodominant peptides were compared to the HSP 60, 70, 
and 90 kDa sequences of particular bacteria mentioned in S1 Table.

2.3.1  CTL epitopes.  We used three servers for 9-mer CTL epitope identification, including NetCTL.1.2, IEDB, and 
NetTepi 1.0. We used the NetCTL 1.2 server to predict the 9-mer epitopes restricted by human MHC-I supertypes 
A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, and B62 [73]. The criteria for identifying epitopes were based on 
“transporter associated with antigen processing” (TAP) transport efficiency and proteasomal C-terminal cleavage, 
with cutoffs of 0.75, 0.05, and 0.15 for each. Additionally, we identified the restricted epitopes by HLA Class I alleles 
A*02:01, A*03:01, A*58:01, B*35:01, B*51:01, B*58:01, B*27:05, B*08:01, B*14:02, B*35:03, B*18:01, C*06:02, and 
C*14:02 using IEDB, which employed the consensus 2.18 prediction method. A low consensus score indicated a good 
binder [71,72]. The NetTepi 1.0 server, developed by DTU Health Tech, was used to identify epitope restricted by HLA 
Class I alleles A*02:01, B*35:01, B*58:01, B*27:05, and A*03:01, based on affinity-based scoring of T lymphocyte 
stability. We assigned a default relative weight of 0.16 to the stability prediction and 0.10 to the propensity prediction 
of T cells. The following link is provided: https://services.healthtech.dtu.dk/service.php?NetTepi-1.0 [74,75]. The HLA 
Class I epitopes identified in this study encompass 90 percent of the world’s population [76]. We selected peptides with 
a consensus score of equal to or less than 2 for further investigation, considering them favorite binders with a cutoff of 
less than 2. The CTL 9-mer epitopes, sequences, and numbers were retrieved from the integrated and reviewed results 
of three databases.

2.3.2  HTL epitopes.  The 15-mer epitopes were restricted by different alleles of HLA Class II DRB1, including 01:01, 
07:01, 11:01, 12:01, 13:02, and 15:01 were found to be unrelated to IBD. However, they encompassed almost 95 percent 
of the population and established a connection between HLA and IBD. The IEDB consensus technique was employed 
to estimate the following alleles: DRB1*03:01, 04:01, and 13:01, DRB3*01:01, and DQA1 05:01/DQB1 02:01 [77,78]. 
The examined HLA Class II epitopes cover 95 percent of the global population [76]. Peptides were classified into three 
percentiles: strong, mild, and non-binding, according to their strength. The thresholds used for classification were 2%, 
10%, and greater than 10%, respectively [79].

2.3.3  Overlapping, antigenicity, and toxicity of T-cell epitopes.  Epitopes restricted by multiple HLA alleles can play 
a significant role in the pathogenesis of IBD. These epitopes could trigger a strong immune response in the host. This 
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study identified epitopes that exhibit high binding affinity to multiple HLA molecules. The presence of essential and integral 
sequences in overlapping epitopes allowed for the activation of CTL and HTL cells [79]. To conduct a more thorough 
examination, this study focused on 15-mer HTL epitopes with a high binding affinity that overlapped with analogous or 
comparable CTL epitopes, using the core 9-mer sequence as a basis, and combined them into a single unified peptide 
fragment. We then used VaxiJen v2.0 (adjusting for the bacteria) to determine the antigenicity of the predicted epitopes, 
selecting only those with scores below 0.4 as the threshold [59,60]. To scan for toxic motifs in proteins, we utilized the 
ToxinPred 2.0 prediction module (https://webs.iiitd.edu.in/raghava/toxinpred/protein.phpp) [80,81] and analyzed based on 
the previous research [79].

2.3.4  Prediction of IFN-γ-inducing epitopes.  IFN-γ, a characteristic cytokine of both the innate and adaptive 
immune systems, can induce immune regulatory, anti-tumor, and antiviral actions. Identifying IFN-γ-inducing epitopes 
is fundamental for understanding the potential pathogenesis of IBD [9,82,83]. The online prediction server, IFNepitope, 
predicted epitopes associated with IFN-γ in target proteins that bind to MHC-II molecules (https://webs.iiitd.edu.in/
raghava/ifnepitope/predict.php). In this investigation, the “Motif and SVM hybrid” technique and the “IFN-gamma versus 
non-IFN-gamma” prediction model were chosen to predict IFN-γ epitopes [83]. The only HTL/MHC-II allele–HSP epitope 
complexes (IFNepitope usage for just MHC-II binders) associated with IBD that exhibited positive outcomes through this 
server were selected for subsequent assessment.

2.3.5  Final selected epitopes.  We selected epitopes from previous steps based on their HLA compatibility, 
toxicity (evaluated by the ToxinPred server), and antigenicity (assessed by the VaxiJen v2.0 server for bacteria). In 
step 8 of Fig 1, our approach to identifying epitopes restricted by most HLAs examined was systematic and data-
driven. We provided a painted epitopic area and detailed information on this systematic process ins S1 File (Excel 
file), with each sheet corresponding to one of the HSPs under investigation. We listed all HLAs tested in the first 
row, while the adjacent columns contained the epitopes represented by their amino acid sequence numbers. To 
facilitate visual analysis and rapid identification of broadly reactive epitopes with HLA, we implemented a color-
coding scheme based on the affinity of each epitope for binding to its respective HLA molecule. Finally, regions 
with high color density, indicating binding to multiple HLA types, were highlighted as epitopic areas for further 
analysis.

In addition, the first cell of each highlighted row, which represented a 15-mer epitope for HTL, contained the percen-
tile rank of the predicted epitope binding affinity with HTL. A number ranging from zero to ten was assigned, with lower 
values indicating a stronger predicted binding affinity. The selection of epitopes for subsequent analysis was based on the 
color density and the best (lowest) percentile rank score for binding affinity. This dual criterion prioritized epitopes with the 
broadest HLA restriction profile and the highest binding affinity. In this epitope mapping step, we aimed to select epitopes 
that are most likely to be present in a diverse human population, thereby improving the relevance and applicability of our 
findings to IBD pathogenesis.

2.4  Comparative analysis of epitopic areas

A BLASTP server was used to identify high sequence homology between self-HSPs and HSPs of thirteen bacteria. Based 
on the results, thirteen HLA-restricted human HSP epitopes were selected [58]. This step was conducted based on previ-
ous studies [36,37].

2.5  Virtual screening

2.5.1  Analyzing the HLA-epitope complex interactions by computational modeling and docking.  To generate 
three-dimensional (3D) structures and PDB files of the epitopes, we utilized the PEPFOLD3 server. This server predicts 
the conformational structures of peptides based on their amino acid sequences, as outlined in the sources [84,85] (https://
bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/). We obtained X-ray crystallographic structures of the common 

https://webs.iiitd.edu.in/raghava/toxinpred/protein.phpp
https://webs.iiitd.edu.in/raghava/ifnepitope/predict.php
https://webs.iiitd.edu.in/raghava/ifnepitope/predict.php
https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
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HLA alleles in humans from the Protein Data Bank (PDB). We eliminated previously bound ligands and minimized their 
energy. The HLA class I alleles and their corresponding PDB IDs in parentheses were as follows: HLA-B*44:02 (3KPM) 
[86], HLA-B*15:01 (B62/ 5TXS) [87], HLA-A*02:01 (6TDS) [88], and HLA-B*14:02 (3BXN) [89]. Additionally, we utilized 
HLA class II alleles, including HLA-DRB1*04:01 (4MD4) [90], HLA-DQ2 (DQ B1*02) 6U3M [91], DRB1*01:01 (7YX9) [92], 
and DRB1*11:01 (6CPL) [93]. All selected HLA alleles were identified as originating from the Homo sapiens organism, with 
no observed mutations, and were analyzed using the X-ray Diffraction method at a resolution of less than 2 angstroms 
(Å), displaying zero Ramachandran outliers (except for 6CPL, which had a 2.45 Å resolution).

To better understand the patterns of protein-protein interactions, molecular docking analysis was conducted using the 
LZerD (Local 3D Zernike descriptor-based protein Docking) Web Server (https://lzerd.kiharalab.org/upload/) to examine 
HLA allele interactions with screened epitopes. A refined model was determined to elucidate the connection between 
epitopes and HLA molecules within the peptide binding groove. The specific details of this model may vary according to 
cluster size [94]. PyMOL version 2.0, a molecular graphics system developed by Schrödinger, was used to assess the 
interaction patterns of the docked complexes. To identify the active sites of HLAs’ 3-dimensional protein structures, we 
employed DeepSite, a protein-binding site predictor that utilizes 3D-convolutional neural networks to evaluate protein 
(https://www.playmolecule.com/deepsite/) [95]. We also utilized the PDBsum online service (https://www.ebi.ac.uk/pdb-
sum) provided by the European Bioinformatics Institute (EMBL-EBI) in Cambridge. Specifically, we used the Ramachan-
dran plot statistics feature to analyze the docking structures of 4 HTL and 4 CTL complexes. EMBL-EBI is recognized as a 
renowned collaborating center for the management and analysis of large-scale biological data [96].

2.5.2  MD simulation analysis.  The CHARMM-GUI server was used to create the simulation system [97–99]. In the 
first step, the protein-ligand complex structures resulting from the docking process were generated in PDB format using 
PyMOL software. Subsequently, all of these structures were posted to the CHARMM-GUI website. The primary structure 
of the protein and the ligand were chosen, and any missing atoms and areas were modeled using an automated process. 
The dimensions of the solution system were selected to be rectangular, ensuring that the forces exerted on the particles 
closely resemble those of the fluid mass in real-world settings.

A standard value of 10 Å was employed to represent the separation distance between the boundaries of the biomole-
cule and the boundaries of the water box. Potassium chloride (KCl) salt ions, possessing a concentration of 0.15 M, were 
introduced into the system to achieve electrical neutralization, which closely approximates the physiological ion concentra-
tion. Cl- and K+ ions were quantified using the ion-accessible volume (V) and total system charge (Qsys). We employed 
the Particle-Mesh-Ewald method (PME) to effectively counteract the effects of long-range electrostatic interactions [100]. 
The Charmm36 force field was implemented to construct the topology and parameter files [101]. Finally, all generated 
components were successfully merged, and the system was thoroughly tested to ensure its structural soundness. The 
generated files were applied as input data to calibrate and run the simulation. The energy minimization process was 
performed using the PEM decreasing slope approach, and it was continued until the maximum force reached a value less 
than 1000 KJ/mol/nm. Achieving balance was frequently accomplished using a two-step approach [100].

We began with an initial phase involving a system of constant particle numbers, volume, and temperature (NVT). 
The duration of this phase varied depending on the system’s composition. In the NVT ensemble, the temperature was 
stabilized until it reached a steady state (plateau) at the target value. If the temperature was unstable, we extended the 
time. Generally, we found that 50–100 picoseconds (ps) were sufficient. Once the temperature was stabilized, the exper-
iment proceeded to the second equilibration stage, and the system pressure and, thus, density were stabilized using 
an NPT apparatus. This means the number of particles, pressure, and temperature remain constant before data collec-
tion. A Parrinello-Rahman barostat was used to add pressure [102]. Finally, we simulated 100 nanoseconds using the 
CHARMM36 force field to solve the equations of motion for the system, which contained the protein and ligand [101].

The simulation stability and energy balance were assessed by analyzing temperature, pressure, potential energy, and 
total energy following convergence. The flexibility and dynamism of the simulated HLA-Epitope complexes were revealed 

https://lzerd.kiharalab.org/upload/
https://www.playmolecule.com/deepsite/
https://www.ebi.ac.uk/pdbsum
https://www.ebi.ac.uk/pdbsum
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by studying their radius of gyration (Rg). Measuring the molecule’s shape was possible by tracking the radius of gyration 
at any given time. The Rg was then compared to the hydrodynamic radius that could be achieved and calculated using 
gmx gyrate. The Rg diagram was a valuable tool for better understanding the molecule’s overall expansion, the compact-
ness index of the protein structure, and the protein’s stability. It was necessary to ensure that the simulation reached an 
equilibrium state before proceeding with further analysis.
2.5.2.1 RMSD analysis of HLA-epitope complexes from the initial structure during simulation

In bioinformatics, the root-mean-square deviation (RMSD) is a valuable metric for determining the average distance 
between atoms of superimposed proteins, with a focus on the backbone atoms. After careful analysis of energy param-
eters and validation of simulation accuracy, RMSD plots were generated for the selected HLA-epitope complexes and 
epitopes. These diagrams confirmed the thermodynamic stability of the system through the plateau region, representing 
thermodynamic equilibrium. Therefore, these plots were considered a reliable tool for determining the appropriate time 
interval for further analysis. The RMSD analysis provided insight into the stability and flexibility of the protein during the 
simulation by comparing the state at the beginning (time zero) to the state at the end of the 100 ns simulation.
2.5.2.2 RMSF analysis of HLA-epitope complexes during the simulation

Through root-mean-square fluctuation (RMSF) analysis, protein flexibility was analyzed by measuring fluctuations in 
the average position of individual atoms or residues. This analysis enabled us to identify protein regions with higher RMSF 
values, which show greater flexibility during the simulation. We utilized the gmx rmsf tool of the Gromacs program to 
calculate the RMSF and generate a graph showing changes concerning the number of residues. This structural analysis 
allowed us to pinpoint the amino acids that contribute the most to the movement of the molecule and identify the most 
flexible parts of the protein structure [103]. Our analysis included calculating RMSF values for all HLA residues and epi-
topes in the complexes.
2.5.2.3 Analysis of hydrogen bonds

In MD simulations, it was necessary to determine the number of hydrogen bonds between the protein and its attached 
ligand to comprehend the complexity of the protein-ligand complex. The presence of a hydrogen bond was determined 
by measuring the distance and angle between an acceptor and a hydrogen donor. Our analysis focused on the impact of 
hydrogen interaction on the structure and stability of the HLA-Epitope complex, utilizing a gmx hbond and a 3.5 Å distance 
cutoff for H-bond analysis.
2.5.2.4 Analyzing hydrophobic interactions

Hydrophobic interactions played a considerable role in stabilizing the HLA-Epitope complex. The LigPlot+ program can 
be used to verify this. To confirm the presence of these interactions, the final frame of the simulation path for each com-
plex was analyzed [104].

2.6  Random forest and analytical strategy for evaluating the host and meta-expression patterns

In this study, to investigate the co-expression of chaperone and HSP genes in the host’s Gut and gut microbiome, we 
applied secondary data analysis through “The Inflammatory Bowel Disease Multi-Omics Database” (IBDMD). The fol-
lowing link is provided: https://ibdmdb.org/. We utilized 146 samples from the human gut transcriptome data, comprising 
95 samples from individuals with IBD and 51 samples from non-IBD individuals. Additionally, we analyzed 78 samples 
for the metatranscriptome, including 49 IBD and 29 non-IBD samples (S2 File, Sheets 2, 3, and 4). All samples were 
obtained from the IBDMDB database. We filtered the samples to include only those from individuals aged 18 and above, 
as IBD affects individuals differently based on age (i.e., individuals aged 18 and above). Information from various literature 
suggests that IBD manifests differently in individuals under the age of 18 compared to those over 18 [105,106]. The host 
transcriptome data was a read count table, representing the number of reads mapped to human genes. After filtering and 
normalization using the DESeq2 package, we ended up with 47034 genes [107]. Furthermore, we analyzed 78 paired-
end metatranscriptome samples using Bowtie2 software [108] and mapped them to the integrated gene catalog (IGC) 

https://ibdmdb.org/
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gene catalog [109]. After processing the data using the DESeq2 package, we identified 2576791 microbial genes. During 
processing and raw data extraction, as the read count was conducted through mapping using Bowtie2, we removed the 
genes mapped to fewer than 10 reads. Then, normalization was performed using DESeq2. The method used in this sec-
tion is derived from this study [110].

After identifying the classification features of IBD and non-IBD samples, a challenge was created due to the large 
number of these features. Overall, the dataset comprised 146 host transcriptome samples, containing 47034 features, 
and 78 metatranscriptome samples, with 2576791 features, indicating the breadth of the dataset. To address this, we 
utilized the Python 3.12 pyswarms package for feature selection using particle swarm optimization [111]. Subsequently, 
we obtained 4,283 features for the host transcriptome sample and 22,741 features for the metatranscriptome (S2 File, 
Sheet 1). We deployed the Random Forest (RF) algorithm as a machine learning model in the Scikit-Learn Python 3.12 
package for sample classification and division into training and test sets at an 80:20 ratio. We then executed the RF 
algorithm classifier on the data and reported the best evaluation results detailed in S5 Table. The results showed that 
the RF algorithm classified the metatranscriptome and host transcript samples with 93% and 90% accuracy, respec-
tively, which is an acceptable accuracy. Other evaluation parameters, including F1-score, also showed satisfactory 
results.

After analyzing the host transcriptome samples and referring to existing literature, we identified two gene groups: 
HSPs, comprising 82 genes, and the highly correlated IBD group, consisting of 111 genes (S3 File). The databases 
used for high-correlated genes with the IBD analysis included the Gene and Autoimmune Disease Association Database 
(GAAD) [112], DisGeNET databases [113] (available at Disgennet.org), SNPedia.com [114], Ensembl.org [115], Omim.org 
[116], and Varsome.com [117]. Of the 4283 genes identified through the feature selection algorithm, nine were common 
in the HSP and IBD groups. At the same time, 23 were common in the high-correlated group with the IBD group (S2 File, 
Sheet 6). To assess the expression correlation of these genes with a specific number of genes identified in metatran-
scriptome samples, we required individuals who had both host transcriptome and metatranscriptome samples available. 
Fortunately, we identified 13 such individuals in the IBDMDB database (S2 File, Sheet 5). To comprehensively evaluate 
the relationship between human and bacterial HSP expression levels and co-expression patterns, a Pearson correlation 
analysis was conducted using the NumPy package in Python 3.12 [118,119].

In the feature selection process, we identified nine types of HSP genes, with only HSPA6 and HSPA13 belonging to the 
HSP70 family and HSP90B1 as a member of the HSP90 protein family. Subsequently, we selected host transcriptomes 
from the IBDMDB based on the presence of acceptable transcripts, non-pseudogene status, and relevance to our study’s 
proteins (HSP60, 70, and 90). These genes were then analyzed for their correlation using a Pearson correlation coeffi-
cient of 0.8 or greater, as detailed in S4 File Sheet 3.

Moving forward, the IGC database (db.cngb.org) (dataset available at https://db.cngb.org/microbiome/genecatalog/
genecatalog_human/) was used, containing approximately 9.8 million gut microbiome genes, for biological annotation 
[109]. The following link is provided: https://ftp.cngb.org/pub/SciRAID/Microbiome/humanGut_9.9M/GeneAnnotation/IGC.
annotation_OF.summary.gz. Each transcriptome was assigned to a specific Kyoto Encyclopedia of Genes and Genomes 
(KEGG) orthology (KO) group, and we investigated their metabolic pathways and related KEGG Enzyme Commission 
(EC) numbers [120]. Subsequently, we obtained reactions associated with each EC number in the KEGG database based 
on the studies [110,121]. Notably, we identified bacterial transcripts with biological connections to folding, chaperone, and 
stress mechanisms, and these were highlighted in red font for emphasis.

3  Results

3.1  Homology analysis, sequence alignment of targets

We examined the proteomes of microorganisms related to IBD in the literature review for protein sequences with identities 
(exact match of amino acids) and similarities (conservative substitutions) exceeding 35% and 82%, respectively, using  

https://db.cngb.org/microbiome/genecatalog/genecatalog_human/
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the BLASTP tool from NCBI and T-Coffee Express. These numbers represent the minimum percentage of similarity for the  
bacteria studied. Therefore, the lowest rate was reported, and all bacteria were selected [48,122]. We summarized the 
results related to the identities and similarities of human HSPs 60, 70, and 90 with the equivalent bacterial protein in S1 
Table. S2 Table shows the results of aligning the sequences of human HSPs with those of HSPs from different bacte-
ria at the amino acid level. S1 Table presents the findings, accession numbers, and protein ID of all the target proteins 
in the current investigation. Our analysis revealed that the amino acid sequences of microbial HSPs and HSPs in the 
human proteome were comparable to a great extent, suggesting that human HSP60, 70, and 90 are involved in antigen 
recruitment. These comparable epitopes were potentially recognized as a result of an immune response aimed against 
microbial antigens. We employed a comprehensive comparison strategy to identify which microbes were most likely to act 
as molecular mimics and induce or relapse IBD. Our findings in S1 Table show that all the bacteria exhibited substantial 
resemblance similarity with HSP 60 (96–100 percent), HSP 70 (99–100 percent, except Escherichia coli O157:H7 with 92 
percent similarity), and HSP 90 (90–93 except Listeria monocytogenes and Clostridium difficile with 70 and 82 percent 
similarity respectively). E. coli O157:H7 and Salmonella typhi showed 100% similarity with HSP 60.

According to the data presented in S3 Table, the complete amino acid sequence of HSP 70 was identified as the most 
antigenic peptide on the VaxiJen 2.0 server, closely followed by HSP 90 and HSP 60, with antigen values of 0.5168, 
0.5009, and 0.4997, respectively. All of them (three) were probable antigens with a threshold of 0.4. Other physicochemi-
cal variables were evaluated and summarized in S3 Table, including molecular weight, theoretical pI, secondary structure, 
and half-life in human reticulocytes. All studied HSPs were structured as globular proteins and were located within the cell. 
Through InterPro analysis, it was determined that the conserved amino acid regions of HSP60 were 430–441; for HSP70, 
they were 9–16, 197–210, and 334–348, and for HSP90, they were 38–47. Additionally, a phylogenetic analysis was con-
ducted using CLUSTAL O (1.2.4) to align multiple sequences from UniProt (S1 Fig) and calculate their evolutionary dis-
tance. Interestingly, a closer common ancestor between Homo sapiens and L. monocytogenes than other bacteria were 
observed in the case of HSP 90. Notably, the conservation of protein sequence during evolution was observed between 
HSP60 and HSP70 of E. coli and Shigella dysenteriae, as well as in HSP90 of E. coli and Streptococcus pneumoniae. 
Finally, S2 Fig characterizes the topology analyzed through DeepTMHMM.

The results of PSI–BLAST and its iterations are presented in S5 File. In the third and fifth rounds of iteration, respec-
tively, HSP60 and HSP70 showed stable results. HSP90 did not yield any new results in subsequent iterations. Each HSP 
and iteration result is shown separately on a different Excel worksheet. The BLAST tree or Distance tree, which shows the 
homology and distance of species based on the mentioned protein, is also included. The specificity of BLASTP surpasses 
that of PSI–BLAST. When BLASTP fails to demonstrate homology, utilizing PSI–BLAST becomes imperative to pre-
vent the exclusion of distant homologs. However, in this particular investigation, BLASTP yielded satisfactory homology. 
Despite the unnecessary nature of PSI–BLAST, it was executed to corroborate the findings. The results of PSI–BLAST 
essentially confirmed those of BLASTP (S1 Table).

3.2  Structural similarities of HSPs and their counterparts

The best matches were selected based on S6 File and Fig 2, as previously described in the alignment of multimeric files. 
RMSD values less than one indicate a definite homologous relationship between the two HSP70-related chains, indicating 
higher structural similarity. Additionally, RMSD values less than 2 suggested high similarity, as observed for the next two 
proteins, HSP60 and HSP90. The RCSB alignment RMSD served as the homologous criterion for the TM score algorithm. 
All target structures exhibit acceptable homology, as values greater than 0.2 indicate significant similarity, while those 
above 0.5 suggest high homology. Additionally, the acceptable score for both structural and sequence alignment was 
achieved using the MatchAlign sequence alignment score. Significantly, although the scores for structural alignment were 
approximate and probabilistic, background knowledge of two proteins with similar functions and a known homologous 
relationship can raise the score, indicating their homology.



PLOS One | https://doi.org/10.1371/journal.pone.0333618  October 16, 2025 13 / 42

Fig 2.  3D structural alignment visualization of HSPs and their counterparts using Chimera. Human protein chains are represented in green, while 
bacterial proteins are represented in blue. The figure illustrates a clear correspondence between the alpha-helix and beta-sheet structures of human 
HSPs and their bacterial counterparts. The structural alignment presented indicates a noteworthy similarity between each pair: (A) HSP60 (8g7lH) 
aligned with GroEL as the HSP60 counterpart of M. tuberculosis (3rtkA). (B) HSP60 (8g7lJ) aligned with GroEL as the HSP60 counterpart of M. tubercu-
losis (3rtkB). (C) HSP70 (7kw7C) aligned with DnaK as the HSP70 counterpart of M. tuberculosis (6w6eI). (D) HSP70 (7kw7D) aligned with DnaK as the 
HSP70 counterpart of M. tuberculosis (6w6eI). (E) HSP90 (7zubA) aligned with htpG as the HSP90 counterpart of C. jejuni (AF-Q5HVP5-F1-model_v4). 
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3.3  Overlapping epitope mapping selection

In Fig 1, we identified 55, 76, and 88 CTL antigenic epitopes for HSP 60, 70, and 90, respectively. To identify potential 
immunodominant HTL epitopes, we used the IEDB consensus method and selected the highest-scoring epitopes restricted 
by HLA alleles. Additionally, we identified the epitopes and overlapping epitopes based on the criteria of our study. After 
applying immunological filters to the predicted epitopes, we selected those with favorable binding affinities and filtered 
them to isolate the most effective ones. The optimal epitopes met our criteria of being conserved, immunogenic (in terms of 
antigenicity), non-toxic, and overlapping in their recognition by CTL, HTL, and IFN-γ. They also had high scores, percentile 
ranks, affinities, and compatibility with restricting HLA alleles. S7-S10 Files contain the list of the candidate epitopes.

For HSP 60, 70, and 90, we identified 62, 77, and 64 overlapping antigenic HTL epitopes, respectively (overlapping 
in terms of CTL). However, the overlapping epitopes concerning IFN-γ and non-toxic reduced these numbers to 21, 57, 
and 24, respectively. We selected 13 epitopes based on their high dispersion of restricting HLA class II alleles and related 
percentile rank (Fig 1 and Table 1).

3.4  Final epitope selection through comparative analysis of epitopic areas

This study compared the structure and binding properties of bacterial and human HSP epitopes using BLASTP to iden-
tify potential matches and similarities. The findings presented in S11 File indicate that the sequences of human HSPs 
of 60 and 70 kDa, as well as their bacterial counterparts, are highly similar. Notably, all analyzed bacteria showed sim-
ilar similarity patterns. There was meaningful similarity observed for HSP 60, 70, and 90 in the restricted epitopes by 
DQA1*05:01-DQB1*02:01. No lack of homology was observed among any of the studied HLAs populations for any of the 
studied HSPs, suggesting that the DQA1–0501-DQB1–0201 alleles were the most restrictive for the majority of the puta-
tive immunodominant peptides that resemble the epitopes found on human HSP60.

The sequence of human HSP 70 at positions 204–218 exhibited a high level of similarity with most bacterial counter-
parts, except for two – Campylobacter jejuni and Helicobacter pylori – that did not show expected similarity. Human HSP 
90, on the other hand, displayed a punctual degree of similarity with most bacteria in certain positions (20–34 and 334–
354) but lacked homology with four selected epitopes of C. difficile and L. monocytogenes. No significant similarity was 
found between the studied bacteria and the identified epitopes from the previous step, including the second (256–270) 
and third (275–289) selected epitopes of HSP 70 kDa, as well as the third (516–530) and fourth (685–699) selected epi-
topes of HSP 90 kDa. (Numbering according to the amino acid position).

One of the most remarkable findings was the meaningful sequence similarity between human HSP60 and 70 and 
their bacterial counterparts, with an extreme resemblance in the HSP60 (269–283) and HSP70 (361–375, 386–400, and 
404–418) regions. The HLA DQA1*05:01-DQB1*02:01 allele restricted the final selected epitope of HSP 60, while the 
HLA-DRB1 alleles restricted three areas of HSP 70. Table 2 shows these similarities with selected epitopes.

3.5  Docking and MD virtual screening for analyzing the HLA-epitope complex interactions

The specific affinities and binding patterns of a subset of epitopes and HLA alleles were determined through Molecular 
docking analysis (Fig 3). The predictive models generated by the LZerD web server algorithm were organized accord-
ing to the Ranksum score, which is determined by summing the ranks from three individual scores; a lower score sug-
gests a more favorable result. This Ranksum score served as the primary method for ranking the predictive models. 
When interpreting the results, using the Ranksum score as the basis for model selection is advisable. PDBsum reported 

The PDB ID is provided, with the final uppercase letter indicating the respective chain written in parentheses. The RMSD results from the MatchAlign 
tool in Chimera for pairwise structural alignment show structural similarity, especially for HSP70 pairs. Abbreviations: Three-dimensional (3D); HSP (heat 
shock protein); Mycobacterium tuberculosis (M. tuberculosis); Campylobacter jejuni (C. jejuni).

https://doi.org/10.1371/journal.pone.0333618.g002

https://doi.org/10.1371/journal.pone.0333618.g002
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Table 1.  Listing of 13 characteristics of selected epitopes. These include overlapping CTL, HTL, IFN-γ, antigenicity, and non-toxicity. We ranked pep-
tides as strong, mild, and weak based on their binding manner (percentile). The potent binding peptides are represented by a shade of Lt Trellis style 
pattern cells, the mild ones by a shade of Lt Vertical style pattern cells, and the weak ones by white cells. The epitope thresholds for classification as 
strong, mild, and weak are less than 2% for strong, between 2% and 5% for mild, and between 5% and 10% for weak. The amino acids underlined in 
the “HTL Epitope Sequence” column represent the overlapped core amino acids with the CTL epitope. The machine learning prediction algorithm of the 
studied server classifies positive numbers in the SVM score as IFN-γ cytokine epitope (seventh column of the table) and negative numbers as non-toxins 
(eighth column). The abbreviations used in the table are HSP (heat shock protein), HLA (human leukocyte antigen), CTL (cytotoxic T lymphocyte), HTL 
(helper T lymphocyte), IFN-γ (interferon-gamma), SVM (Support vector machine).

https://doi.org/10.1371/journal.pone.0333618.t001

https://doi.org/10.1371/journal.pone.0333618.t001
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the Ramachandran plot statistics of docking complexes in S4 Table and S3 Fig. The optimal Phi and Psi degrees were 
determined for complex regions, including those classified as most favored, additional allowed, generously allowed, and 
disallowed.

Our team utilized molecular docking (MD) simulation to examine the structural protein-protein interaction, stability, 
energy, and functional aspects during various phases of affinity development. We ultimately selected four epitopes that 
accurately cooperate and interact with immune receptors through careful analysis, as confirmed by both docking and MD 
analysis. Our system demonstrated sufficient stability for simulation, as shown in the temperature graph analysis pre-
sented in S4 Fig. Additionally, S5 and S6 Figs provide comprehensive analyses of pressure and potential energy. The total 
energy balance following convergence is depicted in the graph found in S7 Fig. We also examined the radius of gyration 
of HLA-Epitope complexes in S8 and S9 Figs, respectively, to determine the flexibility and dynamic behavior of the sim-
ulated complexes. During the simulation, a lower Rg value indicates a more compact and stable protein structure, while 
higher values of Rg fluctuation indicate a less stable protein.

According to Fig 4, during the simulation, as part of the RMSD analysis in the MD evaluation, the epitope acted as a 
ligand and quickly reached equilibrium, exhibiting minimal fluctuations and the mentioned average RMSD. We selected 
the stability state of the simulation for further analysis of each complex. These findings suggested that the HLA-Epitope 
complexes in this study were robust.

According to the results illustrated in Fig 5, the peaks observed in the RMSF plots indicate the areas that experienced 
the most substantial fluctuation throughout the simulation. It had been established that the N-terminal and C-terminal 
regions, along with the helices and turns in proteins, displayed the highest degree of structural flexibility. These regions 
were highly dynamic and accounted for most of the fluctuations in protein structure.

Table 2.  The level of similarity between sequences of human HSPs at certain positions, as selected epitopes, and their bacterial counterparts. 
The abbreviations used in the table are HSP (heat shock protein), C. jejuni (Campylobacter jejuni), C. difficile (Clostridium difficile), E. coli 
(Escherichia coli), H. pylori (Helicobacter pylori), K. oxytoca (Klebsiella oxytoca), L. monocytogenes (Listeria monocytogenes), MAP (Myco-
bacterium avium paratuberculosis), M. leprae (Mycobacterium leprae), M. tuberculosis (Mycobacterium tuberculosis), S. typhi (Salmonella 
typhi), S. dysenteriae (Shigella dysenteriae), S. pneumoniae (Streptococcus pneumoniae), Y. enterocolitica (Yersinia enterocolitica).

HSPs Selected Epitopes (positions) High similarity Lack Similarity

HSP-60 First 269–283 All of them

Second (283–297) C. difficile, L. monocytogenes 11 bacteria from 
13 ones

Third (439–456) MAP, M. leprae 11 bacteria from 
13 ones

HSP-70 First (204–218) 11 bacteria from 13 ones C. jejuni, H. 
pylori

Second (256–270) None of them

Third (275–289) None of them

Fourth (361–375) All of them

Fifth (386–400) All of them

Sixth (404–418) All of them

HSP-90 First (20–34) C. jejuni, E. coli, H. pylori, K. oxytoca, S. typhi, S. dysenteriae, S. 
pneumoniae, Y. enterocolitica

C. difficile and L. 
monocytogenes

Second (334–354) C. jejuni, H. pylori, MAP, M. leprae, M. tuberculosis, S. typhi. C. difficile and L. 
monocytogenes

Third (516–530) None of them

Fourth (685–699) None of them

https://doi.org/10.1371/journal.pone.0333618.t002

https://doi.org/10.1371/journal.pone.0333618.t002
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According to Fig 6, stable hydrogen bonds between HLA and the epitope were observed in all four complexes during 
the 100-ns simulation period.

MD simulation analysis revealed that the HLA DRB1*11:01 HSP70-sixth epitope complex (“ETAGGVMTALIKRNS”) 
exhibited optimal hydrogen bonding, followed by the HLA DRB1*01:01 HSP70-fourth epitope complex. The HLA DQ2 

Fig 3.  The visualized predicted models of the three-dimensional (3D) structures of MHCs in complex with the four final selected epitopes. 
Docking depicts the interaction of selected epitopes with HLA in the active site region. This region illustrates the amino acids of the alpha helix of the 
agretope in the binding groove (detailed in Figs 6−9, based on MD results). Deep salmon and violet colors represent each epitope related to CTL and 
HTL, respectively. MHC-I and MHC-II receptors are depicted in aquamarine and green (forest color for chain A and lime green for chain B). Options: HLA 
Class II alleles, (A) HLA-DQ2 (DQ B1*02/ 6U3M- 1.90 Å resolution) (https://www.rcsb.org/structure/6U3M) carrying KPLVIIAEDVDGEAL (HSP 60- from 
269 to 283 AA); (B) DRB1*01:01 (7YX9- 1.76 Å resolution) (https://www.rcsb.org/structure/7YX9) carrying KSINPDEAVAYGAAV (HSP 70- from 361 to 
375 AA); (C) DRB1*04:01 (4MD4- 1.95 Å resolution) (https://www.rcsb.org/structure/4MD4) carrying ENVQDLLLLDVAPLS (HSP 70- from 386 to 400 
AA); (D) DRB1*11:01 (6CPL- 2.45 Å resolution) (https://www.rcsb.org/structure/6CPL) carrying ETAGGVMTALIKRNS (HSP 70- from 404 to 418 AA). 
HLA Class I allele: (E) HLA-B*44:02 (B44/ 3KPM- 1.60 Å resolution) (https://www.rcsb.org/structure/3KPM) carrying AEDVDGEAL (HSP 60- from 275 
to 283 AA); (F) HLA-B*15:01 (B62/ 5TXS- 1.70 Å resolution) (https://www.rcsb.org/structure/5TXS) carrying INPDEAVAY (HSP 70- from 363 to 371 AA); 
(G) HLA-A*02:01 (6TDS- 1.70 Å resolution) (https://www.rcsb.org/structure/6TDS) carrying LLLDVAPLS (HSP 70- from 392 to 400 AA); (H) HLA-B*14:02 
(3BXN- 1.86 Å resolution) (https://www.rcsb.org/structure/3BXN) carrying TAGGVMTAL (HSP 70- from 405 to 413 AA). Abbreviations: HSP, heat shock 
protein; MHC, major histocompatibility complex; HLA, human leukocyte antigen; CTL, cytotoxic T lymphocyte; HTL, helper T lymphocyte.

https://doi.org/10.1371/journal.pone.0333618.g003
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Fig 4.  RMSD plot of HLA-epitope complexes backbone in A-D complexes. (A) The complex of HLA DQ2 (DQB1*02) HSP60 selected peptide; (B) 
The complex of HLA DRB1*11:01 HSP70−6 selected peptide; (C) The complex of HLA DRB1*01:01 HSP70−4 selected peptide; (D) The complex of HLA 
DRB1*04:01 HSP70−5 peptide chosen. (Receptor: HLA; Ligand: Epitope). The RMSD of the HLA as a receptor in complex A initially increased to around 
0.55 nm during the first 20 nanoseconds of simulation. Afterward, it stabilized at 3 angstroms from around 40 nanoseconds until the end of the simula-
tion. During the simulation, the epitope, acting as a ligand, quickly reached equilibrium with minimal fluctuations and an average RMSD of 0.2 nm. For 
further analysis of this complex, we selected the last 60 nanoseconds of the simulation. Complex B achieved stability between 20 and 100 nanoseconds, 
with the HLA exhibiting an average RMSD value of 0.3 nm and the epitope having an RMSD value of 0.25 nm. Complex C demonstrated an RMSD value 
of 0.4 nm, and the receptor achieved relative stability after 60 ns. Throughout the simulation, the RMSD value of the epitope remained stable with low 
fluctuations, averaging 0.35 nm. In complex D, the HLA remained steady at a distance of 0.2 nm for 80 ns before undergoing a conformational change 
and stabilizing at 0.6 nm. Meanwhile, the epitope remained consistently stable at a distance of 0.2 nM throughout the simulation. Abbreviations: RMSD, 
root mean square deviation; MD, molecular dynamics; HLA, human leukocyte antigen.

https://doi.org/10.1371/journal.pone.0333618.g004

https://doi.org/10.1371/journal.pone.0333618.g004
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(DQB1*02) HSP60 epitope complex and the HLA DRB1*04:01 HSP70-fifth epitope complex were equally ranked as the 
last two (Figs 4–10).

Figs 7–10 highlight the interplay between the agretope of epitopes and the residues of the binding pocket of HLAs that 
act as receptors as part of secondary outcomes or results. This study included a schematic representation of this interplay 
to aid comprehension. This region showed the interactive amino acids of the alpha helix of the binding groove.

Fig 5.  During simulation, the RMSF plots of HLA-Epitope residues in complexes A to D are shown until the system reaches equilibrium. (A) 
The complex of HLA DQ2 (DQB1*02) HSP60 selected peptide; (B) The complex of HLA DRB1*11:01 HSP70−6 selected peptide; (C) The complex of 
HLA DRB1*01:01 HSP70−4 selected peptide; (D) The complex of HLA DRB1*04:01 HSP70−5 peptide chosen. (Receptor: HLA; Ligand: Epitope). For 
complexes A to D, the average RMSF of the protein was 1.04, 0.12, 0.2, and 0.22 nm, respectively. On the other hand, the peptides displayed an aver-
age RMSF of 0.1, 0.13, 0.24, and 0.14 nm for the same complexes. Abbreviations: RMSF, root mean square fluctuation; MD, molecular dynamics; HLA, 
human leukocyte antigen.

https://doi.org/10.1371/journal.pone.0333618.g005

https://doi.org/10.1371/journal.pone.0333618.g005
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3.6  Host and meta co-expression patterns

Using Pearson’s correlation coefficient, we evaluated the gene expression of the 9 HSPs and 23 highly correlated with 
IBD-identified genes, as well as the specified number of genes in the metatranscriptome samples among the 13 standard 
samples, including both types of samples. S2 File Sheet 6 and S4 File Sheet 1 display seven human HSP genes and 

Fig 6.  Throughout the MD simulation, multiple hydrogen bonds were observed between the epitope and HLA in complexes A through D. (A) 
The complex of HLA DQ2 (DQB1*02) HSP60 selected peptide; (B) The complex of HLA DRB1*11:01 HSP70−6 selected peptide; (C) The complex of 
HLA DRB1*01:01 HSP70−4 selected peptide; (D) The complex of HLA DRB1*04:01 HSP70−5 selected peptide). The number of bonds formed varied, 
with complex A showing an average of 1.21 bonds (up to 6), complex B exhibiting an average of 4.65 bonds (up to 12), and complex C forming an aver-
age of 2.29 bonds (up to 8). Complex D displayed an average of 1.21 bonds (up to 6). Abbreviations: MD, molecular dynamics; HLA, human leukocyte 
antigen.

https://doi.org/10.1371/journal.pone.0333618.g006

https://doi.org/10.1371/journal.pone.0333618.g006
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86 microbial genes with a Pearson correlation coefficient greater than or equal to 0.9, demonstrating their satisfactory 
expression in individuals with IBD. All correlation coefficients observed had a p-value of less than or equal to 0.01, indicat-
ing a statistically significant level of correlation. Additionally, S2 File Sheet 6 shows that specific human genes are highly 
correlated with IBD and microbial groups, with a Pearson correlation coefficient of 0.98 or greater in 13 standard samples. 
The critical point is that the Pearson correlation coefficient of any sample was not smaller than or equal to −0.98. The 
p-value was less than or equal to 0.01 in all cases, indicating a high level of statistical significance. It should be noted that 
when using threshold limits of 0.9 and −0.9 to report the results, 4058 gene pairs with acceptable correlation were identi-
fied, which, due to their large number, were not reported here. Among these genes, six belonged to the human group, and 

Fig 7.  The graphical representation has been provided to illustrate the interaction between the agretope of the epitope (C) as the sequence 
“KPLVIIAEDVDGEAL” with the HLA binding pockets (chains A and B) in the HLA-DQ2 (DQB1*02)-HSP60 complex. It has been observed that the 
epitope does not interact with the A chain of the HLA-DQ2 receptor. However, a hydrophobic interaction has been noted in the B chain, centered on the 
Ala No. 7, Lys No. 1, and Val No. 4 residues from the 15mer sequence of the selected HSP60 epitope.

https://doi.org/10.1371/journal.pone.0333618.g007

https://doi.org/10.1371/journal.pone.0333618.g007
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140 belonged to the microbial group. In general, it can be stated that both human and microbial genes displayed accept-
able expression in IBD.

Furthermore, in S4 File Sheet 2 manifested annotated bacterial transcripts that exhibit a high correlation (Pearson 
correlation coefficient of 0.8 or greater) with human non-pseudogene HSP transcripts, namely HSPA12A, HSPA12B, 

Fig 8.  This image depicts the interaction between the agretope of the epitope (C) as the sequence “ETAGGVMTALIKRNS” with residues of the 
receptor binding pocket of the HLA-DRB1*11:01 (chains A and B) in the HLA-DRB1*11:01-HSP70-6 complex. Notably, an evident hydrophobic 
interaction exists between specific epitope residues, including Val No. 6, Gly No. 5, Met No. 7, Thr No. 8, and the A chain of the HLA-DRB1*11:01 recep-
tor. Additionally, we can observe a hydrophobic interaction between residues Ala No. 3, Val No. 6, and Ser No. 15 of the 15mer sequence of the sixth 
selected epitope of HSP70 protein with the B chain of the receptor.

https://doi.org/10.1371/journal.pone.0333618.g008

https://doi.org/10.1371/journal.pone.0333618.g008
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HSPA6, and HSPA13 from the HSP70 family, and HSP90B1 from the HSP90 protein family. These HSP transcripts were 
in common with those from the feature selection process. The greater than 0.9 correlated bacterial transcripts to these 3 
HSPs were presented in the previous section in sheet 1 of S4 File. On the other hand, for the 12 other non-pseudogenes 

Fig 9.  From a two-dimensional perspective, an examination of the interactions between the agretope of the epitope (C) as the sequence 
“KSINPDEAVAYGAAV” with the residues of the receptor binding pocket (chains A and B) in the HLA-DRB1*01:01-HSP70-4 complex is possi-
ble. The data indicate that a hydrophobic interaction is formed between the A chain of the HLA receptor and the epitope residue, facilitated by residue 
Gly-12 of the epitope. Moreover, a hydrophobic interaction appears between the B chain of the receptor and the fourth selected epitope of the HSP70 
protein, and this interaction is facilitated through the cooperation of Ala No. 10, Val No. 9, and Asp No. 6 from the 15mer sequence.

https://doi.org/10.1371/journal.pone.0333618.g009

https://doi.org/10.1371/journal.pone.0333618.g009
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Fig 10.  This image depicts the interaction between the agretope of the epitope (C) as the “ENVQDLLLLDVAPLS” sequence, as well as the res-
idues found in the receptor binding pocket (chains A and B) of the HLA-DRB1*04:01-HSP70-5 complex. The figure reveals that only one residue 
of the fifth selected 15mer epitope of HSP70 has entered into a hydrophobic interaction with each of the receptor chains. Specifically, Asn No. 2 and Val 
No. 3 interact with the A and B chains of the receptor, respectively.

https://doi.org/10.1371/journal.pone.0333618.g010

https://doi.org/10.1371/journal.pone.0333618.g010
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not included in the feature selection, no correlations were observed that were greater than 0.9 or smaller than −0.9. A 
total of 161 meta-transcriptomes with correlations exceeding 0.8 are detailed in S4 File Sheet 3 (all with a p-value of 0.01 
or lower). Annotated bacterial transcripts related to folding, chaperone, and stress mechanisms are highlighted in red for 
easy identification.

During the feature selection and RF process to distinguish between IBD and non-IBD individuals, the analysis of nine 
host HSP transcripts revealed an interesting finding. We discovered significant correlations between human-specific HSPs 
and bacterial chaperones, characterized by their respective K numbers. For instance, we identified eight unique chaper-
one K numbers and folding proteins with a correlation of over 0.9 that are linked to human HSPs commonly associated 
with RF, such as K03686 (DnaJ, the counterpart of HSP60). Additionally, we identified 18 unique chaperone K numbers 
and folding proteins with a correlation coefficient of over 0.8 associated with human HSPs common to RF, including 
K04078 (GroES, as the HSP60 counterpart). Moreover, for human HSPs that are not commonly associated with RF, 
we identified nine unique chaperone K numbers and folding proteins, with a correlation coefficient of over 0.8, including 
K03686 (DnaJ, the HSP60 counterpart) and K04078 (GroES, the HSP60 counterpart). After eliminating duplicates, we 
found 24 unique chaperone K numbers correlated with bacterial chaperones and folding proteins, demonstrating a strong 
and significant correlation with human HSPs. As an intriguing finding, the genes HSPA12A (mentioned in the RF result) 
and HSPA5 (not mentioned in the RF), exhibited, strong correlations of above 0.9 and 0.8, respectively, with the bacterial 
DnaJ (a co-chaperone of DnaK, the bacterial equivalent of HSP70), with statistical significance at p ≤ 0.01 (S4 File, Sheets 
1 and 3). Feature selection and RF analysis indicated that HSPA12A can differentiate between individuals with IBD and 
those without, whereas HSPA5 cannot show this capability. Both genes encoded HSP70 family members [123–127] and 
showed a significant correlation with bacterial chaperones, particularly DnaJ, as annotated in K03686 which plays a role 
in protein folding, as supported by information from the KEGG and IGC databases. The KEGG Orthology database was 
utilized to standardized gene classifications based on function and evolutionary relationships [120,128,129].

4  Discussion

Current research suggests that IBD is a complex multifactorial disorder involving immunological, genetic, environmental, 
microbial interactions and behavioral aspects, as its pathophysiology [6,11,13,47]. This investigation aims to explore the 
relationship between HLA, the most polymorphic protein [20,23,130], and HSPs, among the most conserved proteins 
[34,35,40,42], to elucidate their roles in IBD pathogenesis. While certain HLA types, such as HLA-B27, HLA-B51, and 
HLA-DRB1, have been implicated in IBD, their precise contributions remain unclear [4,5,20,27]. Our primary endpoint 
revealed meaningful sequence similarity between one epitope of human HSP60 and three epitopes of HSP70 and their 
bacterial counterparts, supported by MD simulations. The secondary endpoints included identifying residues in the agre-
tope and receptor binding groove of the epitope-HLA complex, as well as bacteria exhibiting considerable similarities to 
their HSP counterparts and HLA alleles restricting these epitopes. The findings suggest that such epitopes can trigger 
autoimmune responses in the context of infections via T cells, consistent with the known involvement of CTL in IBD [131].

The interaction between cellular stress responses and gut microbiota is essential for intestinal homeostasis and 
understanding the pathogenesis of IBD [2,3,10,132]. HSPs play dual roles in IBD pathogenesis. Extracellular HSPs 
can act as damage-associated molecular patterns (DAMPs) during cellular stress, triggering the inflammatory pro-
cess observed in IBD. In contrast, intracellular HSPs that evoke the misfolding of specific HLA proteins could con-
tribute to immunomodulation, potentially preventing autoimmune disease [33,34,82,133]. HSP60, a protein located 
in mitochondria, typically remains hidden on the plasma membrane [38]. HSP60 and HSP70 are highly conserved 
across species and can induce pro-inflammatory and immunoregulatory processes, acting as molecular adjuvants, 
enhancing antigen presentation and cytokine production. These processes are linked to the activation of the inflam-
masome, NF-κB signaling, and reactive oxygen species generation, all of which are involved in the pathogenesis of IBD 
[34,35,37,41,42,82,133–138].
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Studies have explored the role of HSP60 and HSP70 in treating autoimmune conditions such as rheumatoid arthritis, 
type I diabetes, and IBD due to their potential to induce immunological tolerance [33,34,39]. HSPs can both activate and 
suppress inflammasomes, indicating the importance of carefully selecting HSP modulators in therapeutic applications. For 
instance, both the overexpression of HSP70 and the inhibition of HSP90 with geldanamycin effectively halt the activa-
tion of the NLRP3 inflammasome due to HSP90 role in folding pro-inflammatory proteins [40,139,140]. According to the 
findings of this study, a targeted strategy focused on specific epitopes derived from HSPs has the potential to facilitate an 
understanding of immunopathology and inform future therapeutic investigations. This approach can potentially be more 
productive and streamlined compared to examining the complete framework of HSPs.

Molecular mimicry and epitope dissemination are recognized mechanisms involved in autoimmunity [2,17,33,38,49]. 
These concepts have been explored in the context of IBD [2,9,33,49,141], particularly due to the influence of viral pro-
teins on changes in bacterial diversity associated with IBD [49], as well as in other autoimmune disorders related to 
HSP epitopes [17,38]. Molecular mimicry occurs when antigens derived from a pathogen cross-react with host proteins. 
This process can activate naive autoreactive T lymphocytes, which recognize both non-self, like infectious agents, and 
self-epitopes, and potentially initiate autoimmune responses [2,4,14,16,26,36,91,131]. Animal model studies have demon-
strated that structural similarity among microbial cross-reactive epitopes can lead to the development of autoimmune dis-
eases [11,14,15,40,43,142,143]. Nevertheless, our immunoinformatic analysis identified specific bacterial HSP epitopes 
featuring conserved motifs that can induce molecular mimicry, even in the absence of identical amino acid sequences 
[144–147]. These findings indicate that these epitopes can facilitate comparable synapses between TCRs, peptides, and 
HLA configurations.

This cross-reactivity supports the activation paradigm of CTLs and HTLs in IBD pathogenesis [2,131,148], as demon-
strated in animal models and previous reports. For instance, animal model study showed that introducing HSP60-
reactive CD8 + T cells into mice significantly triggered inflammation in the intestinal or throughout the body, depending 
on the MHC-I context [33,149]. This type of activation, particularly the dysregulation of the TH1 response in the GALT in 
response to luminal microorganisms and their antigens, was is considered a potential mechanism for IBD pathogenesis 
[2]. Furthermore, this activation paradigm, where multiple HLA epitopes from different potential target proteins are rec-
ognized by various TCRs, is supported by earlier findings [15,48,55,86,131,150–153]. A thorough investigation into the 
immunogenetic aspects of overlapping CTL and HTL epitopes is essential for understanding cellular immunity [27,79,91]. 
When these epitopes are presented by MHC-I and MHC-II molecules, they form epitope-HLA complexes that activate and 
stimulate T cell proliferation. In the case of HTL, this process also activates B cells.

Using computational biology tools, consistent with other studies [17,154], we selected and evaluated thirteen epi-
topes for their potential to induce autoinflammatory or autoimmune responses, focusing on immunological criteria such 
as sequence conservation, affinity, immunogenicity, and similarity to human proteins. Our findings highlighted a 15-mer 
sequence, “KPLVIIAEDVDGEAL,” (positions 269–283 of the human HSP 60 protein), which showed 100% identity with its 
bacterial counterparts, except for L. monocytogenes, which exhibited 86% similarity. Additionally, other promising epitopes 
from HSP70 were identified at specific positions, including 15-mer sequences, “KSINPDEAVAYGAAV,” “ENVQDLLLL-
DVAPLS,” and “ETAGGVMTALIKRNS,” which were aligned with positions 361–375, 386–400, and 404–418 within the 
human HSP 70 protein, respectively (refer to Table 1 and S11 File). MD simulations indicated stable HLA-epitope com-
plexes, supporting their role in facilitating molecular mimicry and potentially informing future research. The extensive 
homology between human and bacterial HSP 60 and HSP 70 epitopes across various HLA groups also warrants further 
research into altered peptide ligands (APLs) [17,33,34,36,37,41,155] and the develop immunomodulating oligonucleotides 
by mimicking bacterial DNA [156].

Recent research has elucidated the complex interplay between gut microbiota and T lymphocytes, shedding light 
on the pathogenesis of IBD and potentially paving the way for novel targeted immunopharmacological interventions 
[2,10,157,158]. Antigen-specific therapies, also known as APLs, show promise in developing innovative treatments 
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[155,159–161], by limiting T-cell activation, modulating immune responses, competing with immunogenic peptide ligands 
for TCR binding, and inducing low-affinity interactions between HSP-derived epitope-HLA complexes and autoreactive T 
cells [143,144,162–165]. Ongoing research aims to identify key antigens associated with IBD, with the goal of creating 
therapies that target these antigens. However, the safety and efficacy of these therapies still require further examination 
[143,166]. Targeted epitopes offer prospects for antagonistic substances that induce tolerance in autoreactive T cells, 
thereby potentially immunomodulation, and anergy. This approach could inspire the development of therapeutic mono-
clonal antibodies, immunomodulatory peptides, and vaccines for autoimmune and auto-inflammatory diseases [26,167]. 
Additionally, strategies that involve suppressive and exhausted T lymphocytes and modified epitopes could provide new 
treatment possibilities for IBD [6,131]. In this way, in vitro studies suggest that modified epitopes may effectively induce 
T-cell exhaustion. Notably, APLs, also known as frameshift or alternative reading frame peptides, have shown potential as 
neoantigen vaccines in cancer therapy and inflammatory immune diseases. Previous research has also considered oral 
vaccines based on HSP60 epitopes and APL derived from them. Still, their impact on autoimmune and auto-inflammatory 
disorders remain important areas for further exploration [155,168–171].

Furthermore, the IFN-γ epitopes were found to upregulate IFNs-related genes and their potential effects on both 
adaptive and innate immunity, particularly in relation to the MHC-I presentation pathway associated with HSPs and the 
development of IBD [1,4,9,15,34,55,82,83,151]. It highlights the importance of the immunodominant epitope that stimu-
lates the production of TNF-α in the progression of IBD. This suggests a therapeutic strategy that involves targeting gut 
flora to enhance the effectiveness of TNF-α inhibitors. The imbalance in intestinal mucosal immunity is identified as a 
significant factor contributing to IBD, leading to damage to gastrointestinal epithelial cells and disrupted barrier function 
[1,4,9,151,172]. The study focused on analyzing overlapping epitopes with IFN-γ, as there were no computational tools 
available for identifying TNF-α-inducing epitopes. It is important to note that specific epitopes may activate other immune 
cells through complex signaling pathways (Table 1).

An InterPro analysis revealed a conserved domain within HSP60 (amino acids 430–441) that was selected for further 
study based on the final criteria, including HLA allele density and epitope percentile rank as determined by the IEDB. This 
led to the selection of epitope 439–456 as the third selective epitope from HSP 60. While this domain did not exhibit con-
siderable similarity across all 13 species analyzed, it did share similarities with two mycobacterial species, M. leprae and 
Mycobacterium avium paratuberculosis (MAP) (Table 2). Certain regions reported by InterPro were manually excluded 
from the analysis due to inadequate presentation by diverse HLA alleles, not acceptable IEDB percentile ranks, negative 
results from the IFN Epitope server, or positive results from ToxinPred.

Our study revealed that sequences of all the studied bacterial HSP 60, HSP 70, and HSP 90 shared remarkable 
similarities with human HLA-DQA1*05:01-DQB1*02:01-restricted epitopes. The observed similarities extended beyond 
specific epitopes and affected other regions of bacterial HSPs. This finding suggested potential molecular mimicry and 
cross-reactivity, especially in genetically predisposed individuals during bacterial infections. These results are consistent 
with previous research that has linked specific HLA allele epitope complexes to immune-related conditions and autoimmu-
nity through self-antigen mimicry [2,17,144].

Our research contributed to the growing body of evidence implicating specific bacterial species frequently associated 
with IBD, suggesting their potential to trigger autoimmunity through molecular mimicry [33,50]. While some bacteria 
such as Salmonella, Campylobacter [53], L. monocytogenes [173,174], Clostridioides difficile [15,47,55,162], E. coli 
[9,15,52,55,174,175], H. pylori [33,174], Klebsiella [9,176], MAP [15,33,55,174,177], S. aureus [50], Yersinia [178,179], 
M. paratuberculosis and C. jejuni [180] have been associated with IBD, the precise role of each remains debated, such as 
MAP, Streptococcus, Clostridia, E. coli [9,173], and H. pylori [53,54,181], in the context of IBD [15,152]. At the same time, 
the infection could trigger an imbalanced immune response against commensal bacteria and molecular mimicry [2,175]. 
The degree of similarity between bacterial and human proteome (HSPs in our study), particularly in immunogenic epi-
topes, may underlie these associations and mimic human counterparts. According to some studies, some of the bacterial 
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infections we investigated were not present before the onset of IBD or did not have sufficient time to develop. Subse-
quently, they could not mimic IBD. In contrast, treatments that suppress the immune system for IBD can raise the chances 
of reactivating dormant infections [162].

Using both 9-mers and 15-mers enhances immune recognition and is compatible with a wide range of MHC alleles, 
thereby improving the overall effectiveness of the immune response [182]. Furthermore, pathogenic bacteria can activate 
the innate immune system, trigger co-stimulatory signals and engaging the acquired immune system. This is particularly 
relevant in cases of gut dysbiosis and mucosal barrier dysfunction, which can lead to the inflammation commonly asso-
ciated with IBD [6,35,52,131,183,184]. Future prospective studies, including cohort studies, nested case-control designs, 
systematic reviews, meta-analyses, and umbrella reviews, should further explore the connection between changes in the 
gut microbiome, molecular mimicry, and IBD.

The role of HSPs in IBD is a topic of ongoing debate within the scientific community. Exploring HSPs in other autoim-
mune diseases may uncover mechanisms similar to those in IBD. Research indicates this role supported by HSP-reactive 
T cells in IBD patients and triggering cross-reaction between bacterial the host’s orthologous HSPs [33–35,82,155,185]. 
There is no consensus on their specific role in these conditions. Some researchers view HSPs as part of a broader 
dysbiosis and immune dysregulation, while others believe that certain HSPs directly contribute to the development of the 
disease. The complexity of IBD, which involves genetic, environmental, and microbial factors, makes it difficult to isolate 
the specific impact of these proteins. HSP-reactive T cells may have dual effects; they can provide anti-inflammatory 
responses in some contexts while contributing to inflammation in IBD. This highlights the dual role of HSPs as both 
protective and pathogenic molecules in different contexts which adds to the challenge of defining their impact on IBD 
[33–35,82,186].

Our study proposed that molecular mimicry could be a mechanism behind the immunopathogenesis of IBD. The results 
revealed meaningful sequence similarity between specific epitopes of human HSP60 and HSP70 and their bacterial coun-
terparts. This research identified key interactive residues in epitope-HLA complex. Additionally, HLA alleles restricted the 
selected epitope were identified, which supported our initial hypothesis through the dry lab immuno-informatics approach. 
These findings are consistent with previous research conducted through various approaches on molecular mimicry in 
IBD, such as the work of Cappello et al. (2019), Pahari et al. (2017), Tie et al. (2023), and Brown et al. (2019) [2,9,26,34], 
and other autoimmune diseases, particularly those associated with Salmonella infection, utilizing the immunoinformatic 
approach [48]. The similarities in amino acid sequences levels of HSPs between bacteria and humans suggested a poten-
tial mechanism for development of IBD through molecular mimicry and subsequent immune activation.

Alongside sequence similarity, our study evaluated the significance of structural similarity, particularly in the case of 
HSP70 (refer to Fig 2 and S6 File), as well as structural reactions (see Figs 3 and 7–10), highlighting their significance 
in understanding molecular mimicry. This concentration on both structural and sequence similarities correlated with the 
findings of Pahari et al. in their 2017 study [26]. Despite the sequential, structural, and functional similarities and the con-
served nature of these proteins, variations in specific sequence motifs or regulatory elements can influence their functions 
and physiology across different species. This understanding is substantial for unraveling cellular signaling and immuno-
logical pathways. Recent research has emphasized the importance of structural aspects in the TCR-peptide-MHC (pMHC) 
interaction and recommends incorporating docking and MD simulations into our analysis [141,150].

In our analysis of the IBDMDB dataset, we uncovered intriguing correlations between specific human HSPs and 
bacterial chaperones, identified by their K number identifiers. Interestingly, Host and meta-co-expression patterns in the 
gut environment of IBD individuals indicated the simultaneous presence of HSPs and bacterial chaperones, particularly 
HSP70 and bacterial DnaJ, both of which belong to the HSP70 family [187–190]. The pronounced correlation between 
human HSPA12A (r > 0.9) and HSPA5 (r > 0.8), which encode HSP70 in cellular stress responses and bacterial DnaJ, sug-
gests a potential interaction or co-expression pattern in the gut environment under stress, infection, or inflammatory con-
ditions. This co-expression could facilitate cross-reactivity in genetically susceptible individuals, leading to or exacerbating 
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IBD symptoms, where the gut microbiome plays a substantial role in immune system interactions. Bacterial HSP70 
and their similarity to human HSP70 proteins might trigger an immune response that cross-reacts with human proteins, 
potentially leading to autoimmune responses and inflammatory conditions like IBD. Furthermore, our findings built upon 
and extended the existing body of research investigating bacterial HSPs as potential triggers of molecular mimicry in IBD. 
[26,33,34,36,38–41,43,133,137,138,153,186].

Additionally, our study of transcriptomes revealed correlations between host HSPs and those of gut bacteria, along 
with other bacterial genes that are not classified as HSPs, such as proteases and chemotaxis as motility-related genes, 
provide intriguing insights into the etiology of IBD, as revealed by the IBDMDB database. These findings may suggest 
a potential convergence in stress response pathways between the host and the microbiome, highlighting the need for 
further investigation into these interactions and their implications for the pathogenesis of IBD. This added another layer of 
complexity to this picture, suggesting that molecular mimicry in IBD may involve HSP-HSP interactions and other bacterial 
proteins that resemble chaperones in structure or function.

The complexity of IBD itself, coupled with the intricacies of its pathogenesis, methodological variations in research 
studies, and differences in patient populations, often leads to disagreements about the disease. IBD is characterized by 
a highly personalized pattern of symptoms, triggers, and treatment responses, which makes it challenging to pinpoint 
the exact role of specific bacteria and their interactions with T-cells across all IBD cases. Furthermore, variations in the 
technology used to study the microbiome, study design, sample size, and patient demographics can result in different 
interpretations of data. While there is consensus on the importance of gut microbiota in IBD, the specific contributions of 
individual bacterial species and their mechanisms remain areas of active research and debate. Some studies suggest that 
particular pathobionts may exacerbate IBD, while others argue that their presence is a secondary effect of the altered gut 
environment in IBD patients [2,3,6–8,10,13,52,131,191]. The existing literature reveals conflicting findings regarding the 
role of HSPs in IBD, indicating a need for more focused research on their potential causative and protective roles. Ongo-
ing targeted studies are necessary to understand the specific HSP epitopes interact with HLAs, as well as the potential 
of HSPs as biomarkers and therapeutic targets in IBD. From this perspective, future studies, particularly those employing 
longitudinal designs, high-throughput sequencing technologies, and metagenomics, are crucial for unraveling the complex 
interplay between the gut microbiota, host immune responses, and HSPs in IBD. This research will further our under-
standing of the disease and pave the way for innovative therapeutic strategies that target the gut microbiome and these 
molecular patterns.

The significance of our results lies in the molecular mechanism of immunopathogenesis in IBD. We focused on specific 
bacterial HSPs, their derived particular epitopes that elicited autoreactive T cells, and residues involved in epitope-HLA 
complexes. Our findings highlighted the complex interactions between bacterial HSPs in IBD immunopathogenesis 
through molecular mimicry.

However, our study has several limitations that warrant consideration. First, wet lab validation is needed to confirm the 
precise epitopes implicated in molecular mimicry in IBD immunopathogenesis, a factor that future research will consider 
when designing studies to establish definitive causality. In the future, it may be beneficial to clone these specific epitopes 
and study them in animal models to gain a deeper understanding of how they trigger T-cell-mediated autoinflammatory 
responses during infections in IBD. Additionally, we employed an exploratory and preliminary approach rather than a con-
firmatory one. While our study did not include wet lab validation, we acknowledged that it laid the groundwork for future 
experimental studies that can build on our findings. Additionally, our current work has identified potential targets for further 
experimental investigation [26,44]. A second limitation was that focusing on structural considerations in the TCR-pMHC 
triad was required to understand their relationship comprehensively. Third, fourth, and fifth, this study is limited by the lack 
of computational resources for TNF-α-inducing epitope analysis and by not addressing B-cell interactions or non-bacterial 
microbes. Sixth, the study’s almost purely immunological perspective is also a limitation. A combination view for therapeu-
tic targets can be more effective [192]. Seventh, when evaluating the host and meta-expression patterns, it’s essential to 
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consider the various types of relationships between gene expression levels. While the Pearson correlation is useful for 
measuring strong linear relationships, it may not fully capture complex non-linear interactions. Although a strong linear 
relationship was considered in our study, future studies are recommended to incorporate methods such as Spearman’s 
rank correlation, which is less sensitive to outliers and can assess non-linear and monotonic relationships more effectively 
[193,194]. Additionally, using regression models can provide valuable insights into the specific nature of the relationship 
between HSP expression levels and other genes [195]. Employing partial correlation analysis is also another beneficial 
tool [196]. Mutual information (MI) is another helpful measure that captures both linear and nonlinear relationships; how-
ever, it can be computationally expensive for large datasets [194,197]. By combining these analytical techniques, a more 
comprehensive assessment of HSP co-expression and other transcriptomes within the IBDMDB dataset can be achieved, 
taking into account the complexity of these relationships. Lastly, the limitation was that the IBDMDB database represents 
a specific subset of IBD patients. Therefore, our co-expression findings may not be generalizable to all individuals with the 
disease.

Despite these limitations, our study has provided considerable insights into our primary and secondary outcomes. Fur-
ther in vivo and clinical studies are needed to validate these findings and clarify the mechanisms of molecular mimicry in 
IBD and the exact immunopathogenesis.

While molecular mimicry is still a viable hypothesis for immunopathogenesis of IBD, alternative mechanisms, such as 
bystander activation and epitope spreading, may also play considerable role. Our study indirectly touched upon genetic 
predisposition through HLA evaluation and environmental triggers by analyzing microbiota dysbiosis and the presence 
of specific pathogenic bacteria. However, future research should thoroughly investigate these alternative mechanisms 
in conjunction lifestyle factors, gut barrier dysfunction, and the variability in host responses to promote a comprehensive 
understanding of IBD pathogenesis. Moreover, it is essential for future studies to recognize the heterogeneity of IBD and 
avoid generalizing findings across its entire spectrum. Evaluating whether specific bacterial species and HSP epitopes 
are more prevalent in one subtype of IBD compared to another could provide deeper into the specific roles of molecular 
mimicry in different forms of IBD. Our study primarily focused on pathogenic bacteria associated with IBD. Nevertheless, 
future research should go beyond examining individual bacterial species and conduct a detailed analysis of the broader 
microbial ecosystem and the complex interactions within the gut microbiota. Investigating whether dysbiosis promotes the 
proliferation of specific bacterial species that contain HSPs may offer valuable insights into the role of these proteins in 
IBD.

Furthermore, evaluating whether pathogenic or commensal bacteria produce the identified HSPs is crucial, as this 
significantly affects the immune response in IBD. In our study, we utilized computational immunology methods and 
analyzed secondary data from the IBDMDB database to support our approach. While these methods provided valuable 
insights, they were not sufficient to fully explain the complexities of the immune system in pathogenesis of IBD. There-
fore, it is essential to validate our findings through experimental studies, including in vivo and in vitro assays such as 
T-cell assays, cytokine assays, and animal models. Future research efforts should prioritize these experimental valida-
tions to strengthen the conclusions derived from our computational models. Our study also used the IBDMDB database 
to explore the relationship between human and bacterial HSPs in cases of IBD. To enhance the clinical relevance of our 
findings, future research should involve more direct clinical correlations and patient-derived data, including the analysis 
of the gut microbiota in IBD patients for the presence of specific bacterial species and their associated HSPs. Correlat-
ing these findings with clinical outcomes, such as disease severity and treatment response, could provide actionable 
insights. Additionally, future investigation should explore potential therapeutic strategies, such as immunomodulation, 
vaccination against specific bacterial strains, or probiotics, aimed at targeting microbial HSPs without harming healthy 
human cells, especially since many HSPs are highly conserved proteins. Ethical and safety considerations should 
be addressed in subsequent studies. Furthermore, examining HLA polymorphism and incorporate HLA typing in both 
computational and experimental contexts to determine whether specific HLA alleles are more likely to present bacterial 
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HSPs, which may contribute to a better understanding of susceptibility to IBD and assist in developing personalized 
treatment plans.

Moreover, the relationship between bacteria and IBD extends beyond the mentioned concept. Recent research 
suggests that utilizing in-silico methods to investigate anti-inflammatory commensal bacteria such as Faecalibacterium 
prausnitzii may be a promising approach for treating IBD [9,39,46,163,198–202]. Identifying the primary target antigens 
may enhance our understanding of tolerance to various antigen molecules. This approach aligns with recent studies 
examining epitope-HLA interactions in the context of auto-inflammatory diseases [4,17,26,36–38,48,144]. Furthermore, 
the presence of inflammation-related autoimmune diseases, such as multiple sclerosis (MS) and IBD, suggests a poten-
tial shared genetic background or similar microbial influences [5,203,204]. This connection raises concerns about an 
increased risk of colorectal cancer [33,158,167,184,205,206], as well as other autoimmune disorders, including erythema 
nodosum [5,203], immune thrombocytopenic purpura (ITP) [207], primary sclerosing cholangitis [45,203], and also has 
implications for coronavirus disease 2019 (COVID-19) [208]. Consequently, the findings of this study may have implica-
tions for various conditions associated with the immune system, including auto-inflammatory and autoimmune disorders, 
as well as IBD.

Understanding these mechanisms may inform future research and therapeutic strategies targeting the immune-
microbial interface in IBD [15,28,32,209–211]. Despite challenges in establishing direct causality, molecular mimicry 
has been increasingly recognized as a pivotal factor in the etiology of autoimmune diseases, based on our current 
understanding. The pathogenesis of IBD likely involves a bidirectional interplay between inflammation and micro-
biota dysbiosis, contributing to the disease’s progression and chronicity [2,3]. Advancements in metagenomics and 
transcriptomics offer promising avenues for high-throughput exploration of this hypothesis, facilitating the exam-
ination of gene-disease pathway linkages, differential gene expression (DGE), gene co-expression networks, gene 
ontology, and protein-protein interactions. Such studies are instrumental in identifying significant antisense or small 
molecules that could revolutionize treatment approaches and diagnostic procedures, serving as valuable biomarkers 
[20,27,192,212,213].

Additionally, exploring diverse perspectives, such as interspecies microbial communication and interactions between 
host microbes and bioactive molecules from gut-derived microorganisms, will enhance our understanding of the microen-
vironment’s influence on IBD [214–216]. A comprehensive evaluation of the genetic and environmental factors contributing 
to IBD pathogenesis is essential for a deeper understanding of the disease [1,22,217,218].

5  Conclusion

In summary, our dry lab findings suggest that molecular mimicry, where bacterial HLA-restricted immunodominant epi-
topes of HSPs resemble those of the host, represents a compelling mechanism for the immunological connection between 
bacteria and prevalent HLA alleles in IBD pathogenesis. This approach bolstered and provided more evidence for the 
proposed molecular mimicry hypothesis, suggesting structure and sequence similarities between antigens of gut-derived 
microorganisms and host HLA epitopes that may induce cross-reactivity. Identifying these target proteins and their puta-
tive T-cell epitopes could catalyze extensive research into the molecular underpinnings of auto-inflammatory responses 
during infection. Moreover, this understanding may offer a framework for predicting the complex pathogenesis of IBD, 
thereby enhancing our ability to suggest novel interventions. The structural resemblances can be leveraged to develop 
targeted therapies that modulate the immune response and mitigate tissue damage.

Supporting information

S1 File.  Paint epitopic area. This Excel file illustrates epitopic area painting to select the final epitopes through various 
important filters per HSP60, 70, and 90 in separate sheets.
(XLSX) 

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0333618.s001
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S2 File.  IBDMDB samples analysis. The analysis of IBDMDB samples is presented in this file as follows: Sheet 1: Fea-
tures selected for human HSPs and meta transcripts. Sheet 2: Selected host and meta transcriptomic samples. Sheets 3 
and 4: Transcriptomic IDs for non-IBD hosts and meta transcriptomics, respectively. Sheet 5: Displays 13 common sam-
ples. Sheet 6: Contains the final selected host and meta-transcriptomics.
(XLSX) 

S3 File.  IBDMDB-selected gene for random forest. This file represents host HSPs’ selected gene from IBDMDB for 
random forest in sheet one and the highly correlated gene with IBD in sheet two.
(XLSX)

S4 File.  Correlated host-meta transcript. Correlated host-meta transcript, greater than 0.9 and 0.8, is presented in this 
file.
(XLSX)

S5 File.  PsiBLAST. This file displays PsiBLAST and BLAST Tree for HSP60 in the first and third iterations, HSP70 in the 
first and fifth iterations, and HSP90.
(XLSX)

S6 File.  Structural alignment. This file showcases different aspects of structural alignment between human HSPs and 
their bacterial counterparts.
(XLSX)

S7 File.  CTL epitopes. The Excel file illustrates the characteristics of CTL epitopes related to HSPs.
(XLSX)

S8 File.  HTL-HSP60 epitopes. After applying immunological filters, overlapping HTL and CTL epitopes of HSP 60 
restricted by HLA alleles are identified in this file. Potential immunodominant overlapping HTL epitopes are found in sheet 
one, while HSP60-MHC-II non-overlapping HTL epitopes are located in sheet two.
(XLSX)

S9 File.  HTL-HSP70-epitopes. HSP 70-overlapping HTL and CTL epitope mapping restricted by HLA alleles can be 
found in sheet 1, while HSP70-MHC-II non-overlapping HTL epitopes are listed in sheet 2, based on IEDB. The applica-
tion of immunological filters is also represented.
(XLSX)

S10 File.  HTL-HSP90 epitopes. This file outlines the selection of HSP 90-overlapping HTL and CTL epitopes restricted 
by HLA alleles on sheet 1, and HSP90-MHC-II alleles-non-overlapping HTL epitopes on sheet 2 through applied immuno-
logical filters.
(XLSX)

S11 File.  Bacterial-pairwise alignment. This document presents the final selection of epitopes based on a comparative 
analysis of epitopic regions. It shows sequence similarity between human HSPs and their bacterial counterparts in the 
restricted epitopes recognized by different HLA populations. Furthermore, the results suggest that specific HLA alleles 
are the most restrictive for the majority of putative immunodominant peptides that resemble the epitopes found on human 
HSPs.
(XLSX)

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0333618.s002
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