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Abstract
Temperature and pressure affect neuronal gating kinetics. We recently used thermody-
namic macro-molecular rate theory to describe the effects of temperature on the acti-
vation rate function of sodium, potassium, and calcium voltage activated conductances.
Here, we extend the theory to include the effects of both, temperature and pressure. The
theory includes transition changes in heat capacity, entropy, enthalpy, activation volume,
expansivity, and compressibility during protein conformation. The complete model repli-
cates experimental results from the literature. We used the expanded model to study
how temperature and pressure affect the generation of action potentials in the Hodgkin-
Huxley model and in detailed biophysical and morphological models of human cortical
neurons. In particular, our results show how pressure can affect the optimal temperature
of reaction rates and how small changes in pressure could affect spike timing and corre-
lations across neurons. Our work provides a physics-based approach to adjust reaction
rates of neuronal conductances to study cellular function in evolution and under extreme
heat and pressure conditions such as those found in blast waves or electro-mechanical
neuronal couplings.

Introduction
Practically all studies on the effects of temperature [1–6] and pressure [7–9] on the activa-
tion rate of voltage-gated conductances use an exponential function: either Q10, the Arrhenius
function [10], or its related transition state theory [11]. This approach assumes that temper-
ature only affects the free energy (ΔG‡) of the energy barrier of the activation gating mech-
anism through constant entropy (ΔS‡) and enthalpy (ΔH‡). However, macroproteins show
a universal non-Arrhenius temperature-dependent behavior characterized by a decrease in
reaction rate after an optimal temperature (Topt) not due to denaturation [12]. We recently
used Macromolecular Rate Theory (MMRT) to demonstrate that sodium (Na), potassium
(K), and calcium (Ca) membrane conductances all have Topt within physiological ranges not
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associated with denaturation and that the Arrhenius equation produces additive errors in
predicting temperature effects [13]. The MMRT assumes that temperature affects both the
enthalpy and entropy of the energy barrier through changes in the heat capacity (ΔC‡p) of
enzymes.

There is a great deal of interest in understanding how thermodynamic variables affect
enzymatic function [14,15]. For example, temperature [16,17], pressure [18–22], and osmotic
flow [23,24]. In particular, there are multiple studies to understand how temperature [1,25–
28] and pressure [29–32] affect neuronal function. A unified model could be useful for a wide
range of applications, such as the effects on cellular function in extremophilic bacteria [33]
and deep-sea marine organisms [20,21,34]. This would also be of interest in understanding
neuronal function. For example, the heat and pressure waves of a concussive blast [35,36] or
electro-mechanical neuronal couplings affecting anesthesia [37,38].
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In this study, we extend our MMRT-based approach [13] to integrate the effects of pres-
sure [39], providing a quantitative thermodynamic description of voltage-gated membrane
conductances behavior. We first develop the theory and then we evaluate the validity of its
parameters through data fitting. We then use the model to understand how the effects of tem-
perature and pressure on voltage gated conductances impact action potential generation, fir-
ing frequency, and precise timing. We conclude by exploring physical interpretations of the
parameters in the model.

Theory
Macromolecular rate theory. The value of ΔG‡ between the ground and transition state

of an ion channel is:

ΔG‡ =ΔH‡ – TΔS‡ (1)

Changes in heat, ΔQ‡, are related to ΔH‡ and ΔS‡ via ΔC‡p when ΔP‡ = 0:

dΔQ =ΔC‡pdT = TdΔS‡ = dΔH‡ (2)

Integrating assuming constant ΔC‡p [17], to get ΔS‡ and ΔH‡ and substitute in Eq 1, we get
the basis of MMRT.

ΔG‡
MMRT =ΔC‡p(T – To) –ΔC‡pT ln (T/To)

– TΔS‡o +ΔH‡
o

(3)

where ΔS‡o , and ΔH‡
o correspond to a reference temperature To.

The rate coefficient function is based on the Eyring equation, Eq 4.

k = kBT
h

e–ΔG
‡/RT (4)

where kB and h, are Boltzmann’s and Planck’s constants, respectively, and R is the universal
gas constant. The value of Topt is where dk

dT = 0 [13,16,40].
Incorporating the effects of pressure. The effect of pressure, P, on a reaction rate is medi-

ated by the activation volume, ΔV‡ [41,41–44]:

kP = koe–(P–Po)ΔV
‡/RT (5)
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Several studies suggest a positive change in ΔV‡ for ion channel opening conformations
[29–32,45–48]. Based on [39] and [19,21,22]:

dG = –SdT +VdP (6)

Entropy depends on temperature and pressure

dS = 𝜕S
𝜕T ∣P

dT + 𝜕S
𝜕P ∣T

dP (7)

Using Eq 2 for ΔC‡p and the Maxwell relation 𝜕S
𝜕P ∣T = –

𝜕V
𝜕T ∣P we get:

dS =
Cp

T
dT –

𝜕V
𝜕T ∣P

dP (8)

The isobaric thermal volume is 𝛼̂ = 𝛼V with 𝛼 the expansivity coefficient:

𝛼 = 1
V
𝜕V
𝜕T ∣P

(9)

Thus,

dS =
Cp

T
dT – 𝛼̂dP (10)

Similarly for volume:

dV = 𝜕V𝜕T ∣P
dT + 𝜕V

𝜕P ∣T
dP (11)

Using the isothermal volume compressibility, ̂𝜅 = 𝜅V, with the compressiblity coefficient,
𝜅 = – 1

V
𝜕V
𝜕P ∣T, we get

dV = 𝛼̂dT – ̂𝜅dP (12)

Assuming that Cp, 𝛼̂, and ̂𝜅 are temperature and pressure independent, the integrals are:

S – So = Cp ln |T/To| – 𝛼̂(P – Po) (13a)

V –Vo = 𝛼̂(T – To) – ̂𝜅(P – Po) (13b)

Where To, is a reference temperature with associated reference values Po, So and Vo. We sub-
stitute in Eq 6.

G(T,P) = Cp(T – To – T ln |T/To|) – So(T – To)
+ 𝛼̂(T – To)(P – Po) +Vo(P – Po)

–
̂𝜅

2
(P – Po)2 +Go

(14)

We can convert this into values for the change between the ground and the transition state
of the reaction. Because MMRT uses ΔH‡

o , we can make the substitution Go =Ho –ToSo and
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ultimately produce:

ΔG‡ =ΔC‡p[(T – To) – T ln |T/To|] – TΔS‡o
+Δ𝛼̂‡(T – To)(P – Po) +ΔV‡

o(P – Po)

–
Δ ̂𝜅‡
2
(P – Po)2 +ΔH‡

o

(15)

Where Δ𝛼̂‡ =Δ(𝛼V)‡ and Δ ̂𝜅‡ =Δ(𝜅V)‡. Eq 15 incorporates the terms from Eq 3 and Eq
5. To obtain the kinetics, we plug Eq 15 into Eq 4.

The activation volume as a function of pressure and temperature is found in Eq 13b as:

ΔV‡ =Δ𝛼̂‡(T – To) –Δ ̂𝜅‡(P – Po) +ΔV‡
o (16)

The value of Topt is:

Topt = [ΔC‡pTo –ΔH‡
o +Δ𝛼̂‡To(P – Po)

–ΔV‡
o(P – Po) +

Δ ̂𝜅‡
2
(P – Po)2]/(ΔC‡p + R)

(17)

Materials and methods
We used our previous parametrization of MMRT for the values of ΔC‡p and ΔH‡

o [13]. As we
did before, the values of ΔS‡o were adjusted so k = 1 at T = 20○C.The reference temperature
and pressure were To = 25○C and Po = 1 atm, respectively.

We conducted a literature search for experimental data on the effects of pressure on the
kinetics of voltage-gated channels[29–32,45,47–49]. We used the results from these papers to
determine the other parameters, see Table 1.

Studies on the squid’s giant axon [30–32] reported values of ΔV‡, Table 1. We assumed a
linear relation between reference activation volume and temperature, which resulted in ΔV‡

o =
19cm3mol–1 at To. The values for ΔV‡

Na and ΔV‡
K were very close to each other [30,31], so we

used their average for the simulations.
From the values of ΔV‡

Na and ΔV‡
K at different temperatures and using Eq 16 we calculated

an average value of Δ𝛼̂‡ = –1cm3mol–1K–1, which is consistent with an earlier report [47]. The

Table 1. Parameter values for generating figures based on the thermodynamic model.The values for ΔC‡p , ΔS‡o ,
and ΔH‡

o were obtained from our previous publication [13].
Na K Ca Units

ΔC‡p –2.76± 0.92 –1.70± 0.59 –5.07± 3.58 kJ mol–1

ΔS‡o –113± 38.90 –130± 7.77 –2.30± 138 J mol–1 K–1

ΔH‡
o 33.90± 1.40 31.80± 2.06 70.80± 1.11 kJ mol–1

5○C 10○C 15○C Units
ΔV‡Na 44 35 30 cm3 mol–1

ΔV‡K 42 37 31 cm3 mol–1

High Low Units
Δ𝛼̂‡ –1 10–2 cm3 mol–1 K–1

Δ ̂𝜅‡ 104 102 cm3 mol–1 GPa–1

Units
To 25 ○C
Po 1 atm
ΔV‡o 19 cm3 mol–1

https://doi.org/10.1371/journal.pone.0333592.t001
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change in 𝛼 across an increase in temperature was found to be negative [50,51] but positive
for unfolding [51]. So, we might also estimate Δ𝛼̂‡ at a lower 10–2cm3mol–1K–1. Therefore, we
estimate a high magnitude value of Δ𝛼̂‡ = –1 and a low value of 10–2.

From Δ𝛼̂‡ =Δ(𝛼V)‡ approximate Δ𝛼̂‡ ≈ 𝛼ΔV‡ +VΔ𝛼‡. Since the scale of ΔV‡ is 102, and
assuming both terms are approximately equal or the first dominates, the scale of 𝛼 ≈ 10–2K–1.
This is near reported values of 𝛼 in the 10–4 –10–3K–1 range [50–53] and will be fine for ana-
lyzing the impact of this parameter.

Dreydroppel et al. [39] provides a value for Δ𝜅‡ of 1.8 GPa–1 with Δ ̂𝜅‡ of 130cm3mol–1GPa–1.
Others reported compressibilities on the scale of 0.1GPa–1 [50,52,54]. Assuming the same
ΔV‡ as in [39] suggests a high value of Δ ̂𝜅‡ = 104.

Rapid changes in pressure could result in increases in temperature, known as adiabatic
heating. Based on previous reports [31,46,47,49] we assume an adiabatic heating of 1○C per
20MPa (≈ 200atm).

We tested the thermodynamic effects of pressure and temperature on membrane conduc-
tance gating on neuronal models of action potential generation. First, we used a Hodgkin-
Huxley system of equations. We multiplied the reaction rate of each conductance by the rate
coefficient k normalized by modifying ΔS‡o to the control experimental condition of 6.3○C,
Eq 4. In another set of simulations, we chose four models from the Allen Brain Cell Types
database. We used an identical approach as in our previous publication [13]. All simulation
files, analysis scripts, and data are available in github.com/SantamariaLab or by request. They
are also in ModelDB data base Model Number 2019887.

Results
Pressure effects on rate coefficient function
To gain intuition on how pressure affects the reaction rate coefficient of membrane conduc-
tances we plotted k (Eq 4 with Eq 15) as a function of temperature and pressure. We used our
previously calculated averaged temperature thermodynamic parameters for Na conductances
(ΔC‡p, ΔS‡o , ΔH‡

o) and our estimated value of ΔV‡
o = 19 cm3mol–1. For the expansivity and

compressibility we used Δ𝛼̂‡ = –0.20 cm3mol–1K–1, and Δ ̂𝜅‡ = 1×102 cm3mol–1GPa–1 because
this combination resulted in decreasing values of the reaction rate as a function of pressure,
consistent with experimental reports, see Table 1 and Methods. We plotted the value of k at
three representative pressures (atmospheric pressure, 1atm; average ocean depth, ≈ 370atm;
and bottom of the Mariana Trench, ≈ 1, 072atm), Fig 1A. With this combination of parame-
ters the value of Topt varied over a small range, from Topt = 38.25 ○C at 1 atm to Topt = 40.96 ○C
at 1,000 atm, Fig 1B.

We wanted to calculate the value of ΔV‡
o , based on electrophysiology recording and com-

pare to our estimate. To do this we used the model to fit values of k extracted from experi-
ments on different neurons and conductances [30–32,48,55], Fig 2. Depending on the source
of experiments, we used the average temperature parameters we previously calculated for Na
and K conductances. As we did in the past, we also fit the value of ΔS‡o because this varies as a
function of the experimental temperature and does not affect the rate of change of the MMRT
function. In all fits we assumed Δ𝛼̂‡ = –0.20 cm3mol–1K–1 and Δ ̂𝜅‡ = 1× 102 cm3mol–1K–1.
The fits had a mean R2 of 0.93 ± 0.06. This analysis shows very accurate values of both param-
eters. The average value of ΔS‡o was –133.97 ± 3.88 SD Jmol–1K–1, with an average 95% confi-
dence interval of 1.16 ± 0.81 SD Jmol–1K–1. The values of ΔS‡o were very close to those that we
reported for potassium channels in our previous study. For ΔV‡

o the average value was 40.93
± 11.60 SD cm3mol–1 and a 95% confidence interval of 9.20 ± 6.47, which are in the range of
values reported of Na and K conductances, see Table 1.
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Fig 1. The effects of pressure on the reaction rate coefficient function of average sodium conductances. (A) Reaction rate coefficient vs temperature at 1 atm
(◇), average ocean depth ≈ 350 atm (◻), and Mariana trench ≈ 1, 072 atm (○). (B) The rate coefficient as a function of pressure and temperature. Parameters were:
ΔC‡p = –2.76 × 103 kJmol–1, ΔS‡o = –113 Jmol–1K–1, ΔH‡

o = 34 × 103 kJmol–1, and ΔV‡o = 19 cm3mol–1, Δ𝛼̂‡ = –0.20, 1 × 10–2 and Δ ̂𝜅‡ = 1 × 102 cm3mol–1GPa–1.

https://doi.org/10.1371/journal.pone.0333592.g001

Adiabatic heating effects on pressure measurements
We studied the effects of incorporating adiabatic heating in the model, Fig 3. We plotted
four isotherms of the rate coefficient function using Δ𝛼̂‡ = –0.2 cm3mol–1K–1 and Δ ̂𝜅‡ =
100 cm3mol–1GPa. We applied a one-degree increase for every 20MPa (197atm) from rapid
pressure change. Depending on the starting temperature, adiabatic heating temperature
change can have a significant impact on the shape of k. The effect of rapid heating is minimal
when the pressure change is at Topt. At suboptimal temperatures, the heating increases rate
whereas at supraoptimal temperatures heating is adverse. This behavior reflects the temper-
ature optimum over rate and is a significant quantitative result that should be considered for
rapid or transient pressure changes.

Sensitivity to expansivity, compressibility, and activation volume
In the previous sections we first calculated the value of ΔV‡

o to avoid over-parametrization
and the numerical effects on the fitting procedure of parameters with large differences in their
orders of magnitude and quadratic effects of temperature and pressure. Here we perform a
sensitivity analysis of the model by varying the values of Δ𝛼̂‡ and Δ ̂𝜅‡ and ΔV‡

o , Fig 4.
We first studied how the model behaved when using the extreme values of Δ𝛼̂‡ and Δ ̂𝜅‡,

Fig 4A. We plotted the value of Topt, k at Topt, and at an experimental temperature, which
we selected to be 21 ○C, all as a function of pressure. When using the low value of Δ ̂𝜅‡ =
102 cm3mol–1GPa we obtained a linear relationship between Topt with pressure independently
of the value of Δ𝛼̂‡. When using Δ𝛼̂‡ = 10–2 cm3mol–1K–1 and Δ ̂𝜅‡ = 102 cm3mol–1GPa,
which are found in soluble proteins [39,50–54], there is a minimum effect of pressure on
Topt. In contrast, when using the high value of Δ ̂𝜅‡ = 104 cm3mol–1GPa there is a non-linear
behavior of Topt. The analysis of the rate coefficient at Topt or at 21 ○C suggest that there are
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Fig 2. Fitting the model to experimental measurements of the rate coefficient as a function of pressure. Normalized
experimental rate coefficient data [30–32,46,48,55] and model fits. See text for details.

https://doi.org/10.1371/journal.pone.0333592.g002

interactions between the values Δ𝛼̂‡ and Δ ̂𝜅‡ that result in decreasing reaction coefficient
behavior as a function of pressure.

To estimate the relative effect of varying the pressure parameters we took as a reference
our model parametrized with ΔV‡

o = 40.96cm3mol–1, Δ𝛼̂‡ = –0.20cm3mol–1K–1 and Δ ̂𝜅‡ =
102cm3mol–1GPa–1, Fig 4B–4D. This shows that the behavior of Topt is highly sensitive to the
values of Δ𝛼̂‡. The behavior of the rate coefficient is sensitive at Topt but is less at our desig-
nated experimental temperature. In contrast, the behavior of Topt is not sensitive to the val-
ues of Δ ̂𝜅‡ but could have a strong effect at experimental temperatures on the value of the
rate coefficient. A similar effect is seen with the values of ΔV‡

o . Taken together, this analysis
provides a methodology to distinguish between the effects of each of these parameters on how
the reaction coefficient function is affected by pressure.
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Fig 3. Pressure and adiabatic heating effects.The pressure dependence of rate is shown at multiple temperatures.
Because increasing pressure can cause a temperature increase, we show that effect with the dashed line. The optimal
temperature with the parameters used was 58○C and the rates are referenced at 20○C.

https://doi.org/10.1371/journal.pone.0333592.g003

Effects of temperature and pressure on action potential generation and
timing
We performed an analysis of the spiking and firing rate of the Hodgkin-Huxley equations
under different temperature and pressure conditions, Fig 5. Increasing pressure resulted in a
broadening of the action potential and a lengthening of the inter-spike interval. However, at
higher temperatures, pressure had a stabilizing effect on the shape of the action potential. In
all cases, we used the Δ𝛼̂‡ = –0.2 and Δ ̂𝜅‡ = 100, Fig 5A. The summary data, Fig 5B, shows a
continuous decrease in firing rate due to pressure (top), a temperature dependence that peaks
at 16○C, followed by a failure to generate action potentials past 21 ○C, note that we required
a minimum amplitude of 20 mV to detect an action potential) (center). We also see a similar
behavior of firing rate as a function of input current (bottom).

The plots in Fig 5 suggest a weak pressure effect on action potential generation and average
firing rate. However, in those plots, we noticed an effect on spike timing. To study the pos-
sibility that pressure could affect spike timing, but not firing rate, we performed a series of
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Fig 4. Sensitivity analysis of the rate coefficient function to pressure parameters. (A) The optimal temperature (Topt),
and rate coefficient at Topt, and at 21 ○C when using the combination of the extreme values of Δ𝛼̂‡ and Δ ̂𝜅‡.(B-D) Sen-
sitivity of the model to individual variations of pressure parameters. The reference model is plotted with a dash blue
line in each panel. The range of values were: Δ𝛼̂‡ from –1 to 0 in 0.1 cm3mol–1K–1 increments; Δ ̂𝜅‡ from 100 to 500 in
100 cm3mol–1GPa–1 increments; and ΔV‡o from 5 to 70 in 10 cm3mol–1 increments. The range of parameters is plotted
from low to high value as green to cyan. We used as a reference the model with: Po = 1atm, To = 25○C, ΔC‡p = –2.76kJmol–1,
ΔS‡o – 113Jmol–1K–1, ΔH‡

o = 34kJmol–1, ΔV‡o = 40.96cm3mol–1, Δ𝛼̂‡ = –0.20cm3mol–1K–1 and Δ ̂𝜅‡ = 102cm3mol–1GPa–1.

https://doi.org/10.1371/journal.pone.0333592.g004

simulations in which the Hodgkin-Huxley model was stimulated with random current plus
a constant component. We selected the random amplitude and DC offset to generate vari-
able spike trains, Fig 6A. We then used the same random sequence to stimulate an identi-
cal model while varying only the pressure. We decided to study lower pressures, including
one in the range of intracranial values, 0.02 atm, [35]. These simulations showed that even
at very low pressures, the spiking activity could be different from the control simulation, see
1.02 vs 1.00 atm in Fig 6A. As the pressure increased, the spike trains became more differ-
ent. However, the average firing rate of the entire simulation, 15sec, remained basically the
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Fig 5. Effects of temperature and pressure on the Hodgkin-Huxley model. (A) left - single action potentials gener-
ated rheobase for different pressures and temperatures. Right - Spike trains under the same conditions. (B) Firing rate
vs pressure, temperature, and input current. For each panel the pressure and temperature panels the input current was
100𝜇A/cm2. For the bottom panel the temperature was 6.3○C.

https://doi.org/10.1371/journal.pone.0333592.g005

same, Fig 6B. To evaluate changes in spiking activity, we calculated the difference in spike
time from the control simulation. This pairwise calculation could be constant, correspond-
ing to a shift in the spiking activity. However, the difference in spike time showed variabil-
ity that seemed to correlate with pressure, Fig 6C. Indeed, when we calculated the standard
deviation of the spike differences, there was a pressure effect. These results could be because
the simulation at the higher pressure could be slowing down with respect to the control
simulation with a dependence on the random noise. However, these differences remained
even after averaging multiple simulations (10) using different random number sequences,
Fig 6D. In order to test further the idea that the spike trains became decorrelated, we cal-
culated the correlation coefficient of the instantaneous inter-spike interval sequences. This
shows that even at the lowest pressure, the spike trains had a low and non-statistically sig-
nificant correlation coefficient. We binned the ISI sequences in chunks of 10 to test if this
correlation could become significant by averaging the noise. Even with this filter, there was
only a significant correlation at 1.02 and 2.00 atm, Fig 6E. Together, our results suggest that
small pressure changes can affect precise spike timing and correlation of spike trains across
neurons.

Finally, we applied the extended theory to biophysical models of human cortical pyramidal
cells, see Methods. We analyzed changes in spiking over pressure ranges in blast conditions
(10 atm), Fig 7. At these relatively low values of pressure changes the effects were notable in
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Fig 6. Effects of low-pressure on precise spike timing in the Hodgkin-Huxley model. (A) Examples of spike traces of
the Hodgkin-Huxley model at different pressure receiving identical sequences of input random currents. For each value
of pressure we repeated the simulations 10 times with different input current random sequences. (B) Average firing rate vs
pressure. Error bars are for the standard deviation calculated on the 10 different runs. (C) Examples of spike time differ-
ences for simulations that had the same random input sequences of stimulation but different pressures (colors correspond
to pressures in A). (D) Standard deviation of the spike time differences vs pressure. (E) Average correlation coefficients of
the inter-spike intervals (ISI) with respect to the simulation at 1 atm (black). We recalculated the correlation coefficients
after averaging 10 ISIs, showing two pressures in which the correlations were statistically significant.

https://doi.org/10.1371/journal.pone.0333592.g006

pace-making type neurons. In these and the Hodgkin-Huxley simulation we assumed steady-
state temperature and pressure, and so additional temperature change from adiabatic heating
was not considered. Overall, our results show that while temperature generally increases the
firing rate up to Topt, or up to the point of over-saturation, pressure inhibits or delays action
potential generation. While these effects could be mild at the single-cell level, both burst
desynchronization between multiple neurons and error in very precise temporal codes could
arise from pressure effects.

Discussion
In this work, we combined concepts fromMMRT and transition state theory to integrate
the effects of temperature, volume, and pressure on the activation energy of voltage-gated
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Fig 7. Effects of hypothermic and hyperthermic temperatures and high pressure on the spike trains of models of
human cortical pyramidal cells. Rows: four different cortical models. Columns: Three different temperatures. Each model
was run with normal and blast-type pressure (10 atm). The models were obtained from the Cell Types database from the
Allen Institute, see text for details.

https://doi.org/10.1371/journal.pone.0333592.g007

membrane conductances. While the values of ΔH‡, ΔG‡, and ΔS‡ are well understood, the
extended theory uses other variables and parameters that require further understanding.

The activation volume of voltage-gated ion channels
The length of a voltage-gated ion channel (VGIC) is around 45 Å [56–58]. The VGICs are
roughly cylindrical [56,58,59] with diameters around 10 Å [56,58,60]. During opening or
closing the volume of a pore may change [61–64]. The physical process of activating a channel
requires dewetting that can happen by a 1-2 Å decrease in pore radius [61–63]. This simple
cylindrical model is an approximation, where real channels often undergo multiple complex
conformational changes which all may contribute to ΔV‡. Nevertheless, to gain intuition on
the physical meaning of ΔV‡ we will assume a VGIC of height 50 Å and diameter 10 Å. We
will also assume that the channel is described by a two-state process, open and closed, Fig 8.
Assuming a 1 Å radial decrease when changing states, we can calculate a physical volume
difference of ΔV‡ –V = 2, 984Å3 ≈ 48cm3/mol which is on the same scale as values found in
multiple experiments [29–32,45–47]. This similarity between geometrically and experimen-
tally determined values of activation volume lead us to propose that these properties could
be physically modeled based on protein structure, instead of fitting and estimating them, and
could be an interesting future direction of research.
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Fig 8. Simplified pore cross section during open and closed states. In the closed state, the radius shrinks by 1
Å which allows the fully hydrophobic part of the pore to dewet. The blue represents regions occupied by water
molecules.

https://doi.org/10.1371/journal.pone.0333592.g008

Expansivity, compressibility, and further development
Just as ΔV‡ allows suggestions of underlying mechanisms such as pore constriction, expan-
sivity and compressibility may offer insights into the greater complexity behind pressure and
volume effects on ion channels. For instance, compressibility is relevant to aromatic ring flip
conformations of proteins [39]. Positive transition compressibility suggests that the ion chan-
nel volume is more susceptible to pressure when open. Expansivity is an important parameter
as it sets the temperature dependence of activation volume. If transition expansivity is posi-
tive, one would suspect channel volume to be less partial to temperature when closed. Intu-
itively, this seems to contradict the concept of a closed, evacuated pore as liquid water in the
open state should be less expansive. That interpretation makes negative transition values seem
more plausible.

Conceptually, Δ𝛼̂‡ is the difference in the partial temperature derivative of volume
between the transition and ground states of a reaction. The derivatives can be large, but if
we take the high value of the parameter Δ𝛼̂‡ = –1 and Eq 13b with our reported ΔV‡

o we can
see that just a 19○C increase would set ΔV‡ = 0. Negative activation volumes are possible for
processes such as unfolding [43], but are likely nonphysical for gate opening. That value also
implies an extreme 100% change in activation volume. The same applies for a high compress-
ibility of Δ ̂𝜅‡ = 10, 000 which suggests activation volume would be zero after about 20atm
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of pressure which we know cannot be true from the experimental data. So, the Topt is not a
significant function of pressure.

Finally, it should be noted that ΔC‡p, Δ𝛼̂‡, and Δ ̂𝜅‡ may all depend on the pressure and
temperature themselves. We mentioned that ΔC‡p is assumed constant, but it could be given
a linear temperature dependence [17], some parameter-based function of temperature and
pressure [65], and it has been suggested to increase with pressure [66]. If ΔC‡p had a signifi-
cant pressure dependence, it could also explain the apparent temperature dependence of ΔV‡,
rather than or in addition to Δ𝛼̂‡. For simplicity, we did not include adiabatic heating in our
simulations. Any of these effects, if significant at a biological temperature range or at high
pressures, would limit the model at its current level of detail, but not necessarily invalidate the
modeling strategy. Though, outside of biological ranges, where there is protein denaturation
or cell death, the model regardless of parameters would certainly no longer apply.

Conclusion
We presented thermodynamic theory that can be integrated with studies of neuronal excitabil-
ity [67,68]. More broadly, a unified temperature and pressure theory can be used to compare
the enzymatic kinetics of diving creatures and extremophilic bacteria in hundreds of atmo-
spheres in the ocean [20,21,34] with land creatures or their ancestors. Our work provides a
platform to study the evolution of preferred body temperatures [33] with the optimal temper-
ature of enzymes. Pressure has mechanical consequences for neuronal function and structure
[69,70] due to membrane mechanics. In the context of human health, changes in intracra-
nial pressure (ICP) can arise from many phenomena such as intracerebral hemorrhage [71],
plateau waves [72], microgravity [73], and impacts and blasts [35,36]. For example, accelera-
tion effects can change the ICP and have been shown to have negative effects on cognitive per-
formance [74,75]. Pressure changes caused by ICP are around 10-100 mmHg (0.05atm) which
we showed have little effect on the firing rate [76], but that could affect precise spike timing. It
remains to evaluate in a similar way if the small pressure changes from action potential prop-
agation [9] could have a significant effect. In any case, our work suggests that pressure affects
precise spike timing and we suggest that cumulative effects could modify network dynamics
and performance. The mechanisms we describe could combine with other cellular communi-
cation mechanisms important for network activity, such as the effects of pressure on synap-
tic release [47]. Other areas to consider are how membrane thermodynamics affect anesthe-
sia [37,38] and how membrane changes could alter channel function [7]. While in this study
we focused on developing theory for applications on neuronal intrinsic excitability driven by
voltage activated ion channels there could be other emergent network-level effects or intra-
cellular metabolic pathways that together could enrich the thermodynamical effects on neu-
ronal and network function. As such, our work promotes the return to experimentation and
discussion of pressure, especially since pressure experiments can reveal important biological
properties [77].
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