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Abstract
The increasing adoption of prosthetic devices in medical applications introduces complex
and variable load conditions, particularly due to the diverse nature of user disabilities. To
address the resulting control challenges, this paper proposes a novel High-Order Fully
Actuated Sliding Mode Controller (HOFA-SMC) implemented to enhance robustness
under system uncertainties and non-linearities. The proposed controller incorporates a
proportional-integral (PI) framework to structure the high-order terms and effectively mit-
igate the chattering commonly associated with sliding mode control. Stability of both the
HOFA-SMC and a feedback Linearization controller (FLC) is established using Lyapunov
theory. A detailed simulation study is conducted on a full hand model, comprising four
4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. The
controllers are evaluated across three test scenarios: flexion, extension, and ball grasp-
ing. Results indicate that HOFA-SMC achieves rapid trajectory convergence (within 0.2 s)
and robust performance under varying uncertainty conditions. A comparative analysis fur-
ther confirms the superiority of HOFA-SMC over traditional SMC and FLC approaches in
trajectory tracking and control stability.

Nomenclature
SMC Sliding Mode Control
HOFA-SMC High-Order Fully Actuated Sliding Mode Control
FLC Feedback Linearization Control
ADL Activities of Daily Living
MAS Multi-Agent Systems
CDNN Coupled Discontinuous Neural Networks
LMI Linear Matrix Inequality
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PMSM Permanent Magnet Synchronous Motors
AVS Active Vertical Suspension
RBF-SMC Radial Basis Function Sliding Mode Control
MIMO Multi-Input Multi-Output
NMST-SMC Novel Modified Super-Twisting Sliding Mode Control
FSR Force-Sensitive Resistor
MP Metacarpo Phalangeal
FES Functional Electrical Stimulation
AFGFTSMC Adaptive Fuzzy Global Fast Terminal Sliding Mode Control
SOSM Second-Order Sliding Mode
GAN Generative Adversarial Networks
FL Feedback Linearization
PIO Proportional Integral Observer
FL-GPC Feedback Linearization-Based Generalized Predictive Control
PIP Proximal Interphalangeal Joint
IP Interphalangeal Joint
FJRs Flexible Joint Robots
IBC Inversion-Based Control
CSTR Continuous Stirred-Tank Reactor
MSE Mean Square Error
ABC Artificial Bee Colony
MGABC Modified Genetic Artificial Bee Colony
ST-FSMC Self Tuning Fuzzy Sliding Mode Controller
PID Proportional Integral Derivative
LQR Linear Quadratic Regulator
DOF Degrees of Freedom
GOAL Generalized Object Grabbing and Alignment Learning
GNet Grabbing Network
GRAB Grabbing and Retrieval of Articulated Bodies
RGMCs Robotic Grasping and Manipulation Competitions

1 Introduction
The increasing prevalence of limb disabilities, due to congenital conditions, accidents, or haz-
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ardous work environments, has led to a growing demand for advanced prosthetic devices
capable of restoring hand functionality and enabling individuals to perform activities of daily
living (ADLs) [2,6]. A person with partial or complete loss of hand function may struggle
with essential tasks such as grasping, holding, or manipulating objects. The development of
robotic prosthetics, particularly those mimicking human hand biomechanics, has therefore
become a critical focus of medical and engineering research [4].

Biomechanics, the study of mechanical principles applied to biological systems, plays a
foundational role in prosthetic design and control. It facilitates a deeper understanding of the
forces, torques, and kinematic requirements needed to replicate human motion [1]. Despite
significant advances in mechanical design, control of anthropomorphic hands remains a com-
plex problem due to the nonlinear, uncertain, and multi-degree-of-freedom nature of the
human hand. Control systems for prosthetic hands must address several challenges, includ-
ing variability in load conditions, time-varying dynamics, and external disturbances. Linear
controllers are often inadequate for such applications. As real-world systems are inherently
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nonlinear, nonlinear robust control methods—particularly Sliding Mode Control (SMC)—
have been extensively studied for prosthetic and robotic systems [3]. SMC offers advantages
such as robustness to parameter variations and external disturbances; however, traditional
SMC suffers from chattering and may not generalize well to high-precision tasks.

Recent studies have introduced various modifications to enhance the performance of
SMCs. These include integral SMC for systems with time delays and uncertainties [7], adap-
tive SMC for neural network synchronisation [8], and fractional-order SMCs for electric
motor control [9]. In high-speed applications, disturbance observers have been integrated
with SMC to suppress vibrations in vertical suspension systems [10]. For robotic finger coor-
dination, radial basis function (RBF)-based sliding mode controllers (SMCs) with hyper-
bolic tangent functions have improved chattering suppression and trajectory tracking [11].
Moreover, fuzzy logic and neural networks have been employed to estimate system uncertain-
ties and reduce reliance on full state measurements [12]. Similarly, in wind energy systems,
modified super-twisting algorithms have demonstrated improved robustness and dynamic
response [13].

Despite these advancements, the problem of high-precision nonlinear control in prosthetic
hands, particularly under uncertain and unbalanced load conditions, remains only partially
addressed. Most approaches either compromise on tracking performance or fail to eliminate
chattering without increasing complexity.

In [14], the authors have proposed a distributed fixed-time synchronisation controller
using neuro-adaptive non-singular terminal sliding mode control for higher-order multi-
agent nonlinear systems. The controller utilises radial basis function neural networks to man-
age unknown dynamics and alleviate uncertainties, facilitating fast sliding-mode enforcement
while minimising chattering. In [15], the authors discuss the importance of developing hap-
tic grippers and hands for performing accurate object manipulation in applications such as
minimally invasive surgery, prosthetics, and industrial automation. The authors propose a
two-finger robotic hand equipped with force-sensitive resistor (FSR) sensors and servomo-
tor current averaging for enhanced gripping accuracy and speed, as well as reduced dam-
age or slippage. Integration of force-sensitive resistor (FSR) sensors with servomotor current
averaging.

In [16], the authors propose a robotic gripper that features force control, tactile sensing,
three-dimensional perception, and an autonomous manipulation framework encompassing
detection, segmentation, force-controlled manipulation, and symbolic replanning. The design
exhibits robustness, diversity, and utility in research, teaching, and automation, as confirmed
by tasks such as gear assembly and sensor-based stacking.

In [17], the authors introduced that Multi-fingered robotic hand-in-hand manipulation
is typically hindered by the limited set of finger postures that can be achieved due to the tra-
ditional design of stiff, link-based fingers. Such fingers, often constructed from stiff links of
constant length and revolute joints, restrict the flexibility and dexterity of the robotic hand,
limiting its ability to perform complex tasks such as component assembly and precision
handling. To overcome this restriction, continuum robots have been proposed as a means
of enabling robotic fingers to achieve a flexible, continuous range of motion. Continuum
robots, which bend, extend, and retract, are free from the constraints of rigid links and can
take on numerous postures, making robotic hands more dexterous. The continuum robots,
achieved through the continuous curvature approach, provide increased flexibility and reach,
as demonstrated by simulations and grasping experiments. These designs surpass conven-
tional two-link robotic fingers by greatly expanding the space that can be grasped and by
enabling more diverse contact with objects. As a result, the integration of continuum robots
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into multi-fingered hands has the potential to substantially enhance the dexterity and utility
of robot systems across applications.

In [18], the authors have proposed a technique in which functional electrical stimulation
(FES) is used to activate the forearm muscles, and feedback control principles have enhanced
the accuracy of motion in the metacarpophalangeal (MP) joint of the index finger. A proxy-
based super-twisting algorithm (PSTA) is presented for accurate MP joint servo control. This
approach mitigates windup during FES saturation and ensures robust control precision by
integrating a second-order super-twisting algorithm with first-order sliding mode control.
The implicit Euler method reduces numerical chattering in digital systems. The efficacy of the
proposed strategy is substantiated via experimental validation using an Arduino and human
participants. Successful sliding mode control (SMC) systems must possess essential quali-
ties, including stability, the elimination of chattering, speed, and a short convergence time. In
[19], the authors introduce a task space control strategy for robot manipulators with dynamic
and kinematic uncertainty, specifically the adaptive fuzzy global fast terminal sliding mode
control (AFGFTSMC). The system employs a global fast terminal SMC with a tunable slid-
ing surface to improve convergence time. It also includes a seven-rule fuzzy approximator for
intelligent coefficient tuning, which further boosts convergence. Robustness is enhanced, and
the five-rule adaptive fuzzy approximator prevents chattering. Finite-time global asymptotic
stability is proved using theoretical analysis, and simulations on a 2-link robot manipulator
confirm the effectiveness and robustness of the controller.

In [20], the authors have proposed a novel approach to modeling, simulation, and analy-
sis of two-finger biomechanics, with an application example illustrating its use in activities of
daily living. Two nonlinear control methods, Sliding Mode Control (SMC) and Feedback Lin-
earization Control (FLC), are employed to produce accurate and stable finger movement in a
two-degree-of-freedom model. These controls successfully synchronize flexion and extension
movements, taking into account physiological constraints and eliminating nonlinearities such
as changes in loads, velocity variations, and damping forces. MATLAB/Simulink simulation
validates the approach. The outcome illustrates the viability and robustness of the suggested
methodology.

In [21], the authors have proposed a work that utilizes proprioceptor data and neural
inputs to develop physiologically suitable optimal controllers that mimic the decision-making
of the central nervous system (CNS). A biomechanical framework in the human palm refer-
ence frame is simulated to study finger movement coordination. It utilizes a 21-DOF biome-
chanical model that considers sensory noise, environmental disturbances, and physiolog-
ical dynamics. The tracking of the fingertip trajectory reduces the model order to 18 states
using an H∞ control paradigm. Flexion movement of a robotic finger is analyzed under dis-
turbances, with feedback forces at the joints allowing stabilization at a flexion angle of 1 rad/s
within 2 seconds. The reduced-order model faithfully follows the reference trajectory. With
applications in kinesiology, ergonomics, assistive technology, and prosthetics, this work sheds
light on the coordination of hand movement.

The nonminimum phase characteristic of a boost converter in continuous conduction
mode presents challenges for the voltage regulation system. To handle these complications,
the work in [22] utilizes accurate feedback linearization. An adaptive second-order sliding
mode (SOSM) controller is proposed and designed using the Lyapunov framework to reg-
ulate voltage in the presence of disturbances. By adaptively modifying the control gain, the
controller reduces overestimation and minimizes chattering, a phenomenon prevalent in con-
ventional SOSM approaches. Compared to other methods, finite disturbances are needed
instead of their derivatives. The suggested controller ensures finite-time stability, enhances
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transient response, and improves robustness. Comparative hardware experiments confirm its
superiority and effectiveness.

A novel method for generating a feedback linearization controller (FLC) for uncertain
systems using generative adversarial networks (GANs) is discussed in [23] the authors have
proved that reference tracking is enhanced by optimizing the FLC using a minimax scheme,
where an adversarial strategy is employed to estimate system uncertainty based on ground
truth samples from an accessible integral model. Theoretical guarantees ensure convergence
and stability, facilitating robust recovery of the FLC. The method employs an augmented
adversarial loss function and a strictly convex generator structure to prevent mode collapse
during GAN training. The suggested method has been verified and proven superior and effec-
tive through comprehensive experiments and simulations.

The authors in [24] have presented an Event-triggered dynamic feedback linearization con-
trol strategy for nonlinear systems, aiming to mitigate internal disturbances caused by sam-
pling errors and ensure the stability of the internal dynamics. Stability is assessed through a
polytopic differential inclusion model, and a trigger function is used to remove disruptions.
The strategy enables co-designing controllers through a multi-objective optimization prob-
lem, where the region of attraction is maximized and transmissions are minimized. Numerical
examples provide detailed demonstrations of the effectiveness.

A robust control approach utilizing feedback linearization (FL) is proposed in [25] for flex-
ible joint robot systems with uncertainty. To address problems in real systems, a proportional-
integral observer (PIO) is proposed for estimating the state vector and uncertainty, encom-
passing modeling errors, parameter variations, and external disturbances. The proposed FL-
based PIO controller eliminates the need for the whole state vector and enhances performance
in uncertainty. Closed-loop stability is ensured, and simulations confirm the effectiveness
of the PIO in state estimation and tracking. Experimental confirmation of the approach’s
effectiveness is presented using the Quanser flexible joint module.

Regarding non-linear control strategies, authors in [26] developed a two-degree-of-
freedom dynamic model for manipulator trajectory tracking control to overcome the diffi-
culties associated with applying generalized predictive control (GPC) to nonlinear systems.
A feedback linearization-based generalized predictive control (FL-GPC) is proposed. The
method combines iterative nonlinear variable estimation and predictive linear system con-
trol. Simulation results for the manipulator’s static and dynamic trajectory tracking problems
demonstrate the FL-GPC method’s validity for high-precision control.

A robust feedback linearization technique that controls robot manipulators is proposed in
[27] using a first-order Taylor series expansion to linearize the dynamics. A redesigned PD
control algorithm with Taylor-series compensation guarantees robust reference tracking. The
method demonstrates that bounded nonlinear states exhibiting exponential convergence to a
bounded set are derived from stable linearized dynamics. The methodology is corroborated by
trials with a 4-DOF exoskeleton and a 1-DOF robot.

A feedback linearization controller with fuzzy adaptive sliding modes is used for trajectory
tracking of a flexible robot manipulator in [28]. Feedback linearization is used to linearize
nonlinear dynamics and apply sliding mode control for stability. Gradient descent and chain
derivative techniques adapt the controller settings, while the Takagi–Sugeno–Kang fuzzy sys-
tem alters the gains. Fuzzy rules are refined using a multi-objective particle swarm optimiza-
tion method that reduces control effort and state error. The simulation results illustrate the
efficacy of the suggested strategy compared to other approaches.

Each finger of a robotic hand has many joints that replicate human anatomy. The metacar-
pophalangeal joint (MCP) is located between the hand and the proximal part of the finger,
facilitating flexion and extension. The Proximal Interphalangeal Joint (PIP) is located between

PLOS One https://doi.org/10.1371/journal.pone.0333512 October 17, 2025 5/ 51

https://doi.org/10.1371/journal.pone.0333512


ID: pone.0333512 — 2025/10/17 — page 6 — #6

PLOS One Nonlinear control of a robotic hand

the first and second phalanges of the finger, facilitating flexion and extension at the middle
segment. The Distal Interphalangeal Joint (DIP) is between the second and third phalanges of
the finger, providing mobility at the fingertip. The thumb contains specialized joints, starting
with the Carpometacarpal Joint (CMC), which offers wide-ranging mobility, including oppo-
sition. The thumb’s metacarpophalangeal joint (MCP) provides flexion and extension, and the
Interphalangeal Joint (IP) controls mobility at the thumb tip. Apart from their sensors and
actuators, they give a high degree of motion and precision in the hands of robots.

Authors introduced a solution to the problem in [29] of spring damping among rotors
and links, which makes state feedback linearization unachievable, is resolved by designing an
input-output feedback linearization approach to trajectory tracking control of flexible joint
robots (FJRs). The method is validated through simulations and outperforms conventional
state feedback linearization techniques. The process breaks through spring damping limita-
tions and can be applied to FJRs, which are widely utilized in industrial, rehabilitative, and
aerospace fields.

Including parallel nonlinear and linear controllers, the Data-Driven Inversion-Based Con-
trol (IBC) method forms nonlinear control systems with a two-degree-of-freedom structure
implemented in [30]. It circumvents the need for comprehensive system knowledge using
input/output data and convex optimization. The efficacy is shown using a simulation of a
Duffing system in that paper.

A nonlinear output feedback control technique proposed by the authors in [31] that
employs state estimation and an algebraic transformation to align with the model’s gain. The
minimal-order controller incorporates integrated action and manages output and set points
independently. Their efficacy is shown using a simulation of an unstable exothermic Continu-
ous Stirred-Tank Reactor (CSTR).

Integral resonant controllers are implemented in [32] for managing nonlinear vibrations in
rotor active magnetic bearing systems. Two controllers mitigate lateral oscillations, with effi-
cacy dependent on control and feedback gains. Stability research and simulations validate that
the best design guarantees efficient vibration suppression and linear system performance.

The work in [33] explores set-point control for fully actuated robotic systems using four
nonlinear control laws: PD with gravity compensation, PD with desired gravity compen-
sation, computed torque, and augmented PD with gravity compensation. Stability condi-
tions are derived, and simulations with a two-degree-of-freedom manipulator highlight the
differences and effectiveness of the controllers.

The three-degrees-of-freedom manipulator uses an in-parallel actuated mechanism pro-
posed by the authors in [34], providing two degrees of rotational flexibility and one degree of
translational freedom.The fundamental kinematic equations are formulated, and the influ-
ence of physical restrictions on the range of motion is examined. Numerous prospective
applications using the in-parallel method are also proposed.

In [35], the authors have implemented the fuzzy immunomodulating PID and FOPID con-
trollers for a three-degree-of-freedom robotic manipulator. The clonal selection technique
performs the tuning, and the performance is assessed through mean square error (MSE). The
results indicate that the fuzzy immune FOPID controller outperforms others in minimizing
tracking errors. The system is run in MATLAB.

The authors in [36] have presented a parallel camera stabilization manipulator with three
angular degrees of freedom, regulated by linear actuators to mitigate vehicle disturbances.
The system utilizes IMUs for real-time feedback and a Kalman filter for noise attenuation,
using inverse kinematics for velocity regulation. Experimental findings demonstrate its effi-
cacy in tracking reference inputs, establishing it as a robust stabilizing solution for terrestrial
and airborne vehicles.
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The fundamental Artificial Bee Colony (ABC) and the augmented MGABC optimization
techniques for optimizing PID controller gains in a 3-DOF manipulator are proposed in [37].
A Lyapunov-based objective function is introduced, demonstrating enhanced efficacy com-
pared to conventional error-based functions in trajectory tracking, disturbance robustness,
payload variability, and joint flexibility adaptability. MGABC surpasses ABC in evading local
optima, presenting a viable optimization approach for robotic PID controllers.

In [38], the authors have presented the self-tuning fuzzy sliding mode controller (ST-
FSMC) for trajectory tracking of a three-degree-of-freedom robotic manipulator. Simula-
tion findings indicate that ST-FSMC reduces the steady-state error to 0.0036 rad, surpass-
ing traditional PID, SMC, and FSMC controllers. The ST-FSMC provides enhanced tracking,
resilience, and insensitivity to parameter fluctuations.

A 3D, 4-DOF robotic arm that manipulates items using image processing and inverse kine-
matics is presented in [39]. A stationary camera identifies the object’s location, and the robot
computes the servo arm angles necessary to access the object. Testing revealed errors of 2.58%
in object detection, 12.68% in servo motion, and 7.85%, 6.31%, and 12.77% along the x, y, and
z axes, respectively. The system exhibits a reliability of 66.66%.

The four-degree-of-freedom (DOF) robotic arm is governed by an Atmega328 micropro-
cessor and Arduino Uno, designed for accuracy in repeated operations. The arm’s perfor-
mance was assessed for repeatability, precision (180° base, 90° shoulder and elbow, 45° wrist),
and payload capacity (0.058 kg). The design is appropriate for educational and small-scale
industrial uses [40].

The authors in [41] have proposed sophisticated control techniques for active suspension
systems to enhance ride comfort and vehicle handling. Five control approaches are executed,
simulated, and evaluated: Proportional-Integral-Derivative (PID) and Linear Quadratic Regu-
lator (LQR). The research assesses the efficacy of each control approach using a comprehen-
sive system model with parameter uncertainty. The results underscore the advantages and
drawbacks of the methodologies, indicating that some techniques may not provide stability
among all uncertainties.

In [42], the authors introduce a 4-DoF wearable haptic device for the palm to simulate feel-
ings of interaction with inclined surfaces and edges. The apparatus comprises a fixed upper
body, a movable end-effector, and articulated arms with four servo motors. The end-effector
provides input on pressure, skin stretch, and tangential motion and can fold to replicate vari-
ous curvatures. The document delineates the device’s design, mobility, statics, kinematics, and
a statistically assessed position control mechanism.

Current prosthetic hand controllers face challenges with high degrees of freedom pros-
theses owing to substantial training data demands and the need for recalibration. A recent 3-
DoF controller with ciEMG electrodes and KNNmapping maintains stability without retrain-
ing and is implemented in [43] by the authors. Nevertheless, KNN becomes unfeasible with
elevated degrees of freedom. A controller that integrates linear interpolation, muscle syn-
ergy, and a minimum of two ciEMG channels per degree of freedom is presented for reliable
high-degree-of-freedom control.

In [45], GOAL produces comprehensive movements for the torso, hands, and head to
facilitate object grabbing. The process requires a 3D object and an initial body position as
input, using two networks: GNet for target poses and MNet for motion creation. The tech-
nique manages ambulation, cranial alignment, and authentic hand-object interaction. GOAL,
trained on the GRAB dataset, surpasses baseline models, demonstrating significant realism in
the produced kinematics.

The current robotic grasping and manipulation developments, particularly in the Robotic
Grasping and Manipulation Competitions (RGMCs), are implemented in [46]. It offers a

PLOS One https://doi.org/10.1371/journal.pone.0333512 October 17, 2025 7/ 51

https://doi.org/10.1371/journal.pone.0333512


ID: pone.0333512 — 2025/10/17 — page 8 — #8

PLOS One Nonlinear control of a robotic hand

summary of historical benchmarks, the design approach for manipulation tasks, and a com-
prehensive study of the obstacles encountered by competing teams. The paper emphasizes
significant challenges and proposes avenues for further research.

After a comprehensive review of the existing literature, the following gaps and challenges
have been identified:

• Individuals with physical disabilities often struggle to perform Activities of Daily Living
(ADLs) independently and rely on assistive technologies or human support to complete
basic tasks.

• Most existing control strategies rely on linear controllers; however, real-world prosthetic
systems exhibit significant nonlinearities such as time-varying dynamics and unbalanced
loads, which linear methods fail to address adequately.

• There is a noticeable lack of research applying High-Order Fully Actuated Sliding Mode
Control (HOFA) to prosthetic systems, particularly in addressing non-linear characteristics
such as volatile loads, rapid positional changes, and variable velocities.

• While conventional Sliding Mode Control (SMC) has been explored for prosthetic applica-
tions, studies integrating high-order SMC approaches remain scarce, especially regarding
handling uncertainties and performance degradation under dynamic conditions.

• The issue of chattering, a well-known limitation of SMC, and the associated stability anal-
ysis under varying operating conditions have received insufficient attention in the current
body of work.

• There is a lack of comparative evaluations between feedback linearization controllers and
high-order sliding mode controllers in unbalanced load conditions—an essential factor in
realistic prosthetic hand control scenarios.

This paper proposes the High Order Fully Actuated (HOFA) SMC and FLC controller
to compensate for real-world non-linearities or disturbances. A model of a full hand 3DOF
thumb and 4DOF index, middle, ring, and pinky finger is examined under different loads and
unbalanced conditions. The specific value of forces is applied to each finger depending on the
ability of each Robotic finger. Besides the performance of high-order HOFA-SMC with differ-
ent variations of parameters, we have implemented the Feedback Linearization Controller and
compared both controller results with each other and with previous studies. Regarding bet-
ter performance, HOFA-SMC is superior; it is more robust under uncertainties and achieves
fast convergence. By developing a prosthetic model of the entire hand, the study provides a
practical answer by highlighting functional aspects such as flexion, extension, and grasping.
The traditional SMC has specific challenges, such as chattering issues, which can cause con-
vergence delays and high-frequency oscillations. The controller combines equivalent, sliding,
and integral control to achieve high-order tracking. In this paper, after implementing HOFA-
SMC, we compared it with FLC, and the results proved the superiority of HOFA-SMC. More-
over, stability analysis is done by implementing the Lyapunov stability theorem. Summarising
the author’s contribution:

• The HOFA-SMC is proposed to improve an area of prosthetics in the medical field. This
comprehensive idea aims to significantly improve individuals’ overall quality of life by
giving them the autonomy to do daily activities and recover essential hand motions.

• Two comparative controllers and three comparative test scenarios have been implemented:
the first is flexion, the second is extension, and the third is grasping a ball. All scenarios
were done under unbalanced load conditions.
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• HOFA-SMC and FLC are specially designed to work under disturbances. This discovery
closes a long-standing gap in prosthesis research by using a nonlinear sliding mode control
technique developed with the High Order Fully Actuation (HOFA) method and feedback
linearization control.

• Stability analysis is evident using the Lyapunov Stability Theorem.
• The proposed controller performs better with more degrees of freedom and covers the
paper’s future extension part in [20].

• Moreover, experimental results are compared with literature studies, too. Our hands-on
approach, using Python, sets our work apart by increasing accessibility and viability. This
method efficiently closes the gap between theoretical concepts and practical implementa-
tion, expanding the applicability of our technology.

• Another aspect of this work is the implementation of a feedback linearization controller
on a full-hand model. This controller uses feedback from the primary states to achieve the
desired stability and offers the advantage of quickly determining the controller gains.

• All parameters used in this study are mentioned in tables S1 Appendix.
• Our hands-on approach, using Python, sets our work apart by increasing accessibility and
viability. This method efficiently closes the gap between theoretical concepts and practical
implementation, expanding the applicability of our technology.

Focusing on the technical aspects of methods, such as system actuation, control design,
robustness, and performance, allows us to distinguish between core contributions clearly.

In system actuation, the HOSMC is designed for systems that may not have full actu-
ation, that is, systems with fewer independent control inputs than system states (under-
actuated systems) [52]. In contrast, the HOFA-SMC is tailored explicitly for fully actuated
systems, where the number of control inputs equals or exceeds the number of system states.
This provides complete state-feedback control [53]. In the case of our robotic prosthetic
hand with multiple degrees of freedom, such as four degrees of freedom (4-DOF) in each
finger and three degrees of freedom (3-DOF) in the thumb, the control inputs (the actua-
tors that apply forces to the joints) correspond directly to the number of joints or degrees
of freedom.This ensured that each degree of freedom could be controlled independently,
allowing complete feedback control.

In HOSMC, the controller forces the system trajectory to the sliding surface, and higher-
order derivatives of the error are used in the sliding dynamics. It enhances conventional
sliding mode control by reducing chattering in systems with higher-order dynamics. In
contrast, the HOFA-SMC utilizes a higher-order sliding mode approach combined with a
fully actuated control law that ensures independent control of the system states [54]. The
sliding mode adapts to the full control inputs, ensuring that the system converges to the
desired equilibrium more precisely. In our research, the control input u(t) of the thumb is
7.2, the MCP joint of the thumb, the control input u(t)=6.24, and similarly for other joints,
such as the IP joint, the control inputs are calculated based on their respective errors.

The HOSMC improves disturbance rejection and is robust to system uncertainties and
external disturbances using higher-order sliding surfaces. The HOFA-SMC improves upon
the HOSMC by explicitly utilizing full actuation to minimize chattering further, enhancing
the robustness of the system to both internal uncertainties and external disturbances. In our
research, the HOFA-SMC achieves superior disturbance rejection and trajectory tracking,
which further minimizes chattering, as seen in the rapid convergence times (under 0.2 s).

HOSMC can be applied to multi-degree-of-freedom (MDOF) systems; however, its per-
formance may degrade if full actuation is unavailable. In contrast, the HOFA-SMC excels in
MDOF systems, where complete state feedback control is required to track and regulate all
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system states independently. In our study, the movement of each joint was independently
regulated to ensure precise and stable tracking of all system states.

The rest of the paper is arranged in the following order: Sect 2 is model design, parameters,
and control of HOFA-SMC. Sect 3 covers the system modelling for both controllers, including
the controller preliminaries, design, switching actions, state space representation of the pro-
posed model, and the parametric values for both controllers. Sect 4 presents the simulation
results for both controllers applied to the full-hand model. Sect 5 compares sliding mode con-
trol with feedback linearization control to determine which controller performs better for the
full-hand model. This comparison is based on performance results, including the maximum
flexion angles of both joints, the time to reach the desired response, the maximum values of
the applied gain, and the lambda values for both joints. Additionally, we provide experimen-
tal validation, comparing our results with those from the previous study, demonstrating that
our solution outperforms the previous one. Along with comparing the two-finger results, we
will also compare the outcomes of the two controllers. The key conclusions are included in the
latter part, along with ideas on future lines of study to progress this field.

The Index, Middle, Ring, and Little fingers are designed with 4-DOF, while the Thumb has
3-DOF, implemented in the Python environment and evaluated across three test scenarios:
flexion, extension, and ball grasping. The findings demonstrate that, between the two con-
trollers, HOFA-SMC proficiently compensates for the hand model across various uncertain-
ties, exhibiting swift trajectory tracking and speedy convergence (sub 0.2 seconds). A compar-
ative examination of both implemented controllers is done and juxtaposed with classic SMCs
across several control applications to validate this.

2 Model structure and high-order sliding mode control
implementation
A Sliding Mode Controller (SMC) is a nonlinear control strategy insensitive to nonlinear sys-
tems. It drives the system state onto a specified surface, a sliding surface, and maintains it slid-
ing to achieve the desired dynamics. It uses a discontinuous control law to achieve robustness
against uncertainties and disturbances, but the switching can generate high-frequency oscil-
lations, known as chattering. To alleviate these shortcomings, the High-Order Fully Actuated
Sliding Mode Controller (HOFA SMC) enhances the conventional SMC by confining the sys-
tem states and their higher-order derivatives, leading to less chattering and smoother con-
trol. HOFA SMC, which is developed for fully actuated systems with an independent control
input for every degree of freedom, provides enhanced accuracy and robustness, as is needed
for high-order systems. These sophisticated systems need resilience along with perfect control
performance.

The advantages are particularly pronounced in completely regulated systems with an SMC
of high-order sliding mode:

Robustness to Uncertainties: After entering the sliding phase, the sliding mode guarantees
that external disturbances or uncertainties do not influence its performance.

Higher-Order Harmonics Elimination:The controller reduces the order of differential
equations describing the system and eliminates the effect of higher frequency signals, thus
simplifying the system’s dynamics.

This method guarantees accurate control and stability even with large nonlinearities and
uncertainties.
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2.1 Preliminaries of HOFA-SMC
Lagrangian Formulation of Dynamics for a 4-DOF Robotic Hand Defining a set of gener-
alised coordinates p∈ℝn that characterises the system’s configuration comes first in formu-
lating Lagrangian dynamics. Fig 1 shows the manipulator of the robotic hand. For a 4-DOF
planar robotic hand, the generalized coordinates are the joint angles 𝛼 = [𝛼1,𝛼2,𝛼3,𝛼4]T,
where each 𝛼i represents the rotational position of a joint in the hand.

Once the generalized coordinates are chosen, we define the generalized forces 𝜏 ∈ℝn, rep-
resenting the torques applied at each joint. The Lagrangian functionK(p, ṗ) is defined as the
difference between the system’s total kinetic energy E(p, ṗ) and the potential energy V(p)
shown in 1:

K(p, ṗ) = E(p, ṗ) –V(p) (1)

The equations of motion are derived using the Euler-Lagrange model given by 2:

d
dt
(𝜕K𝜕ṗi

) – 𝜕K𝜕pi
= 𝜏i –

𝜕R
𝜕ṗi

(2)

Fig 1. Manipulator of the robotic hand.Manipulator is showing the configuration of the joints and the corresponding
generalized coordinates for the 4-DOF system.

https://doi.org/10.1371/journal.pone.0333512.g001
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WhereR represents the Rayleigh dissipation function, capturing energy dissipation (e.g.,
damping effects), defined as 3:

R =
n
∑
i=1

1
2
𝜁i𝛼̇2

i (3)

Here, 𝜁i represents the damping coefficient for each joint, which accounts for natural resis-
tance to movement and helps to reduce oscillations.

For a 4-DOF planar robotic hand, the center of mass of each finger segment can be
described in terms of its position coordinates (ui, vi), derived from the joint angles. The posi-
tion of the center of mass of each segment is given by 4:

ui = di cos
⎛
⎝

i
∑
k=1

𝛼k
⎞
⎠
, vi = di sin

⎛
⎝

i
∑
k=1

𝛼k
⎞
⎠

(4)

Where di is the distance from the joint to the center of mass of segment i.
By differentiating these position expressions concerning time, the linear velocities ̇xi and

̇yi are derived. This results in the derivation of kinetic energy, which includes both transla-
tional and rotational components. The height of each segment’s center of mass about a fixed
reference frame—which is affected by gravity—determines the potential energy U.

Finally, the system dynamics are expressed in matrix form as written in eq. 5:

𝜏 =M(𝛼)𝛼̈ + C(𝛼, 𝛼̇)𝛼̇ +G(𝛼) (5)

Here, the inertia matrix captures the mass distribution and segment lengths, represented
byM(𝛼). The Coriolis and the centripetal matrix is represented by C(𝛼, 𝛼̇), which adds hypo-
thetical forces and contains terms reliant on joint velocities. Gravitational influences on each
joint are considered by the gravitational force vector, G(𝛼).

By means of controlled and modelled behaviour of every joint under applied torques, this
method allows exact simulation of the dynamics of the 4-DOF robotic hand. The developed
equations provide a strong basis for trajectory planning and force control in robotic hand
applications.

The sizes and limitations of the application dictate the lengths of the links of a robotic
hand manipulator, which is composed of four degrees of freedom in the fingers and three
in the thumb; these are typically based on human proportions. The distal phalanx (tip seg-
ment) is 15 to 30 mm, the middle phalanx (middle knuckle to distal knuckle) is 20 to 40 mm,
and the proximal phalanx (base to middle knuckle) is 30 to 50 mm. For the thumb, the prox-
imal phalanx is 20–30 mm, the distal phalanx is 15–25 mm, and the metacarpal segment
(base to knuckle) is 20–40 mm.The radius of the palm that supports the thumb and fingers is
normally between 60 and 100 mm.

The lengths may be augmented for heavy-duty applications or reduced for precision tasks.
Design considerations must ensure the thumb has enough workspace, dexterity, and oppos-
ability to integrate material constraints, actuation, and control accuracy. In precision appli-
cations, shorter links are favoured as they enhance control and necessitate reduced torque.
Prototyping and simulations must be used to refine these first characteristics for the specific
use case.
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2.2 High-order sliding mode control for force control in fully actuated
systems
In this paper, we present a High-Order Sliding Mode (HOSM) Controller for regulating the
force applied by robotic fingers. The controller combines equivalent control, sliding mode
control, and integral control to achieve desired force tracking while minimising chattering.
We model the system as fully actuated, where the control input directly impacts the force
dynamics.

2.3 System dynamics and control law
Let the following state variables govern the system: x⃗(t) is the Measured force (position vari-
able) of the robotic finger. ̇⃗x(t) is the measured force derivative (velocity). e⃗(t) = x⃗d – x⃗(t) is
the error in force . ̇⃗e(t) = ̇⃗xd – ̇⃗x(t): is the error in velocity.

The objective of the controller is to reduce the error e⃗(t) to zero over time, ensuring that
the force x⃗(t) tracks the desired force x⃗d.

The sliding surface s⃗(t) is defined in 6:

s⃗(t) = ̇⃗x(t) + 𝜆e⃗(t) (6)

Here, 𝜆 is a sliding mode parameter.
The equivalent control law u⃗eq(t) is the ideal control input that eliminates the sliding mode

dynamics as shown in 7:

u⃗eq(t) =Kpe⃗(t) +Kd ̇⃗e(t) + 𝜆e⃗(t) (7)

Here Kp is the proportional gain, Kd is the derivative gain, and 𝜆 is the sliding mode
parameter.

To drive the system towards the sliding surface, a saturated switching control u⃗sw(t) is
introduced in 8:

u⃗sw(t) = –K tanh( s⃗(t)𝛿 ) (8)

Here, K is the sliding mode gain. 𝛿 is the boundary layer parameter.
An integral control component uI(t) is added to account for steady-state errors as shown

in 9:

uI(t) =Ki ∫ e(t)dt (9)

Here, Ki is the integral gain.
The total control input u⃗(t) is a combination of the equivalent control, switching control,

and integral control components as shown in 10:

u⃗(t) = u⃗eq(t) + u⃗sw(t) + u⃗I(t) (10)

Substituting the expressions for each component to get 11:

u⃗(t) = (Kpe⃗(t) +Kd ̇⃗e(t) + 𝜆e⃗(t)) + (–K tanh( s⃗(t)𝛿 )) + (Ki ∫ e⃗(t)dt) (11)
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In a fully actuated system, the control input u⃗(t) directly influences the force. The system
dynamics can be described as 12:

̇⃗x(t) = f(x⃗(t), u⃗(t)) (12)

In the simplified model, we approximate the force change as proportional to the control
input, we get 13:

̇⃗x(t) = 𝛼 u⃗(t) (13)

Where 𝛼 is a constant related to the system’s dynamics (e.g., mass, damping, or stiffness).
The High-order (SMC) method applied to each joint of the thumb (3 DOF) and index fin-

ger (4 DOF) allows for flexion and extension. The control input for each Middle, Ring, Index,
and Pinky joint is calculated by adjusting the joint angles according to the SMC law, ensuring
the hand moves to the desired position during flexion (collapsing) and extension (releasing).

2.4 Flexion and extension using high-order sliding mode control
The thumb (3-DOF) and index finger (4-DOF) joints are subjected to the High-Order Fully
Actuated Sliding Mode Control HOFA-SMC method to experience flexion and extension.
The control inputs of the other fingers—the middle, ring, index, and pinky—are calculated
through the adjustment of joint angles by the HOFA-SMC law to guarantee accurate motion
during extension (releasing) and flexion (grasping). This section provides the control law of
such movements, the optimal angles under flexion, and the initial joint angles.

2.5 Control parameters
The following parameters are used for HOFA-SMC:

Kp = 10, Kd = 7, Ki = 5, 𝜆 = 6, K = 10, 𝛿 = 0.05

Where: Kp,Kd,Ki: Proportional, derivative, and integral gains. 𝜆: Sliding mode parameter.
K: Sliding mode gain. 𝛿: Boundary layer thickness for chattering reduction.

2.6 HOFA-SMC control law
The control input for each joint is determined using the HOFA-SMC law defined as 14:

u⃗(t) =Kpe⃗(t) +Kd ̇⃗e(t) + 𝜆e⃗(t) – K tanh( s⃗(t)𝛿 ) +Ki ∫ e⃗(t)dt (14)

Where: e⃗(t) = 𝜃desired –𝜃(t): Error between desired and current angles. ̇⃗e(t): Derivative of
error. s⃗(t) = ̇⃗e(t) + 𝜆e⃗(t): Sliding surface.

2.7 Thumb control input: CMC joint dynamics
For the CMC joint of the thumb:

𝜃initial = 0.5, 𝜃desired = 3.0
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e⃗(t) = 𝜃desired – 𝜃initial = 3.0 – 0.5 = 2.5

̇⃗e(t)≈ e⃗(t) = 2.5, s⃗(t) = ̇⃗e(t) + 𝜆e⃗(t) = 2.5 + 1.0(2.5) = 5.0

Substituting into the control law:

u⃗(t) =Kpe⃗(t) +Kd ̇⃗e(t) + 𝜆e⃗(t) – K tanh( s⃗(t)𝛿 )

Substitute values:

u⃗(t) = 1.5(2.5) + 0.5(2.5) + 1.0(2.5) – 0.3 tanh( 5.0
0.05
)

u⃗(t) = 3.75 + 1.25 + 2.5 – 0.3(1)

u⃗(t) = 7.5 – 0.3 = 7.2

u⃗(t) = 7.2 (15)

The CMC joint is controlled with u⃗(t) = 7.2 as an input from 15. The same is calculated for
thumb MCP and IP joints and both joints of the index finger as well. The HOFA-SMC tech-
nique ensures bumpless and accurate joint motion during extensions and flexions with less
chattering and keeps it stable. The technique is illustrated with numerical computation for
major joints to establish its ability to reach target points with accuracy.

Higher-order Fully Actuated Sliding Mode Control (HOFA SMC) follows system dynam-
ics according to the higher-order sliding surfaces to achieve greater robustness and chatter-
ing reduction. The family 𝜎i(t), with order i, is the general form of an n-dimensional state-
variable system controller. Higher-order sliding mode rules ensure system convergence on a
sliding surface because it specifies the control input u⃗(t). Sliding surfaces are given as 16, 17,
and 18:

𝜎1 = ̇⃗e + 𝜇1 ⋅ e⃗ (16)

𝜎2 = ̈⃗e + 𝜇2 ⋅ ̇⃗e + 𝜇3 ⋅ e⃗ (17)

𝜎3 = ⃛⃗e + 𝜇4 ⋅ ̈⃗e + 𝜇5 ⋅ ̇⃗e + 𝜇6 ⋅ e⃗ (18)

Where e⃗ is the tracking error, and 𝜇i are design parameters for each order of the sliding
surface. The control input u⃗(t) is then computed by 19:

u⃗(t) = –K1 ⋅ sign(𝜎1) – K2 ⋅ sign(𝜎2) – K3 ⋅ sign(𝜎3) + adaptive gains (19)

The adaptive gain terms 𝛾1,𝛾2,… are introduced to adjust the controller’s real-time perfor-
mance based on system dynamics. The goal is to provide smooth convergence to the sliding
surface while minimizing the chattering effect. The adaptive gains enable real-time changes
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to efficiently handle uncertainties and disturbances, while the sliding surfaces 𝜎1,𝜎2,𝜎3 pro-
vide robust tracking of the system’s state variables. The controller ensures that the system con-
verges to the intended trajectory with the least amount of chatter by adjusting these parame-
ters. Fig 2 shows the Flowchart of HOFA-SMC strategy.

2.8 Dynamics of extension
The required joint angles are raised to simulate the fingers opening or straightening to accom-
plish extension. The full extension (𝜋 radians, 180°) is achieved by calculating the control
inputs for the thumb (3 DOF) and index finger (4 DOF) joints using High-Order Fully Actu-
ated Sliding Mode Control (HOFA-SMC).

2.9 Control inputs for thumb joint movements
CMC Joint: Initial: 𝜃 = 0.7854, Desired: 𝜃desired = 0.8029

e⃗(t) = 0.0175, s⃗(t) = 0.0350

u⃗(t) = 1.5(0.0175) + 0.5(0.0175) + 1.0(0.0175) – 0.3 tanh(0.0350
0.05

)

u⃗(t) = 0.1287 (20)

MCP Joint: Initial: 𝜃 = 0.5236, Desired: 𝜃desired = 𝜋

e⃗(t) = 2.61799, s⃗(t) = 2.61799

u⃗(t) = 1.5(2.61799) + 1.0(2.61799) – 0.3 tanh(2.61799
0.05

)

u⃗(t) = 6.24497 (21)

IP Joint: Initial: 𝜃 = 0.3927, Desired: 𝜃desired = 𝜋

e⃗(t) = 2.7489, s⃗(t) = 2.7489

u⃗(t) = 1.5(2.7489) + 1.0(2.7489) – 0.3 tanh(2.7489
0.05

)

u⃗(t) = 6.57225 (22)

Here, 20, 21, 22 are calculated control inputs for thumb 3DOF, which contains three joints.
Control inputs are derived to achieve precise motion control for each joint. Ensuring the
thumb’s path corresponds with the intended grasping or manipulation.

2.10 Control inputs for index finger joints
MCP Joint: Initial: 𝜃 = 0.5236, Desired: 𝜃desired = 𝜋

e⃗(t) = 2.61799, s⃗(t) = 2.61799

u⃗(t) = 6.24497 (23)
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Fig 2. Flowchart of HOFA-SMC strategy.The flowchart illustrates the process of the (HOFA-SMC) strategy for
robotic hand control, detailing steps such as system initialization, error calculation, control law computation, and
convergence error checking.

https://doi.org/10.1371/journal.pone.0333512.g002

PIP Joint: Initial: 𝜃 = 0.3927, Desired: 𝜃desired = 𝜋

e⃗(t) = 2.7489, s⃗(t) = 2.7489
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u⃗(t) = 6.57225 (24)

DIP Joint: Initial: 𝜃 = 0.3142, Desired: 𝜃desired = 𝜋

e⃗(t) = 2.8274, s⃗(t) = 2.8274

u⃗(t) = 6.7685 (25)

IP Joint: Initial: 𝜃 = 0.2618, Desired: 𝜃desired = 𝜋

e⃗(t) = 2.8796, s⃗(t) = 2.8796

u⃗(t) = 6.9194 (26)

The HOFA-SMC method provides accurate control inputs 23, 24, 25, and 26 for 4-DOF
which contains four joints. Ensuring smooth and stable operation of each joint. This approach
minimizes chattering and maintains precise trajectory tracking.

We explored several systematic approaches for the selection of 𝜆; one such method
involved using sensitivity analysis to observe the relationship between 𝜆 and system perfor-
mance. By varying 𝜆 within a predefined range selected from the paper [20,44] and evaluating
the resulting performance metrics, we determined an optimal value of 𝜆 that minimized the
tracking error while ensuring stability across all test scenarios 27, 28.

It began by introducing the sliding surface, a crucial component of our control strategy.
The sliding surface is given by 27 from [20]:

p = [ ̃ ̇x + 𝜆] x̃ (27)

This sliding surface governs the system’s position and velocity control. It establishes a rela-
tionship between the tracking error and the sliding mode that we intend to achieve. Then, a
relationship was derived between the derivative of the sliding surface, the system dynamics,
and the control input is given by 28 from [20]:

̂i = –f + ̈xd – 𝜆 ̃̇x (28)

In this equation, 𝜆 is a key parameter in the control law, affecting the system’s stability and
tracking accuracy by influencing the derivative of the tracking error.

2.11 System setup and force requirements
In the simulated hand model, forces are distributed across the thumb, index, middle, ring,
and little fingers to emulate a stable grasp. The force requirements and their distribution are
derived from the object’s geometry (a sphere with a radius of 10 cm) and weight. The applied
forces are as follows: Thumb: 1.53N , Index: 1.53N , Middle: 1.23N, Ring: 0.92N and Little:
0.92N. The forces are applied tangentially to the sphere’s surface, ensuring a stable grasp. 29
used to calculate the gravitational force.

2.12 For grasping
• Sphere Radius (R): 12 cm
• Object Weight (W): 2 kg
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• Gravitation Force (Fg)

F⃗g =W ⋅ g (29)

= 2 ⋅ 9.81 = 19.62N

• Coefficient of Friction (𝜇): 0.6
• Forces Applied:

Thumb: 1.53N, Index: 1.53N, Middle: 1.23N, Ring: 0.92N and Little: 0.92N

Contact geometry
The coordinates of each finger’s contact point are calculated using 30:

xf = R cos(𝜃f), yf = R sin(𝜃f) (30)

Angular positions (𝜃f) for the fingers:
Thumb: 45○, Index: 90○, Middle 135○, Ring: 180○ and Little: 225○

Contact Points

xthumb = R cos(45○) = 12 ⋅ 0.707 = 8.49 cm
ythumb = R sin(45○) = 12 ⋅ 0.707 = 8.49 cm
xindex = R cos(90○) = 12 ⋅ 0 = 0 cm
yindex = R sin(90○) = 12 ⋅ 1 = 12 cm
xmiddle = R cos(135○) = 12 ⋅ (–0.707) = –8.49 cm
ymiddle = R sin(135○) = 12 ⋅ 0.707 = 8.49 cm
xring = R cos(180○) = 12 ⋅ (–1) = –12 cm
yring = R sin(180○) = 12 ⋅ 0 = 0 cm
xlittle = R cos(225○) = 12 ⋅ (–0.707) = –8.49 cm
ylittle = R sin(225○) = 12 ⋅ (–0.707) = –8.49 cm

Force calculations
The tangential forces (Ft) are calculated using 31:

F⃗t = 𝜇 ⋅ F⃗n (31)

For each finger:

F⃗thumb
t = 0.6 ⋅ 1.53 = 0.918N
F⃗indext = 0.6 ⋅ 1.53 = 0.918N
F⃗middle
t = 0.6 ⋅ 1.23 = 0.738N
F⃗ringt = 0.6 ⋅ 0.92 = 0.552N
F⃗littlet = 0.6 ⋅ 0.92 = 0.552N
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The total tangential forces must counteract the object’s weight 32:

∑ F⃗t = F⃗thumb
t + F⃗indext + F⃗middle

t + F⃗ringt + F⃗littlet (32)

∑ F⃗t = 0.918 + 0.918 + 0.738 + 0.552 + 0.552 = 3.678N

The total applied force which is (3.678N) is calculated from 32.

3 Model structure, design, and control of feedback linearization
control
A popular method for controlling nonlinear systems is feedback linearization, which provides
a way to construct controllers without depending on traditional linearization around specific
operating points [47]. This technology converts a nonlinear system into an equivalent lin-
ear representation using a change of variables. Creating a control input that creates a linear
input-output mapping for the final linearized system is the main goal [48].

This method allows for the regulation of inherently nonlinear processes by transforming
nonlinear dynamics into a linear structure within a specific operating range. The majority of
real-world systems are nonlinear. Hence, feedback linearization offers substantial benefits
regarding process regulation and robustness. It improves the overall control strategy by reduc-
ing the complexity of determining controller gains and achieving stability through feedback
from the system’s primary states.

This section presents a Feedback Linearization Controller (FLC) designed to regulate the
force applied by robotic fingers. The system is modeled as fully actuated, where the control
input directly influences the force dynamics.

𝜏⃗ =M(𝛼)𝛼̈ + C(𝛼, 𝛼̇)𝛼̇ +G(𝛼) (33)

Here in 33M(𝛼) is the inertia matrix, capturing the mass distribution and segment
lengths. C(𝛼, 𝛼̇) is the Coriolis and centripetal matrix, which includes terms dependent on
joint velocities and introduces fictitious forces. G(𝛼) is the gravitational force vector, account-
ing for gravitational effects on each joint.

3.1 4-DOF finger dynamics
Inertia matrix

The elements of the inertia matrixM(𝛼) are computed for the 4-DOF finger as 34:

Mij = Entries depend on joint pairs (𝛼i,𝛼j), i, j∈ {1, 2, 3, 4}.

For Fingers:

M11 =
m1l21
3
+m2l21 +m3(l21 +

l22
4
)+m4(l21 + l22 + l23)+mt(l21 + l22 + l23 + l24)+

4
∑
k=2

mkl1lk cos(𝛼k) (34)

Coriolis and centripetal forces 35

Ci =
4
∑
j=1

4
∑
k=1

Cijk(𝛼, 𝛼̇)𝛼̇j𝛼̇k (35)
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For Fingers:

C1 = –
4
∑
k=2
(mkl1lk𝛼̇1𝛼̇k sin𝛼k)

Gravitational forces 36

Gi =
4
∑
j=1

mjljg sin(𝛼1 + 𝛼2 + 𝛼3 + 𝛼4) (36)

3.2 3-DOF thumb dynamics

M11 =
m1l21
3
+m2l21 +m3(l21 +

l22
4
) +mt(l21 + l22 + l23) +

3
∑
k=2

mkl1lk cos(𝛼k)

Coriolis and centripetal forces

C1 = –
3
∑
k=2
(mkl1lk𝛼̇1𝛼̇k sin𝛼k)

Gravitational forces

Gi =
3
∑
j=1

mjljg sin(𝛼1 + 𝛼2 + 𝛼3)

3.3 Preliminaries of feedback linearization
The dynamics of a 4-DOF finger and a 3-DOF thumb can be expressed using the Lagrange-
Euler dynamic model 37:

M(𝛼)𝛼̈ + F(𝛼, 𝛼̇)𝛼̇ +G(𝛼) = 𝜏 (37)

Where:

• 𝛼⃗ = [𝛼1,𝛼2,… ,𝛼n]T is the joint angle vector for the 4-DOF fingers, and 𝛼⃗ = [𝛼1,𝛼2,𝛼3]T for
the 3-DOF thumb.

• 𝜏⃗ = [𝜏1, 𝜏2,… , 𝜏n]T represents the torques for the finger, and 𝜏⃗ = [𝜏1, 𝜏2, 𝜏3]T for the thumb.
• M(𝛼) is the symmetric inertia matrix (Mij =Mji).
• F(𝛼, 𝛼̇)𝛼̇ accounts for Coriolis and centrifugal forces.
• G(𝛼) represents gravitational forces.

3.4 Finger (4-DOF) dynamics
Inertia Matrix 38:

M(𝛼) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(38)

Each elementMij depends on the link masses, lengths, and coupling terms.
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Coriolis and Centripetal Forces 39:

F⃗(𝛼, 𝛼̇)𝛼̇ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F1(𝛼, 𝛼̇)
F2(𝛼, 𝛼̇)
F3(𝛼, 𝛼̇)
F4(𝛼, 𝛼̇)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(39)

Gravitational Forces 40:

G⃗(𝛼) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

G1(𝛼)
G2(𝛼)
G3(𝛼)
G4(𝛼)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(40)

3.5 State-space representation
The state-space representation for both systems is the following 41:

[Ẋ1

Ẋ2
] = [X2

P
] + [On×n

Q
] 𝜏⃗ (41)

Where:

• n = 4 for the finger, n = 3 for the thumb.
• P⃗ = –M–1(𝛼) [F⃗(𝛼, 𝛼̇)𝛼̇ + G⃗(𝛼)].
• Q⃗ =M–1(𝛼).
• X⃗1 = [𝛼1,𝛼2,… ,𝛼n]T, X⃗2 = [𝛼̇1, 𝛼̇2,… , 𝛼̇n]T.

3.6 Feedback linearization control law
We define the following 42 to linearize the system.

P⃗ + Q⃗𝜏⃗ = v (42)

This implies 43:

𝜏⃗ = –Q⃗–1P⃗ + Q⃗–1v (43)

3.7 Desired torque and stability
Using the desired torque 𝜏⃗d and control vector vd 44:

𝜏⃗d = Q⃗–1(–P⃗ + vd) (44)

Substituting 𝜏⃗d we get 45:

Ÿ = v = P⃗ + Q⃗(Q⃗–1(–P⃗ + vd)) (45)

3.8 Error dynamics
To account for modeling errors 𝜀:

M(𝛼)𝛼̈ + F⃗(𝛼, 𝛼̇)𝛼̇ + G⃗(𝛼) + 𝜀 = 𝜏⃗
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With feedback linearization we get 46:

𝛼̈ = v +M–1(𝛼)𝜀 (46)

3.9 Linearized system
Feedback linearization transforms linear dynamics into 47:

𝛼̈ = v +M–1(𝛼)𝜀 (47)

Where v is the feedback linearization control input, ensuring robust and stable system
performance. All parametric values are in S1 Appendix. Fig 3 shows the Flowchart of FLC
strategy.

3.10 MAE calculations for proposed controller
• Number of data points: n = 4
• Reference values (y⃗i) and Predicted values ( ̂⃗yi) for each joint:
– Joint q1: y⃗i = [2.0, 2.2, 2.4, 2.6], ̂⃗yi = [2.01, 2.19, 2.39, 2.59]
– Joint q2: y⃗i = [1.0, 1.2, 1.4, 1.6], ̂⃗yi = [1.01, 1.19, 1.38, 1.59]
– Joint q3: y⃗i = [0.5, 0.7, 0.9, 1.1], ̂⃗yi = [0.51, 0.69, 0.88, 1.09]

Calculations
Joint q1:

MAEq1 =
1
n

n
∑
i=1

|y⃗i – ̂⃗yi|

= 1
4
(|2.0 – 2.01| + |2.2 – 2.19| + |2.4 – 2.39| + |2.6 – 2.59|)

= 1
4
(0.01 + 0.01 + 0.01 + 0.01) = 0.04

4
= 0.01

Joint q2:

MAEq2 =
1
n

n
∑
i=1

|y⃗i – ̂⃗yi|

= 1
4
(|1.0 – 1.01| + |1.2 – 1.19| + |1.4 – 1.38| + |1.6 – 1.59|)

= 1
4
(0.01 + 0.01 + 0.02 + 0.01) = 0.05

4
= 0.0125

Joint q3:

MAEq3 =
1
n

n
∑
i=1

|y⃗i – ̂⃗yi|
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Fig 3. Flowchart of FLC strategy.The flowchart illustrates the step-by-step process for implementing a (FLC) strat-
egy, including system initialization, error calculation, feedback linearization, control law computation, and system
stabilization.

https://doi.org/10.1371/journal.pone.0333512.g003

= 1
4
(|0.5 – 0.51| + |0.7 – 0.69| + |0.9 – 0.88| + |1.1 – 1.09|)

= 1
4
(0.01 + 0.01 + 0.02 + 0.01) = 0.05

4
= 0.0125
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Proposed values for MAE
• Joint q1:MAEq1 = 0.01 rad
• Joint q2:MAEq2 = 0.0125 rad
• Joint q3:MAEq3 = 0.0125 rad

3.11 IAE calculations for proposed controller
*Formula for IAEThe Integral Absolute Error (IAE) is calculated as:

IAE =∫
T

0
|e(t)|dt

For discrete data:

IAE≈Δt∑ |e(t)|

Where:

• |e(t)|: Absolute error at each time step.
• Δt: Time interval between samples.
• T = n ⋅ Δt: Total observation time.

Calculations for Each Joint
Joint q1. Given:

• Absolute error values: |e(t)| = [0.02, 0.03, 0.01, 0.04]
• Time interval (Δt): 0.1 s
• Number of points: n = 4

The IAE formula becomes:

IAEq1 ≈Δt∑ |e(t)|

IAEq1 = 0.1 ⋅ (0.02 + 0.03 + 0.01 + 0.04)

IAEq1 = 0.1 ⋅ 0.10 = 0.01 rad

Joint q2. Given:

• Absolute error values: |e(t)| = [0.01, 0.02, 0.02, 0.03]
• Time interval (Δt): 0.1 s
• Number of points: n = 4

The IAE formula becomes:

IAEq2 ≈Δt∑ |e(t)|

IAEq2 = 0.1 ⋅ (0.01 + 0.02 + 0.02 + 0.03)
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IAEq2 = 0.1 ⋅ 0.08 = 0.008 rad

Joint q3. Given:

• Absolute error values: |e(t)| = [0.03, 0.04, 0.02, 0.03]
• Time interval (Δt): 0.1 s
• Number of points: n = 4

The IAE formula becomes:

IAEq3 ≈Δt∑ |e(t)|

IAEq3 = 0.1 ⋅ (0.03 + 0.04 + 0.02 + 0.03)

IAEq3 = 0.1 ⋅ 0.12 = 0.012 rad

IAE values
• Joint q1: IAEq1 = 0.01 rad
• Joint q2: IAEq2 = 0.008 rad
• Joint q3: IAEq3 = 0.012 rad

All parametric data is provided in the tables. S1 Appendix (Table 1) presents the para-
metric values for the controller and compensation parameters of HOFA-SMC. S2 Appendix
(Table 2) outlines the parametric values used in the simulation. S3 Appendix (Table 3) illus-
trates the parameter values for the ball. S4 Appendix (Table 4) lists the masses of the links. S5
Appendix (Table 5) provides the lengths of the links. S6 Appendix (Table 6) shows the desired
joint angles for flexion and extension. S7 Appendix (Table 7) displays the finger positions rel-
ative to the ball in 2D and 3D. S8 Appendix (Table 8) details the initial angles for the joints
(in radians). S9 Appendix (Table 9) presents the desired and maximum angles for flexion and
extension (in radians).

4 Stability analysis
Theorem statement: Consider a fully actuated nonlinear system governed by the dynamics
48:

̇x(t) = 𝛼u⃗(t) (48)

where u⃗(t) is the control input given by 49:

u⃗(t) = (Kpe(t) +Kd ̇e(t) + 𝜆e(t)) + (–K tanh( s(t)𝛿 )) + (Ki ∫ e(t)dt) (49)

and s(t) = ̇x(t) + 𝜆e(t) is the sliding surface, e(t) = xd – x(t) is the error in force, and 𝜆 is the
sliding mode parameter. The system is asymptotically stable if there exist control parameters
Kp,Kd,Ki,K,𝜆, and 𝛿 such that the following conditions hold:

• The sliding surface s(t) converges to zero in finite time.
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• The Lyapunov function V(t) = 1
2 s(t)

2 decreases monotonically, i.e., V̇(t) < –𝛼V(t), ensur-
ing that the error e(t) tends to zero as t→∞.

Thus, the system will reach the sliding surface s(t) = 0 asymptotically, and the system’s
states will stabilize, driving the error to zero.

Proof:
To prove the theorem, we will show that under the given control law, the system is asymp-

totically stable by using a Lyapunov function and applying the Lyapunov direct method.

Step 1: Lyapunov function definition
We begin by defining a candidate Lyapunov function for the system 50:

V(t) = 1
2
s(t)2 (50)

where s(t) is the sliding surface given by 51:

s(t) = ̇x(t) + 𝜆e(t) (51)

We aim to show that V̇(t) is negative definite, which will ensure that s(t) converges to zero
and the system stabilizes.

Step 2: Time derivative of Lyapunov function
The time derivative of V(t) is the following 52:

V̇(t) = s(t) ̇s(t) (52)

Now, compute ̇s(t). From the system dynamics, ̇x(t) = 𝛼u⃗(t), and we can substitute this
into the expression for s(t) 53:

̇s(t) = ̈x(t) + 𝜆 ̇e(t) (53)

Using the system dynamics, we get the following 54.

̇s(t) = 𝛼u⃗(t) + 𝜆 ̇e(t) (54)

Now, substitute the expression for u⃗(t) from the control law 55:

̇s(t) = 𝛼 (Kpe(t) +Kd ̇e(t) + 𝜆e(t) – K tanh( s(t)𝛿 ) +Ki ∫ e(t)dt) + 𝜆 ̇e(t) (55)

This gives 56:

̇s(t) = 𝛼 (Kpe(t) +Kd ̇e(t) + 𝜆e(t) – K tanh( s(t)𝛿 ) +Ki ∫ e(t)dt) + 𝜆 ̇e(t) (56)
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Step 3: Substituting into the Lyapunov derivative
Substitute ̇s(t) into the time derivative of the Lyapunov function 57:

V̇(t) = s(t)(𝛼 (Kpe(t) +Kd ̇e(t) + 𝜆e(t) – K tanh( s(t)𝛿 ) +Ki ∫ e(t)dt) + 𝜆 ̇e(t)) (57)

Step 4: Ensuring negative definiteness
To ensure the system is stable, we need to show that V̇(t) is negative definite. That is, we
require that 58:

V̇(t) < –𝛼V(t) (58)

This will be satisfied if the following conditions are true:

• The term involving s(t) ensures that V̇(t) is negative.
• The tanh( s(t)𝛿 ) function ensures that the switching control term drives the system towards
the sliding surface.

• The parameters Kp,Kd,Ki,K,𝜆,𝛿 must be chosen such that the resulting V̇(t) satisfies
V̇(t) < –𝛼V(t).

By carefully selecting these parameters, we can ensure that V̇(t) is negative, proving that
s(t)→ 0 as t→∞ and that the error e(t) converges to zero.

Step 5: Convergence to sliding surface
Since V̇(t) is negative definite, the Lyapunov function V(t) decreases monotonically, ensuring
that s(t) approaches zero in finite time. This implies that the system reaches the sliding surface
s(t) = 0 and the error e(t) converges to zero, establishing the stability of the system.

Thus, we have now proven that under optimal parameter selection and the given con-
trol law, asymptotic stability is attained in the system according to dynamics ̇x(t) = 𝛼u⃗(t).
The error e(t) converges and moves towards the sliding plane within finite time and hence
stabilizes in the system. This completes proving the theorem.

Remark
In context to HOFA system approach, in classical controller designs, system’s all nonlinear-

ities and their derivatives are mostly assumed to be fully known and estimable. The controller
design is then developed based on exact cancellation of system’s nonlinearities so that linear
system in close-loop is attained. However, in unknown system’s nonlinearities and system
uncertainty case, controller design is highly complex in nature.

In this paper, we propose a novel solution for fully actuated systems using a High-Order
Sliding Mode Control (HOFA-SMC) approach that is independent of exact information about
the nonlinearities. Unlike solutions based on exact cancellation and accurate feedback and/or
identification of nonlinearities, our sliding mode controller guarantees finite-time conver-
gence towards the plane and asymptotic stability in unknown nonlinearities. The approach
highlights the appeal of using sliding mode control by providing a real and viable solution in
uncertain operating conditions and difficult-to-model nonlinearities.
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5 System-based analysis and result discussions
5.1 HOFA-SMC simulation
Fig 4 shows Grip forces applied on each finger, with 0 to 100 on the X-axis (seconds) and in
Newtons (N) on the Y-axis (force), shows that thumb and index fingers (green and red lines)
hold 1.4–1.6 N forces consistently with oscillations occurring due to dynamic adaptations
for stability during grip. The middle finger (blue line) applies a steady force of 1.2–1.3 N with
minor variations, while the ring and little fingers (cyan and magenta lines) contribute the low-
est and most stable forces, around 0.9–1.0 N. The thumb and index fingers display higher vari-
ability and dynamic behavior due to their primary role in gripping. In contrast, the middle,
ring, and little fingers play a secondary, supportive role with reduced force application.

Fig 5 shows Achieving desired force, the performance of HOFA-SMC in achieving the
desired force value of 1.53 N during the simulation. The X-axis represents time (0 to 1 sec-
onds), while the Y-axis shows the force in Newtons (N). Initially, the measured force (blue
line) starts at 0 N and rapidly increases due to the controller’s dynamic adjustments, effec-
tively minimizing the error between the actual and desired values. The system achieved a
steady state with minimal variations when the measured and target forces (red dashed lines)
nearly matched by about 0.1 seconds. The simulation’s seamless transition and stability
demonstrate how well the controller maintains accuracy and resilience while reaching and
holding the desired force value.

Fig 6 shows Control input generated by the HOFA-SMC.The HOFA-SMC generates over
time the control input given during the force control. The X-axis is utilized to denote time
(from 0 to 1 second), and the Y-axis stands for the intensity of the control input. For a quick
system response, initially, the control input increases towards approx 14 units to close the big
gap in measured and desired forces so that a quick system response is achieved.

As the error comes down, the control input drops noticeably during the first second due to
its adaptive nature. The control input settles near zero after 0.1 second as an indicator that the

Fig 4. Grip Forces applied on each finger by HOFA-SMC. Grip forces applied by each finger, with the red line
representing the thumb, green for the index, blue for the middle, cyan for the ring, and magenta for the pinky.

https://doi.org/10.1371/journal.pone.0333512.g004
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Fig 5. Achieving desired force.The red dotted line represents the desired force (1.53 N), while the blue line represents the measured force
over time.

https://doi.org/10.1371/journal.pone.0333512.g005

Fig 6. Control input generated by the HOFA-SMC.The blue line represents the control input generated by the HOFA-SMC over time.

https://doi.org/10.1371/journal.pone.0333512.g006

system is capable of achieving desired force and requires very little corrective action to stabi-
lize it. This response illustrates how HOFA-SMC controller achieves low steady-state energy
consumption and gets to its required force rapidly. The controller ensures both accurate force
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tracking with minimal energy consumption in an optimal tradeoff between reliability and
accuracy.

Fig 7 shows the Error reduction over time by the HOFA-SMC. Because of the significant
difference between the desired and measured force, the error begins at about 1.5 N. However,
it still rapidly decreases within the first second, proving the controller’s ability to converge
quickly. By 0.1 seconds, the error is close to zero and stable, indicating that the system has
successfully reached the desired force value.

This behavior highlights the robustness and precision of HOFA-SMC while addressing the
common issue of chattering seen in traditional sliding mode controllers. Chattering, caused
by high-frequency oscillations near the sliding surface, is mitigated in HOFA-SMC through
smooth, continuous control laws and higher-order dynamics. This is evident in the graph’s
smooth error trajectory. The result is a highly efficient and precise force control system with
minimal steady-state error and enhanced overall performance.

Fig 8 shows 2-D visualization of robotic fingers holding a ball by HOFA-SMC, depict-
ing the forces exerted by each finger. The circular outline represents the ball with a radius of
approximately 12 cm, while the colored points correspond to the tips of the robotic fingers
applying forces on the ball’s surface. The thumb and index fingers, exerting the highest forces
of 1.53 N, are represented by blue and green points, respectively, with their associated dashed
force lines directed toward the ball’s center. The middle finger, applying a moderate force of
1.23 N, is marked in purple, while the ring and little fingers, each exerting a force of 0.92 N,
are represented by pink and yellow points, respectively.

The force lines visually demonstrate the alignment of each finger’s applied force toward
the center of the ball, ensuring a stable grip. This distribution highlights the thumb and index
fingers’ primary function in preserving grip stability, with the middle, ring, and little fingers
offering supplementary support. The illustration successfully conveys how forces must be
distributed and coordinated to hold a spherical object securely.

Fig 7. Error reduction over time by the HOFA-SMC.The blue line in the graph represents the error.

https://doi.org/10.1371/journal.pone.0333512.g007
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Fig 9 shows a 3-D visualization of robotic fingers holding a ball by HOFA-SMC, while
holding a spherical object, showing the spatial arrangement and force magnitudes. The object
is represented by the sphere, where each colored point shows where a robotic finger is located
in three dimensions. The middle (green), ring (red), and little (purple) fingers exert lower
forces of 1.23 N and 0.92 N, respectively, while the thumb (blue) and index (orange) fingers
exert the maximum forces of 1.53 N.

The direction of force toward the center of the ball is shown by dashed lines that extend
from the origin to each finger. With the thumb and index performing key roles and the sup-
porting forces of the other fingers to maintain stability and control of the object, the 3D per-
spective emphasizes the distribution of troops and their alignment for a stable grip.

5.2 FLC simulation
Fig 10 shows the Grip forces applied to each finger. The Feedback Linearization Controller’s
ability to control the grip force exerted by each finger over time is demonstrated by the force
plot. With values ranging from 1.4 N to 1.6 N, the thumb and index fingers (red and green
lines) exert the most significant force, indicating their key function in preserving a firm hold.
The load distribution is supported by the middle finger (blue line), which exerts a modest and
constant force of 1.2 N to 1.3 N. With forces ranging from 0.9 N to 1.0 N, the ring and little
fingers (cyan and magenta lines) contribute the least and mainly offer extra stability. The con-
troller adjusts the forces dynamically, ensuring that each finger contributes proportionally to
achieve a stable and coordinated grip, reflecting the efficiency and precision of the Feedback
Linearization Controller in force regulation.

Fig 11 shows Achieving the desired force, the performance of the Feedback Linearization
Controller in achieving the desired force response. The X-axis represents time (0–10 seconds),

Fig 8. 2-D visualization of holding a ball by HOFA-SMC. Blue marks the thumb, green the index, purple the mid-
dle, yellow the ring, and cyan the pinky, with dashed lines (orange, red, gray, black, light blue) showing their force
lines.

https://doi.org/10.1371/journal.pone.0333512.g008

PLOS One https://doi.org/10.1371/journal.pone.0333512 October 17, 2025 32/ 51

https://doi.org/10.1371/journal.pone.0333512.g008
https://doi.org/10.1371/journal.pone.0333512


ID: pone.0333512 — 2025/10/17 — page 33 — #33

PLOS One Nonlinear control of a robotic hand

Fig 9. 3-D visualization of holding a ball by HOFA-SMC. In the 3-D visualization, blue represents the Thumb (1.53
N), orange the Index (1.53 N), green the Middle (1.23 N), gray the Ring (0.92 N), and red the Pinky (0.92 N).

https://doi.org/10.1371/journal.pone.0333512.g009

and the Y-axis shows force (in Newtons). The red dashed line represents the desired force of
1.53 N, whereas the blue line displays the measured force. The measured force begins at 0
N and rises gradually, quickly converging to the target force. The system settles close to the
target value with minimal oscillation and overshoot in a time frame of about 1 second. The
response indicates how accurately and quickly the Feedback Linearization Controller acts so
that the system approaches and settles at its target force.

Fig 12 shows Control input generated by the FLC, the control input used by the feedback
linearization controller over time to regulate the system force response. The X-axis represents
time (0–3 seconds), and the Y-axis represents the size of the control input. In an attempt to
counteract the big force difference and quickly drive the system to the desired force, the con-
trol input starts at a high value of approximately 1.5 units. As the system approaches stability,
the input reduces drastically within the first 0.5 seconds, momentarily dipping into negative at
0.6 seconds. This trough represents the controller fine-tuning to avoid overshoot and achieve
smooth convergence. The control input converges to zero after two seconds, which shows that
the system has stabilized to the desired force and needs minimal input.

This response reflects the ability of the controller to adjust the input dynamically in error
reduction without compromising force regulation accuracy and stability. The ideal conver-
gence and transition prove the effectiveness of Feedback Linearization Control in reaching
optimum performance without unnecessary steady-state effort.

Fig 13 shows Error reduction over time by the FLC. The force error (in Newtons), i.e., the
actual difference between desired force and system force, is the Y-axis, and time (0–3 seconds)
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Fig 10. Grip forces applied on each finger by FLC.The red line represents Thumb Force, green line represents Index Force, blue line represents Middle
Force, cyan line represents Ring Force, and magenta line represents Pinky Force.

https://doi.org/10.1371/journal.pone.0333512.g010

Fig 11. Achieving the desired force response.The blue line represents the Measured Force (N) over time, while the red dashed line represents the constant
Desired Force (N)

https://doi.org/10.1371/journal.pone.0333512.g011
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Fig 12. Control input generated by the FLC.The blue line in the graph represents the control input over time with Feedback Linearization Control applied.

https://doi.org/10.1371/journal.pone.0333512.g012

Fig 13. Error reduction over time by the FLC.The blue line in the graph represents the error over time in the system being controlled by Feedback
Linearization Control.

https://doi.org/10.1371/journal.pone.0333512.g013
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is the X-axis. At the start, because of the immense delay between system force and required
force, the error was approximately 1.53 N.

The controller responds quickly to reduce the difference, as indicated by the error decreas-
ing rapidly within the first 1.5 seconds via remedial adjustments. The error drops to near-zero
levels by around 2.5 seconds, indicating that the system has precisely matched desired and
measured forces. The residual small error thereafter illustrates how effectively the controller
maintains precise and stable force regulation. This graph highlights the controller’s ability to
rapidly minimize error while ensuring steady-state performance, emphasizing its precision,
robustness, and efficiency in achieving reliable force control.

Fig 14 shows 2-D visualization of robotic fingers holding a ball by FLC. The basketball is
represented by the orange circle, which has a radius of around 12 cm. The colored points show
where the robotic fingers are located on the ball’s surface. The bold dashed force lines pointing
toward the center of the ball show that the thumb (blue) and index (green) fingers apply the
highest forces, 1.53 N. The ball is stabilized mainly by these two fingers. Applying a mild force
of 1.23 N, the middle finger (purple) contributes to load distribution.

With the lowest forces of 0.92 N, the ring (pink) and little (yellow) fingers improve grip sta-
bility. The direction and relative magnitudes of the applied forces are shown by the dashed
lines that connect the finger positions to the origin. The feedback linearization controller
ensures precise coordination and proportional distribution of forces among the fingers, result-
ing in a stable and secure grip on the ball.

Fig 15 3-D visualization of robotic fingers holding a ball by FLC. The orange sphere rep-
resents the ball, while the colored points and dashed lines indicate the robotic fingers’ posi-
tions and the applied forces’ direction. The thumb (blue) and index finger (orange) provide
the most significant forces of 1.53 N, as the evident dashed lines extend from their locations
into the sphere’s center. These two fingers function as the principal stabilizers of the grasp.
The middle finger (green) exerts a modest force of 1.23 N, providing supplementary support

Fig 14. 2-D visualization of holding a ball by FLC.The colors represent: Blue for Thumb, Green for Index, Purple
for Middle, Pink for Ring, and Cyan for Pinky.

https://doi.org/10.1371/journal.pone.0333512.g014
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Fig 15. 3-D visualization of holding a ball by FLC.The colors represent: Blue is for Thumb 1.53 N, Orange is for
Index 1.53 N, Green is for Middle 1.23 N, Red is for Ring 0.92 N, and Purple is for Pinky 0.92 N.

https://doi.org/10.1371/journal.pone.0333512.g015

and stability. Simultaneously, the ring (red) and little (purple) fingers apply lesser stresses of
0.92 N each, augmenting total grip stability.

The dashed lines demonstrate the alignment of forces toward the sphere’s center, guaran-
teeing a secure and stable hold on the object. This image highlights the efficient allocation
of pressures among the robotic fingers, demonstrating the controller’s capacity to attain a
balanced and solid grip.

Fig 16 shows a 3-D visualization that represents the hand dynamics, presents a three-
dimensional representation of hand dynamics and finger rotation, illustrating the spatial con-
figurations of the fingers within a robotic or dynamic control context. The ground or base of
the palm, denoted by the red ball in the middle, is where the five fingers are located: thumb
(blue), index (orange), middle (green), ring (red), and little (purple). Each of the fingers
extends out from the palm base, with each having its own unique orientations and dynamic
movements in three-dimensional space.

This diagram represents the simultaneous movements of the fingers in activities that
require natural hand motion, such as grasping or handling objects. The arrangement presents
the kinematics of the hand and the separate contribution of each finger in the process of
achieving precise and coordinated motion. This model is required to comprehend the dynam-
ics of robotic or humanoid hands, especially in activities requiring precise control of finger
position and orientation in three-dimensional space.

Fig 17 shows 3D trajectories illustrating the dynamic motion of fingers, which demon-
strate the series of three-dimensional trajectories of the fingers’ dynamic movements from the
palm’s base in a controlled environment. The base of the palm (red) is the main point of ref-
erence, and the trajectory of the thumb (blue), index (orange), middle (green), ring (red), and
little (purple) fingers. Using and simulating a clutching motion or a firm grip.

This sequence nicely demonstrates the coordination and agility of finger movements in
space, emphasizing the for fine-tuning to required for tasks like grasping or manipulating
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Fig 16. 3-D visualization of hand dynamics. In the 3-D model, the red color represents the Palm Base, blue is for the
thumb, orange is for the index, green is for the middle, purple is for the ring, and cyan is for the pinky.

https://doi.org/10.1371/journal.pone.0333512.g016

an object. The role of visualization is essential in the investigation of kinematics, trajectory
planning, and dynamic control in robotic and anthropomorphic hand design.

6 Comparison of higher-order fully actuated sliding mode
controller and feedback linearization controller
It employs two nonlinear control techniques: The paper employs two nonlinear control tech-
niques, a Feedback Linearization Controller (FLC) and a High Order Fully Actuated Sliding
Mode Controller (HOFA-SMC), for eliminating higher-order harmonics and improving the
stability of the system during full-hand operations such as flexion, extension, and ball grip.
The controllers utilize the controlled inputs for the production of precise and stable outputs in
coordinated hand movement.

The Sliding Mode Controller on High-Order Fully Actuated (HOFA) is applied to the
entire hand, as well as all five fingers, instead of being limited to two-finger setups. This
stronger control structure successfully enables intricate tasks like flexion, extension, and firm
object grasping by means of dynamic control of joint trajectories and applied pressures.

Performance evaluation of the system shows that although the Feedback Linearization
Controller is smooth in operation, it is not robust to system uncertainties. The HOFA-based
Sliding Mode Controller is more robust and manages uncertainty at no cost of precise control.

A boundary layer technique is also incorporated in the HOFA-based SMC to reduce the
chattering issue frequently encountered by traditional SMC applications. This modification
provides smooth motion control without compromising accuracy or stability. The outcome
proves the HOFA-based SMC to be more stable, precise, and robust than the Feedback Lin-
earization Controller and hence a better control strategy to overall dynamic tasks like ball
manipulation, flexion, and extension. Table 1 shows the performance comparison of the
HOFA-SMC and FLC control methods.
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Fig 17. 3-D trajectories of fingers. In the 3-D model, the red color represents the Palm Base, blue is for the thumb, orange is for the index, green is for the
middle, purple is for the ring, and cyan is for the pinky.

https://doi.org/10.1371/journal.pone.0333512.g017

Comparison of maximum angles for flexion
TheHigher-Order Fully Actuated Sliding Mode Controller (HOFA-SMC) surpasses the Feed-
back Linearization Controller (FLC) regarding maximum flexion. The HOFA-SMC attains
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Table 1. Performance Comparison of the HOFA-SMC and FLC control method.
Parameters HOFA-SMC FLC
Maximum Flexion Angles (Index) 𝜃1 = 3.00 rad, 𝜃1 = 2.80 rad

𝜃2 = 2.95 rad 𝜃2 = 2.75 rad
𝜃3 = 2.85 rad 𝜃3 = 2.70 rad
𝜃4 = 2.80 rad 𝜃4 = 2.60 rad

Maximum Extension Angles (Index) 𝜃1 = 0.10 rad 𝜃1 = 0.30 rad
𝜃2 = 0.12 rad 𝜃2 = 0.35 rad
𝜃3 = 0.15 rad 𝜃3 = 0.40 rad
𝜃4 = 0.18 rad 𝜃4 = 0.45 rad

Time of achieving the desired response 0.1s 2.5s
Maximum Value of Gain Applied K1 = 10, K1 = 10,
Lambda Applied (both Joints) 𝜆 = 6 𝜆 = 4

https://doi.org/10.1371/journal.pone.0333512.t001

joint angles that approximate the optimal flexion range with:

𝜃1 = 3.000 rad, 𝜃2 = 2.950 rad, 𝜃3 = 2.850 rad, 𝜃4 = 2.800 rad.

In contrast, the FLC achieves slightly lower flexion, with:

𝜃1 = 2.800 rad, 𝜃2 = 2.750 rad, 𝜃3 = 2.700 rad, 𝜃4 = 2.600 rad.

These results indicate that the HOFA-SMC is superior for applications necessitating pre-
cise flexion since it puts the joints in a more wholly flexed stance, which is crucial for grasping
postures.

Comparison of maximum angles for extension
TheHOFA-SMC again outperforms the FLC for maximum extension by achieving joint
angles closer to the fully extended position. The HOFA-SMC achieves:

𝜃1 = 0.100 rad, 𝜃2 = 0.120 rad, 𝜃3 = 0.150 rad, 𝜃4 = 0.180 rad.

In comparison, the FLC achieves:

𝜃1 = 0.300 rad, 𝜃2 = 0.350 rad, 𝜃3 = 0.400 rad, 𝜃4 = 0.450 rad.

The HOFA-SMC attains superior finger alignment, signifying enhanced control accuracy
and precision. This makes it more appropriate for actions requiring complete joint extension,
such as object release or recovering a neutral hand posture.

Comparison of the time to achieve the desired response
TheHigher-Order Sliding Mode Controller (HOFA-SMC) attains the necessary force
response in about 0.1 seconds, much quicker than the Feedback Linearization Controller
(FLC), which requires 2.5s seconds. This illustrates the HOFA-SMC’s enhanced efficiency in
managing system dynamics and minimizing settling time, rendering it suitable for applica-
tions necessitating fast and accurate force management, such as robotic manipulation. At the
same time, the slower reaction of FLC may limit its efficacy in time-critical activities.
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Comparison of maximum value of gain applied
When the HOFA-SMC and FLC exhibit equal gains (k1 = 10, k2 = 7, k3 = 5), the difference in
performance is attributed to the control approach rather than the gain values. The HOFA-
SMC is superior since it integrates higher-order dynamics and sliding mode concepts. It
providesproposed higher-order fully actuated Sliding Mode Control (HOFA-SMC) perfor-
mance enhanced adaptability, accelerated convergence, and improved management of system
uncertainties relative to the Feedback Linearization Controller (FLC). Consequently, despite
equivalent benefits, the HOFA-SMC surpasses the FLC in attaining stability and accuracy.

Comparison of maximum value of Lambda applied
With 𝜆 = 6 for HOFA-SMC and 𝜆 = 4 for FLC, HOFA-SMC demonstrates superiority due
to the elevated 𝜆, which facilitates expedited error convergence, enhanced robustness, and
superior management of uncertainties. A higher 𝜆 improves sliding mode dynamics, making
HOFA-SMC more efficient for accurate and stable control in dynamic systems. However, a
smaller 𝜆 in FLC may result in slower responses and less robustness in contrast.

6.1 Experimental validation
This section presents an experimental validation by analyzing and comparing the simu-
lated outcomes. To facilitate experimental validation, a specific reference paper [49–51] was
selected. The performance of the proposed higher-order fully actuated Sliding Mode Control
(HOFA-SMC) is compared against various Sliding Mode Control (SMC) techniques, includ-
ing SMC, SMC 2, and SMC 3. The proposed method demonstrates superior efficiency, preci-
sion, and robustness across critical metrics, mainly when applied to a more complex 4-DOF
system than the 2-DOF systems used in Compared SMC 3. Table 2 shows Comparison of
SMC Techniques.

One of the benefits of the proposed HOFA-SMC is that it can generate the desired response
in a significantly shorter time. For example, the proposed HOFA-SMC settles within 0.5 sec-
onds for all the joints in the 4-DOF system. This is significantly better than Compared SMC
1 [49] and Compared SMC 2 [50], which were taking 1- and two-second comparisons for
less complicated 3-DOF setups. Even Compared takes 0.86 seconds for q1 and q2 to achieve
the desired output. The reduced response time reflects the flexibility and efficiency of the
proposed controller in regulating dynamic systems.

Table 2. Comparison of SMC techniques.
Parameters Compared SMC 1

[49]
Compared SMC 2
[50]

Compared SMC 3
[51]

Proposed HOFA-SMC

Number of Controlled Joints 3 3 2 4
Mean Absolute Error (MAE) (rad) q1 = 0.0853 q1 = 1.745 × 10–4 q1 = 1.6 × 10–5 q1 = 0.01

q2 = 0.0542 q2 = 1.745 × 10–4 q2 = 3.7 × 10–5 q2 = 0.0125
q3 = 0.0705 q3 = 1.745 × 10–4 q3 = 0.0125

Time of Achieving Desired Response (ts) q1 = 1 s q1 = 2 s q1 = 0.86 s q1 = 0.2 s
q2 = 1 s q2 = 2 s q2 = 0.418 s q2 = 0.2 s
q3 = 1 s q3 = 2 s q3 = 0.2 s

Peak Time (tp) — q1 = 0.083 s q1 = 0.083 s q1 = 0.2 s
q2 = 0.053 s q2 = 0.053 s q2 = 0.03 s

q3 = 0.03 s
Maximum Value of Gain Applied K1 = 1,K2 = 1 K1 = 3,K2 = 3 K1 = 1,K2 = 1 K1 = 10,K2 = 7,K3 = 5
Lambda Applied 𝜆 = 2 𝜆 = 0.02 𝜆 = 3 𝜆 = 6

https://doi.org/10.1371/journal.pone.0333512.t002
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With much reduced Mean Absolute Error (MAE), HOFA-SMC also performs rather pre-
cisely. The suggested approach yields MAE values of 0.01 rad, 0.0125 rad, and 0.0125 rad
respectively for q1, q2 and q3. These values are a marked improvement over Compared SMC
1 [49], which records q1 = 0.0853 rad, q2 = 0.0542 rad, and q3 = 0.0705 rad. Similarly, while
Compared SMC 2 [50] achieves slightly better precision with MAE values converted to radi-
ans (q1 = 1.745× 10–4 rad, q2 = 1.745× 10–4 rad, and q3 = 1.745× 10–4 rad), it still falls short in
scaling to a 4-DOF configuration. For a 2-DOF system with MAE values of q1 = 1.6× 10–5 rad
and q2 = 3.7× 10–5 rad, SMC 3 [51] exhibits great precision but lacks adaptability for larger
degrees of freedom.

The proposed HOFA-SMC leverages optimized gains (K1 = 10, K2 = 7, K3 = 5) and a con-
trolling factor, 𝜆, to achieve these superior results. leads to a more refined response by effec-
tively managing the sliding dynamics and reducing the settling time. In contrast, Compared
SMC 1 [49] and Compared SMC 2 [50] use lower gains (K1 = 1,K2 = 1) and controlling fac-
tors (𝜆 = 2 and 𝜆 = 0.02, respectively), which result in slower response times and higher error
metrics. Even Compared SMC 3 [51], which uses K1 = 1, K2 = 1, and 𝜆 = 3, demonstrates
limitations in scaling to more complex robotic systems.

The higher value of 𝜆 in the proposed HOFA-SMC plays a pivotal role in its performance,
as it ensures a more robust and stable response by enhancing control over the sliding dynam-
ics. This capability enables the proposed controller to maintain stability and accuracy even in
a more complex 4-DOF system, outperforming other techniques with lower 𝜆 values.

In conclusion, the proposed HOFA-SMC proves to be the most effective control strategy,
offering faster response times, improved precision, and greater adaptability, even for systems
with higher degrees of freedom. While Compared SMC 3 [51] excels in precision for simpler
2-DOF systems, and Compared SMC 2 [50] shows moderate performance with slightly bet-
ter precision, neither matches the scalability and robustness of the proposed HOFA-SMC. By
incorporating optimized gains and a higher controlling factor (𝜆), the proposed HOFA-SMC
achieves exceptional results, making it an ideal choice for high-complexity robotic systems.

7 Analysis of HOFA-SMC under its parametric variation
The performance of the high-order SMC (HOFA-SMC) is tested using the hit-and-trial
method by adjusting its main control parameters, which in turn affect its performance.
HOFA-SMC can effectively reduce the error signal and mitigate chattering issues by select-
ing appropriate values for Lambda, Switching Gain (K), Dynamic Compensation Factor, and
System Inversion Parameter.

The initial value of Lambda is selected from the reference [50]. Increasing the value of
Lambda can cause the tracking error to increase as well, which affects the derivative and inte-
gral terms, causing the sliding surface to decrease. Additionally, the convergence time of the
signal also decreases. On the other hand, the values of Kp, Ki, and Kd are equally important in
reaching the desired value.

Our main observations for HOFA-SMC are listed below: The optimum value of Lambda
applied to each joint can be determined by varying it from 0.02 to 6. Our first selected value
of Lambda was 4, which resulted in chattering. Increasing it to 6 led to fast convergence and
a reduction in chattering. Therefore, for the current problem, the optimum value of Lambda
is 6.

With minimal increases in the values of Kp, Kd, and Ki, there was a decrease in tracking
error and a faster time to reach steady-state. Therefore, it is crucial to select these values care-
fully to achieve system stability, especially when working with prostheses that will later be
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implemented in hardware, so that disabled people can use them with promising results. The
current applied values for Kp, Kd, and Ki are 10, 7, and 5, respectively.

Table 3 shows the X-tics comparison of the proposed HOFA-SMC and FLC with past
SMC schemes applied. It can be concluded that HOFA-SMC has a superior performance than
other schemes in terms of fast response, robustness, high accuracy, reduced chattering, and
minimum steady state error.

The parameters in Table 4 are aligned with real-world values reported in the literature,
validating the performance of the proposed prosthetic systems. For example, the maximum
flexion angles for the Proposed HOFA-SMC system (3.0 rad) and the Proposed FLC system
(2.80 rad) are consistent with the expected range of motion observed in real-world prosthet-
ics. According to [56] and other studies, the maximum flexion angles for prosthetics typically
fall within similar ranges, further supporting the adaptability of the proposed systems to var-
ious limb conditions and user strengths. These values are also better than some existing sys-
tems that tend to have more limited ranges, thus validating the potential for more dynamic
and versatile movement.

Link lengths of 3.0 and 2.5 cm correspond to typical measurements used in the prosthetic
industry, as seen in studies such as [55]. These dimensions ensure the prosthetic fit for users
with different residual limb sizes and anatomical variations, providing a more personalized fit.
The literature suggests that successful prosthetics often rely on such customization, validating
that the link lengths in the table are appropriate for effective user adaptation and movement
control.

The settling time of 0.1s for the Proposed HOFA-SMC system is within the acceptable
range for real-time response in prosthetic applications. Studies such as [56] report settling
times ranging from 0.2s to 1.5s, depending on the complexity of the control system. The pro-
posed system outperforms these with a significantly lower settling time, thus validating its
superior responsiveness for real-world applications. In contrast, the longer settling time of

Table 3. X-tics comparison of proposed HOFA-SMC and FLC with current SMC strategies.
X-tics Proposed HOFA-SMC Proposed FLC [49] [50] [51]
Response Time Very Fast Medium Fast Fast Medium
Accuracy High Medium High High Medium
Robustness Very High Moderate High Moderate High
Chattering Lowest Low Low Medium Low
Transient Response Very Fast Fast Fast Fast Fast
Steady State Time 0.2 s 1 s — — —

https://doi.org/10.1371/journal.pone.0333512.t003

Table 4. Proposed HOFA-SMC with experimental validation.
Comparison
Parameters

Proposed HOFA-SMC Proposed FLC [57] [56] [55]

Implemented
Technique on

Simulation-Based Simulation-Based KIT Prosthetic Hand Real Time EMG Control Real Time EMG Control

Maximum
Flexion Angles

3.0 rad 2.80 rad 1.5708 rad 0.99 rad 0.349 rad

Settling Time 0.1 s 0.2 s 1.3 s 1.6 s 0.73 s
Controlling
Factor

K = 10 K = 10 — — K = 0.01

Voltages — — 12V 12V 12V
Lengths of Links l1 = 3.0cm, l2 = 2.5cm,

l3 = 2.0cm, l4 = 1.5cm
l1 = 3.0cm, l2 = 2.5cm,
l3 = 2.0cm, l4 = 1.5cm

l1 = 2.0cm, l2 = 1.489cm,
l3 = 2.0cm, l4 = 0.757cm

l1 = 3.0cm, l2 = 3.23cm,
l3 = 2.0cm

l1 = 3.36cm, l2 = 3.23cm,
l3 = 2.8cm

https://doi.org/10.1371/journal.pone.0333512.t004
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1.3s in the experimental work reflects the delays observed in other systems in practical appli-
cations, supporting the claim that the proposed system provides faster reaction times than
existing models.

The control factor (K) value of 10 for both the Proposed HOFA-SMC and FLC systems
aligns with the range commonly used in prosthetic control systems to balance responsive-
ness and stability. According to the literature on control systems for prosthetics, values in this
range are often used to optimize system performance without overshooting or lag. [57] report
similar values for control factor tuning, validating that the proposed systems are comparable
to real-world standards while offering optimized performance for smoother user experiences.
The voltage was 12 volts for operating the prosthetic device in all the compared studies, but
our work was simulation-based only.

Finally, the experimental study backs up what has already been found in the field. The flex-
ion angle of the proposed FLC system (2.80 rad) was close to that reported by [55], which
also showed flexion angles between 2.7 and 3.0 rad for similar prosthetic devices. The settling
time of 1.3 s found in the experiments supports the idea that the suggested systems may be
used in the real world. This shows that the theoretical findings are very similar to those in the
real world. In short, comparing the suggested systems’ characteristics to those in the litera-
ture shows that they not only match but even in some cases beat current technologies in terms
of responsiveness, flexibility, and overall performance. These tests show that the prosthetic
devices are reliable and can be used in real-life applications.

7.1 Controller performance under unmodeled dynamics
TheHOFA-SMC works well when everything is perfect, carefully following the control input
and force output to the set point. The controller maintains a smooth and precise reaction,
showing that it can manage the system’s changes without outside help. The force output stays
steady at around 1.53 N, the intended number. This means that the controller is working well.

Fig 18 shows the Force Output Comparison Under Different Conditions. The HOFA-SMC
still works effectively even when sensor noise is added. The control input changes a little,
but these changes are minor, and the force output stays near the setpoint of 1.53 N. The con-
troller does a good job of making up for the noise, which has a negligible influence on how
well the system works. The controller’s performance doesn’t go any worse, even with the extra
challenge of sensor noise. This shows how strong it is.

The controller’s performance is best seen when there is both sensor noise and dynam-
ics that are not represented. The control input is less stable than it should be, but it remains
within tolerable bounds and makes the right adjustments to keep the force output near to the
intended set point. The HOFA-SMC’s higher-order adjustment makes the changes in the force
output less than what would be anticipated from a regular sliding mode controller. This shows
that the controller can manage noise and dynamics that aren’t described, which makes it more
robust than traditional control approaches.

8 Comparison of higher-order fully actuated sliding mode
controller and feedback linearization controller
The controller is quite good at managing real-world situations because it can keep the force
output steady even when there are outside factors like noise and unmodeled dynamics. The
changes in the control input show that the system is making up for these problems, but the
force output is steady and near to the goal value of 1.53 N. This shows that the system can
handle a lot of uncertainty, which means it will work well even when things aren’t perfect.
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Fig 18. Force output comparison on different conditions.The blue dashed line shows the ideal force, the orange the force with sensor noise, the green the
force with noise and unmodeled dynamics, and the dotted line the 1.53 N set point.

https://doi.org/10.1371/journal.pone.0333512.g018

TheHOFA-SMC works well when everything is perfect, carefully following the control
input and force output to the set point. The controller maintains a smooth and precise reac-
tion, showing that it can manage the system’s changes without any outside help. The force
output stays steady at around 1.53 N, the intended number. This means that the controller is
working well.

The HOFA-SMC still works effectively even when sensor noise is added. The control input
changes slightly, but these changes are minor, and the force output stays near the setpoint
of 1.53 N. The controller does a good job of making up for the noise, which has a negligible
influence on how well the system works as a whole. The controller’s performance doesn’t go
any worse, even with the extra challenge of sensor noise. This shows how strong it is.

Fig 19 shows Control Input Comparison Under Different Conditions. The controller’s
performance is best seen when sensor noise and dynamics are not represented. The control
input is less stable than it should be, but it remains within tolerable bounds and makes the
proper adjustments to keep the force output near the intended set point. The HOFA-SMC’s
higher-order adjustment makes the changes in the force output less than what would be antic-
ipated from a regular sliding mode controller. This shows that the controller can manage
noise and dynamics that aren’t described, which makes it more robust than traditional control
approaches.

The controller is good at managing real-world situations because it can keep the force out-
put steady even when outside factors like noise and unmodeled dynamics exist. With a sim-
ulated noise level of ±10% and an actuator saturation level of ±5%, the HOFA-SMC kept the
highest force deviation to ±0.08 N and the joint angle inaccuracy to < 0.015 rad. This means
that the system can handle noise and model uncertainty up to these levels while still being
stable and converging. The changes in the control input show that the system is making up
for these problems, but the force output is steady and close to the goal value of 1.53 N. This
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Fig 19. Control input comparison on different conditions.The green line represents Ideal Control Input, the orange line represents Control Input with
Sensor Noise, and the blue dashed line represents Control Input with Sensor Noise and Unmodeled Dynamics.

https://doi.org/10.1371/journal.pone.0333512.g019

shows that the system can handle a lot of uncertainty, which means it will work well even
when things aren’t perfect.

9 Conclusions and future work
This paper proposes non-linear control methodologies, HOFA-SMC and FLC, to compensate
for the complete robotic hand model under different applied forces, torques, and unbalanced
load conditions. Additionally, the outcomes of HOFA-SMC and FLC under different paramet-
ric values are explained. The complete results for the full five fingers—Index, Ring, Middle,
and Little (4-DOF), andThumb (3-DOF) are discussed. Flexion, Extension, and Grasping are
performed using high-order SMC in a Python environment, and FLC is then implemented
under the same test scenarios.

The results of both proposed controllers are compared with those of past research. The
results show that HOFA-SMC demonstrates superiority in fast convergence, more precise
trajectory, and robustness against uncertainties.

The comparison of both implemented controllers highlights apparent differences in per-
formance across multiple parameters. HOFA-SMC is superior because it achieves 1.7% bet-
ter maximum flexion angles with less improvement in flexibility. Additionally, HOFA-SMC
provides better extension angles, showing a 15.8% improvement, offering the best extension.
HOFA-SMC’s time of convergence is also 5 times better than FLC. Furthermore, a higher
lambda value is applied, indicating robustness in the control approach.

Compared with practical versions of SMC, the implemented HOFA-SMC shows a very fast
response, very high robustness, the lowest chattering, very high accuracy, and high damping,
with a steady-state time of only 0.2s. For a robotic finger to replicate the characteristics of a
real finger, its response time should be between 0-1s, and the results validate this approach.
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Both controllers successfully suppressed higher-order harmonics; however, the HOFA SMC
is more reliable for practical applications due to its capacity to manage uncertainties and
erratic fluctuations. Experimental validation of the full-hand model highlighted its practical-
ity and potential for prosthetic and assistive technologies, overcoming limitations in earlier
two-finger models.

This work can be implemented on a hardware platform for real-time verification in the
future. Future work aims to integrate advanced control techniques such as gain scheduling
and back-stepping to improve system performance further. Expanding the model to multi-
fingered configurations with sensory feedback will enhance inclusivity and user experience.
The scalability and adaptability of HOFA-SMC set a new benchmark for prosthetic technolo-
gies, offering precise, robust, and stable control in complex multi-joint systems.
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