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Abstract 

Ancient tombs were valuable cultural heritage of China and possessed immeasurable 

significance. However, research on their spatiotemporal distribution and influencing fac-

tors was relatively absent. Based on the establishment of a national geographic infor-

mation database of ancient tombs, this study employed ArcGIS and SPSS software to 

conduct both qualitative and quantitative analyses of the extant ancient tombs in China, 

with the aim of providing support for the protection of Chinese ancient tombs. The 

results showed that: ① The number of ancient tombs in the Qing Dynasty was the high-

est, while the number of ancient tombs from the Sui Dynasty accounted for the smallest 

proportion; ② Ancient tombs in different historical periods presented three distinct con-

centration areas around the Central Plains urban agglomeration, Chengdu-Chongqing 

urban agglomeration, and Guanzhong Plain urban agglomeration in China; ③ The 

focus of ancient tombs in different historical periods concentrated in the central region 

of China, with a recurring shift of the focus within the current provinces of Shaanxi, 

Shanxi, Henan, Hubei, and Chongqing; ④ The density of southern rice paddies (DL01) 

was negatively correlated with the distribution of ancient tombs in China, while the total 

GDP and population had a significant positive correlation with the distribution of ancient 

tombs. The significance of this study lies in systematically understanding the spatiotem-

poral distribution patterns and influencing factors of ancient tombs in China, in order to 

provide a theoretical basis for scientifically assessing risks, formulating effective protec-

tion plans, and guiding archaeological surveys and explorations.

1.  Introduction

The Principles for the Conservation of Heritage Sites in China define heritage sites 
are the immovable physical remains that were created during the history of human-
kind and that have significance; they include archaeological sites and ruins, tombs, 
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traditional architecture, cave temples, stone carvings, sculpture, inscriptions, stele, 
and petroglyphs, modern and contemporary sites and architecture, and historically 
and culturally famous cities, towns and villages together with their original compo-
nents. Cultural landscapes and heritage routes and canals are also deemed to be 
heritage sites [1]. Among these, ancient tombs, as direct products of ancient human 
activities, embody the material civilization created by ancestors. They hold abundant 
historical information, such as the identity, social status, living customs, and religious 
beliefs of the tomb occupants, serving as critical material evidence for studying the 
social history of ancient China.

However, the protection of CATs currently faces challenges, including erosion from 
natural disasters [2], insufficient regulatory measures for protection, a shortage of 
specialized preservation professionals [3], conflicts between economic development 
and tomb preservation [4], and rampant tomb raiding activities [5]. Investigating the 
spatial distribution and influencing factors of CATs holds important implications for 
their conservation. Such research not only aids in uncovering the historical context 
and cultural significance of CATs and provides a scientific basis for their preservation 
but also facilitates the development of related academic disciplines and promotes the 
protection of this heritage.

Few studies have focused on the spatial distribution patterns and influencing factors 
of ancient tombs in China. Research on the spatiotemporal distribution characteristics 
and influencing factors of cultural relics and historic sites has primarily concentrated on 
ancient sites [6], ancient architecture [7], and cave temple [8]. The spatial distribution of 
these sites is influenced by both natural and human factors, and studies using quali-
tative and quantitative analysis have provided guidance for the protection of different 
types of cultural heritage. Research in the field of ancient tombs has mainly focused 
on three perspectives: exhibition and utilization [2,9], protection paths and strategies 
[3], and digital data collection [10]. Firstly, in terms of exhibition and utilization, schol-
ars have analyzed targeted and appropriate approaches based on the current state, 
characteristics, and planning of CATs[2]. For non-popular CATs, such as Qin Gong 
Tomb No. 1, which are smaller in scale and attract fewer visitors, these can be jointly 
planned with nearby large-scale ancient sites as part of an integrated heritage display 
to improve regional industrial layout [9]. Secondly, regarding conservation approaches 
and strategies, relevant studies have focused on existing issues, cultural value, and 
resource conditions, aiming to enhance the conservation level of CATs by identifying 
influencing factors, leveraging environmental conditions, and improving legal frame-
works [3,11,12]. Thirdly, in the area of digital data collection, photogrammetry tech-
nology has been applied to create 3D models of ancient tombs to analyze influencing 
factors. In a study on the digital data collection of ancient tombs in Guangxi based on 
close-range photogrammetry, experiments on the Kangxi King Mausoleum analyzed 
key factors affecting 3D modeling results, including weather, distance, and overlap rate. 
This research identified optimal modeling parameters for close-range photogrammetry, 
offering a methodological reference for the digitalization of cultural heritage [10]. Lastly, 
some studies [13] documented the archaeological excavation processes and results of 
ancient tombs, further analyzing the historical context of the tombs.
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In terms of research methods, current studies on the spatiotemporal distribution characteristics and influencing factors 
primarily relied on the ArcGIS platform for various spatial and regression analyses [14–16]. Using the ArcGIS platform, 
techniques such as nearest neighbor index, centralization index, kernel density analysis, and elliptical analysis revealed 
that the spatial distribution of cultural relics and historical sites exhibited clustered patterns [17]. Building on this, methods 
like the geographical detector and geographically weighted regression were employed to determine the explanatory power 
of each influencing factor [18–20]. Additionally, some studies integrated data on cultural heritage protection units with fac-
tors such as topography, geomorphology, transportation, and rivers through overlay analysis and buffer analysis to further 
explore the correlations between influencing factors and spatial distribution [21–23].

In summary, whether in spatial analysis or quantitative research, studies focusing on CATs remain largely unexplored. 
To address the current gap in the research field concerning the distribution patterns of CATs and their complex influencing 
factors, this study adopted a comprehensive research methodology. The aim was to conduct a thorough and systematic 
analysis of CATs distributed across the country through data collection and analysis. The study not only focused on the 
numerical patterns, regional differentiation characteristics, spatiotemporal evolution, and influencing factors of ancient 
tomb distribution in China but also incorporated quantitative research.

In the implementation process, ArcGIS and SPSS were utilized. Spatial analysis techniques were employed to achieve 
precise and visually intuitive representations of the distribution of CATs, transforming potentially abstract and complex 
spatial data into comprehensible visual outputs. Meanwhile, regression analysis and other statistical methods were 
applied to quantify the multiple factors influencing ancient tomb distribution. This systematic and quantitative research 
approach provided a novel perspective and deeper understanding of the characteristics and evolutionary patterns of 
CATs. Furthermore, it offered robust data support and theoretical foundations for optimizing the protection strategies and 
inheritance mechanisms of historical and cultural heritage.

2.  Data sources and research methods

2.1.  Data sources

This study selected CATs, classified as immovable cultural relics across the country, as the research objects. The geo-
spatial data of CATs used for analyzing spatiotemporal distribution characteristics were obtained from the Third National 
Cultural Relics Census. The census data underwent rigorous review and organization, resulting in reliable archival records 
and reports. These records document detailed information about CATs, including their chronology, locations, and preser-
vation status, providing a dependable foundation for in-depth research.

The indicators used for analyzing influencing factors were categorized into two main groups. The first group focused on 
the socio-cultural aspects, encompassing two dimensions: socioeconomic factors and historical-cultural factors. The sec-
ond group addressed natural geographic aspects, including six dimensions: river systems, climatic conditions, topography 
and landforms, road networks, vegetation coverage, and soil types.

Specifically, data on total population and GDP were sourced from the National Statistical Yearbook. Historical cultural 
figures were derived from local chronicles and biographies of historical personalities, providing important clues and con-
textual information for the study of CATs. The density of traditional villages was based on the lists of traditional villages 
from the first to sixth batches released by the Ministry of Housing and Urban-Rural Development. The density of admin-
istrative villages was obtained from the National Bureau of Statistics website. These datasets facilitated a macro-level 
understanding of the relationship between CATs distribution and human social activities, uncovering spatial patterns and 
primary influencing factors of CATs distribution. Temperature and precipitation data were retrieved from the China Mete-
orological Data Service Center, as these factors indirectly influenced the selection and evolution of human activity areas, 
thereby affecting the distribution of ancient tombs. Vegetation coverage, elevation, soil type, and river network density 
data were obtained from the Resource and Environment Science Data Center of the Chinese Academy of Sciences, while 
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slope data were extracted and analyzed using ArcGIS. Runoff data were sourced from the National Tibetan Plateau Data 
Center. Since ancient tombs are mostly buried underground, the selection of tomb sites would have inevitably considered 
whether these natural factors could impact their long-term preservation, aiding in the revelation of spatial distribution char-
acteristics. Road network density data were sourced from Open Street Map. This dataset reflected the intensity of human 
activity, influenced the preservation of CATs, and supported archaeological surveys and planning efforts.

However, since the data were recorded by multiple individuals, it inevitably contained duplicates, missing values, invalid 
entries, anomalies, and errors. To address this issue, the primary task was data cleaning, which involved removing dupli-
cate and invalid information, filling in missing data, and correcting anomalies and errors. This process ensured that the 
raw data were transformed into a dataset with a uniform format and accurate content.

2.2.  Research methods

2.2.1.  Kernel density estimation.  Kernel density analysis uses a kernel function to calculate the quantity per unit 
area based on point features, thereby reflecting the density characteristics of point features in geographic space. This 
method can visually represent the distribution and clustering characteristics of CATs in China [24]. Higher kernel density 
values indicate greater spatial clustering of CATs. The formula is as follows:

	
fn(x) = 1

nh

n∑
i=1

k
( x–xi

h

)
	 (1)

In the formula, n represents the number of CATs in the study area in China, h(h > 0)denotes the bandwidth, which deter-
mines the smoothing level of the density estimate, k(x–xih ) refers to the kernel function, which defines the shape of the influ-
ence of each point over the space,(x-xi)represents the distance between each estimated point (x) and the sample point (xi).

2.2.2.  Spatial autocorrelation.  The spatial autocorrelation analysis in this study was used to evaluate the degree of 
spatial correlation of CATs. By calculating the Moran’s Index, the spatial clustering characteristics of CATs in China were 
determined. The analysis primarily involved Global Moran’s I and Getis-Ord Gi statistics. The formulas are as follows:
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In the formula, N  represents the number of prefecture-level cities, S2 denotes the variance of the data. Xi  and Xj  indicates 
the number of CATs in each prefecture-level unit. X represents the mean number of CATs across all prefecture-level 
units. Wij refers to the spatial weight matrix representing the spatial relationship between regions (i) and (j). The values 
of Moran′s I range from −1–1. Moran′s I>0 indicates a positive spatial correlation, meaning CATs exhibit spatial clustering 
characteristics; Moran′s I<0 indicates a negative spatial correlation, meaning CATs exhibit spatial dispersion; Moran′s I=0 
indicates that the spatial distribution and location of the study object are random.

2.2.3.  Hotspot and coldspot analysis.  The local association index Getis-Ord Gi can identify the degree of spatial 
heterogeneity of elements at a local scale. In this study, the Getis-Ord Gi index was used to measure the clustering of high 
and low values of CATs in local spaces, revealing cold and hot spot areas in the spatial distribution. The formula is as follows:

	
G∗
i (d) =

∑n
j=1 wij(d)xj∑n

j=1 xj 	 (4)
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In the formula, d represents the distance scale for each prefecture-level unit; xj refers to the observed value of ancient 
tombs in the (j)-th prefecture-level unit; wij denotes the spatial adjacency weight matrix value between the (i)-th and (j)-th 
units within the study area.

2.2.4.  Nearest neighbor index.  The Nearest Neighbor Distance is an indicator used to measure the degree of 
proximity of point features in geographic space [25]. In this study, the ancient tombs of China were taken as the research 
object, and the Nearest Neighbor Index was calculated at the national scale to reflect the proximity and dispersion of CATs 
in geographic space [17]. The formula is as follows:

	

↼
r E =

1

2
√
n/A

,R =

↼
r 1
↼
r E 	 (5)

In the formula, R represents the Nearest Neighbor Index; rE denotes the theoretical nearest neighbor distance; n is the number of 
CATs in the study area; A is the total area of the study region; r1 refers to the observed nearest neighbor distance. R < 1 indicates 
a clustered distribution of CATs; R = 1 indicates a random distribution of CATs; R > 1 indicates a uniform distribution of CATs.

2.2.5.  Standard deviation ellipse.  The Standard Deviation Ellipse (SDE) is a method used to measure central 
tendency, dispersion, and directional trends by determining the center, the angle of rotation, and the lengths of the X and 
Y axes [24]. The SDE provides an intuitive representation of the spatial distribution characteristics of CATs, including their 
center of gravity, directional orientation, and spatial extent [26]. The formula is as follows:
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In the formula, Xi and Yi represent the coordinates of the (i)-th CATs, 
(
x′, y′

)
represent the mean center of the CATs, n rep-

resents the total number of CATs.
2.2.6.  Ridge regression.  Ridge Regression is a biased estimation regression method designed to address collinear 

data. Essentially, it optimizes the ordinary least squares (OLS) estimation by sacrificing unbiasedness to achieve 
more realistic and robust regression coefficient estimates. In this study, ridge regression was used to handle the multi-
collinearity issues present in the analysis of CATs [27]. The formula is as follows:

	 β̂(k) =
(
XTX+ kI

)–1
XTY 	 (7)

	 Y = β̂0 + β̂1X1 + β̂2X2 + . . .+ β̂kXk	 (8)

In the formula, β̂(k) represents the improved least squares regression parameters, k  is the ridge parameter, XT  rep-
resents the transpose of the independent variable matrix, I represents the identity matrix, Y  represents the vector matrix 
of the dependent variable, β̂0 is the intercept term, β̂k  represents the standardized regression coefficient of the (k)-th 
influencing factor, the higher absolute value of indicates that this factor has a more impact on the spatial distribution or 
characteristics of CATs compared to other factors. The expression for the relative contribution rate is as follows:

	
Ck =

|β̂k|

|β̂1|+ |β̂2|+ · · ·+ |β̂k|	 (9)

In the formula, Ck represents the relative contribution rate of the (k)-th influencing factor on CATs; |β̂k| represents the 
absolute value of the regression coefficient.
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2.2.7.  Geographically weighted regression.  Geographically Weighted Regression (GWR) is a spatial analysis 
method commonly used in geography or related disciplines involving spatial analysis. It addresses the phenomenon 
of spatial non-stationarity by performing localized parameter estimations through assigning different spatial weights 
to neighboring units. While meeting the assumption of spatial dependency, GWR directly detects the heterogeneous 
effects of a certain factor across different spatial locations, outputting varying influence coefficients for each spatial unit. 
It serves as a classic model for analyzing the spatial heterogeneity of causal relationships. This study utilized GWR to 
explore the correlation between the number of ancient tombs and influencing factors across different municipal units [28]. 
The formula is as follows:

	 yi = β0 (ui, vi) +
∑m

k=1 βk (ui, vi)Xik + εi	 (10)

In the formula, The coordinates of the (i)-th sample is (ui, vi), yi represents the number of CATs at different spatial loca-
tions, Xik represents the observed value of the independent variable at spatial location (ui, vi), β0 (ui, vi) represents the 
constant term, εi represents the mutually independent random error term, βk (ui, vi) represents the regression parameter 
of the (i)-th sample, its estimated value can be visualized on a map, allowing for a straightforward observation of the spa-
tial distribution of the influencing factors’ impact on the distribution of CATs.

3.  Results

3.1.  Spatiotemporal distribution characteristics

3.1.1.  Temporal distribution characteristics.  The distribution of CATs in China across different historical periods 
exhibits significant variability, with the Qing Dynasty accounting for the largest proportion and the Sui Dynasty the 
smallest. Specifically, China’s historical timeline is divided into 20 periods based on dynasties. The number of CATs 
from the Qing Dynasty is far greater than those from other periods, comprising 47.010% of the total. The Han and Ming 
Dynasties also have relatively high proportions, accounting for 18.780% and 9.670%, respectively. The remaining periods 
contribute less, each representing less than 6% of the total. The Sui Dynasty has the fewest CATs, with only 0.130% of 
the total (Fig 1 and Table 1).

The changes in the number of CATs across different historical periods can be divided into four phases: fluctuating rise, 
stabilization, sharp increase, and decline.The first phase extended from the pre-Xia period to the Han Dynasty, during this 
phase, the number of CATs gradually increased with fluctuations. Notably, the number of CATs from the Zhou Dynasty 
showed a significant rise compared to earlier periods, although there was a slight decline during the Qin Dynasty. The 
second phase spanned from the Three Kingdoms period to the Liao and Jin Dynasties, this phase exhibited a relatively 
stable trend in the number of CATs, with slight increases during the Tang and Liao Dynasties. The third phase covered 
the period from the Yuan Dynasty to the Qing Dynasty, the number of CATs rose sharply during this phase, reaching its 
peak in the Qing Dynasty, which recorded the highest number of tombs among the 20 historical periods. The fourth phase 
began after Republic of China, the number of CATs in China entered a declining trend (Fig 2).

3.1.2.  Spatial distribution characteristics.  Overall spatial distribution characteristics: The spatial distribution 
density of CATs exhibited significant variations across different regions, with a national average density of 0.013 units/km². 
At the provincial, autonomous region, and municipality levels, the highest density was observed in Chongqing Municipality, 
with 0.188 units/km², while the lowest density was found in Tibet Autonomous Region, with less than 0.001 units/km². 
Provinces such as Hubei, Shaanxi, Sichuan, and Henan had relatively high densities, all exceeding 0.050 units/km². In 
contrast, Gansu Province, Shanghai Municipality, Jilin Province, Yunnan Province, Xinjiang Uighur Autonomous Region, 
Inner Mongolia Autonomous Region, Qinghai Province, and Heilongjiang Province had lower densities, all below 0.005 
units/km². At the prefecture-level city scale, 126 city units, accounting for 38.890% of the total, had a tomb density of less 
than 0.060 units/km², while 94 city units, representing 29.010%, exhibited densities exceeding 0.240 units/km² (Table 2).
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The spatial distribution of CATs demonstrated a regional differentiation pattern, with the primary clustering area located 
in the Sichuan-Chongqing region and secondary clustering areas in northern Henan and eastern Hubei, showing a highly 
significant clustering tendency. To further evaluate whether the distribution of CATs exhibited a clustering or dispersal 
trend, as well as the intensity and significance of such a trend, geographic data of CATs were analyzed using kernel 
density analysis and grid analysis with a 20 km grid unit (Fig 3 and Fig 4). Subsequently, a global spatial autocorrelation 
analysis was conducted on the geographic data of CATs. Using GIS computations combined with the Moran’s I index, the 
results indicated a “clustered” pattern, suggesting that the CATs spatially clustered to form hotspots or coldspots, rather 
than being randomly distributed. This implies that the spatial dependency of CATs was influenced by their proximity to 
neighboring geographic locations (Fig 5). To explore detailed relationships, a further analysis of the Local Moran’s I index 
was conducted, which identified abnormal values or clustering patterns. When the Local Moran’s I index was greater than 
0, it indicated a positive spatial correlation, meaning neighboring features exhibited a “high-high” or “low-low” clustering 
trend. Conversely, when the index was less than 0, it indicated a negative spatial correlation, where neighboring features 
showed a “high-low” or “low-high” distribution trend. If the Local Moran’s I index approached 0, it suggested a random 
spatial distribution without any correlation. In analyzing the distribution data of CATs, 46 prefecture-level units, including 
Yuezhou, Guang’an, and Xi’an, were identified as “high-high” clusters. This indicated that these areas had relatively high 
densities of CATs, and this high density was spatially adjacent to other high-density areas, forming regions with significant 
clustering of CATs (Fig 6).

Fig 1.  Percentage of the number of CATs in different historical periods.

https://doi.org/10.1371/journal.pone.0333485.g001

https://doi.org/10.1371/journal.pone.0333485.g001
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The spatial differentiation pattern of CATs was significant, characterized by an interwoven distribution of hotspot and 
coldspot regions, with a spatial pattern of dispersed coldspots and concentrated hotspots. Based on the analysis of 
spatial data similarities or differences across various regions, further exploration of statistically significant clusters within 
prefecture-level units was conducted using the Local Association Index. Employing the Jenks natural breaks classification 
method, the spatial distribution of CATs was divided into coldspot and hotspot regions, each further classified into three 
distinct levels.The hotspot regions included 60 prefecture-level units such as Guang’an, Jingmen, and Yibin, accounting 
for 12.372% of the total national area. The coldspot regions encompassed 30 prefecture-level units such as Anshan, Aksu, 
and Yushu, covering 55.651% of the total national area (Fig 7).

Table 1.  Statistics on the number and percentage of CATs in different historical periods.

Ranking of the number of CATs Dynasty Quantity Percentage by dynasty

1 Qing Dynasty 44245 47.012%

2 Han Dynasty 17673 18.778%

3 Ming Dynasty 9104 9.673%

4 Liao Dynasty 5040 5.355%

5 Zhou Dynasty 4020 4.271%

6 Song Dynasty 3397 3.609%

7 Tang Dynasty 2049 2.177%

8 Yuan Dynasty 1581 1.680%

9 Republic of China 985 1.047%

10 Northern and Southern Dynasties 864 0.918%

11 Three Kingdoms period 860 0.914%

12 Qin Dynasty 794 0.844%

13 Jurchen Jin Dynasty 786 0.835%

14 After 1949 701 0.745%

15 Xia Dynasty 606 0.644%

16 Jin Dynasty 507 0.539%

17 Before Xia Dynasty 420 0.446%

18 Shang Dynasty 193 0.205%

19 Five Dynasties and Ten Kingdoms 164 0.174%

20 Sui Dynasty 126 0.134%

https://doi.org/10.1371/journal.pone.0333485.t001

Fig 2.  Changes in the number of CATs during different historical periods.

https://doi.org/10.1371/journal.pone.0333485.g002

https://doi.org/10.1371/journal.pone.0333485.t001
https://doi.org/10.1371/journal.pone.0333485.g002
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In China’s three major economic lines, the number and density of CATs exhibited significant differences, with a 
decreasing trend in quantity from west to east, reflecting a “more in the west, less in the east; clustered in the west, 
scattered in the east” differentiation pattern. In terms of quantity, the western region accounted for the highest proportion 
of CATs, approximately 56.851%, followed by the central region at about 27.479%, and the eastern region with the lowest 

Table 2.  Number and proportion of municipal units based on grave density classification of CATs.

Hierarchy Density of CATs
(units/km2)

Number of municipal 
units

Number of municipal units 
as a percentage

Municipal unit 
size(km2)

Percentage of 
municipal unit area

Extremely low <0.060 126 38.89% 1102316.440 22.91%

Low 0.060-0.120 49 15.12% 1227688.420 25.51%

Medium 0.120-0.180 40 12.35% 719635.140 14.95%

High 0.180-0.240 15 4.63% 254387.130 5.29%

Extremely high >0.240 94 29.01% 1508016.270 31.34%

https://doi.org/10.1371/journal.pone.0333485.t002

Fig 3.  Kernel density analysis map of spatial distribution of CATs.

https://doi.org/10.1371/journal.pone.0333485.g003

https://doi.org/10.1371/journal.pone.0333485.t002
https://doi.org/10.1371/journal.pone.0333485.g003
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proportion at roughly 15.670%. Regarding density, the western region had the highest clustering degree of CATs, with 
a density of 0.080 units/km². The central and eastern regions had densities of approximately 0.015 units/km² and 0.013 
units/km² (Table 3 and Fig 8).

Based on the analysis of The Seven Geographical Divisions of China, significant differences were observed in the 
number and density of CATs. The Southwest region had the highest proportion and density of CATs, while the Northeast 
region had the lowest proportion and density. In terms of distribution quantity, the proportions of CATs in Central China, 
East China, South China, North China, Northwest, Southwest, and Northeast regions accounted for 19.752%, 14.183%, 
2.177%, 9.809%, 15.498%, 37.377%, and 1.204% of the total number of CATs nationwide, respectively. Among these, the 
Southwest region had the highest proportion, while the Northeast region had the lowest. In terms of distribution density, 
Central China and the Southwest region exhibited a relatively high clustering of CATs, with densities of 0.024 units/km² 
and 0.011 units/km², respectively. In contrast, South China, North China, Northwest, and Northeast regions displayed a 
more scattered distribution, with densities below 0.005 units/km². These findings demonstrate the regional differences in 
the distribution of CATs, characterized by an uneven distribution in both density and quantity (Table 4 and Fig 9).

Fig 4.  Fishing net analysis map of spatial distribution characteristics of CATs (20 km as a fishing net unit).

https://doi.org/10.1371/journal.pone.0333485.g004

https://doi.org/10.1371/journal.pone.0333485.g004
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Spatial Distribution Characteristics of CATs in Different Historical Periods: The spatial distribution of CATs 
exhibited distinct characteristics across different historical periods, closely associated with socioeconomic conditions 
and the shifts of political centers in each era. During the Qin Dynasty and earlier periods, CATs were characterized by 
multiple distribution centers and a relatively dispersed spatial pattern, with no significant clustering. At that time, various 
ethnic groups and communities coexisted within the territory of China, each with its unique cultural traditions and religious 
beliefs. These cultural differences were reflected in burial practices, as different groups chose burial locations based on 
their specific traditions and beliefs. Consequently, this led to a scattered distribution of tombs across regions. After the 
unification of the six states by the Qin Dynasty, from the Han Dynasty to the Sui and Tang Dynasties, tombs gradually 
became concentrated in the southern regions of the Yangtze River, particularly in Central and East China. During this 
period, China experienced cycles of centralization, division, and re-centralization. As history progressed, the distribution of 
tombs evolved correspondingly. Specifically, during the late Eastern Han Dynasty through the Wei, Jin, and Southern and 
Northern Dynasties, frequent warfare in the north caused large-scale population migrations to the relatively stable south-
ern regions. These areas experienced economic development and became new political and economic centers, directly 

Fig 5.  Global autocorrelation analysis of spatial distribution of CATs.

https://doi.org/10.1371/journal.pone.0333485.g005

https://doi.org/10.1371/journal.pone.0333485.g005
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promoting the clustering of tombs in the south. During the Five Dynasties and Ten Kingdoms period, the fragmentation 
of China once again resulted in a multi-centered pattern of tomb distribution. During the Song Dynasty, which overlapped 
in time with the Liao and Jin Dynasties, the political center of the Song was located in the south, while the Liao, Jin, and 
Yuan Dynasties were centered in the north. This caused the distribution of tombs during this period to shift slightly toward 
the northeast. After the Ming Dynasty, the distribution of CATs increasingly concentrated in Central and Southwest China. 
During this time, as the national economy developed, the Central and Southwest regions rose as important economic 
areas. Economic prosperity in these regions attracted significant populations, providing the foundation for the construc-
tion of tombs. In summary, studying the spatial distribution characteristics of CATs in different historical periods is of great 
significance. Such research not only reveals the cultural, economic, and political conditions of ancient societies but also 
provides valuable insights into the lifestyles and social structures of past populations (Fig 10 and Fig 11).

3.1.3.  Spatiotemporal evolution characteristics.  This study employed the standard deviational ellipse (SDE) 
analysis method within the ArcGIS platform to analyze the directional trends and distribution patterns of CATs across 
different historical periods. By utilizing SDE, the study aimed to explore the spatial shift trajectories and movement 

Fig 6.  Plot of localized moran’s index (clustering and outlier analysis) for CATs.

https://doi.org/10.1371/journal.pone.0333485.g006
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distances of the central points of tomb distributions over time. SDE is a spatial statistical method used to quantitatively 
describe the spatial distribution characteristics of geographic features, including centrality, directionality, and spatial 
morphology. This method generates an ellipse to represent the orientation and distribution characteristics of a dataset. 
The ellipse is defined by two key parameters: the major axis and the minor axis, which respectively indicate the primary 
direction of the data distribution and the degree of concentration. Through the application of SDE analysis to the 
distribution of CATs across various historical periods, it became possible to visually depict their spatial central positions, 

Fig 7.  Map of cold hot spots of CATs.

https://doi.org/10.1371/journal.pone.0333485.g007

Table 3.  Distribution of immovable cultural relics in China’s three major economic lines.

District Density of CATs
(units/km2)

Number of CATs Percentage of the number of CATs

Eastern Region 0.013 14748 15.670%

Central Region 0.015 25862 27.479%

Western Region 0.080 53505 56.851%

https://doi.org/10.1371/journal.pone.0333485.t003

https://doi.org/10.1371/journal.pone.0333485.g007
https://doi.org/10.1371/journal.pone.0333485.t003
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primary orientations, and morphological characteristics. The area of the SDE serves as an indicator of the spatial 
clustering characteristics of tombs during different periods. The centroid coordinates represent the geographic center of 
tomb distributions in a given period, while the standard distances, corresponding to the lengths of the major and minor 

Fig 8.  Kernel density of CATs in China’s three major economic zones.

https://doi.org/10.1371/journal.pone.0333485.g008

Table 4.  Distribution of immovable cultural relics in seven geographical divisions of China.

District Density of CATs
(units/km2)

Number of CATs Percentage of the number of CATs

Central China 0.024 18590 19.752%

East China 0.012 13348 14.183%

South China 0.004 2049 2.177%

North China 0.003 9232 9.809%

Northwest 0.003 14586 15.498%

Southwest 0.011 35177 37.377%

Northeast 0.001 1133 1.204%

https://doi.org/10.1371/journal.pone.0333485.t004

https://doi.org/10.1371/journal.pone.0333485.g008
https://doi.org/10.1371/journal.pone.0333485.t004
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axes, reflect the primary and secondary directions of spatial distribution. The flatness ratio, defined as the ratio of the 
minor axis to the major axis and ranging between 0 and 1, reveals the degree of directionality in the data. A higher flatness 
ratio indicates a stronger directional trend, with tombs being more concentrated along a specific direction. Conversely, a 
lower flatness ratio suggests a more evenly distributed dataset with weaker directionality. Additionally, the rotation angle 
of the ellipse, measured clockwise from true north (0°), indicates the primary directional trend of tomb distributions. This 
angle provides insight into the dominant spatial orientation of tombs in different historical periods (Table 5).

The spatial center of CATs distributions underwent dynamic shifts over time, influenced by changes in historical and 
political centers. Before the Yuan Dynasty, the distribution center alternated between the northern and southern regions, 
while after the Yuan Dynasty, it gradually shifted southwestward (Fig 12). Before the Qin Dynasty, the tomb distribution 
center was concentrated in northern China. During the Han Dynasty, it began to shift southward. In the early Han period, 
efforts to consolidate governance and defend against incursions from the Xiongnu in the north led to measures such as 
migration to border regions and the establishment of military garrisons. At the same time, factors such as war and natural 
disasters prompted some Han populations to migrate southward. These migrating Han communities brought the burial 

Fig 9.  Kernel density of CATs distribution in seven geographical divisions of China.

https://doi.org/10.1371/journal.pone.0333485.g009

https://doi.org/10.1371/journal.pone.0333485.g009
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culture and customs of the Central Plains to the south, contributing to the southward shift of the tomb distribution center. 
From the Three Kingdoms to the Five Dynasties, China experienced a series of cycles of unification and division. After the 
fall of the Eastern Han, the Three Kingdoms emerged, characterized by fragmented regional power. Although the Western 
Jin briefly unified the country, it quickly fell into another period of division, with the north engulfed in prolonged warfare 
and instability, leading to the chaotic era of the Five Barbarians and Sixteen Kingdoms. During the Southern and Northern 
Dynasties, the south witnessed successive dynasties—Song, Qi, Liang, and Chen—while the north saw the rise and fall 
of regimes such as the Northern Wei, Eastern Wei, Western Wei, Northern Qi, and Northern Zhou. After the reunifica-
tion of China under the Sui and Tang Dynasties, the country again fragmented during the late Tang period, entering the 
Five Dynasties and Ten Kingdoms era. The frequent shifts in political centers and the impact of warfare caused the tomb 
distribution center to alternate between northern and southern regions during this period, remaining concentrated in the 
Shaanxi and Hubei regions. During the Song, Liao, Jin, and Yuan periods, the tomb distribution center stabilized in the 
south. Despite the Liao and Jin Dynasties primarily governing northern China, their political and cultural influence on tomb 

Fig 10.  The spatial distribution of CATs across different historical periods.

https://doi.org/10.1371/journal.pone.0333485.g010

https://doi.org/10.1371/journal.pone.0333485.g010
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Fig 11.  Kernel density analysis map of CATs across different historical periods.

https://doi.org/10.1371/journal.pone.0333485.g011

https://doi.org/10.1371/journal.pone.0333485.g011
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distribution kept the spatial center in the north. The Yuan Dynasty, although ruled by a northern minority group, unified 
both northern and southern China. Due to the economic prominence of the south during this period, the tomb distribution 
center remained in southern regions. After the Ming Dynasty, the tomb distribution center gradually stabilized, concentrat-
ing in the southwest and central regions of China (Fig 13).

3.2.  Influencing factors

3.2.1.  Selection of influencing factors.  The spatiotemporal distribution patterns of CATs were deeply influenced 
by the interplay of multiple factors, including the shaping effects of natural geographic conditions and the driving forces 
of sociocultural factors [29]. To further analyze this complex distribution pattern, this study selected indicators from eight 
dimensions: socioeconomic factors, historical and cultural influences, river systems, climatic conditions, topography and 
geomorphology, transportation networks, vegetation cover, and soil types. The aim was to comprehensively uncover the 
multifaceted causes and the interaction mechanisms underlying the distribution of CATs (Table 6).

The socioeconomic dimension within sociocultural factors encompasses key indicators such as total population 
and GDP. As CATs are direct products of human historical activities, their existence, distribution, and subsequent 
inheritance and preservation are deeply rooted in human socioeconomic activities. Consequently, variations in popu-
lation size and economic output profoundly influenced the distribution patterns of CATs. In the dimension of historical 
and cultural factors, the number of regional historical figures serves as an important reference indicator. Historical 
figures act as catalysts for cultural exchange and participants in historical events, often making their areas of activity 
focal points for cultural and historical convergence. This status not only directly affected the distribution and quantity 
of CATs but also profoundly reflected the historical and cultural accumulation and the degree of cultural prosperity in 
various regions.

Table 5.  The centroid coordinates, rotation angles, and flattening ratios of CATs across different historical periods.

Dynasty Centroid Coordinates Standard Distance Flattening Ratio Rotation Angle

XCoord YCoord X StdDist Y StdDist

Before Xia Dynasty 106.369 36.192 5.045 9.629 0.48 74.025

Xia Dynasty 111.554 39.682 5.509 17.523 0.69 78.119

Shang Dynasty 110.227 35.861 4.356 9.683 0.55 88.863

Zhou Dynasty 111.053 35.237 14.568 5.695 0.61 106.904

Qin Dynasty 97.877 38.463 21.758 5.645 0.74 107.432

Han Dynasty 111.731 33.364 5.082 7.448 0.32 79.390

Three Kingdoms Period 107.171 33.680 19.329 5.718 0.70 108.250

Jin Dynasty 110.402 32.362 10.836 5.497 0.49 110.137

Southern and Northern Dynasties 112.486 32.441 5.751 7.003 0.18 53.310

Sui Dynasty 110.977 36.055 11.753 6.016 0.49 117.370

Tang Dynasty 112.208 34.685 7.169 11.466 0.37 88.248

Five Dynasties and Ten Kingdoms Period 113.958 31.365 9.861 5.982 0.39 99.285

Song Dynasty 113.115 32.2919 6.624935 8.452 0.22 39.220

Liao Dynasty 107.998 39.451 18.96663 8.528 0.55 93.166

Jurchen Jin Dynasty 118.672 36.359 7.621135 9.636 0.21 36.079

Yuan Dynasty 111.485 34.380 12.117157 8.402 0.31 94.807

Ming Dynasty 112.226 30.834 5.697372 7.278 0.22 79.914

Qing Dynasty 108.744 30.946 3.972855 6.518 0.39 72.938

Republic of China 110.489 31.578 5.594627 8.489 0.34 72.992

After 1949 106.565 30.412 4.723262 6.866 0.31 59.799

https://doi.org/10.1371/journal.pone.0333485.t005

https://doi.org/10.1371/journal.pone.0333485.t005
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Natural geographic are also a critical category of influences. Within the river system dimension, a key factor is water 
network density, which reflects the degree of development of the regional river network system. During the evolution of 
ancient civilizations, water networks played a pivotal role, not only providing essential water resources for survival but also 
serving as transportation routes. Regions with dense water networks, due to their abundant natural resources and conve-
nient water transport conditions, often became preferred locations for ancient settlements, which in turn might have given 
rise to more CATs. The climate dimension incorporates key indicators such as total runoff, annual average temperature, 
and annual average precipitation. These factors directly influenced the preservation state of CATs and also impacted the 
complexity and feasibility of archaeological excavation work. The topography and geomorphology dimension includes 
average slope and average elevation, both of which played a decisive role in determining the distribution patterns and 
long-term preservation of CATs. In the transportation dimension, road network density stands out as an essential element. 
A well-developed transportation network undoubtedly facilitated the protective excavation of CATs, promoting the research 
and dissemination of cultural heritage. However, it is equally important to be mindful of its potential negative impact, as 
excessive exposure brought about by extensive transportation networks may increase the risk of damage to CATs. The 

Fig 12.  The centroid shift trajectory of CATs across different historical periods.

https://doi.org/10.1371/journal.pone.0333485.g012
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Fig 13.  The directional distribution and centroid of CATs across different historical periods.

https://doi.org/10.1371/journal.pone.0333485.g013

https://doi.org/10.1371/journal.pone.0333485.g013
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vegetation dimension highlights the significance of vegetation coverage. Dense vegetation can effectively conceal CATs 
to a certain extent, providing a degree of protection. However, it can also pose a challenge in the process of archaeo-
logical discovery. Finally, soil characteristics have a significant impact on the stability, preservation state, and excavation 
efforts related to CATs. This study selected nine types of soil, including the density of southern paddy soils (DL01), freshly 
irrigated paddy soils (DL02), northern paddy soils (DL03), northern paddy yellow clay soils (DL04), yellowish paddy soils 
(DL05), loessial clay soils (DL06), Lou soils (DL07), black loessial clay soils (DL08), and loamy soils (DL09). These soil 
types were crucial for understanding the relationship between soil properties and the distribution and preservation of 
CATs.

3.2.2.  Determination of influencing factors.  Ridge regression is a biased estimation method specifically designed 
to handle collinear data analysis. Its core concept involves adding a regularization term to the loss function of traditional 
ordinary least squares regression. This regularization term imposes a constraint on the magnitude of regression 
coefficients, aiming to reduce model complexity, prevent overfitting, and enhance the stability of coefficient estimates. 
Specifically, ridge regression adjusts the estimation of regression coefficients, making the model more robust when 
dealing with multi-collinearity issues. The use of the Variance Inflation Factor (VIF) to measure multi-collinearity 
in multiple linear regression models is an effective approach. A higher VIF value indicates a greater likelihood of 
collinearity among independent variables, which can lead to unstable coefficient estimates and increased model error. 
If any VIF value exceeds 10, it suggests the presence of a collinearity problem in the corresponding variable. The table 
below (Table 7) presents the results of collinearity analysis using VIF values, demonstrating the existence of multi-
collinearity issues.

Table 6.  Selection of influencing factors.

Group Dimension Influencing Factors

Socio-cultural Socioeconomic Total Population

Total GDP

Historical-cultural The Number of Regional Historical Figures

Density of Traditional Village

Density of Administrative Villages

Natural geographic River Systems Water Network Density

Climatic Conditions Annual Average Temperature

Annual Average Precipitation

Total Runoff

Average Value of Runoff

Topography and Landforms Average Slope

Average Elevation

Road Networks Network Density

Vegetation Coverage Vegetation Coverage

Soil types The Density of Southern Paddy Soils (DL01)

Freshly Irrigated Paddy Soils (DL02)

Northern Paddy Soils (DL03)

Northern Paddy Yellow Clay Soils (DL04)

Yellowish Paddy Soils (DL05)

Loessial Clay Soils (DL06)

Lou Soils (DL07)

Black Loessial Clay Soils (DL08)

Loamy Soils (DL09)

https://doi.org/10.1371/journal.pone.0333485.t006

https://doi.org/10.1371/journal.pone.0333485.t006
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This study first utilized ridge regression analysis to determine the relationship between the number of CATs and vari-
ous influencing factors, as well as to verify the rationality of these factors. In this analysis, the number of CATs was set as 
the dependent variable, while the influencing factors were treated as independent variables. A ridge trace plot was then 
obtained (Fig 14). The ridge regression ANOVA test (also known as the F-test) was conducted with (K) set to 0.010. The 
results showed a (P)-value of 0.001, which is less than 0.050, indicating that the model was statistically significant (Table 
8). This confirmed the presence of a regression relationship between the independent and dependent variables. Among 
the factors, total population, DL01, and total GDP passed the 5% significance level test, suggesting that these three fac-
tors had a substantial influence on the spatial distribution of CATs and showed strong explanatory power (Table 9).

3.2.3.  Validation of influencing factors.  Geographically Weighted Regression (GWR), as a spatial analysis 
technique, offers significant advantages over traditional global regression methods. The GWR model accounts for the 
local effects of spatial objects by constructing independent regression equations for each geographic location, thereby 
enhancing the accuracy and explanatory power of the model. Therefore, this study incorporates the GWR model based on 
ridge regression to further improve the scientific rigor and precision of the analysis.

First, a global spatial autocorrelation analysis was conducted on the three influencing factors (total population, total 
GDP, and DL01) that passed the significance test at the 5% level within the study area. This analysis provides a com-
prehensive measure of the spatial data across the entire study region, reflecting whether the data exhibit a clustering 
or dispersion trend and the strength and significance of such trends. The results indicated that the Moran’s I indices 

Table 7.  Collinearity diagnostic table of influencing factors for the distribution of CATs.

Projects VIF value Tolerance

Number of CATs 1.601 0.625

DL01 12.771 0.078

DL02 6.093 0.164

DL03 3.251 0.308

DL04 2.509 0.399

DL05 3.041 0.329

DL06 1.602 0.624

DL07 1.722 0.581

DL08 2.775 0.360

DL09 3.562 0.281

Vegetation Coverage 3.656 0.273

Total GDP 4.400 0.227

Total Population 4.571 0.219

The Number of Regional Historical Figures 1.896 0.527

Annual Average Precipitation 2.911 0.344

Annual Average Temperature 4.151 0.241

Average Slope 3.404 0.294

Average Elevation 4.608 0.217

Water Network Density 1.351 0.740

Network Density 1.295 0.772

Density of Traditional Village 1.480 0.676

Density of Administrative Villages 1.267 0.789

Average Value of Runoff 1.457 0.686

Total Runoff 1.456 0.687

Note: Cells with a red background indicate cases where VIF > 10 or null values are present.

https://doi.org/10.1371/journal.pone.0333485.t007

https://doi.org/10.1371/journal.pone.0333485.t007
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and z-values for all factors were greater than 0, and the p-values were less than 0.050 (p < 0.05, statistically significant), 
suggesting that the distribution of ancient Chinese tombs and the three influencing factors demonstrated significant 
global spatial autocorrelation. In this study, the VIF values for all three influencing factors were less than 5, indicating the 
absence of or low levels of multi-collinearity (Table 10).

Subsequently, a geographically weighted regression (GWR) analysis was conducted on the three influencing factors 
that passed the significance test at the 5% level. The number of CATs within the study area was used as the dependent 
variable, while the three influencing factors were used as independent variables to construct the GWR model. The coef-
ficient of determination R2 serves as a measure of goodness of fit, reflecting the proportion of variation in the dependent 
variable explained by the model. The adjusted R2 is considered a more reliable measure of goodness of fit. In this study, 
the R2 and adjusted R2 values of the GWR model were 0.748 and 0.672, respectively, both exceeding 0.6. This indicates 
that the GWR model has strong explanatory power, confirming the significant correlation between the number of CATs and 
the three influencing factors (Table 11).

Regression coefficients represent the degree of correlation and the direction (positive or negative) of the relationship 
between influencing factors and the dependent variable (Table 12 and Fig 15).

The regression coefficient for total population ranged from −0.060 to 0.130, with an average value of 0.015. The major-
ity of regions exhibited positive regression coefficients, indicating that total population was generally positively correlated 
with the number of CATs. Regions with high regression coefficients for total population were located in the urban clusters 
of the middle and lower Yangtze River, Chengdu-Chongqing, Hohhot-Baotou-Ordos-Yulin (HBY), and the Central Plains. 
Conversely, regions with low regression coefficients were primarily found in western China and southeastern coastal 
cities.

Fig 14.  Ridge trace plot of influencing factors for the distribution of CATs.

https://doi.org/10.1371/journal.pone.0333485.g014

Table 8.  Ridge regression ANOVA test.

Projects Sum of Squares df Mean Square F p-value

Regression 111219738.956 23 4835640.824 2.625 0.001

Residual 186040933.652 101 1841989.442

https://doi.org/10.1371/journal.pone.0333485.t008

https://doi.org/10.1371/journal.pone.0333485.g014
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The regression coefficient for total GDP ranged from −0.160 to 16.760, with an average value of 0.040. Most regions 
had positive regression coefficients, suggesting a general positive correlation between total GDP and the number of CATs. 
High-value regions for GDP regression coefficients were primarily concentrated in the Chengdu-Chongqing urban cluster, 
while low-value regions were observed in Hunan, Hubei, northern Shanxi, and central Inner Mongolia.

Table 9.  Ridge regression analysis results.

Projects Non-standardized coefficient Standardized coefficient T p VIF value

B Standard Error Beta

Total GDP −0.073 0.022 −0.488 −3.365 0.001** 3.390

Total Population 2.411 0.418 0.799 5.771 0.000** 3.095

The Number of Regional Historical Figures −0.174 0.115 −0.157 −1.507 0.135 1.745

Density of Traditional Village 0.357 3.172 0.010 0.113 0.911 1.383

Density of Administrative Villages 0.166 0.086 0.165 1.931 0.056 1.183

Annual Average Precipitation 0.295 0.399 0.095 0.738 0.462 2.668

Annual Average Temperature −4.171 41.284 −0.015 −0.101 0.920 3.660

Average Slope 54.171 30.478 0.238 1.777 0.079 2.892

Average Elevation −0.229 0.239 −0.149 −0.958 0.340 3.900

Water Network Density −982.241 978.121 −0.090 −1.004 0.318 1.284

Network Density −17.266 177.097 −0.009 −0.097 0.923 1.244

DL01 −1877.861 867.841 −0.489 −2.164 0.033* 8.258

DL02 −1348.359 859.031 −0.256 −1.570 0.120 4.295

DL03 −694.786 1059.268 −0.083 −0.656 0.513 2.555

DL04 −140.531 1122.814 −0.014 −0.125 0.901 1.969

DL05 −1018.018 1382.648 −0.092 −0.736 0.463 2.495

DL06 −2188.044 1873.022 −0.109 −1.168 0.245 1.405

DL07 −3988.357 4175.412 −0.094 −0.955 0.342 1.560

DL08 −713.858 9482.392 −0.009 −0.075 0.940 2.535

DL09 −460.799 1733.807 −0.036 −0.266 0.791 3.015

Vegetation Coverage −1375.923 1360.734 −0.135 −1.011 0.314 2.896

Average Value of Runoff 0.239 0.325 0.068 0.734 0.465 1.386

Total Runoff 0.010 0.010 0.092 0.995 0.322 1.378

R2 0.374

F F (23,101)=2.625,p = 0.001

Note: Dependent variable = Number of CATs

* p < 0.050 ** p < 0.01

https://doi.org/10.1371/journal.pone.0333485.t009

Table 10.  Significance test of global spatial autocorrelation and multi-collinearity diagnostics table for CATs.

Projects Moran’sI z p VIF value

Number of CATs 0.079 10.151 0.000 –

DL01 0.040 4.314 0.000 1.056

Total GDP 0.002 0.488 0.026 1.003

Total Population 0.019 2.314 0.020 1.057

https://doi.org/10.1371/journal.pone.0333485.t010

Table 11.  Determination coefficients of the geographically weighted regression model.

R2 Adjusted R2 AICc

0.748 0.672 5925.097

https://doi.org/10.1371/journal.pone.0333485.t011
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The regression coefficient for DL01 ranged from −1914–585, with an average value of 0.015. However, most regions 
exhibited negative regression coefficients, indicating that DL01 was generally negatively correlated with the number of 
CATs. Regions with high DL01 regression coefficients were located in northern China and the Central Plains urban cluster, 
while low-value regions were concentrated in the Chengdu-Chongqing urban cluster.

Table 12.  Statistical results of geographically weighted regression coefficients.

Projects Average value Maximum value Minimum value Standard Error

Local R2 0.144 0.917 0.001 0.192

DL01 −94.158 585.755 −1914.931 376.161

Total GDP 0.045 16.759 −0.164 0.119

Total Population 0.015 0.134 −0.062 0.028

https://doi.org/10.1371/journal.pone.0333485.t012

Fig 15.  Geographically weighted regression model.

https://doi.org/10.1371/journal.pone.0333485.g015
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Using the spatial distribution of standardized residuals, the regression performance of the GWR model was further 
interpreted. The results indicated that residuals were not significant in most areas and were randomly dispersed (Fig 16). 
This suggested that the GWR model had addressed the majority of spatial heterogeneity issues. However, a small num-
ber of areas still exhibited clustering and spatial outliers, indicating the presence of spatial heterogeneity in these regions 
or the necessity of incorporating additional influencing factors as variables into the model (Fig 17).

4.  Discussion

4.1.  The fluctuating patterns of the number of CATs

The fluctuation patterns and influencing factors of the number of ancient tombs in China across different historical periods 
were multifaceted. Previous related studies indicated that factors such as sociopolitical and economic contexts, as well as 
architectural technologies, intertwined and influenced one another, collectively shaping this unique form of cultural heri-
tage represented by ancient tombs. A deeper exploration of the underlying regularities of this phenomenon can not only 

Fig 16.  Spatial distribution of standardized residuals for the distribution of CATs.

https://doi.org/10.1371/journal.pone.0333485.g016

https://doi.org/10.1371/journal.pone.0333485.g016
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reveal the spatial distribution of CATs during various historical stages but also reflect the regional distribution and intensity 
of human activity during each period.

Firstly, socio-political factors had the greatest impact on the number of CATs. During periods of political stability, effec-
tive governance, and a clear political environment, the number of preserved cultural relics and monuments was relatively 
high [23]. Several periods in Chinese history saw rapid increases in the number of tombs, including the Qin-Han, Sui-
Tang, and Yuan-Ming-Qing dynasties. During these times, the ruling class had largely unified the country, resulting in 
political stability and economic prosperity, thus creating favorable conditions for large-scale tomb construction. In contrast, 
during periods of division, such as the Three Kingdoms, Jin-Southern and Northern Dynasties, and Five Dynasties and 
Ten Kingdoms, frequent warfare and social instability often restricted tomb construction, leading to a relative decrease in 
their number.

Secondly, periods of economic prosperity also contributed to an increase in tomb construction. As people’s living 
standards improved, so did their attention to the afterlife, further promoting the development of tombs. In the mid-Western 

Fig 17.  Standardized residual clusters and spatial outliers of CATs distribution.

https://doi.org/10.1371/journal.pone.0333485.g017
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Han period, especially during Emperor Wu’s reign, after a long period of “nurturing and recovery” policies, the economy 
rapidly recovered and developed. During the Tang dynasty, the economy reached unprecedented heights, and the unim-
peded Silk Road facilitated trade. At this time, all social classes accumulated considerable wealth, which further promoted 
tomb construction. The Song dynasty marked a period of high economic and cultural development in Chinese history, with 
Gongyi in Henan, as one of the economic centers, witnessing prosperous tomb construction. These periods of economic 
growth saw a marked increase in the number of CATs. Ancient tombs were better protected during periods of economic 
prosperity, resulting in a notable increase in their numbers during these times of significant economic development.
Additionally, advancements in construction techniques also played a significant role in promoting tomb construction. For 
instance, during the Qin-Han period, there was a sharp increase in the number of tombs, partly due to the widespread 
application of rammed earth technology, which facilitated the construction of high platforms and large tombs. These tombs 
were not only grand in scale but also complex in structure, reflecting the advanced architectural techniques of the time. 
By the Tang dynasty, brick and stone construction techniques had further developed and became the mainstream for 
tomb construction. The use of brick and stone was not only sturdy and durable but also had excellent moisture and pest-
resistant properties, ensuring the long-term preservation of tombs. The Ming-Qing period was a culmination of ancient 
Chinese architectural techniques, with both brick-and-stone and wooden structures reaching unprecedented heights, 
contributing to a significant increase in the number of tombs during this time [30].

4.2.  Geographic differentiation of CATs

The spatial differentiation patterns and characteristics of CATs are evident. Studies have shown that high-density areas 
of ancient tombs are concentrated in the Chengdu-Chongqing urban cluster, the Guanzhong Plain urban cluster, and the 
Central Plains urban cluster. For example, research on the spatiotemporal distribution and causes of China’s architec-
tural heritage has explored the distribution patterns of cultural heritage, although the objects of study were not specifically 
ancient tombs. These studies similarly identified Shanxi, Shaanxi, Henan, and the middle-lower Yangtze River Plain as 
regions with a high concentration of cultural heritage [31]. In this study, the Chengdu-Chongqing urban cluster emerged as 
the highest-density core area, while other high-density areas of CATs were distributed around the core points of northern 
Shaanxi and Shanxi, central Henan, and eastern Hubei. Such regional differentiation patterns are closely related to the 
natural geographical environment and historical cultural context.

Firstly, in terms of natural geographical conditions, both the Chengdu-Chongqing and Central Plains urban clusters 
have historically possessed favorable geological conditions, providing a natural foundation for the preservation of CATs. 
The terrain of the Chengdu-Chongqing urban cluster is dominated by hills and basins, which are relatively flat and charac-
terized by fertile soil, facilitating ancient human settlements and agricultural production. The stable geological conditions 
also contributed to the preservation of tombs. Similarly, the Central Plains urban cluster features flat terrain and abundant 
water resources, offering ideal natural conditions for the development of ancient civilizations. This, in turn, attracted large 
populations, resulting in the formation of numerous ancient settlements and tomb clusters. In terms of climate, these 
high-density regions are predominantly located in temperate monsoon climate zones, which feature distinct seasons and 
moderate precipitation. Additionally, the relatively humid climate conditions in these areas were conducive to the preserva-
tion of coffins and burial artifacts within the tombs.

Secondly, CATs are products of human activity during historical periods, and their emergence and distribution were 
influenced by historical and cultural factors. Regions with dense distributions of CATs often possess a profound historical 
and cultural background [32]. The Chengdu-Chongqing area, for instance, has long been one of the cradles of Bashu 
culture. The ancient Bashu region experienced economic prosperity and cultural flourishing, giving rise to a unique tomb 
culture [33]. The Central Plains urban cluster, encompassing the middle and lower reaches of the Yangtze and Yellow 
Rivers, is another cradle of ancient Chinese civilization, hosting cultures such as the Yangshao and Longshan in the 
Yellow River basin and the Hemudu and Liangzhu cultures in the Yangtze River basin [34,35]. The development of these 
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ancient civilizations provided a crucial historical context for the formation and evolution of tomb culture. Historically, these 
high-density regions were also political, economic, and cultural centers. For example, northern Shaanxi and Shanxi 
served as important political centers during the Qin-Han and Sui-Tang dynasties; central Henan was one of the birthplaces 
of Central Plains culture; and eastern Hubei was the core area of Chu culture. These regions, characterized by political 
stability, economic prosperity, and large populations, witnessed extensive tomb construction.

4.3.  Spatial and temporal evolutionary patterns and characteristics of CATs

In previous studies, the spatiotemporal evolutionary patterns of different types of cultural heritage varied significantly. In 
this study, the centers of ancient tombs in China during different historical periods were mainly concentrated in the central 
region and repeatedly shifted within the present provinces of Shaanxi, Shanxi, Henan, Hubei, and Chongqing as history 
progressed. This phenomenon was related to factors such as the ruling classes, the stability of political regimes, and the 
transformations of authority in different historical periods. In the Shang and Zhou periods, the distribution of CATs was 
concentrated in Shanxi and Shaanxi. Shanxi was one of the major ruling areas during the Shang dynasty, while in the 
Zhou dynasty, the state of Jin rose to prominence in Shanxi. Jin’s ruler, Duke Wen, was one of the Five Hegemons during 
the Spring and Autumn period. Furthermore, the political center of the Western Zhou dynasty was in Haojing (present-day 
Xi’an, Shaanxi), which served as a political hub. This long-standing political centrality made Shanxi a significant area 
for the activities of nobles and royals, leading to the concentration of their tombs in this region. From the Han dynasty to 
the Five Dynasties period (spanning the Sui and Tang dynasties), the focus of CATs alternated between Henan, Hubei, 
Shaanxi, and Shanxi. During this time, China’s political centers underwent several shifts. For instance, both the Han and 
Tang dynasties established their capitals in Chang’an (present-day Xi’an, Shaanxi), making Shaanxi a political and cultural 
center. However, during the Sui and Tang periods, the political center gradually shifted to Luoyang (present-day Henan), 
further contributing to the development of CATs in Henan [36]. Hubei was the focal point of contention during the Three 
Kingdoms period. Later, it served as a significant ruling area for the Southern Dynasties, resulting in a substantial num-
ber of CATs in this region. The Song, Liao, and Jurchen Jin dynasty coexisted during roughly the same historical period, 
but their centers of rule differed, leading to variations in the focal regions of tomb distribution. During the Song dynasty, 
which unified southern China at the time, the focus of tombs was located near the border between Henan and Hubei. 
In the Jurchen Jin dynasty, efforts to consolidate control over the Central Plains involved repeated military campaigns 
and population relocations. Many of the migrating nobles and officials settled in Shandong, leading to a concentration of 
tombs in this area and making Shandong the focal point during the Jin period. In contrast, the Liao dynasty, established 
by the Khitan, governed northern regions, including present-day Inner Mongolia, Liaoning, and Jilin. Consequently, the 
Liao dynasty’s tomb distribution was concentrated in southern Inner Mongolia. During the Yuan dynasty and subsequent 
periods, as the political landscape was once again unified, the focus of CATs distribution gradually stabilized in the Hubei 
and Chengdu-Chongqing regions.

4.4.  Factors affecting the distribution of CATs

Overall, the distribution of CATs was influenced by both cultural and natural factors, with the dominant influencing factors 
in this study being DL01, total population, and total GDP.

The number of CATs was negatively correlated with DL01. In existing studies on the spatiotemporal distribution of 
cultural relics in China, natural geographic factors such as precipitation, temperature, and slope are frequently selected, 
whereas the influence of soil types on the spatial distribution of cultural relics has been rarely analyzed. However, soil type 
is a crucial indicator of a region’s natural geological conditions, particularly because ancient tombs are often underground 
archaeological sites preserved for long periods in soil-covered environments [2]. Therefore, the soil environment signifi-
cantly impacts CATs. Since rice cultivation was the primary agricultural activity in ancient southern China, lands with high 
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paddy soil density were extensively used for rice production. As a result, regions with a relatively small number of CATs 
often correspond to areas with higher paddy soil density.

The number of CATs was positively correlated with the total population. The findings of this study align with previous 
research [32,37], which suggests that population density contributes to a relatively concentrated distribution of cultural 
relics, and that population has a positive correlation with the distribution of cultural heritage. From a temporal perspective, 
periods of frequent dynastic transitions and wars in Chinese history were often accompanied by significant population 
declines and migrations. However, during post-war recovery and periods of societal stability, population numbers typically 
rebounded and grew rapidly, which was also reflected in the increasing number of deceased individuals requiring burial. 
From a geographic perspective, areas such as the Central Plains urban cluster and the Chengdu-Chongqing urban cluster 
have historically been densely populated. These population-dense regions naturally saw a higher concentration of CATs, 
whereas sparsely populated areas correspondingly had fewer CATs.

The total GDP was positively correlated with the distribution of CATs. This finding is consistent with other related stud-
ies [23,38], which suggest that the level of economic development had a decisive impact on people’s production and living 
activities in historical periods. Periods with higher economic development levels tended to preserve a greater number of 
cultural heritage sites. In both modern and ancient societies, regions with higher economic levels often had higher pop-
ulation densities, which, in turn, resulted in the construction of more tombs. For researchers studying the preservation of 
CATs, conducting excavation work in economically developed areas may be more efficient, as tombs in these regions are 
more likely to be successfully discovered and preserved. This offers valuable perspectives and insights for researchers in 
formulating preservation strategies, guiding excavation efforts, and exploring the relationship between CATs and historical 
economic activities.

4.5.  Research limitations

Although this study provides a certain basis for explaining the distribution of CATs using modern natural and cultural data, 
it still has limitations. First, it is difficult to obtain data from ancient times. Since CATs are mostly historical relics, their for-
mation and distribution are often closely related to complex factors such as the natural environment and socio-economic 
conditions of the time. However, such ancient data are often hard to access due to the long time elapsed, lack of records, 
or poor preservation. While modern natural and cultural data, such as climatic characteristics, road network density, total 
population, and economic activities, can partially reflect the current natural environment and social conditions, they are 
challenging to directly correspond to specific ancient contexts.

In addition, the acquisition and processing of modern natural and cultural data have their own limitations. Although 
modern technological tools like Geographic Information Systems (GIS) provide abundant data sources for historical 
research, these data are subject to various influencing factors during their acquisition and processing, such as data accu-
racy, data completeness, and data interpretation. These factors may lead to inaccuracies or incompleteness in the data, 
thereby affecting the explanation of CATs.

5.  Conclusions

Based on the above, this study utilized ancient tomb data from the Third National Cultural Relics Census of China to 
construct a spatial database of Chinese ancient tombs. Using qualitative and quantitative methods supported by ArcGIS 
and SPSS platforms, it examined the spatiotemporal distribution patterns and influencing factors of ancient tombs across 
China. The main conclusions of this research are as follows: ① Influenced by historical developments, economic condi-
tions, and the degree of tomb preservation, the number of ancient tombs varied significantly across historical periods. 
Among them, the Qing dynasty had the highest number of tombs, accounting for 47.012% of the national total, while the 
Sui dynasty had the fewest, representing only 0.134%. ② The spatial distribution of ancient tombs in China exhibited sig-
nificant regional differentiation, forming three prominent clusters around the Central Plains urban agglomeration in central 
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China, the Chengdu-Chongqing urban agglomeration in the southwest, and the Guanzhong Plain urban agglomeration. 
A distinct core–periphery distribution pattern was observed. The high-value areas of kernel density also shifted over time 
across historical periods, stabilizing in the Chengdu-Chongqing region after the Ming dynasty, reflecting historical changes 
in human activity and settlement patterns. ③ The spatiotemporal distribution centers of ancient tombs during different 
historical periods were concentrated in central China. The center of distribution repeatedly shifted within present-day 
Shaanxi, Shanxi, Henan, Hubei, and Chongqing, driven by factors such as changes in ruling powers and political stability 
across different dynasties. ④ The distribution of ancient tombs in China was influenced by both human and natural factors. 
There was a negative correlation between the density of paddy soils in southern China (DL1) and the number of ancient 
tombs, while GDP and total population showed a significant positive correlation with the spatial distribution of ancient 
tombs.

This study conducted a systematic digital survey and analysis of the spatiotemporal distribution characteristics 
and influencing factors of ancient tombs in China, revealing their evolution patterns and influencing factors, thus 
laying an important theoretical foundation for building a scientific and precise protection system. In the future, the 
protection of ancient tombs in China urgently needs to transition from passive rescue to proactive preventive pro-
tection: First, establish a dynamic monitoring system based on spatiotemporal distribution patterns. By utilizing GIS 
spatial analysis technology, combined with historical environmental data and real-time monitoring information, key 
monitoring and early warning should be implemented in high-density and high-risk areas. Second, deepen the devel-
opment of protection strategies driven by big data. Integrating information from archaeological excavations, historical 
records, environmental geology, and socio-economic factors, a spatiotemporal distribution prediction model and a 
risk assessment model for ancient tombs should be constructed. By analyzing the correlation between historical and 
current data, potential threat areas can be anticipated, protection resource allocation can be optimized, and differ-
entiated protection strategies can be formulated for different zones. Third, build an open and shared data platform. 
Promote the digitalization, standardization, and platform-based sharing of basic information, monitoring data, and 
research findings of ancient tombs, providing solid data support for interdisciplinary research, public participation, 
and long-term protection decision-making.

In summary, the deep integration of this study’s understanding of spatiotemporal distribution patterns with advanced 
big data analysis methods represented a key pathway to enhancing the scientific, forward-looking, and efficient nature of 
ancient tomb protection in China. It provided a solid scientific foundation for informed decision-making, ensuring the sus-
tainable preservation of ancient tombs and broader cultural heritage across the country.
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