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Abstract

We present the first diode-pumped tunable single- and dual-wavelength (DW) laser
operation near 1.4 pym spectral region in Nd:LUGdAG (Nd:LGAG) crystal on the
*F,,—l,,, transition. Three distinct lasing wavelengths at 1414 nm, 1426 nm and
1437 nm were generated by adjusting a Lyot filter (LF) in the cavity, respectively. The
maximum continuous-wave (CW) power output of 3.64 W at 1414 nm was attained
under an absorbed pump power of 18.7 W, exhibiting a slope efficiency of 23.7% and
optical conversion efficiency of 19.5%. Further, three pairs of DW lasers operating

at 1414nm and 1426 nm, 1414nm and 1437 nm, 1426 nm and 1437 nm were also
achieved, respectively. The DW operation at 1414nm and 1437 nm yielded 2.82 W
total CW output power, attaining 15.1% total optical conversion efficiency. Single- and
DW lasers in the 1410—-1440 nm spectral range have important application in fields

such as optical communication and medicine.

1. Introduction

Nd-doped solid-state lasers predominantly employ three principal emission bands in
the near-infrared spectrum: 0.9 um corresponding to the three-level “F,,—*l,, transi-
tion, and four-level configurations at 1.1 ym (*F,,—“l,, ,) and 1.3/1.4 ym (*F,,—“I
Multiple Nd**-doped crystals including Nd:YVO, [1,2], Nd:YAG [3-5], Nd:GdVO,
[6,7], Nd:YLF [8,9], Nd:YAP [10,11], Nd:CALGO [12] and Nd:GSAG [13—15] have
demonstrated solid-state laser functionality. Conventionally, the 1.3 pm emission
band in Nd-doped crystals originates from the “F,,—*l, ., transition. However, this
splitting phenomenon arises from the crystal field splitting effect, which partitions

the energy levels into multiple Stark sublevels. Exemplified by Nd:YAG, such crystal
fields induce over a dozen distinct emission peaks within the *F,,—*l,,, manifold,
with corresponding 1.4 ym region emissions having been documented in multiple
studies [16—19]. Laser sources operating near 1.4 uym exhibit inherent eye-safe
characteristics, enabling their deployment in diverse technical domains including opti-
cal communications, coherent LIDAR systems, dermatological treatments, advanced
laser medicine, and ophthalmic therapies [20—25]. Among neodymium-doped laser
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crystals, Nd:LGYAG has been widely adopted in solid-state lasers due to its excel-
lent optical quality and weak thermal lensing effect [26,27]. In the case of Nd:LGAG,
Lu®* and Gd®* ions substitute for the totality of the Y** ions of the Nd:YAG but with a
proportion Lu®**and Gd*" of about 30%. While The Nd:LGAG lasers at 1.1 [28], 0.9
[29] and 1.3 ym [30] have been implemented successfully in prior studies, systematic
research on CW laser generation at 1.4 ym in the Nd:LGAG has not been reported
until now. Fig 1 demonstrates the emission cross-section of the Nd:LGAG from

1250 nm to 1500 nm at room temperature on the *F,,—*l, , transition, which was
calculated via the Fuchtbauer-Ladenburg (F-L) formula [31]. It can be shown in Fig 1
that the strongest peak was 1332nm. In addition, there were five peaks at 1316 nm,
1348 nm, 1414nm, 1426 nm and 1437 nm.

In this study, we achieved three-wavelength tunability at 1414, 1426 and 1437 nm

in Nd:LGAG on the “F,,—“l,,,, transition. Additionally, three pairs of DW tunability

at 1414nm and 1426 nm, 1414nm and 1437 nm, 1426 nm and 1437 nm were also
realized. Extensive implementation potential of DW laser systems has been identified
across diverse technical domains including LIDAR systems [32], medical diagnostics
[33], optical holography [34,35], precision spectral analysis [36], metrological sensing
[37,38], nonlinear frequency conversion for UV/visible generation [39,40], and THz
wave synthesis via difference frequency generation [41—43]. Especially, DW lasers
around 1.4 ym enable simultaneous superficial epidermal heating and deep dermal
collagen stimulation for non-invasive skin tightening and vascular coagulation, lever-
aging minimal thermal damage to surrounding tissues [44].

2. Experimental setup

The schematic diagram for the laser experiment was displayed in Fig 2. The pump
system employs a 20 W 808 nm laser diode (LD) with a NA of 0.22 and a fiber core
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Fig 1. Emission spectrum of the Nd:LGAG in 1250 -1500 nm.

https://doi.org/10.1371/journal.pone.0333387.9001
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Fig 2. Schematic setup for the laser experiment. Inset: LF.

https://doi.org/10.1371/journal.pone.0333387.9002

diameter of 400um. The radius of the pump spot was about 200 um in the active medium. The laser spot radius in the
active medium was about 190 pm. Two identical coupling lenses (L, and L,) with a focal length of 100 mm were utilized,
featuring anti-reflection (AR) at 808 nm on both surfaces. The measured transmittance of the optical coupling system
exceeded 98%. A Nd:LGAG (1.0 at.% doping, 6 mm length) functioned as the active medium with AR at 808 nm and 1410-
1440 nm, which was sealed in indium foil and affixed to red copper mounts equipped with water cooling, maintained at
15°C.

The cavity input coupler was a planar mirror (M,) with AR for 808 nm and 1060-1350nnm, and high reflectivity (HR) at
1410-1440nm. The cavity output coupler was a concave mirror (M,) with a radius of curvature of —200mm, a transmit-
tance (T of 3.5% at 1410-1440nm, and AR at 1060—-1350 nm. Two other couplers (T =2.0% and 5.0%) were also car-
ried out, with the M, demonstrated the optimal output performance. A quartz-based LF (4.0 mm thickness) was employed
for wavelength tuning, positioned within the resonator at 6, (Brewster angle) as depicted in Fig 2 inset. The tuning angle
(a) was an angle between the optical axis of the LF (C) and the incident light projection on the LF surface.

3. Results and discussion

The single-pass transmittance for different wavelengths transmitted through the LF was expressed as [45]

TLyot,i =1

2

i 4cos?asin®Og . cos?asin’fg sin? di
1 —4c0s2a.c0s2605 1 —c0s20.c0s820g ’

(1)

where i=1, 2 and 3 represents the 1414nm, 1426 nm and 1437 nm three wavelengths, respectively, §,=2mnd(n —n_)(1-cos
acos?®8,)/Asind, is an optical phase difference, n_and n_ are the refractive indices of o- and e-light, respectively, dis a
thickness of the filter. With Eq. (1) and the parameters: n =1.5443, n,=1.5534, d=4mm and 6,=57.2°, the round-trip
transmittance(Tfyot,,) of the different laser wavelength (A) was calculated as a function of the tuning angle as displayed in
Fig 3. It can be shown from Fig 3 that Tfyo,J can be controlled by regulating the LF surface around its normal axis. Thus,
tuning between emission wavelengths can be realized by controlling the LF.

When tuning angle was rotated to about 38°, 39°, and 40°, the corresponding emissions at 1414 nm, 1426 nm, and
1437 nm were achieved, and their output-input performances were displayed in Fig 4. At an absorbed pump power of
18.7 W (corresponding to an incident power of 20 W) with T =3.5%, the laser demonstrated output powers of 3.64 W at
1414 nm, 3.01 W at 1426 nm, and 2.21 W at 1437 nm. The corresponding lasing thresholds were 2.70 W, 3.01 W and 3.21
W, with slope efficiencies of 23.7%, 19.4% and 14.5%, respectively. At T _=2.0%, the laser demonstrated slope efficien-
cies of 18.3%, 15.2%, and 10.3% at 1414 nm, 1426 nm, and 1437 nm respectively, with corresponding threshold powers
of 1.72 W, 2.12 W and 2.65 W. When T __was increased to 5.0%, the slope efficiencies changed to 17.4%, 14.6%, and
8.5%, while the threshold powers increased to 4.5 W, 5.7 W and 6.3 W for the respective wavelengths. The laser spectra
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Fig 3. Round-trip transmittance (72 Lyot,i) versus the tuning angle (a).
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Fig 4. Output powers of the three single-wavelengths versus absorbed pump power.

https://doi.org/10.1371/journal.pone.0333387.9004

at 1414nm, 1426 nm, and 1437 nm at the maximum pumping were displayed in the Fig 5. The corresponding wavelength
peaks (1415.85nm, 1426.28 nm and 1436.94 nm) exhibited spectral line width (FWHM) values of 0.30nm, 0.33nm and
0.35nm, respectively.

The power stabilities of the three laser wavelengths were measured with a precision power meter. The power fluctu-
ations (RMS) at the maximum output powers were about 2.7%, 3.6% and 3.9% in 1 hour, respectively, as shown in Fig
6. The insets (a)-(c) of Fig 6 show the measured radii and the beam quality factors (M?) of the 1414 nm, 1426 nm, and
1437 nm beams, respectively. The beam quality factors (M?) of the 1414 nm, 1426 nm, and 1437 nm wavelengths were
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Fig 5. Laser spectra of the three single-wavelengths.
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measured using the knife-edge technique. The corresponding values in both transverse directions at maximum output
power were less than 1.16, 1.12 and 1.25, respectively.

For a four-level laser system operating with CW, the oscillation threshold of each emission wavelength in a DW opera-
tion was given by [46]

—In (1 — Toc) —+ L,‘-‘,-Lo,‘ % 1
2lcng,i oimi [[[ro(r, 2)si(r, z)dv’ 2

Pina,i =

where T__is the cavity transmittance for the laser emission wavelengths, L; = 1 — Tfyot_,- is the round-trip loss, which is
caused by the LF, L, is the cavity round trip passive loss, /_is the length of the Nd:LGAG, n,,, is the quantum efficiency, hv,
is the photon energy of the pump beam, ¢, is the stimu/ated emission cross-section, 1, is the upper energy level lifetime,
rp(r,z) is the pump beam distribution of the normalized intensity in the Nd:LGAG, and s(r,z) is the cavity mode distribution
of the normalized intensity for the emission wavelength. rp(r,z) and s(r,z) can be written by [47], respectively,

B ae™? 2(7)—
ol 2) = 7rw,§(z)(1—e‘az)®( F2-7). @)
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2 21
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Fig 6. Power stabilities of the three laser wavelengths. Insets (a), (b) and (c) show the X- and Y-axes radii as functions of Z-axis position for the
1414nm, 1426 nm and 1437 nm beams, respectively.

https://doi.org/10.1371/journal.pone.0333387.9006

where a is the absorption coefficient, Ois the Heaviside step function, w, is the radius of the laser spot, and the size of the
pump beam in the Nd:LGAG given by

()

where Wyo is the radius of the pump spot, )\p is the pump wavelength, M2 pis the quality factor of the pump beam. With
Egs. (1)-(5) and the parameters in our experiment: T_=3.5%, 0,=1.04x107%° cm?, 0,=0.84x107%° cm?, 0,=0.98x 1072
cm? a=3.5cm”, [ =5mm, w =200 pm, w, =190 ym, n=1.83, M*=3.5,n_,=0.57, 1,=262ys, hv,=2.45x107"°J, and L,=0.5%
was measured using the Findlay-Clay method [48], the threshold was calculated as a function of tuning angle a for the
three laser wavelengths, as displayed in Fig 7. It can be seen that the threshold can be controlled by regulating the LF. It
can be observed that intersecting points exist between any two threshold power curves, indicating that the pump power
required for lasing threshold is identical for both wavelengths at these intersection points. Consequently, DW lasers could
be achieved when the pump powers were precisely regulated to these power levels.

When a was regulated to about 3.5°, 5.5°, and 16.5°, the three pairs of the DWs at 1414nm and 1426 nm, 1414nm and
1437 nm, and 1426 nm and 1437 nm were generated, respectively, and their output-input performances were displayed in
Fig 8. At an absorbed power of 18.7 W, the total powers were 2.82 W (1.44 W at 1437 nm and 1.38 W at 1414 nm), 2.75
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W (1.50 W at 1426 nm and 1.25 W at 1414nm) and 2.12 W (1.06 W at 1426 nm and 0.96 W at 1437 nm) for the three
pairs of DWs, respectively. The corresponding threshold powers were 3.58 W, 4.21 W and 4.72 W, respectively. The total
optical conversion efficiencies with respect to the absorbed power were 15.1%, 14.7% and 11.3%, respectively. The laser
spectra of the three pairs of DWs were displayed in the Fig 9. The corresponding peak wavelengths were 1413.83nm and
1426.41nm, 1413.95nm and 1437.04nm, 1426.44nm and 1437.02 nm, respectively. For the three pairs of DWs, Their
corresponding M? factors were 1.12 and 1.15, 1.18 and 1.24 and 1.22 and 1.27, respectively, and their power stabilities
were about 2.5% and 2.9%, 2.8% and 3.8%, and 3.5% and 4.2%, respectively.
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Compared with the previously reported the 1.4 uym single-wavelength laser on Nd:GSAG crystal (slope efficiency of
13.6%, optical conversion efficiency of 11.5% [15]), the single-wavelength system in this study achieved a slope efficiency
of 23.7% and an optical conversion efficiency of 19.5%. In terms of DW laser output, the total optical conversion efficiency
has increased from 9.2% to 15.1%. These data fully demonstrate the significant progress of this laser system in the optical
conversion efficiency at the 1.4 ym spectral region.

4, Conclusion

In conclusion, diode-pumped tunable single- and DW laser operation near 1.4 ym spectral region in Nd:LGAG on the
*F,,—"l,,, transition was demonstrated for the first time. By regulated an intracavity LF, the three single-wavelengths

at 1414 nm, 1426 nm and 1437 nm were obtained, respectively. The maximum CWoutput power of 3.64 W at 1414 nm
was attained under an absorbed pump power of 18.7 W, exhibiting a slope efficiency of 23.7% and optical conversion
efficiency of 19.5%. Further, three pairs of DW lasers operating at 1414 nm and 1426 nm, 1414 nm and 1437 nm, and
1426 nm and 1437 nm were also achieved, respectively. The DW operation at 1414 nm and 1437 nm yielded 2.82 W total
CW output power, attaining 15.1% total optical conversion efficiency. This study proposes a new method for generating
tunable single- and DW lasers, which can be applied to other active medium to achieve laser output of different spectral
regions.
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