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Abstract 

Investigating the coupled and coordinated relationship among digital infrastructure 

(DI), economic resilience (ER) and carbon productivity (CP) is pivotal for advancing 

sustainable development in China. This study employs multiple approaches, includ-

ing the coupling coordination model, kernel density estimation, Markov chain, and 

spatial Durbin model, to analyze the spatiotemporal evolution and driving factors of 

the coupling coordination degree (CCD) from 2013 to 2021. The findings are as fol-

lows. First, the average levels of DI, ER and CP show a consistent upward trajectory. 

Second, the CCD among the three systems exhibits steady growth, transitioning from 

a state of “general out of balance” to “barely coupling coordination”. Spatially, the 

CCD demonstrates a characteristic pattern of decreasing from east to west. Overall, 

achieving a “cross-level transition” in CCD is challenging, and the neighboring prov-

inces significantly influence the enhancement of local CCD. Third, the CCD demon-

strates a positive spatial agglomeration effect, with stable hotspots concentrated in 

regions such as Hubei, Anhui, Zhejiang, and Shanghai. Fourth, strategic emerging 

industries, population density, human capital, and environmental regulation inten-

sity positively contribute to the local CCD, whereas financial development exerts a 

negative impact. Regarding spatial spillover effects, strategic emerging industries and 

environmental regulation intensity exert positive influences, while population density 

shows a negative effect. Meanwhile, the spatial spillover effects of human capital and 

financial development are not significant.

1  Introduction

As global climate change intensifies, ecosystems and economic systems face severe 
challenges. Without effective carbon emission control, global warming could exceed 
1.5 °C by mid-century, triggering irreversible ecological disruptions [1]. Meanwhile, 
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the World Economic Forum (WEF) Global Risks Report 2023 identifies climate-
related risks as persistent threats to global economic stability. Intensifying climate 
shocks reveal the vulnerability of economic systems [2], highlighting the urgent need 
to enhance economic resilience (ER) while reducing emissions. Improving carbon 
productivity (CP) is critical to achieving this balance, yet meeting 2050 climate targets 
requires a nearly tenfold increase in CP [3,4]. Under dual pressures of low-carbon 
transition and economic security, digital infrastructure (DI) plays a growing role in 
green growth. By enhancing energy efficiency, environmental monitoring, and system 
resilience, DI supports both emission reduction and economic development [5,6]. 
National strategies such as the 14th Five-Year Plan for Digital Economy Develop-
ment and the Digital China initiative have accelerated DI deployment and digital 
advancement. Through these policies, DI has emerged as a new economic growth 
engine and a driver of ER and CP. In this context, clarifying the coupling coordination 
relationships among DI, ER, and CP is of great practical significance for promoting 
regional sustainable development.

At present, most domestic and international studies can be broadly categorized 
into three strands. First, regarding the relationship between DI and CP, some schol-
ars argue that DI enhances CP by promoting technological innovation [7], upgrad-
ing industrial structures [8], and green transformation of residents’ lifestyles [9]. In 
addition, the positive effect of DI on CP is not confined to the local areas. Several 
studies have demonstrated that it also exerts positive spatial spillover effects on 
surrounding regions [10,11]. However, other researchers have highlighted a potential 
“double-edged sword” effect of DI. According to Feng et al. [12], based on firm-level 
data, the expansion of DI may increase carbon intensity and reduce the CP of small 
enterprises through competitive pressures and changes in energy consumption 
structures. Some scholars suggest that the construction and operation of DI can 
directly increase energy consumption and diminish the efficiency of the digital econ-
omy, thereby reducing urban CP [13–15]. In summary, existing studies have primarily 
examined the impact of DI on CP, yet the direction of its effects remain unclear.

Second, existing studies on the direct relationship between ER and CP remain 
limited, with most research focusing on the link between ER and carbon emissions. 
These studies generally find that improving environmental performance contributes to 
enhancing ER. Shi et al. [16] pointed out that emission reduction measures, including 
the promotion of a circular economy, technological progress, and industrial structure 
adjustment, can enhance ER. Zhao and Jiang [17] found that lowing carbon inten-
sity significantly boosts ER. Enhancing ER, in turn, supports green transitions and 
emission reduction by fostering economic diversification and reducing dependence 
on carbon-intensive industries [18,19]. Nevertheless, some scholars argue that the 
excessive pursuit of ER may lead to overinvestment in critical infrastructure, increasing 
emissions [20]. Third, the relationship between DI and ER has attracted growing aca-
demic attention [21]. Particularly during the COVID-19 pandemic, studies showed that 
well-developed digital infrastructure enhanced regional resilience to external shocks 
[22,23]. Empirical evidence based on difference-in-differences models confirms that DI 
strengthens urban ER [24] and generates positive spatial spillover effects [25].
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Building on the above analysis, prior studies has primarily focused on bilateral relationships among DI, ER, and CP, 
while neglecting their integrated interactions and systemic coordination. As DI, ER, and CP are not independent subsys-
tems, their mutual interactions form internal linkages. Therefore, fostering a virtuous cycle and achieving synergy among 
the three systems is essential for enhancing the overall efficiency and stability of socio-economic-environmental systems. 
In response to these gaps, this study selects 31 provinces in China from 2013 to 2021 as the empirical sample. It applies 
the global entropy method to assess the development levels of DI and ER, and adopts the coupling coordination degree 
(CCD) model to assess the interactive relations among DI, ER and CP. To capture spatial-temporal dynamics, this study 
integrates kernel density estimation, Markov chains, and spatial autocorrelation to reveal the distribution, evolution, and 
clustering of CCD. The SDM is further applied to assess spillover effects and identify key drivers. This multi-dimensional 
approach helps deepen comprehension of the interaction mechanisms among DI, ER and CP. It also provides theoretical 
and policy guidance for advancing sustainable regional development.

This research offers the following marginal contributions. First, it constructs an integrated analytical framework to 
examine the spatiotemporal coupling coordination among DI, ER, and CP, addressing the lack of holistic perspectives 
in existing research that mostly focuses on pairwise interactions [16,21,26,27]. Second, it investigates how influencing 
factors affect CCD in neighboring regions via spatial spillovers. By incorporating the SDM, the study captures both local 
and spillover effects, enriching understanding of the pathways toward synchronized development among DI, ER and CP 
across cities. Third, it employs kernel density estimation, Markov chains, and trend surface analysis to reveal the distribu-
tional dynamics, transition probability, and spatial evolution of CCD, providing comprehensive insights into its spatiotem-
poral evolution.

The subsequent sections are arranged as follows. Section 2 outlines the materials and methods. Section 3 dis-
plays the study results. Section 4 discusses the findings in detail. Section 5 concludes the study. Section 6 offers policy 
recommendations.

2  Materials and methods

2.1  Research framework

To explore the coupling and coordination relationship between DI, ER and CP in China, this research is conducted in four 
steps (Fig 1). Firstly, this paper elucidates the interaction mechanism between DI, ER and CP. Secondly, an index system 
for DI, ER and CP is established, and the levels of the three systems in China are measured. Thirdly, using panel data 
for 31 provincial administrative areas between 2013 and 2021, a CCD model is developed using the linear assignment 
method. The harmonious development of the three systems is quantitatively analyzed across temporal and spatial dimen-
sions. Finally, spatial autocorrelation is employed to evaluate the relationships among three systems. Based on this anal-
ysis, the SDM is employed to investigate the factors influencing the CCD. Subsequently, relevant policy recommendations 
are proposed, reflecting the coordinated development status across provinces, to provide strategic paths for enhancing 
the sustainability of these three systems.

2.2  Coupling mechanism

DI, ER and CP are key drivers of green and low-carbon development [28]. These three systems are interconnected and 
mutually reinforcing, making it crucial to explore their relationships for the sustainable development.

The progress of infrastructure systems is significant for every stage of economic and social development in China [29]. 
DI significantly contributes to promoting sustainable economic development [30]. On the one hand, the data stored in digi-
tal infrastructures can exert a “leverage effect”, effectively utilizing limited resources and strengthening the resistance and 
adaptability of economic systems. On the other hand, the information platforms provided by DI promote the agglomeration 
of talent and capital, thus upgrading the innovation potential of the economic system [30]. DI also positively impacts green 
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innovation [31]. Progress in DI accelerates technological innovation, enhances productivity, and reduces energy losses, 
resulting in positive effects on CP [32]. Concurrently, the development of information infrastructure diminishes market 
information asymmetry and improves resource allocation efficiency, consequently increasing CP [33,34].

ER creates favorable conditions for the growth of DI. Compared to traditional infrastructure, the technological structure 
of DI, which embodies intelligent features, is more complex. A resilient economic system mitigates unanticipated economic 
shocks and ensures the economic security of DI. The strategic objective of establishing a resilient economic system also 
guides the practical development of DI, ensuring that it meets the requirements of sustainable, intelligent, and efficient 
operation. Additionally, ER is crucial for the advancement of a low-carbon economy [16]. Resilient economic systems are 

Fig 1.  Analysis framework.

https://doi.org/10.1371/journal.pone.0333309.g001
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better able to adapt to changes in environmental policies, thereby facilitating the deployment of low-carbon technologies 
and renewable energy sources. Improving urban ER can also facilitate enterprise transformation, reduce resource con-
sumption, and enhance CP through industrial structure upgrading [35].

Low carbon economic development offers strategic direction for DI. The “14th Five-Year Plan for Green Industrial 
Development” requires phasing out high-energy-consuming and low-efficiency enterprises, thereby freeing up resources 
and space to foster low-carbon industries and accelerating the development of DI. Additionally, ecological improvement is 
a crucial guarantee for stable economic development. As pollution problems worsen, the government has begun to imple-
ment stringent environmental standards and market requirements, compelling enterprises to proactively innovate in tech-
nology to maintain sustainable regional economic development. Moreover, in alignment with green development goals, 
China is striving to improve energy efficiency in energy-intensive sectors, including 5G and data centers, through techno-
logical advancements and innovation. This approach guides science and technology towards a green economy. Research 
has also shown that regional ecological environments significantly influence talent attraction. Enhancing the ecological 
environment draws in high-quality and highly-skilled talent [36], which effectively enhances the regional technology level.

2.3  Indicator system

2.3.1  Evaluation indicators system of digital infrastructure.  The National Development and Reform Commission 
(NDRC) explicitly outlined DI on April 20, 2020, comprising three components: information, convergence, and innovation 
infrastructure. Information infrastructure describes the hardware and software systems used to support the transmission, 
storage and processing of information. Convergence infrastructure describes facilities that combine traditional infrastructure 
with digital technologies to enable intelligent and efficient management. Convergence infrastructure is measured by the 
development stage of traditional infrastructure and the information industry. Innovation infrastructure comprises facilities 
and platforms that support scientific research, technological advancement, and industrial innovation. Building upon previous 
studies, this paper selects relevant indicators to evaluate the level of DI across three dimensions: information, convergence, 
and innovation infrastructure [37–39], as summarized in Table 1. The weights assigned to the DI indicators were calculated 
using the global entropy method, which provides an objective and data-driven approach based on variability across regions 
and time periods. Unlike the conventional entropy method applied to single-year data, the global entropy method accounts 
for both cross-sectional and temporal variation. This enables a more comprehensive evaluation of each indicator’s 
informational contribution and produces more stable and representative weights for longitudinal analysis. By reducing 
subjectivity, the method improves the methodological rigor and enhances the comparability of composite indices over time.

2.3.2  Evaluation indicators system of economic resilience.  Martin [40] proposes four dimensions of regional ER: 
the ability to reorganize and innovate after an economic shock, the resilience to withstand shocks, the ability to internally 
integrate and adapt to new external environments when impacted by a shock, and the ability to recover from a shock. 
Given the strong correlation between resistance and resilience, which makes them difficult to separate at the data level, 
this paper constructs the indicator system based on resistance and resilience, adaptation and adjustment, and innovation 
and transformation. The specific content is detailed in Table 2. The weights assigned to the indicators of ER was 
calculated using the global entropy method.

2.3.3  Evaluation indicators system of carbon productivity.  CP quantifies the economic output generated for each 
unit of carbon emissions, acting as a key indicator for low-carbon development [41]. This paper acquired the latest panel 
data on carbon dioxide emissions from EDGAR covering 2013–2021. The CP formula is:

	
Cpit =

GDPit
CO2 it 	

where GDPit  and CO2 it denote the Gross Domestic Product and carbon emissions, respectively, of city t in period i .
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Table 1.  Evaluation indicators system of DI.

System Dimension Indicator Type Weight

Digital 
infrastructure

Information infrastructure Number of domain names (ten thousand) + 0.034

Number of web pages (ten thousand) + 0.054

Internet broadband access port (ten thousand) + 0.016

Mobile internet users (10,000 households) + 0.015

Number of computers in use at the end of the period (unit) + 0.027

Computers per 100 population (unit) + 0.013

Number of websites owned by enterprises (number) + 0.026

Number of enterprises with e-commerce trading activities (number) + 0.028

Local exchange capacity (10,000 households) + 0.027

Mobile switch capacity (10,000 households) + 0.014

Cell phone base station (ten thousand) + 0.015

Fiber optic line length(km) + 0.017

Cell phone penetration rate (departments/100 people) + 0.008

Average population served per outlet for postal communications (10,000 
people)

+ 0.011

Total length of cable radio and television transmission trunk networks 
(10,000 km)

+ 0.027

Actual number of cable broadcast television subscribers (10,000 
households)

+ 0.014

Postal business outlets (division) + 0.018

Mailboxes (number) + 0.023

Rural delivery routes (km) + 0.013

City delivery routes (km) + 0.013

Total length of postal routes (km) + 0.024

Convergence 
infrastructure

Traditional 
infrastructure

Railroad mileage (km) + 0.012

Miles of high-speed graded roads (km) + 0.011

Total length of routes operated by public trolley buses (km) + 0.022

Miles of rail transit in operation (km) + 0.042

Public buses per 10,000 population (unit) + 0.006

Health care institutions (number) + 0.018

Number of general higher education institutions (number) + 0.056

Public library (number) + 0.012

Public library holdings per capita (volume) + 0.020

Electricity consumption by region (billion kw·h) + 0.016

Level of devel-
opment of the 
information 
industry

Revenue from software operations (billions) + 0.046

Enterprise e-commerce sales (billions) + 0.035

Enterprise e-commerce purchases (billions) + 0.038

Total postal and telecommunication operations (billions) + 0.031

Total telecommunication services (billions) + 0.031

Innovation infrastructure Full-time equivalent of R&D personnel (person-years) + 0.029

R&D funding (ten thousand yuan) + 0.030

Number of R&D projects (item) + 0.039

Number of patent applications (piece) + 0.033

Number of patents granted (piece) + 0.036

https://doi.org/10.1371/journal.pone.0333309.t001

https://doi.org/10.1371/journal.pone.0333309.t001
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2.4  Methods

2.4.1  Global entropy method.  If we evaluate p variables in n regions over t years, we can collect data to get t cross-
sectional data tables Xt = (Xij)n×p, and introduce the global idea to arrange these t tables in chronological order from top 
to bottom, resulting in a global evaluation matrix of size nt× p, which is written as X = (X1,X2, · · ·,Xt)nt×p.

Because the data in the global evaluation matrix X  are quite different in terms of scale, unit of measurement, order of 
magnitude, etc., they cannot be synthesized and calculated directly, and they must be normalized. The standardization 
process is defined as follows:

	
Negative indicators : x′ ij =

Xij –minXij
maxXij –minXij

× 0.99+ 0.01
	 (1)

	
Positive indicators : x′ ij =

maxXij – Xij
maxXij –minXij

× 0.99+ 0.01
	 (2)

	
fij(t) =

x′ ij∑nt
j=1 x

′
ij

(1 ≤ i ≤ nt, 1 ≤ j ≤ p)
	 (3)

	
ej = –

1
lnnt

∑nt

i=1
fij × ln fij(1 ≤ i ≤ nt, 1 ≤ j ≤ p)

	 (4)

	 gj = 1 – ej	 (5)

	
wj =

gj∑p
j=1 gj	 (6)

	 Z =
∑p

j=1 wjx′ ij	 (7)

Table 2.  Evaluation indicators system of ER.

System Dimension Indicator Type Weight

Economic resilience Resistance and resilience Per capita GDP (yuan) + 0.068

Per capita disposable income of urban residents (yuan) + 0.061

Urban registered unemployment rate (%) – 0.012

Unemployment insurance participation rate (%) + 0.097

Adaptation and adjustment Local general budget expenditure per capita (yuan/person) + 0.088

Employees over total regional population (%) + 0.031

Total general budget fiscal expenditures over total revenues (%) + 0.115

Urbanization rate (%) + 0.018

Innovation and 
transformation

Tertiary sector as a share of GDP (%) + 0.036

Science and technology expenditures as a share of GDP (%) + 0.082

Level of foreign direct investment (%) + 0.110

Number of patents granted for inventions (piece) + 0.212

Financial expenditure on education (billions) + 0.069

https://doi.org/10.1371/journal.pone.0333309.t002

https://doi.org/10.1371/journal.pone.0333309.t002
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where, x′ ij is the standardized indicator value, Xij denotes the original value of the j  indicator in the i  region. fij(t) denotes 
the proportion of region i  for indicator j . ej  denotes the information entropy of indicator j . gj  denotes the coefficient of 
variation for indicator j . wj denotes the weight of indicator j . Z  denotes the comprehensive index.

2.4.2  Coupling coordination degree model.  The CCD measures how well these systems interact and coordinate 
with each other [42].

Equation for the coupling of the three systems:

	

CD = 3

√√√√U1 × U2 × U3

(U1+U2+U3
3 )

3

	 (8)

where, U  denotes the comprehensive score of the i  subsystem, respectively. CD is the degree of three-system coupling.
The CCD model of the three systems is constructed as follows:

	 CCD =
√
CD× T 	 (9)

	 T = α1U1 + α2U2 + α3U3	 (10)

where, T  represents the total comprehensive index of the three systems, and α represents the weight  
assigned to each subsystem, reflecting the importance of the three systems, and equal importance is assumed in 
this paper, so the three coefficients are all set to 1/3. According to the previous research [42], CCD is categorized 
as follows.

2.4.3  Kernel density estimation.  The kernel density estimation (KDE) can examine the trend of spatiotemporal 
variation of the estimated samples by constructing the density function and based on the shape of the estimated 
distribution. The kernel density function is defined as follows:

	
f(x) =

1
Nh

∑N
i=1 K(

xi–x
h )

	 (11)

	
K(x) =

1√
2π

exp
(
–
x2

2

)

	 (12)

where, x  is a random variable, N  is the number of provinces, xi  denotes the i  province composite index, x  rep-
resents the average composite index value. K(x) denotes the KDE, h represents bandwidth, which is used to deter-
mine the accuracy in the KDE, in general, a smaller bandwidth value increases estimation accuracy but results in 
a less smooth curve.

2.4.4  Markov chain analysis.  Traditional Markov chain analysis. It analyzes the probability of a region’s three-system 
CCD transitioning to either a lower or higher level through the construction of a state transition matrix. The Markov chain 
is represented as a stochastic process({Xt, t ∈ T}), where T  represents different time periods, while the finite states refer 
to the number of possible states of the random variable. If the three-system CCD is divided into k  levels, a k× k  transition 
probability matrix is obtained. This matrix illustrates the dynamic evolution trend of the three-system CCD in China by 
analyzing state transition probabilities.

Spatial Markov chain analysis. To assess the impact of spatial factors on state transition probabilities, Whittaker and 
Thomason [43] constructed a spatial Markov chain. First, a spatial weight matrix is established. Then, the traditional k× k  
transition probability matrix is decomposed into k  conditional k× k  transition probability matrices, incorporating different 
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spatial lag types k . Under the condition k , the spatial transition probability from type i  to type j  at time t is analyzed. This 
approach reveals the effect of spatial factors on the transition trends of CCD.

2.4.5  Global spatial autocorrelation.  The level of CCD among DI, ER and CP may be spatially autocorrelated, and 
the global Moran’s I is measured with the following formula:

	
Moran′s I =

n
∑n

i=1

∑n
j=1 wij (xi – x) (xj – x)∑n

i=1

∑n
j=1 wij

∑n
i=1 (xi – x)

2

	 (13)

where, n is the sample size, xi and xj are the spatial unit observations of i  and j . x  denotes the mean of spatial obser-
vations. wij  denotes the domain relationship between spatial units i  and j , equal to 1 when i  and j  are adjacent, and 0 
otherwise.

2.4.6  Spatial measurement model.  To test the spatial dependence of CCD and to estimate the influencing factors, 
this paper employs the SDM model. The model is detailed below:

	 Yit = β0 + ρ
∑n

j=1 wij × Yjt + β1Xit + ρ1
∑n

j=1 wij × Xjt + µt + λi + εit	 (14)

where Yit  is the CCD of province i  in year t. ρ is the spatial autoregressive coefficient of CCD, and ρ1 captures the spa-
tial spillover effects of the explanatory variables. β0 is the constant term, and β1 is the coefficient of the local explanatory 
variables. Xit  and Xjt  denote the local and neighboring explanatory variables, respectively. wij  is the spatial weight matrix, 
specified as a 0–1 matrix where wij = 1 if provinces i  and j  share a border, and 0 otherwise. µt and λi  represent time and 
individual fixed effects, respectively. εit  is the random error term.

2.5  Data resources

The observation sample in this research consists of 31 provincial-level administrative units. Following Nie et al. [44] 
classifications, it is categorized into three regions: eastern, central and western. Considering the data availability and 
timeliness, the study period spans from 2013 to 2021. The study data are from China Statistical Yearbook, China Science 
and Technology Statistics Yearbook, China Information Industry Yearbook and EDGAR, a Global Database of Atmospheric 
Emissions.

3  Results

3.1  The comprehensive evaluation index of three systems

3.1.1  From the national perspective.  Fig 2a illustrates the trend in the average values of DI, ER and CP. Overall, the 
national DI composite index demonstrates a dynamic upward trend, rising from 0.118 in 2013 to 0.201 in 2021, showing 
a yearly average rise of 6.88%. The comprehensive index of ER increased from 0.150 to 0.238 during the same period, 
growing at an average rate of 5.92% per year. Similarly, the national CP rose steadily from 0.123 to 0.220, corresponding 
to an average annual increase of 7.55%. This suggests that the ER level exceeds that of DI and CP. However, the growth 
rates of DI and CP are higher than of ER.

3.1.2  From the regional perspective.  The comprehensive indices of DI, ER and CP across regions are illustrated 
in Fig 2b. Regionally, the eastern area consistently leads in DI, significantly exceeding the national average, while the 
central and western regions remain below it. In 2013, the DI index exhibited a clear regional hierarchy, with the eastern 
region (0.178) ranking highest, followed by the national average (0.116), the western region (0.074), and the central region 
(0.010). By 2021, while the overall ranking remained consistent, all regions experienced notable improvements. The 
eastern region maintained a significant lead (0.314), while both the central (0.162) and western (0.102) regions showed 
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marked progress, although they continued to lag behind the national average (0.160). This reflects the pronounced 
regional disparities in the level of DI.

ER levels have shown a steady upward trend nationwide, with the eastern region maintaining its leading position 
and accelerating in recent years. Conversely, the central and western regions have remained stable and below the 
national average. In 2013, ER rankings were as follows: eastern (0.206), national average (0.150), western (0.120), 
and central (0.118). By 2021, the eastern region still ranked highest (0.324), while the central region (0.161) slightly 
surpassed the western region (0.157); the national average rose to 0.238. Prior to 2015, the western region con-
sistently outperformed the central region in ER, but this trend reversed thereafter, reflecting faster progress in the 
central region.

CP levels also exhibited significant regional variation. The eastern region maintained an advantage over the 
national average throughout the period, while the central and western regions lagged behind. In 2013, CP val-
ues ranked as follows: eastern (0.190), national average (0.123), central (0.090), and western (0.081). By 2021, 
although the eastern region remained dominant (0.319), the western region (0.177) overtook the central region 
(0.149); the national average rose to 0.219. Notably, before 2017, the central region consistently recorded higher 
CP levels than the western region, a trend that was reversed in subsequent years, indicating relatively accelerated 
growth in the west.

3.2  The spatiotemporal evolution of CCD

3.2.1  The temporal evolution of CCD.  Using the comprehensive indices of DI, ER and CP, and applying equations 
(8)–(10), the average coupling degree and CCD for the three systems were calculated. As shown in Fig 3a and (b), 
the average national levels of coupling degree and CCD showed varying degrees of fluctuation and increase. The 
coupling degree increased from 0.926 to 0.941, reflecting a yearly average rise of 0.20%, while the CCD climbed from 
0.331 to 0.430, showing a yearly average rise of 3.32%. The higher coupling degree value indicates a strong degree of 
interdependence and mutual influence among the subsystems. Although the CCD value is lower, its development trend is 
favorable. According to the CCD grade judgment criteria in Table 3, the state was generally out of balance from 2013 to 
2018, transitioning to a barely coupling coordination state from 2019 to 2021. This indicates that the CCD among the three 

Fig 2.  Comprehensive index of the DI, ER and CP. (a) Mean levels of DI, ER and CP. (b) Regional composite index of DI, ER and CP.

https://doi.org/10.1371/journal.pone.0333309.g002

https://doi.org/10.1371/journal.pone.0333309.g002
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systems is gradually shifting from a disordered state to a coordinated state. With the gradual increase in the levels of DI, 
ER and CP, the three systems are expected to achieve higher levels of coordination in the coming years.

Fig 3c shows the trend in the time-series distribution of CCD in the three systems over the study period. The dis-
tribution curve generally shifts upwards year by year, indicating continuous improvement in the CCD and a notice-
able increase in provinces achieving coordinated. Regarding the distribution pattern, the main peak of the curve 
exhibits a broadening trend in width, accompanied by a diminishing trend in height. In 2013, the majority of national 
CCD levels clustered around 0.3, whereas by 2021, most of them are concentrated around 0.3–0.5. This shift 
indicates that the CCD levels are gradually becoming discrete, and the spatial differences are more obvious, but 
the CCD levels of the provinces are on the rise. From the perspective of distribution extensibility, the upward shift 
feature is evident, with certain provinces and regions exhibiting CCD values that deviate from the national average. 
For example, Beijing and Guangdong had CCD values exceeding 0.7 in 2021, which is markedly higher than the 
national average level of 0.43.

Fig 3.  Temporal evolution of CCD. (a) National average of coupling degree. (b) National average of CCD. (c) Time-series distribution of CCD. (d) 
Kernel density results for CCD among eastern (d1), central (d2), and western regions (d3).

https://doi.org/10.1371/journal.pone.0333309.g003

Table 3.  Evaluation standards of the CCD.

Coupling coordination Type of coordination Category of levels

0.000 ≤ CCD < 0.200 Extremely out of balance Ⅰ
0.201 ≤ CCD < 0.400 General out of balance Ⅱ
0.401 ≤ CCD < 0.500 Barely coupling coordination Ⅲ
0.501 ≤ CCD < 0.600 Primary coupling coordination Ⅳ
0.601 ≤ CCD < 0.800 Good coupling coordination Ⅴ
0.801 ≤ CCD < 1.000 High-quality coupling coordination Ⅵ

https://doi.org/10.1371/journal.pone.0333309.t003

https://doi.org/10.1371/journal.pone.0333309.g003
https://doi.org/10.1371/journal.pone.0333309.t003
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This research utilizes the KDE method to analyze the temporal evolution of CCD among DI, ER and CP, illustrated in 
Fig 3d. The evolution of CCD distribution for these three systems in the eastern region reveals the following: the KDE 
curve exhibits a rightward shift in its center, signifying a steady enhancement in the CCD for the eastern region. Regard-
ing the distribution pattern, the peak height of the KDE curve displays a downward trend, while the peak’s width expands, 
indicating an increasing dispersion in CCD across the eastern region. Concerning the distribution ductility, the KDE curve 
does not exhibit an obvious tail dragging phenomenon, which demonstrates that the CCD among provinces in the east-
ern regions does not show extremely high or low values. From the perspective of polarization trends, the KDE curve has 
gradually evolved from a single peak to double-peaked pattern, indicating a significant increase in polarization trends in 
the eastern regions. This points to a clear gradient effect and widening differences in intra-regional development.

In the central region, the KDE curve exhibits a rightward shift in its center, reflecting continuous improvement in 
CCD levels. Regarding the distribution pattern, the KDE curve’s peak has gone through a change from “sharp and 
narrow” to “flat and broad”, signifying that the CCD distribution in the central region has shifted from high concentra-
tion to greater decentralization. Concerning the distribution ductility, the KDE curve does not exhibit an obvious tail 
dragging phenomenon, which demonstrates that CCD differences among central provinces are not expanding. From 
a polarization perspective, the KDE curve has transitioned from a single peak to a pattern with both a primary and 
secondary peak, reflecting an increase in the number of peaks. This suggests that the CCD within the central regions 
is exhibiting a trend of polarization.

The CCD distribution in the western region has gradually shifted rightward on the KDE curve, reflecting steady improve-
ment in CCD levels over time. In terms of distribution, the peak height of the KDE curve shows a slight decline, suggesting 
an emerging—but still limited—increase in internal disparity. However, the KDE curve remains single-peaked, and no 
significant long-tail pattern is observed, implying that most provinces are still clustered around similar CCD levels. From 
a polarization perspective, this reflects a unipolar distribution, with relatively moderate internal variation and a tendency 
toward spatial convergence. These provinces are transitioning from a state of general out of balance to barely coupling 
coordination.

3.2.2  The spatial distribution of CCD.  This study visualizes the regional distribution of CCD for 2013, 2017, 
and 2021, as illustrated in Fig 4a. In 2013, high-value CCD areas were primarily in the eastern region, like Beijing, 
Guangdong, and other provinces, with Beijing being the most prominent. In contrast, low CCD values were primarily found 
in the west, including Ningxia, Gansu, and Guizhou. By 2017, provinces like Beijing, Guangdong, and Jiangsu in the east, 
as well as Hunan and Sichuan in the central and western areas, entered the high-value area for the first time. In 2021, the 
CCD continued the development trend of 2017, as high-value clusters persisted in the east and low-value areas remained 
primarily in the west.

As shown in Fig 4b, in 2013, the general out of balance category predominated, accounting for 81%, while provinces at 
the barely and primary coupling coordination levels constituted only 13% and 6%, respectively. Among these, the prov-
inces at the barely coupling coordination level included Tianjin, Jiangsu, Zhejiang, and Shandong, while the only provinces 
at the primary coupling coordination level were Beijing and Guangdong. In 2017, the CCD level increased slightly, with the 
proportion of provinces at the coordinated level rising to 42%. Additionally, Anhui, Henan, Hunan, Chongqing, and Sichuan 
progressed from the general out-of-balance category to the barely coupling coordination level. In 2021, the CCD level 
rose again, with the proportion of provinces at the coordinated level increasing to 61%. Beijing, Jiangsu, Zhejiang, and 
Guangdong achieved the good coupling coordination level, while the western provinces of Qinghai, Ningxia, and Gansu 
remained at lower levels.

Trend-surface analysis was conducted using ArcGIS 10.8 software. Three-dimensional spatial perspective maps were 
created based on the CCD for 2013, 2017, and 2021, to reveal the overall spatial pattern and evolutionary trend of the 
CCD. As shown in Fig 4c, the X, Y, and Z-axis denote the west-to-east direction, the south-to-north direction, and the 
CCD, respectively. Throughout the study period, the CCD spatial trend generally followed a “high in the east and south, 
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low in the west and north” pattern. The east-west trend is characterized by a “gradual increase from west to east”, with a 
gradual flattening of the east-west curvature of the surface. This indicates that the CCD in the eastern regions remains rel-
atively high, while the disparity between the eastern and western areas is gradually narrowing. The CCD trend distribution 
along the north-south axis forms an inverted U-shape, characterized by a “raised middle section and slightly lower ends”, 
with the northern slope being steeper than that of the south. This indicates that the CCD in the central region exceeds that 
of both the southern and northern regions, with the southern region outperforming the northern region.

3.2.3  The spatial agglomeration of CCD.  To measure the spatial dependence of CCD in China, the global Moran’s 
I is utilized. In Fig 5a, all CCD values pass the significance test and exhibit positive spatial autocorrelation. The CCD 
displays spatial clustering characteristics, indicating that the CCD of each province is influenced by neighboring provinces. 
Additionally, Moran’s I exhibits a fluctuating increase, suggesting an increasing trend in the spatial agglomeration of CCD 
values.

The global Moran’s I captures the general spatial clustering patterns of the CCD among DI, ER and CP. However, it 
struggles to indicate specific high-value (hotspot) or low-value (coldspot) clustering areas. To better analyze the evolution 
of local hotspots and coldspots, this study employs the natural breaks classification method in ArcGIS 10.8 software to 
categorize the CCD into five groups: hotspot, sub-hotspot, insignificant, sub-coldspot, and coldspot areas. The Getis-Ord 
Gi* statistic for CCD was calculated for the years 2013, 2017, and 2021, as shown in Fig 5b.

From 2013 to 2021, the spatial pattern of hotspots and coldspots in the CCD of DI, ER and CP in China exhibited 
significant regional disparities and dynamic shifts. Eastern regions including Jiangsu, Shanghai, Zhejiang, and Anhui 
consistently remained in the hotspot category, reflecting their advantages in digital infrastructure development, economic 
resilience, and industrial structure optimization. Since 2017, central provinces including Henan, Hubei, and Jiangxi have 
gradually risen into the hotspot category, demonstrating the effectiveness of national initiatives aimed at boosting Central 
China’s development and fostering regional balance. These regions have bolstered their digital infrastructure investment 
and industrial upgrading, thereby enhancing ER and significantly improving their CCD. However, western and some north-
eastern provinces, including Xinjiang, Gansu, Qinghai, and Jilin, remain coldspot areas. The primary reason is the imbal-
anced development between high-carbon-dependent industries and the digital economy, which has caused their CCD to 

Fig 4.  Spatial distribution of CCD. (a) Regional distribution of CCD in 2013 (a1), 2017 (a2), and 2021 (a3). (b) Proportional distribution of CCD catego-
ries in 2013 (b1), 2017 (b2), and 2021 (b3). (c) Trend surface analysis in 2013 (c1), 2017 (c2), and 2021 (c3).

https://doi.org/10.1371/journal.pone.0333309.g004

https://doi.org/10.1371/journal.pone.0333309.g004
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consistently remain below the national average. Additionally, some developed provinces such as Beijing and Guangdong, 
despite exhibiting high CCD values, are classified as insignificant areas because of the insufficient agglomeration effect 
in neighboring regions. Overall, the spatial pattern of CCD reveals high levels in eastern regions, modest progress in 
the central areas, and comparatively lower performance in the west. Looking ahead, it will be essential to further pro-
mote regional synergistic development and strengthen policy support to narrow regional disparities and enhance overall 
coordination.

3.2.4  Dynamics evolution trend.  In order to further analyze the probability of shifting the CCD of DI, ER and CP 
over time in China, this study reclassifies the CCD grades from the previous paper into four types based on their levels: 
low coupling coordination (Ⅰ), medium-low coupling coordination (Ⅱ), medium-high coupling coordination (Ⅲ), and high 
coupling coordination (Ⅳ).

In the traditional Markov transition probability matrix (MTPX), the main diagonal elements represent the probabil-
ity of a province’s CCD remaining stable, reflecting the consistency in its CCD evolution. The off-diagonal elements 
indicate the probability of transitions between different types of CCD within the province. From this matrix, we can 
derive the evolutionary characteristics of the CCD without considering spatial factors, as illustrated in  
Fig 6. The findings reveal the following: (1) With the increase in time span, the probability values along the main 
diagonal decrease progressively for all provinces, except those with high CCD. For instance, the values drop from 
P

11
 = 79.7%, P

22
 = 59.4%, and P

33
 = 70.3% at T = 1 to P

11
 = 56.3%, P

22
 = 9.4%, and P

33
 = 9.4% at T = 5, indicating signif-

icant fluctuations in the CCD of the three systems across provinces. (2) Upward transitions in CCD occur more fre-
quently than downward shifts, indicating a stronger upward inertia. This indicates a long-term growth trend in CCD, 
aligning with the findings from the earlier time series analysis. Additionally, most transitions in CCD occur between 
adjacent levels, reflecting a relatively stable and continuous evolutionary process, making leapfrog development 
challenging to achieve quickly. (3) There is a potential convergence towards higher levels of coupling coordination. 
Provinces with high CCD maintain a stability probability of over 90% during periods 1–5, indicating that these prov-
inces exhibit stability and self-reinforcement.

The traditional MTPX overlooks the fact that the regional CCD types can be influenced by the transitions in neighboring 
provinces. The coordinated development of DI, ER and CP is not spatially independent. Therefore, incorporating spatial 
factors is essential to explore the evolutionary traits of the CCD. This section employs the spatial Markov chain method to 

Fig 5.  Spatial agglomeration of CCD. (a) Global Moran’s I results. (b) Distribution of cold and hot spots of CCD in 2013 (b1), 2017 (b2), and 2021(b3).

https://doi.org/10.1371/journal.pone.0333309.g005

https://doi.org/10.1371/journal.pone.0333309.g005
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further reveal the spatial transfer patterns of CCD and to assess whether the CCD transitions in neighboring regions affect 
the CCD transitions in the focal region.

Table 4 illustrates the results of spatial factors on the dynamic evolution of CCD distribution. The findings indicate that: 
(1) The transition of CCD is not an isolated process; the CCD of neighboring regions impacts the transition probability of 
the local CCD state. Compared to the traditional MTPX, the spatial MTPX is altered when accounting for the influence 
of neighboring levels. Specifically, without considering the geographical spatial pattern, the probability of maintaining a 
primary coordination state in the traditional MTPX is 59.4% at T = 1. However, when considering the influence of neighbor-
ing development levels, the probabilities of remaining in the primary coordination state are 75%, 50%, 56%, and 33.3%, 
respectively, highlighting the significant impact of neighboring regions on the state transitions of the local area. Thus, spa-
tial influences must be incorporated when analyzing the dynamics of CCD transitions. (2) The coordinated development 
level of DI, ER and CP exhibits a “spatial spillover” effect, where the CCD of a region is influenced by neighboring regions. 
When adjacent to regions with a high CCD, the probability of upward transitions increases, indicating that provinces 
with high CCD play a leading role in influencing surrounding provinces. For instance, at T = 1, as the CCD of neighbor-
ing regions improves, the probability of regions with a medium-low level transitioning upwards increases to 20%, 43.8%, 
44%, and 66.7%, respectively, showing an upward trend. Conversely, provinces with low CCD tend to impede progress in 

Fig 6.  Traditional MTPX for the CCD. (a) Traditional Markov chain visualization results. (b) Traditional Markov chain results.

https://doi.org/10.1371/journal.pone.0333309.g006

https://doi.org/10.1371/journal.pone.0333309.g006
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surrounding regions. Overall, the probability of upward transitions in CCD for provinces is greater than that of downward 
transitions. (3) Regions with a high CCD demonstrate high transition stability and are less likely to be influenced by the 
CCD levels of surrounding provinces, whereas regions with low CCD have weaker stability and are more susceptible to 
the CCD levels of neighboring provinces.

3.3  Influencing factor identification

3.3.1  Influencing factor selection.  Referring to existing studies, this paper selects strategic emerging industries 
[45], population density [46], human capital [47], environmental regulation intensity [48], and financial development [49] 
as the influencing factors for CCD. Among them, strategic emerging industries (SEI) are measured by the logarithm of 
business income of high-tech industries. Population density (PD) is defined as the number of individuals per square 
kilometer. Human capital (EDU) is represented by the ratio of undergraduate students in higher education to the number 
of permanent residents at year-end. Environmental regulation intensity (ERI) is measured by the ratio of environmental 
protection expenditures to GDP. Financial development (FD) is defined as the ratio of loan balances of all financial 
institutions to GDP.

3.3.2  Spatial model selection.  Before performing spatial econometric analyses, necessary for model specification. 
First, the LM and Robust LM tests were statistically significance, indicating the SDM is most appropriate. Second, the LR 
and Wald tests rejected the null hypothesis, confirming that the SDM cannot be simplified to either the SLM or SEM. Third, 
the Hausman and LR tests support the use of the SDM with two-way fixed effects. The results are in Table 5.

3.3.3  Benchmark regression results.  Table 6 shows a significantly positive spatial autoregressive coefficient, 
indicating spatial positive spillover effects in the CCD among DI, ER and CP of China. This suggests that regional CCD is 
shaped by both internal dynamics and external spatial influences.

(1)	SEI positively affects CCD, indicating that a larger SEI scale facilitates greater synergy among the three sys-
tems. SEI, driven by new-generation information technologies, continuously foster innovation networks and 

Table 4.  Spatial MTPX for the CCD.

Type of lag T = 1 T = 5

Ⅰ Ⅱ Ⅲ Ⅳ Ⅰ Ⅱ Ⅲ Ⅳ
Low Ⅰ 0.821 0.179 0.000 0.000 0.722 0.111 0.167 0.000

Ⅱ 0.050 0.750 0.200 0.000 0.000 0.222 0.667 0.111

Ⅲ 0.000 0.000 0.400 0.600 0.000 0.000 0.400 0.600

Ⅳ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Medium-low Ⅰ 1.000 0.000 0.000 0.000 0.714 0.286 0.000 0.000

Ⅱ 0.063 0.500 0.438 0.000 0.000 0.100 0.400 0.500

Ⅲ 0.000 0.045 0.864 0.091 0.000 0.182 0.000 0.818

Ⅳ 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000

Medium-high Ⅰ 0.333 0.667 0.000 0.000 0.000 0.000 1.000 0.000

Ⅱ 0.000 0.560 0.440 0.000 0.000 0.000 0.545 0.455

Ⅲ 0.000 0.000 0.583 0.417 0.000 0.000 0.167 0.833

Ⅳ 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000

High Ⅰ 0.429 0.572 0.000 0.000 0.000 0.500 0.500 0.000

Ⅱ 0.000 0.333 0.667 0.000 0.000 0.000 0.000 1.000

Ⅲ 0.000 0.000 0.680 0.320 0.000 0.000 0.000 1.000

Ⅳ 0.000 0.000 0.048 0.952 0.000 0.000 0.000 1.000

https://doi.org/10.1371/journal.pone.0333309.t004

https://doi.org/10.1371/journal.pone.0333309.t004
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technological advancements [50], which provide essential inputs for the expansion of DI and enhancement of 
ER [51]. As DI expands, new technologies like 5G and AI optimize energy consumption structures [52], reduce 
energy consumption in enterprise production processes, and positively impact environmental performance [53]. 
Therefore, SEI elevates DI and ER levels, supports the advancement of a low-carbon economy, and promotes 
the CCD. Furthermore, the spatial lag coefficient of SEI is significantly positive, suggesting that SEI expansion 
in neighboring regions positively affects local CCD. The spatial agglomeration of SEI not only promotes inter-
regional technology cooperation and transfer [54], but also fosters the creation and wide dissemination of new 
knowledge and technology [55].

(2)	 PD positively affects CCD, indicating that higher PD contributes to the coupling coordination among DI, ER and CP. In 
areas with high PD, increased resident consumption stimulates the platform economy, resulting in a continuous rise in 
demand for DI. Moreover, densely populated cities tend to foster agglomeration and scale effects [56]. This facilitates 
the effective allocation and utilization of energy, reduces the marginal cost of emission reduction, while enhancing CP. 
Consequently, the expansion of PD accelerates the development of DI and CP, narrows the gap with the ER system, 
and promotes greater coordination among the three systems. However, the spatial lag term for PD is significantly 

Table 5.  Test results related to model selection.

Test Statistic Test Statistic

LM – Error 22.416*** Wald – SDM/SEM 30.67***

LM – Lag 22.282*** Wald – SDM/SAR 40.97***

Robust LM – Error 2.904* LR – both/ind 48.20***

Robust LM – Lag 2.771* LR – both/time 887.24***

LR – SDM/SEM 29.56*** Hausman 192.19***

LR – SDM/SAR 37.67***

Notes: ***p < 0.01, *p < 0.1.

https://doi.org/10.1371/journal.pone.0333309.t005

Table 6.  Benchmark regression of SDM.

Variable Coefficient Variable Coefficient

SEI 0.0090***

(0.0031)
W*SEI 0.0269***

(0.0068)

PD 0.0014***

(0.0001)
W*PD −0.0008***

(0.0002)

EDU 1.7383**

(0.7669)
W*EDU −2.2447

(1.6014)

ERI 0.7401**

(0.3338)
W*ERI 1.8999***

(0.7099)

FD −0.0002**

(0.0001)
W*FD −0.0001

(0.0002)

rho 0.2873***

(0.0775)
Log-likelihood 827.0145

sigma2_e 0.0001***

(0.0000)
R2 0.6942

Notes: ***p < 0.01, **p < 0.05; standard errors are reported in parentheses.

https://doi.org/10.1371/journal.pone.0333309.t006

https://doi.org/10.1371/journal.pone.0333309.t005
https://doi.org/10.1371/journal.pone.0333309.t006
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negative. This suggests that higher PD in the neighboring areas has an inhibitory effect on the local CCD. This may 
be due to the fact that PD is often linked to the degree of economic development, with more economically developed 
regions promoting a large inflow of people. The concentration of population in neighboring areas can lead to a low 
concentration of local industries, inefficient resource utilization, and shortages or underutilization of infrastructure, 
which is detrimental to the CCD locally.

(3)	 EDU positively impacts the CCD of DI, ER and CP, driving CCD improvement. The enhancement of EDU brings 
high-quality and innovative talent to DI, accelerating the progress of digital industrialization and industrial digitization, 
which provides a material basis for coping with unexpected crises. Additionally, the improvement of EDU contributes 
to raising individual environmental awareness. Broad-based support for green technology innovation and deployment 
facilitates clean energy substitution and environmental improvement. Although the spatial lag of EDU is negative, it 
does not reach a significant level. This may be because talent is the foremost resource, and the competition for talent 
is intensifying across regions. Regions with high EDU exhibit a “siphoning effect”, hindering the coordination of the 
three couplings in neighboring areas.

(4)	 ERI positively influences CCD, indicating that greater ERI favors the coordinated development of the three systems. 
Porter’s hypothesis [57] suggests that appropriate ERI compels enterprises to innovate in technology, promoting 
industrial restructuring [58]. On one side, this upgrading leads to a diversified industry base, which enhances the 
ability to cope with various risks by diversifying the demand for inputs and outputs, thereby improving ER [59]. On the 
other side, it accelerates digital transformation and facilitates the growth of DI such as smart transport, smart energy 
and smart cities. High-intensity environmental regulation enhances the developmental convergence of the three sys-
tems. Meanwhile, the markedly positive spatial lag effect of ERI indicates that the ERI in neighboring regions favorably 
influences local CCD development. This may be due to policy learning, imitation and mutual competition in environ-
mental regulation between regions. Environmental regulation in one region influences the policies of neighboring 
regions, contributing to the improvement of CCD in those areas [60].

(5)	 FD negatively affects CCD, indicating that elevated FD is detrimental to the harmonized progress of the three sys-
tems. One possible reason is that financial institutions typically prefer traditional projects with low risk and high returns 
[61], whereas digital infrastructure and carbon productivity enhancement projects usually have high initial costs and 
long payback periods. Such investment preferences can constrain the financial support to emerging technologies and 
low-carbon economies, thus hindering the development of DI and the improvement of CP, which in turn affects ER. 
The spatial lag coefficient for FD is negative but not significant. This may be because the capital and talent essential 
for FD are highly mobile. Financial competition is prone to the “siphon effect”, where the increase in FD in one region 
hinders the coupling and coordination in neighboring regions.

3.3.4  Direct and indirect effects.  To characterize the extent and orientation of the spatial spillovers of influencing 
factors, this research evaluates their direct and indirect effects [62]. Table 7 reports the results. The direct effect measures 
how a local indicator variable influences local CCD, while the indirect effect captures how changes in an indicator variable 
in neighboring regions affect local CCD. The total effect combines both these influences.

The direct and indirect effects of SEI and ERI are notably positive, showing that SEI and ERI development promotes 
the CCD both locally and in neighboring regions. The direct impact of PD is markedly positive, while the indirect impact is 
markedly negative. However, the total effect remains positive, suggesting that the beneficial influence of PD on the CCD 
primarily originates from the local area. The direct impact of EDU is significantly positive, while the indirect impact is insig-
nificant, suggesting that improvements in EDU promote CCD development locally, though the coupling effect on neighbor-
ing areas is not evident. The direct effect of FD is significantly negative, while its indirect and total effects are insignificant, 
implying that the current level of FD does not improve the CCD.
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4  Discussion

4.1  Subsystem analysis

The comprehensive indices of the three subsystems showed an overall increasing trend, as illustrated in Fig 2a and b. Bai 
et al. [63] highlighted that CP has exhibited a year-on-year upward trajectory, primarily driven by technological progress. 
Furthermore, DI development and environmental regulation have been identified as important factors contributing to CP 
enhancement [37,64]. The sustained rise in DI levels reflects the growing demand induced by advances in information 
technology and the internet [65]. The rising trend of ER is consistent with the findings of Song et al. [66]. Policy initiatives, 
such as the New Energy Demonstration City Policy, have promoted regional ER by alleviating financing constraints and 
optimizing capital structures [67]. However, significant regional disparities persist in the advancement of DI, ER and CP. 
In particular, DI in the eastern region advanced earlier and more rapidly [68], fueled by intensive investments in frontier 
technologies including 5G, the industrial internet, and AI. The agglomeration of capital and technology further reinforced 
the expansion of DI, which in turn accelerated improvements in ER and CP. In contrast, the western region continues to 
lag behind in both ER and CP, a finding that aligns with previous studies [69,70]. This disparity is primarily attributable to 
variations in industrial structure. The eastern and central areas are predominantly characterized by service industries and 
technology-intensive manufacturing. Industrial diversification not only enhances economic self-sufficiency and resilience 
against external shocks [71], but also creates favorable conditions for stringent environmental regulations, thereby facili-
tating cleaner energy transitions and improving CP [72,73]. Similarly, Li and Wang [70] observed that CP in eastern prov-
inces markedly exceeds that of the central and western areas. They further emphasized that a higher share of traditional 
industrial activities impedes improvements in CP, whereas technological innovation combined with managerial efficiency 
fosters its growth.

4.2  Coupling coordination analysis

Fig 3a shows a high level of CD, indicating strong interlinkages among the three systems. Fig 3b illustrates that the CCD 
exhibits an overall rising trajectory with fluctuations, with the differences among the three systems gradually narrowing 
and converging in terms of state and development speed. The coupling status has improved from “general out of bal-
ance” to “barely coupling coordination”. At the subsystem level, although ER maintains the highest overall level, CP grows 
fastest, followed by DI. This contrasts with Fan and Li [74], who found ecological protection leading in development level 
and the digital economy growing most rapidly. In this study, the rapid catch-up momentum of CP and DI narrowed their 
gap with ER, thereby driving improvements in CCD. In particular, 2015 marked the sharpest increase in CCD, likely due 
to simultaneous advancements in national digital and environmental policies. On the one hand, Zhang et al. [75] pointed 
out that during this period, China proposed and promoted the “Internet Plus” action plan, accelerating the convergence of 

Table 7.  Direct and indirect effects.

Variable Total effect Direct effect Indirect effect

SEI 0.0508***

(0.0086)
0.0112***

(0.0032)
0.0396***

(0.0076)

PD 0.0008***

(0.0002)
0.0013***

(0.0001)
−0.0005***

(0.0002)

EDU −1.0610
(1.7235)

1.6281**

(0.7667)
−2.6891
(1.9129)

ERI 3.8137***

(1.1397)
0.9268**

(0.3857)
2.8869***

(0.9206)

FD −0.0005
(0.0004)

−0.0003**

(0.0001)
−0.0002
(0.0003)

https://doi.org/10.1371/journal.pone.0333309.t007

https://doi.org/10.1371/journal.pone.0333309.t007
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digital technologies and traditional industries, thereby promoting DI. The development of DI contributes to the reduction of 
carbon emission intensity. Relevant studies have confirmed that a 1% increase in DI leads to a 0.019% reduction in car-
bon intensity [8]. On the other hand, Zhang and Cao [76] describe the amended Environmental Protection Law of 2015 as 
the most stringent in China’s history, and Yu and Morotomi [77] confirm that its implementation significantly reduced urban 
pollution through enhanced enforcement. Although the growth rate of ER slowed after 2019, it still maintained the highest 
level among the subsystems. This stagnation may be attributed to the disruptions caused by COVID-19, during which DI 
played a key role in mitigating its adverse impact on ER, as evidenced by Wen et al. [78] and Zou [79]. A 1% increase in 
DI results in a 0.0083% improvement in ER by enabling better coordination between the digital and real economies during 
the pandemic [78]. According to coupling coordination theory, the synergistic development of DI, ER, and CP strengthens 
inter-system interactions, thereby enhancing overall system coordination. Therefore, future efforts should focus on inte-
grating digital and low-carbon transitions while reinforcing ER, in order to promote higher CCD and advance sustainable 
urban development.

Fig 4a–c illustrate the CCD results for each province, revealing a general upward trajectory across most provinces 
and a clear spatial gradient—high in the east and south, and low in the west and north. Only four eastern provinces have 
reached an intermediate level of coordination. This aligns with existing research regarding the connection between DI and 
ecological environment [11,47]. The reason for this disparity is the imbalance in digitalization [80] and ecological protection 
[81] in different provinces of China. The eastern region benefits from both its strategic location and abundant resources, 
and it primarily focuses on industries that are high value-added, environmentally friendly, and technology-driven. When the 
government proposes to build DI, it can respond quickly with capital, talent, and technology, achieving positive interaction 
among the three systems more rapidly. Most provinces in the central region have shifted from dysfunctional to coordi-
nated, with improvements in the coupling of DI, ER and CP. Notably, digitalization is essential to enhancing the CCD. By 
fostering green innovation and promoting environmental investment, digitalization effectively drives corporate emission 
reductions and improvements in environmental performance. Particularly under the influence of environmentally conscious 
leadership, firms are more inclined to integrate environmental protection measures into their digitalization processes [82]. 
This mechanism is most pronounced in the eastern and central regions, where stringent environmental regulations and 
green innovation have significantly enhanced CP, thereby further promoting the CCD. However, in western areas, due 
to lagging infrastructure development and insufficient levels of digitalization, their role in enhancing the CCD of the three 
systems is significantly constrained. Currently, most provinces in western China remain in a state of maladjusted devel-
opment. This observation is consistent with prior studies on the interactions among social, economic, and environmental 
systems [83,84]. The western region faces practical challenges, including sparse populations, lower levels of economic 
development, and an insufficient scale of SEI [85]. These factors limit the region’s capacity to accommodate the devel-
opment of DI. The lag in DI construction further hinders the synergistic enhancement of ER and CP, making it difficult to 
establish a virtuous cycle of interaction among the three systems. Therefore, reducing regional disparities in low-carbon 
development and addressing the digital divide are the urgent priorities for promoting balanced national development.

5  Conclusions

This paper uses a sample of 31 provinces in China to establish an index system for DI, ER and CP. This study applies the 
CCD model, spatial autocorrelation, trend-surface analysis, and SDM to examine the spatiotemporal evolution of CCD 
and its driving factors. The findings indicate that:

First, the levels of DI, ER and CP all increased steadily over the period from 2013 to 2021. During this period, the 
average annual growth rates of DI, ER, and CP were 6.88%, 5.92%, and 7.55%, respectively. The eastern region main-
tained a consistent lead, with the annualized growth rates of DI, ER, and CP were 7.35%, 5.79%, and 6.67%, respectively. 
Although the central and western regions experienced improvement, they remained below national averages. Notably, the 
western region overtook the central region in CP after 2017, while its earlier advantage in ER was reversed after 2015.
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Second, the average CCD exhibited a fluctuating yet overall upward trend over time, rising from 0.331 in 2013 to 0.430 
in 2021, representing a growth of 29.91%. Except for Liaoning Province, where the CCD declined slightly by 0.59%, all 
other provinces showed steady annual increases. Spatially, CCD demonstrated a distinct pattern, described as “high in 
the east and south, low in the west and north”, with Beijing, Guangdong, and Jiangsu provinces achieving the highest 
CCD of 0.674, 0.635, and 0.546, respectively, while Ningxia, Gansu, and Qinghai provinces reported the lowest values 
of 0.252, 0.255, and 0.276. Overall, achieving a “cross-level transition” in CCD is challenging, and neighboring provinces 
exert a significant influence on the enhancement of local CCD.

Third, CCD exhibited significant positive spatial clustering characteristics. During the study period, the Global Moran’s I 
rose from 0.269 to 0.278, confirming positive spatial autocorrelation. Stable hotspots were consistently identified in Hubei, 
Anhui, Zhejiang, and Shanghai provinces, whereas stable coldspots were mainly concentrated in Gansu, Qinghai, and 
Sichuan. Overall, the spatial distribution of CCD followed a consistent pattern, being stronger in the east, weaker in the 
west, and showing gradual improvement in the central areas.

Fourth, a significant spatial correlation was observed among the CCD of DI, ER and CP. Spatial econometric analysis 
revealed that the strategic emerging industries and environmental regulation intensity both exerted positive spatial spill-
over effects (0.0269 and 1.8999). Population density exhibited a negative spatial spillover effect (−0.0008). Human capital 
positively affected local CCD but lacked significant spatial spillover effects, while financial development exhibited no signif-
icant spatial influence. These results underscore the critical roles of economic vitality and education in enhancing regional 
CCD performance.

6  Policy implications

Drawing upon the empirical results, the following policy implications are proposed to strengthen the CCD among DI, ER 
and CP:

First, given the steady improvements in DI, ER, and CP but persistent regional disparities, differentiated policy 
frameworks should be implemented to reinforce growth momentum. Eastern China should focus on integrating digital 
technologies with green manufacturing, energy, and infrastructure systems. In the central and western areas, govern-
ments should increase investment in broadband networks and smart infrastructure. Efforts should also accelerate the 
digital transformation of conventional sectors and incentivize the deployment of low-carbon technologies via subsidy 
schemes. In addition, initiatives are required to sustain the CP gains in the western areas, including the establishment 
of technology transfer centers, the creation of green finance platforms, and the construction of technology parks. 
These measures are critical for enhancing the spatial coordination of DI, ER, and CP and for fostering sustainable 
regional development.

Second, recognizing the significant heterogeneity in CCD across provinces and developmental stages, policymakers 
should prioritize region-specific development strategies tailored to local strengths and weaknesses. Efforts should focus 
on consolidating the eastern region’s advantages in DI, ER and CP. Concurrently, it is essential to enhance the develop-
ment capacity of the central and western provinces through strengthened institutional support, improved technological 
capabilities, and the creation of enabling environments for low-carbon and digital transitions. To promote spatially bal-
anced development, greater emphasis should be placed on facilitating the flow of capital, human resources, and technol-
ogy from economically advanced provinces to underdeveloped regions, thereby reinforcing the coordinated integration of 
DI, ER, and CP.

Third, national and provincial authorities should establish dynamic monitoring systems based on CCD to track regional devel-
opment in real time and inform policy decisions. Monitoring outcomes should be utilized to identify fluctuations in spatial relation-
ships and enable timely policy adjustments. In parallel, efforts should be directed toward fostering cross-regional collaborative 
innovation platforms to enhance spatial spillover effects. These may include joint research centers, talent mobility programs, 
and coordinated industrial parks connecting leading provinces such as Beijing, Guangdong, and Zhejiang with less-developed 
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regions like Gansu and Qinghai. Policy support should be provided through dedicated interregional collaboration funds, pref-
erential tax policies for cross-regional innovation activities, and investment in shared technological infrastructure. Leveraging 
the technological and financial strengths of eastern provinces can promote resource redistribution and facilitate more balanced 
regional development, thereby reinforcing the integrated advancement of DI, ER, and CP.

Fourth, given the significant spatial correlation in the CCD of DI, ER and CP, policy interventions should aim to enhance 
positive spatial spillovers and mitigate negative ones. National and local governments should prioritize the cultivation of strategic 
emerging industries through fiscal incentives, innovation subsidies, and cross-regional industrial alliances. Environmental regula-
tions should be adapted to local conditions while maintaining stringency to stimulate green investment. Urban planning strategies 
should guide rational population distribution by supporting the development of medium-sized cities and reducing excessive con-
centration in core urban areas. Additionally, interregional talent exchange platforms and joint training initiatives should be estab-
lished to improve the spatial mobility of human capital. Financial development should be oriented toward improving interregional 
capital flow through inclusive financing tools and regional investment coordination mechanisms.
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