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Abstract 

Osteoclasts (OCs) exhibit substrate-specific molecular adaptations crucial for bone 

remodeling. We utilized mass spectrometry and functional enrichment analysis to 

delineate the proteomic profiles of mature polarized OCs cultured on mineralized 

versus plastic plates. Our findings reveal that mineralized surfaces promote the 

expression of proteins specialized for bone resorption and matrix interaction, such 

as lysosomal enzymes and ion transporters. This environment induces a mature and 

resorptive phenotype in OCs, enriched in pathways like VEGF/VEGFR signaling and 

various cytokine pathways. Conversely, OCs on plastic plates display a more diverse 

proteomic profile, highlighting adaptations in adhesion, proliferation, and stress 

response pathways, suggesting a focus on cellular maintenance rather than active 

resorption. Key therapeutic targets for osteoclastogenesis include components of the 

Hedgehog (Hh) pathway—SHH, DHH, and IHH—with Smoothened (SMO) integral to 

Hh signaling in OC differentiation. Additionally, Guanine Nucleotide Exchange Factors 

(GEFs), significantly enriched on plastic plates, are crucial for adapting to non-

mineralized environments. Other notable targets include molecular regulators such 

as NCOR2, which modulates gene expression; NOS1, involved in nitric oxide produc-

tion and OC function; and XIAP, which influences cell survival. Chromatin remodeling 

proteins like TACC2 and signaling pathways involving IRS1, MSX1, and AKT are 

also highlighted. The targets identified in this study are specific to polarized OCs and 

may not apply to non-polarized OCs or other cell types. These findings underscore 

the complexity of OC differentiation and function, enhancing our understanding of 

substrate-specific adaptations and suggesting new strategies for modulating bone 

metabolism and addressing bone-related disorders.
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Introduction

Osteoclasts (OCs) are multinucleated cells derived from the monocyte/macrophage 
lineage, crucial for bone remodeling through the resorption of mineralized bone 
matrix. These cells release enzymes such as tartrate-resistant acid phosphatase 
(TRAP) and cathepsin K, which degrade the bone matrix and release calcium into 
the bloodstream, influencing overall bone metabolism [1,2,3]. The differentiation 
and activity of OCs are markedly influenced by the substrate on which they develop, 
affecting cell adhesion, signaling pathways, and the surrounding microenvironment.

In vitro studies using human peripheral blood mononuclear cells (hPBMCs) to 
differentiate OCs are crucial for understanding the underlying mechanisms of bone 
diseases and for developing therapeutic interventions [4]. The principal stages of 
human OC differentiation in vitro involve the initial isolation of hPBMCs, followed 
by their differentiation into pre-osteoclasts in the presence of macrophage colony-
stimulating factor (M-CSF) for approximately 3–5 days. Subsequent exposure to 
receptor activator of nuclear factor kappa-Β ligand (RANKL) drives pre-osteoclasts’ 
maturation into fully functional OCs over an additional 5–7 days [5]. These mature 
OCs are characterized by their multinucleation, expression of TRAP, and the ability 
to resorb mineralized bone matrix, typically completing differentiation in 10–14 days 
[6,7]. Functional assessments of OCs include pit assays, where OCs cultured on 
mineralized plates are evaluated for their ability to resorb bone matrix. This assay 
quantifies the resorbed area on the mineralized substrate, directly measuring OC 
activity and bone resorption capacity [3].

Comparative studies of OCs cultured on plastic versus mineralized plates reveal 
significant differences. OCs on mineralized plates exhibit characteristics that closely 
mimic physiological conditions of bone remodeling [8], while OCs on plastic plates 
show greater adaptability to diverse environmental cues. Understanding these 
substrate-dependent variations is essential for accurately representing OC biology 
and developing targeted therapies for inflammatory bone diseases [9,10].

In this study, we investigated the impact of substrate choice on the proteomic 
profile of mature polarized osteoclasts (OCs) by comparing the secretome profiles 
of OCs cultured on plastic versus mineralized plates. Using advanced mass spec-
trometry and functional enrichment analysis, we characterized the distinct proteomic 
landscapes of these polarized OCs. By focusing specifically on the secretomes of 
polarized OCs, our analysis provides detailed insights into how substrate-dependent 
adaptations influence their functional plasticity and regulatory mechanisms in bone 
metabolism. These findings contribute valuable knowledge that could inform the 
development of innovative therapeutic strategies for bone disorders.

Materials and methods

Human PBMCs and OC differentiation protocol

All procedures were performed in compliance with Plataforma Brasil regulations and 
were approved by the Ethics Committee of the Butantan Institute (CEP protocol No. 
1,806,596; approved on November 5, 2016).
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PBMCs were isolated using the Ficoll–Paque density gradient centrifugation method (density 1.077 g/mL—Sigma-
Aldrich®, USA). Blood samples (20 mL) were collected from healthy male volunteers aged 25–40 years via venipuncture at 
the cubital fossa (Plataforma Brasil/CEP 1,806,596), then diluted 1:1 with saline (0.9%) and layered onto Ficoll–Paque at 
a 1:3 ratio in conical tubes. After centrifugation at 400 X g for 20 minutes without acceleration, the PBMCs were carefully 
isolated. Following two washes with saline, the cells were resuspended in 1 mL of differentiation medium: α-MEM (Thermo 
Fisher Scientific, Waltham, MA, USA), pH 7.4, supplemented with 10% fetal bovine serum (LGC Biotecnologia, SP, Brazil), 
25 ng/mL human M-CSF, 50 ng/mL human RANKL, 5 ng/mL human TGF-β1 (R&D Systems, Minneapolis, MN, USA), and 1 
μM dexamethasone (Sigma-Aldrich®, USA).

For osteoclast differentiation assays, 6 × 10^5 PBMCs were plated per 1.9 cm^2 and cultured in 200 µL of differentiation 
medium. The culture medium was refreshed twice weekly by replacing 50% of the volume for 15 days.

Tartrate-resistant acid phosphatase (TRAP) Staining

To perform TRAP staining after the differentiation period, the culture medium was first removed, and the cells were gently 
washed three times with PBS. Subsequently, the cells were fixed by exposure to a solution consisting of 25.5% citrate 
solution (18 mM citric acid, 9 mM sodium citrate, 12 mM sodium chloride, and surfactant, pH 3.6 ± 0.1), 66.3% acetone, and 
2.9% formaldehyde for 30 seconds at room temperature.

The TRAP staining solution, previously prepared according to the manufacturer’s instructions and warmed to 37 °C, 
was then applied to the fixed cells. After a 1-hour incubation period at 37 °C, the TRAP solution was carefully aspirated, 
and the cells were washed three times with PBS. Next, the cells were washed three times with preheated (37 °C) deion-
ized water, followed by staining of the nuclei using Gill Hematoxylin Solution No. 3 for 1–2 minutes at room temperature.

To complete the staining process, the cells were rinsed with alkaline water to provide a counter-stain effect. They 
were included in PBS for analysis. This protocol allows for the visualization and analysis of differentiated cells under 
light microscopy Nikon Eclipse TS2K-261134, specifically highlighting the presence and distribution of TRAP-positive 
osteoclasts.

Pit assay

We employed the culture plates (96-well) coated with an inorganic crystalline calcium phosphate substrate. Each well 
received 0.2 mL of osteoclast differentiation medium (as described in 4.2.1) and was seeded with 6x105 hPBMCs/well. 
The cells were incubated in a humidified environment with 5% CO2 at 37ºC. On the 15th day, the resorption activity of 
OCs was quantified, analyzing the mineralized surface. The medium was aspirated, 100 μL of 10% bleaching solution was 
added, followed by 15 minutes of incubation at room temperature. The wells were washed three times with distilled water, 
and then the water was removed completely, allowing the wells to dry for 3–5 hours. Subsequently, the plate was counter-
stained with the Von Kossa staining kit (Merck© KGaA, Germany) to facilitate visualization of the substrate. The analyses 
were conducted after capturing images of the entire well with a Nikon stereomicroscope and image analysis software 
(ImageJ®) to calculate the percentage of reabsorbed surface, enabling the quantification of resorption activity.

Sample preparation and chromatography

The dried protein samples were reconstituted in 0.1% formic acid (designated as solvent A) to ensure they were in a 
suitable solution for chromatography. The samples were then injected into a C18 reverse-phase chromatography column 
(Supelco, 3 μm particle size, 100 Å pore size, and dimensions of 50 mm x 2.1 mm).

A linear gradient elution was performed, starting with 5% solvent B (composed of 90% acetonitrile and 10% water with 
0.1% formic acid) and gradually increasing to 40% solvent B over a 66-minute period. The flow rate was maintained at 
a constant 0.2 mL/min to ensure consistent separation and peak resolution. The eluted components were continuously 
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monitored using a Shimadzu SPD-M20A PDA (photodiode array) detector across the wavelength range of 200–500 nm, 
allowing for the detection of peptides and proteins based on their UV absorbance.

Mass spectrometry analysis

For mass spectrometry, an IT-ToF (Ion Trap-Time of Flight) mass spectrometer from Shimadzu (Japan) was employed. 
The instrument operated in positive ion mode, with an interface voltage set at 4.5 kV, a detector voltage of 1.76 kV, and an 
interface temperature held at 200°C. Data acquisition covered a mass-to-charge (m/z) ratio range from 50 to 2000, which 
is suitable for detecting a broad spectrum of peptides and small proteins.

Subsequent MCMS spectra were generated using collision-induced dissociation (CID) with argon as the collision gas. 
The MSMS mode allowed for fragmentation of selected precursor ions within the same m/z range (50–2000), providing 
detailed information on peptide sequences and post-translational modifications.

Protein identification

Protein identification was carried out using PEAKS Studio 7.0 software, which incorporated the InChorus multi-algorithm 
tool, combining both PEAKS and MASCOT algorithms to enhance identification accuracy. The proteins were matched 
against public protein databases, including those for Homo sapiens and Squamata species, providing a broad comparison 
across different species.

Functional enrichment analysis

Identified proteins were subjected to functional enrichment analysis using the FunRich [11]. This tool allowed for categori-
zation based on molecular function, biological processes, and pathways, providing insight into the potential roles of these 
proteins in various cellular mechanisms.

Analysis of possible targets and biological pathways

The data were enriched by the Enrichr software, and twenty-one databases were used to analyze OCs on mineralized 
plates and twenty-two databases to analyze OCs on plastic plates. The P-Adjusted value, less than 0.005, is taken into 
account for refinement. After this type of data filtering, graphs were made with the count of pathways and genes that were 
repeatedly highlighted by the results.

Results

Substrate-dependent enrichment of protein localization in osteoclasts: Insights from FunRich analysis

In our OC differentiation assays, hPBMCs were cultured on plastic or mineralized plates in a differentiation medium for 15 
days (data not shown) [7]. At the endpoint of differentiation, supernatants were collected and subjected to rigorous mass 
spectrometry analysis. OCs were characterized using established methods [7], and proteins were identified with precision 
using mass spectrometry and gas chromatography against a human database (IDPROT).

Enrichment analysis using FunRich software [11] revealed distinct patterns across biological processes, cellular com-
ponents, and molecular functions (S1 and S2 Tables). OCs cultured on plastic expressed 116 proteins, whereas those on 
mineralized surfaces expressed 49 proteins, with only 4 proteins common to both environments (Fig 1). Common proteins 
between the two conditions indicate fundamental OC functions independent of substrate cues. Mineralized substrates 
appear to direct OCs towards a specialized state optimized for bone remodeling, while plastic substrates elicit a more 
generalized response (Fig 1).

Our data provide fascinating insights into the differences in protein expression and localization between OCs differ-
entiated on mineralized versus plastic plates (Figs 2A and 2B). The functional similarities between the sarcoplasmic 
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components in OCs and muscle tissue, particularly in calcium ion storage and release, suggest that these OCs may have 
specialized roles in calcium handling, crucial for their bone-resorbing activities (Fig 2A). The presence of microfibrils and 
crystalline features in the cell membrane is intriguing, as these characteristics are typically associated with plant cell walls 
and are rarely observed in human cells. This suggests that the mineralized environment may influence the structural orga-
nization of OCs, possibly enhancing their interaction with the mineralized matrix. Moreover, identifying hemidesmosomes 
and proteins related to the basal membrane in OCs differentiated on mineralized plates suggests that these cells may 
form more robust attachments to their substrate, potentially influencing their resorptive activity and overall function. The 
similarities in protein functions between the basal membrane and those in OCs may indicate shared roles in cell adhesion 
and nutrient support. Detecting neurofilament-like structures in these OCs raises interesting questions about potential 
crosstalk between osteoclasts and the nervous system or the adoption of neuronal features by OCs under certain condi-
tions (Fig 2A).

Conversely, OCs differentiated on plastic plates show enrichment of cytoplasmic proteins, with a focus on structures 
like the sarcolemma, cytosol, and nucleus. The presence of platelet alpha-granules and synaptosomes suggests that 
these OCs may be more involved in secretory and signaling functions, reflecting a different aspect of OC activity than 
those on mineralized plates (Fig 2B).

While our analysis did not reveal statistically significant differences in protein expression, the observed trends are 
still meaningful and provide a foundation for future studies. These findings highlight the importance of considering both 
statistically significant results and emerging patterns when interpreting complex biological data, especially in the context of 
osteoclast differentiation and function.

Enrichment analysis of guanine nucleotide exchange factors in osteoclasts differentiated on plastic and 
mineralized plates

Furthermore, enrichment analysis highlights the significant presence of guanine nucleotide exchange factors (GEFs) 
(p = 0.004) in the molecular functions of OCs differentiated on plastic but not on mineralized plates (Figs 2C and 3D). 
GEFs regulate small GTPases such as Rho and Rac, which are crucial for OC cytoskeletal dynamics, migration, and bone 

Fig 1.  Venn diagram shows osteoclasts: 116 proteins on plastic, 49 on mineralized, with only 4 shared.

https://doi.org/10.1371/journal.pone.0333180.g001

https://doi.org/10.1371/journal.pone.0333180.g001
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resorption. Dysregulated GEF-mediated signaling could contribute to abnormalities such as osteoporosis or osteopetrosis 
[12,13].

Adaptations of osteoclasts: Contrasting roles on mineralized and plastic surfaces

Biological process analysis also reveals distinct protein enrichment profiles in OCs differentiated on mineralized versus 
plastic plates (Figs 3A, 3B). OCs on mineralized plates (Fig 3A) exhibit significant enrichment in transport processes, 
emphasizing their role in systemic calcium regulation—a vital function of these cells. These OCs feature an array of 
membrane transport proteins, including channels, transporters, and pumps, which are crucial for ion exchange and matrix 

Fig 2.  Enrichment analysis of cellular components (A, B) and molecular functions (C, D) of osteoclasts on mineralized versus plastic plates, 
showing substrate-dependent secretome variations.

https://doi.org/10.1371/journal.pone.0333180.g002

https://doi.org/10.1371/journal.pone.0333180.g002
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digestion. The maintenance of low pH during bone resorption underscores the importance of these transport proteins for 
bone differentiation, function, and homeostasis, suggesting they are potential therapeutic targets for bone diseases.

In contrast, OCs on plastic plates show enrichment in RNA metabolism cell communication, growth, adhesion, and RNA 
metabolism processes, reflecting their adaptation to a less physiologically relevant environment (Fig 3B). These cells pri-
oritize calcium-mediated signaling and intracellular cascades, indicating active responses to the artificial substrate through 
cytoskeletal dynamics and metabolic activity adjustments.

Notably, the enrichment of muscle biology-related processes in OCs on mineralized plates suggests potential crosstalk 
with muscle tissue development (Fig 3A). This connection highlights the integrated nature of bone and muscle tissues, 
where signaling from OCs during bone remodeling may influence muscle mass, mediated by molecules such as ATP.

The FunRich analysis of proteins secreted by OCs differentiated on mineralized versus plastic plates reveals distinct 
biological pathways reflective of their substrate-specific adaptations (Figs 3C, 3D). OCs on mineralized plates exhibit 
enrichment in pathways such as VEGF and VEGFR signaling, syndecan-1 mediated signaling, cytokine pathways (IL-3, 
IL-6, IFN-gamma), and NMDA receptor activation, highlighting their focus on bone resorption, remodeling, and interaction 
with the mineralized matrix (Fig 2D).

OCs on plastic plates show enrichment in pathways related to cell communication, nucleic acid metabolism, and cel-
lular maintenance, indicative of their adaptation to a non-mineralized environment (Fig 3D). These findings underscore 
how OCs adjust their molecular strategies based on substrate cues, providing insights into bone metabolism and potential 
targets for therapeutic intervention in bone-related disorders.

Fig 3.  Enrichment analysis of biological processes (A, B) and secretome pathways (C, D) in osteoclasts on mineralized versus plastic plates, 
showing substrate-dependent variations.

https://doi.org/10.1371/journal.pone.0333180.g003

https://doi.org/10.1371/journal.pone.0333180.g003
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Figs 3A–3D displays enrichment graphs illustrating differences in biological processes and secretome pathways of 
OCs differentiated on mineralized versus plastic plates. Secretome data collected on day 14 of differentiation reveal 
substrate-dependent variations in protein expression and functional profiles, shedding light on how substrate choice influ-
ences OC function and secretome composition.

Integrated databases enrichment analysis reveals substrate-dependent pathways in osteoclasts cultured on 
mineralized versus plastic plates

Combining 22 databases for plastic plates and 21 for mineralized plates enriches our comparison of OCs cultured on 
different substrates, leveraging each database’s strengths. Enrichment analyses from CORUM, Elsevier, and Wikipathway 
highlight critical metabolic and signaling pathways, while Reactome provides detailed insights into molecular interactions. 
Integrating these analyses identifies consistently enriched pathways and proteins, revealing how OCs adapt to their micro-
environment (S2 and S3 Tables).

Based on enrichment analysis of OCs cultured on mineralized plates, several pathways exhibited significant enrich-
ment with adjusted p-values < 0.05 (Table 1). These pathways include the Complement Cascade proteins (IGHG3, 
IGHG4, IGHG1, IGHG2), the PAX9-MSX1 complex (in humans) with MSX1, ITK-SLP-76 complex in anti-TCR stimulated 
conditions with ITK, and the AMY-1-S-AKAP84-RII-beta complex (in humans) featuring AKAP1, as well as the SLP-76-
PLC-gamma-1-ITK complex in alpha-TCR stimulated conditions involving ITK, and finally the Sam68-p85 PI3K-IRS-1-IR 
Signaling Complex (in humans) (Table 1). Enriched protein analysis identifies 10 potential therapeutic targets for bone dis-
eases (Table 1): ITK (repeated 2 times), IGHG3, IGHG4, IGHG1, IGHG2, IRS1 (each repeated 1 time), MSX1, and AKT 
(each repeated 1 time), with statistically adjusted values.

Based on the enrichment analysis of OCs cultured on plastic plates, pathways crucial for osteoclastogenesis, particu-
larly those involving Hedgehog (Hh) signaling, emerge prominently. The Release of Hh-Np (Np – N-terminal Peptide) from 
secreting cells, Activation of Smoothened (SMO), and various Hh Family Signaling pathways identified across Reactome, 
Wikipathway, Elsevier, and NCI-nature databases play pivotal roles in regulating these processes. The Nitric Oxide (NO) 
synthase-dystrophin complex in skeletal muscle, as well as both canonical and non-canonical Hedgehog signaling path-
ways involving ARRB1/ARRB2, play significant roles in osteogenesis. Additionally, intraflagellar transport mediated by 
BBSome interactions, the SMRT-SKIP-CBF1 complex, and chromatin remodeling complexes such as TACC2, TACC3, 
and PCAF are crucial. The Polyadenylation complex also underscores the intricate mechanisms governing mRNA pro-
cessing and stability in osteoclast development (Table 2).

Enriched gene analysis (on plastic plate) identifies 10 potential therapeutic targets for bone diseases (Fig 4B): DHH, 
IHH, NCOR2, SHH (repeated 9 times), SNX4 (repeated 6 times), NOS1 (repeated 3 times), REC8 (repeated 2 times), 
SYMPK, XIAP, and TACC2 (each repeated 1 time), with statistically adjusted values (Table 2).

Table 1.  This table summarizes the pathways and their corresponding proteins that showed significant enrichment in OCs cultured on miner-
alized plate, based on the adjusted p-values < 0.05 from the analysis.

Pathway description Database Adjusted P-value Gene/ Complex involved

Complement cascade Bioplanet 0.00360 IGH3, IGHG4, IGHG1, IGHG2

PAX9-MSMX1 Complex (Human) CORUM 0.00529 MSX1

ITK-SLP-76- Complex, Anti-TCR Stimulated (Human) CORUM 0.00529 ITK

AMY-1-S-AKAP84-RII-beta Complex (Human) CORUM 0.00792 AKAP1

SLP-76-PLA-gamma-1-ITK Complex, Alpha-TCR Stimulated (Human) CORUM 0.00792 ITK

Sam68-p85 PI3K-IRS-1-IR Signaling Complex (Human) CORUM 0.01055 IRS1

https://doi.org/10.1371/journal.pone.0333180.t001

https://doi.org/10.1371/journal.pone.0333180.t001


PLOS One | https://doi.org/10.1371/journal.pone.0333180  October 17, 2025 9 / 15

STRING network analysis further supported these findings: in osteoclasts cultured on mineralized plates (Fig 4C), the 
identified proteins did not form interconnected clusters, whereas in osteoclasts on plastic plates (Fig 4D), DHH, IHH, and 
SHH formed a discrete cluster that remained isolated from the other proteins, indicating substrate-specific regulation of 
the hedgehog signaling pathway in osteoclasts cultured on plastic.

Discussion

Using polarized OCs provides a more accurate representation of the proteins involved in bone resorption and the regu-
latory mechanisms active in a mature osteoclast state. This results in a secretome that reflects their enhanced functional 
capabilities and substrate-dependent adaptations, offering deeper insights into their role in bone metabolism and potential 
therapeutic targets.

The functional enrichment analysis of proteins secreted by OCs differentiated on mineralized versus plastic plates 
reveals distinct biological pathways reflective of their substrate-specific adaptations. OCs on mineralized plates exhibit 
enrichment in pathways crucial for bone resorption, remodeling, and interaction with the mineralized matrix, including 
VEGF and VEGFR signaling, syndecan-1-mediated signaling, cytokine pathways (IL-3, IL-6, IFN-gamma), and NMDA 
receptor activation [14–19]. These molecular characteristics suggest that OCs on mineralized plates mature and polarize 
toward active resorption activities within the bone matrix.

Table 2.  This table summarizes the pathways and their corresponding proteins and genes that showed significant enrichment in OCs cultured 
on plastic plate, based on the adjusted p-values < 0.05 from the analysis.

Pathway description Database Adjusted P-value Gene/ Complex involved

Release of Hh-Np from secreting Cell Reactome 0.00115 SHH

Activation of SMO Reactome 0.01073 SHH

Hedgehog Signaling Pathway (WP47) Wikipathway 0.01181 SHH

ARRB1/ARRB/2 non-Canonical signaling and Hedgehog Family Elsevier 0.00704 SHH

Hedgehog Family - > ARRB1/ARRB2 Canonical Signaling Elsevier 0.00880 SHH

Hedgehog Family Signaling Elsevier 0.02608 SHH

Signaling events mediated by the Hedgehog family (Homo 
sapiens)

NCI-nature 0.00836 SHH

Release of Hh-Np from secreting Cell Reactome 0.00115 R-HSA-5362798

Activation of SMO Reactome 0.01073 R-HSA-5635838

Hedgehog Signaling Pathway Wikipathway 0.01181 WP47

ARRB1/ARRB/2 non-Canonical signaling and Hedgehog Family Elsevier 0.00704 –

Intraflagelar Transport: BBSome Interaction Elsevier 0.03001 –

Signaling events mediated by the Hedgehog family (Homo 
sapiens)

NCI-nature 0.00836 d3a49cee-6195-11e5-8ac5–
06603eb7f303

Nitric oxide synthase-dystrophin complex, skeletal muscle 
(mouse)

CORUM 0.0313 NOS1

ARRB1/ARRB/2 non-Canonical signaling and Hedgehog Family Elsevier 0.00704 ARRB1/ARRB2

Hedgehog Family - > ARRB1/ARRB2 Canonical Signaling Elsevier 0.00880 ARRB1/ARRB2

Intraflagelar Transport: BBSome Interaction Elsevier 0.0300 Bbsome

Signaling events mediated by the Hedgehog family (Homo 
sapiens)

NCI-nature 0.00836 Hedgehog family

SMRT-SKIP-CBF1 complex (human) CORUM 0.0313 SMRT-SKIP-CBF1

Chromatin remodeling complex (TACC2, TACC3, PCAF) (human) CORUM 0.0313 TACC, TACC3, PCAF

Polyadenylation complex (CSTF1, CTF2, CSTF3, SYMPK 
CPSF1, CPSF2, CPSF3) (human)

CORUM 0.0448 CSTF1, CSTF2, CSTF3, 
SYMPK CPSF1, CPSF2, CPSF3

https://doi.org/10.1371/journal.pone.0333180.t002

https://doi.org/10.1371/journal.pone.0333180.t002
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In contrast, OCs differentiated on plastic plates show enrichment in pathways related to cell communication, nucleic 
acid metabolism, and cellular maintenance. This pattern indicates a focus on maintaining cellular functions rather than 
active resorption, suggesting that OCs on plastic plates may not be as mature or polarized toward resorptive activities 
as those on mineralized plates. These results underscore how OCs adjust their molecular strategies based on substrate 
cues, providing insights into bone metabolism and potential targets for therapeutic intervention in bone-related disorders.

Fig 4.  Target definitions for osteoclasts on mineralized (A, C) versus plastic (B, D) plates. STRING analysis shows no clusters on mineralized 
plates (C), while DHH, IHH, and SHH form a discrete cluster on plastic plates (D).

https://doi.org/10.1371/journal.pone.0333180.g004

https://doi.org/10.1371/journal.pone.0333180.g004
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Enrichment analysis reveals that GEFs are involved in osteoclastogenesis on mineralized and plastic plates. Although 
GEFs were not significantly enriched on mineralized plates, their presence suggests a potential role in bone remodeling 
and resorption. GEFs were significantly enriched on plastic plates, indicating their importance in adapting cellular signal-
ing to a non-mineralized environment. This highlights GEFs as key players in osteoclast biology and potential targets for 
future therapies in bone disorders despite the current lack of direct GEF-targeting treatments [20–22].

Enriched protein analysis of OCs cultured on plastic surfaces identifies several potential therapeutic targets for bone 
diseases, including DHH, IHH, NCOR2, SHH, SNX4, NOS1, REC8, SYMPK, XIAP, and TACC2. These proteins are linked 
to pathways critical for bone health and regulation. Specifically, DHH, IHH, and SHH, forming a distinct cluster, indicate 
their pivotal roles in signaling cascades essential for osteoclastogenesis and bone remodeling [23–26]. The Hedgehog 
(Hh) pathway is critical in skeletal development, guiding OC differentiation and bone formation from embryonic stages 
to adulthood [23,24]. SHH is particularly notable for its therapeutic potential and has been extensively studied in dis-
eases such as osteosarcoma and skeletal dysplasia [26]. While studied for its role in embryonic skeletal patterning, DHH 
remains less explored as a therapeutic target than SHH. IHH, similarly implicated in bone biology and development, has 
also received less attention in therapeutic research [25]. Continued investigation into DHH and IHH may reveal their full 
potential for therapeutic interventions in bone diseases and related conditions. Activation of Smoothened (SMO) and 
various Hh family signaling pathways are integral for mediating essential cellular responses fundamental to OC develop-
ment and function, highlighting their potential as therapeutic targets for modulating bone metabolism and related diseases 
[27–29].

Beyond Hh signaling, other pathways implicated in osteoclastogenesis include a diverse array of molecular complexes 
and regulatory processes [30,31]. This encompasses the Nitric Oxide (NO) synthase-dystrophin complex in skeletal 
muscle, both canonical and non-canonical Hedgehog signaling pathways involving ARRB1/ARRB2, intraflagellar transport 
mediated by BBSome interactions, and specific Hh family signaling events [32–34]. Additionally, the SMRT-SKIP-CBF1 
complex and chromatin remodeling complexes (TACC2, TACC3, and PCAF) significantly contribute to gene regulation 
and cellular differentiation processes critical for OC development [35,36]. The involvement of the polyadenylation complex 
further underscores the intricate mechanisms governing mRNA processing and stability in osteoclastogenesis [37].

The NCOR2 protein, also known as Nuclear Receptor Corepressor 2, plays a significant role in osteoclastogenesis by 
modulating gene expression in response to various signals, thereby influencing the differentiation and activity of OCs in 
bone remodeling processes [38–40]. NOS1, which regulates nitric oxide production, impacts bone remodeling and OC 
function [41–43]. Among less frequently noted proteins, XIAP stands out for its anti-apoptotic functions and regulation of 
cell survival pathways, influencing OC survival and function [44–47].

Enriched protein analysis of OCs cultured on mineralized surfaces highlights IRS1 as a potential therapeutic target 
for bone diseases, reflecting its involvement in bone metabolism and skeletal health through insulin signaling path-
ways [48–50]. Conversely, ITK’s role in bone diseases remains less explored despite its primary function in T-cell 
signaling and immune responses. Emerging research suggests ITK may influence OC differentiation, which is critical 
in bone remodeling and associated with autoimmune and inflammatory conditions [51,52]. IGHG3, IGHG4, IGHG1, 
and IGHG2 encode different immunoglobulin heavy chain gamma (IgG) subtypes, typically associated with immune 
responses rather than direct bone disease involvement. MSX1, involved in craniofacial and skeletal development, 
and AKT, critical for cell survival and growth, are relevant to bone biology and may hold therapeutic potential for bone 
diseases [53–56].

Conclusions‌‌‌‌

In conclusion, our analysis highlights distinct molecular adaptations of mature, polarized OCs based on substrate type. 
OCs on mineralized plates are enriched in pathways critical for bone resorption and remodeling, such as VEGF/VEGFR 
signaling and cytokine pathways, indicating a mature, resorptive phenotype. Conversely, OCs on plastic plates show 
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enrichment in pathways related to cellular maintenance, reflecting a focus on sustaining cellular functions rather than 
active resorption.

Key therapeutic targets for mature OCs include components of the Hedgehog (Hh) pathway (e.g., SHH, DHH, IHH, and 
Smoothened) and GEFs, which are crucial for adaptation to non-mineralized environments. Additionally, regulators like 
NCOR2, NOS1, and XIAP, along with chromatin remodeling proteins such as TACC2, and signaling pathways involving 
IRS1, MSX1, and AKT, offer potential therapeutic avenues. These findings underscore the complexity of OC differentiation 
and function and suggest new strategies for modulating bone metabolism and addressing bone disorders.

The targets identified are specific to polarized OCs and may not apply to non-polarized OCs or other cell types. This 
specificity enhances our understanding of substrate-specific adaptations in OC biology and highlights potential therapeutic 
targets for bone-related conditions.
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