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Abstract 

Background

Infections may increase the risk of age-related diseases such as dementia. Acceler-

ated immunological ageing, measurable by telomere length (TL), may be a potential 

mechanism. However, the relationship between different infections and TL or telo-

mere attrition remains unclear. This systematic review synthesises existing evidence 

on whether infections contribute to TL or telomere attrition and highlights research 

gaps to inform future studies.

Objective

To summarise the literature on associations between infections and telomere length 

or attrition.

Methods

We conducted comprehensive searches across six databases (MEDLINE, EMBASE, 

Web of Science, Scopus, Global Health, Cochrane Library) from inception to 22 

May 2025, using concepts of infections, TL, and study type. Two researchers inde-

pendently screened studies, extracted data, and assessed risk of bias (ROB) using 

the ROBINS-E tool. Meta-analysis was unfeasible due to heterogeneity, so a nar-

rative synthesis was conducted. Studies were grouped by infection type, telomere 

measurement assay, cell type, and statistical approach. A GRADE assessment was 

performed to evaluate evidence quality.
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Results

Our searches identified 10,349 studies, of which 73 met eligibility criteria. Most (59) 

were cross-sectional and most were published after 2000, with the earliest from 

1996. Most studies were from the USA (17). HIV was the most frequently studied 

infection (35 studies), with 79% (excluding overlapping samples) reporting an associ-

ation between HIV and reduced TL or increased telomere attrition. Findings for other 

infections, including herpesviruses and Human Papillomavirus were more variable. 

Variation in infection type, measurement assay, cell type, and statistical approach 

made cross-study comparisons challenging. Most studies had a high ROB, mainly 

due to unmeasured confounding. The GRADE assessment rated evidence quality as 

very low.

Conclusions

Our review highlights a potential link between HIV and TL and telomere attrition. 

More robust longitudinal studies with standardised measurements and better con-

founder control are needed, particularly for non-HIV infections.

PROSPERO (ID:CRD42023444854)

Background

Infections may contribute to the development of age-related diseases such as cardio-
vascular disease (CVD) and dementia. Systematic reviews and meta-analyses [1,2] 
have shown that acute infections, including influenza and COVID-19, are associ-
ated with increased CVD risk. Observational evidence shows that a broad range of 
viral, bacterial and other infections leading to hospital admission are associated with 
increased risk of major adverse cardiovascular events [3]. Similarly, some infections 
may be implicated in dementia risk; severe infection syndromes including sepsis and 
pneumonia are associated with increased long-term dementia risk in large longitudi-
nal studies [4,5] although evidence for association with individual pathogens such as 
human herpesviruses is less clear [6–8].

One potential mechanism underlying the potential infection-dementia association 
is accelerated immunological ageing. Immunological ageing refers to the gradual 
decline in immune system function and can be assessed through telomere length 
(TL) [9]. Telomeres are repetitive nucleotide sequences at the ends of chromosomes 
that protect genetic material from degradation. With each cell division, telomeres pro-
gressively shorten due to incomplete end-replication. Ultimately, this leads to cellular 
senescence or apoptosis [10]. Studies have linked shorter telomeres to Alzheimer’s 
disease (AD). One meta-analysis found that individuals with AD have shorter telo-
meres compared to those without AD [11]. Similarly, a Mendelian randomisation study 
found that short telomeres were associated with increased risk of AD in both observa-
tional and genetic analyses [12].
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However, the association between infections and TL remains unclear. Existing studies vary in terms of the infections 
studied, whether infections are acute or chronic, and the assays used to measure TL [13–15]. There are also variations 
in the measures of TL used in existing studies as well as study type and statistical analysis method, making it difficult to 
aggregate evidence [15–19].

Therefore, our systematic review aimed to summarise all available research on the association between infections and 
TL, or attrition, in adult humans, considering various study designs, telomere measurement methods, and statistical analy-
sis approaches.

Methods

Protocol and registration

Our systematic review followed the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses of Protocols (PRISMA-P) statement (S1 File). We also pre-registered (PROSPERO registration number 
CRD42023444854) and published our protocol prior to starting the review [20–22] (S2 File).

Eligibility criteria

Studies were considered for inclusion in the systematic review if they met the Population, Exposure, Comparator, Out-
comes, and Study characteristics (PECOS) framework criteria [23] presented in Table 1.

Information sources

We searched for published studies across six bibliographic databases: MEDLINE (Ovid interface), EMBASE (Ovid inter-
face), Web of Science, Scopus, Global Health, and the Cochrane Library from database inception to August 31, 2023. The 
reference lists of included papers were manually examined to find any other relevant studies.

Search

Our search strategy included three concepts: infections, TL, and study type. We combined search concepts using the 
Boolean ‘AND’ operator. We combined key words with database-specific subject headings for each search concept. We 
developed and adapted our search for various databases with guidance from a librarian at the London School of Hygiene 

Table 1.  Summary of systematic review inclusion eligibility criteria.

Population Humans, adults aged 18 years or older, any geographic area and any setting.

Exposure Any infection (i.e., any pathogen, site, severity, acute or chronic). Infection diagnosis could have 
been determined through electronic healthcare records (e.g., using morbidity-coded diagnoses), 
self-report, antibody measurements, or other laboratory markers of infection. In Mendelian randomi-
sation studies, the exposure was defined as genetic variants linked to infection.

Comparator The comparison group differed depending on the type of study. Individuals who were not exposed 
to the infection served as the comparator group for both cross-sectional and cohort studies. In 
case-control studies, the comparison group consisted of individuals who had normal TL.

Outcome The outcomes included TL and telomere attrition (change in TL). We included research using any 
established assay to measure TL [24]. These assays included PCR (Polymerase Chain Reaction), 
TRF (Terminal Restriction Fragment) analysis, STELA (Single TL Analysis), TeSLA (Telomere Short-
est Length Assay) and FISH (Fluorescence In Situ Hybridisation) techniques. We did not restrict by 
cell type in which TL was assessed.

Study Design To ensure all possible designs were considered, we included cross-sectional studies, case-control 
studies, cohort studies, randomised controlled trials of vaccines or antimicrobial treatments, and 
Mendelian randomisation studies.

https://doi.org/10.1371/journal.pone.0333107.t001

https://doi.org/10.1371/journal.pone.0333107.t001
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and Tropical Medicine. We did not restrict our search on publication date or language. The complete search strategy can 
be found in S3 File.

Study selection

We initially de-duplicated the papers returned by our search using automatic and manual methods with EndNote 20 soft-
ware; automatically identified duplicates were manually reviewed and verified to ensure accuracy. If two studies had study 
samples that completely overlapped and similar findings, only the study with the largest sample size was kept. Studies 
with partially overlapping samples (or the same sample if results differed between studies) were retained. For studies 
with completely or almost completely overlapping samples, the one with the largest sample size was kept, and if these 
were the same, the most recent publication was selected. Two researchers reviewed all titles and abstracts independently 
against the eligibility criteria. When results differed, reviewers discussed to achieve consensus regarding which articles 
should proceed to full text review. In cases where the two reviewers could not agree a third reviewer was consulted. We 
repeated the process for the full-text review.

Data collection

The primary investigator extracted data from all included papers using a standardised data extraction form. To ensure 
consistency, a second researcher independently extracted data from a random sample of 10% of the included papers and 
compared the results with those of the primary investigator.

Our standard data extraction form captured data on study characteristics guided by the PECOS framework (S1 Table). 
We captured details on: 1) population characteristics (e.g., age, sex, setting): 2) infection exposure (e.g., acute or chronic, 
pathogen, severity); 3) comparators; 4) outcomes including TL or attrition, measurement assays (e.g., Quantitative Poly-
merase Chain Reaction (Q-PCR)), and cell type assessed; and 5) study characteristics (setting, study design,  
follow-up). The results extracted included unadjusted mean/median telomere length measurements as well as the crude 
and adjusted effect estimates from statistical modelling, e.g., beta coefficients from linear regression, odds ratios from 
logistic regression, F-values from mixed effect models. Details of any covariates and subgroup analyses were also col-
lected (e.g., by sex or age).

Risk of bias

Some studies reported data on multiple infections, meaning the number of exposure-outcome (E-O) relationships 
exceeded the number of included studies. Therefore, we assessed risk of bias for each E-O relationship individually, as 
different E-O relationships within the same study could have varying risk-of-bias scores.

Two researchers independently assessed risk of bias of each E-O relationship using the Risk Of Bias In Non- 
randomized Studies – of Exposures (ROBINS-E) tool [25]. The ROBINS-E tool evaluates risk of bias in the following 
domains: Domain 1-confounding, D2-measurement of the exposure, D3-selection of participants into the study (or into the 
analysis), D4-post-exposure interventions, D5-missing data, D6-measurement of the outcome, and D7-selection of the 
reported result. For each domain, assessors answered a series of questions regarding the assessed study. Scores from 
all domains were then synthesised into an overall risk-of-bias rating (low, some concerns, high, very high) based on the 
ROBINS-E algorithm and further guidance provided in the tool.

Synthesis of results

We conducted a narrative synthesis considering the following potential sources of heterogeneity: infection type, cell 
type, outcome (TL or change in TL), TL measure (relative or absolute), TL measurement assay, and statistical method. 
Results were grouped based on these factors, starting with infection type and progressively refining by cell type, outcome, 
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TL measure, assay, and statistical method, with studies in the final group being comparable across all sources of 
heterogeneity.

We also reported the total number of E-O relationships examined, then the number of unique E-O relationships by 
infection type. One E-O relationship from each overlapping sample was classed as ‘unique’. To determine the unique E-O 
relationship, priority was given to those with longitudinal designs, followed by studies with the greatest sample size and 
to the most recent study. We then reported the number of unique homogeneous E-O relationships (defined as homoge-
neous if they matched all potential sources of heterogeneity). We also presented the number of unique E-O relationships 
showing evidence of an association (with smaller TL or greater telomere attrition) for each infection type. Given that many 
relationships were based on unadjusted results, we also reported the number with matched or adjusted analyses demon-
strating evidence of association.

We did not meta-analyse due to high inter-study heterogeneity, which would render pooled estimates difficult to inter-
pret. Instead, we presented forest plots for infections with at least three studies that reported the same type of effect 
estimate (e.g., difference in mean telomere lengths) with 95% confidence intervals, or where both the effect estimate and 
its 95% confidence interval could be calculated from the available data. To avoid duplication, when two or more studies 
had overlapping samples, only one was presented in the forest plot, with the same prioritisation criteria used for selecting 
unique studies. Forest plots were generated for HIV, Cytomegalovirus (CMV), and Herpes Simplex Virus Type 1 (HSV-1), 
as these infections had the highest number of studies meeting the inclusion criteria.

GRADE assessment

To assess the quality of evidence in the review we applied the GRADE (Grading of Recommendations Assessment, 
Development and Evaluation) approach, which provides a structured framework for rating the certainty of evidence across 
studies contributing to a specific outcome [26]. To ensure consistency and comparability we applied the same inclusion 
criteria for GRADE as for forest plots. Specifically, we included infections with at least three studies reporting the same 
type of effect estimate (e.g., difference in mean telomere lengths) with 95% confidence intervals, or where both the effect 
estimate and its confidence interval could be calculated from the available data. To avoid duplication, studies with overlap-
ping samples were excluded using the same prioritisation strategy. This approach was taken because GRADE is intended 
to assess the certainty of a coherent body of evidence and applying it to highly heterogeneous studies with differing 
outcomes and effect types would not yield meaningful or interpretable assessments. GRADE evaluations were therefore 
conducted for HIV, CMV, and HSV-1, which had the highest number of sufficiently comparable studies.

The following domains were assessed using GRADE: Risk of bias, inconsistency, indirectness, imprecision, and pub-
lication bias. We rated the strength of evidence as high, moderate, low, or very low. The criteria used for determining the 
quality of evidence can be found in S4 File.

Results

Study characteristics

Our initial search identified 8,670 records, 4,987 remained after removing duplicates. Of 4,987 titles/abstracts screened, 
233 were taken to full-text review. After full-text review and citation searching, 62 studies [13,14,19, 27–82] [15–17] and 85 
E-O relationships were eligible for inclusion in our review. An updated search conducted on 22.06.2024 identified an addi-
tional 1,679 records, of which 11 [83–93] met the inclusion criteria, resulting in a final total of 73 studies and 105 Exposure–
Outcome relationships. Fig 1 shows an adapted [94] PRISMA flow diagram summarising the results of the two searches..

Studies included were set across a range of geographical settings, with most (i.e., n = 17, 23%) from the US, followed 
by 7 (10%) from Canada, and the remaining from a variety of, largely high-income, countries. Nine studies presented in 
conference abstracts did not clearly specify their setting.
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Of the sixty-three studies included, the majority (59, 81%) were cross-sectional. Other study types included cohort, 
mendelian randomisation, and studies using a mixture of cross-sectional and cohort analyses. The characteristics of the 
included studies are presented in Table 2.

Risk of bias assessment

Of the 105 infection-telomere relationships in the review, 59 (56%) were assessed based on overall score to be at high or 
very high risk of bias (S2 Table). Of the remaining E-O relationships that were not at high/very-high risk of bias, 40 (38%) 
were assessed as having some concerns, and only six were low risk of bias (6%).

The domain that was most frequently high-risk of bias was Domain 1 (confounding) with over 50% (n = 55, 52%) out of 
105 infection-telomere relationships at high risk of bias (Fig 2). Domains 3 (selection) and 4 (post-exposure interventions) 
also posed challenges, though they were less frequently classified as high risk of bias than Domain 1. However, > 85% of 
infection-telomere relationships were still rated as having ‘some concerns’ or higher in each of these domains. Domains 
2 (measurement of exposure), 5 (missing data), 6 (measurement of outcome), and 7 (selection of reported result) were 
mostly rated low risk, with over 80% of E-O relationships classified as low risk.

Fig 1.  PRISMA flow diagram showing how studies were selected for the systematic review. NB- The ‘Records screened’ stage refers to title and 
abstract screening and the ‘Reports assessed for eligibility’ stage relates to full-text screening. Figure adapted from Page et al. (2021), PRISMA 2020 
flow diagram [94].

https://doi.org/10.1371/journal.pone.0333107.g001

https://doi.org/10.1371/journal.pone.0333107.g001
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Table 2.  Characteristics of included studies.

Author & 
Year

Country & Setting Population 
size

Infection/s Single or 
multi-
ple TL 
measure-
ments

Technique 
of telomere 
measure-
ment e.g. 
qPCR

Type of telo-
mere length 
measure, 
e.g., relative 
or absolute

Cell type Study design

Aiello (2017) USA, Six US 
communities

163 C. pneu-
moniae,
Cmv,
hsv-1,
h.pylori,
Combined 
burden

Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional

Al-Awadhi 
(2024)

Kuwait, Mubarak  
Al-kabeer Hospital

287 high risk 
hpv

Single Q-PCR Relative, T/S 
ratio

Cervical epithelial 
cells

Cross-sectional

Albosale 
(2021)

Unclear 100 HPV Single Q-PCR Relative, T/S 
ratio

Cervical epithelial 
cells

Cross-sectional

Andreu- 
Sanchez 
(2024)

Netherlands, Lifelines 
cohort

1,243 CMV, 
Rhinovirus

Single FLOW-FISH Absolute TL Lymphocytes, 
Granulocytes, 
Naive T-cells, 
Memory T-cells, 
B-cells, NK-cells

Cross-sectional

Auld (2016) Uganda, Mulago Hospital 
in Kampala

184 HIV,
TB

Single Q-PCR Relative, T/S 
ratio

PBMCs Cross-sectional

Babu (2019) India, Chennai 96 HIV Single Q-PCR unclear PBMCs Cross-sectional

Benetos 
(2021)

France, Geriatric Depart-
ment of the University of 
Nancy

38 COVID-19 Single TeSLA and 
southern 
blot mea-
surements

absolute Leukocyte Cross-sectional

Breen (2022) USA, The Multicenter 
AIDS Cohort Study 
(MACS)

204 HIV Multiple DNA 
methylation

methylation- 
based 
estimate

PBMCs Cohort

Cadinanos 
(2024)

Spain, La Paz University 
Hospital,Madrid

384 HIV Single Q-PCR Relative, T/S 
ratio

Blood telomere 
length

Cross-sectional

Chico-Sordo 
(2022)

Spain, IVI-RMA Madrid 
clinic

65 COVID-19 Single Q-FISH Absolute Granulosa Cells 
and peripheral 
blood mononu-
clear cells

Cross-sectional 
analysis within 
a cohort study

Ding (2018) China, Taizhou prefec-
ture of Zhejiang province

488 HIV Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional

Dowd (2013) UK, Data are drawn from 
the Whitehall II study

434 CMV Single Q-PCR Relative, T/S 
ratio

PBMC Cross-sectional

Dowd (2017) UK, Participants were 
from the Heart Scan 
subsample of the White-
hall II epidemiological 
cohort (consists of British 
civil servants from 20 
departments)

400 Cmv,
hsv-1,
hhv-6,
ebv,
Combined 
burden

Multiple Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional 
and cohort

Freimane 
(2021)

Latvia, 108 multi drug 
resistant 
TB

Single Q-PCR Relative, T/S 
ratio

Peripheral blood 
cells

Cross-sectional

Gaardbo 
(2013)

Denmark, Danish 
hospitals

98 HIV Single Q-PCR Relative telo-
mere length 
compared to 
uninfected 
controls

CD8 + enriched 
PBMC

Cross-sectional

(Continued)
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Author & 
Year

Country & Setting Population 
size

Infection/s Single or 
multi-
ple TL 
measure-
ments

Technique 
of telomere 
measure-
ment e.g. 
qPCR

Type of telo-
mere length 
measure, 
e.g., relative 
or absolute

Cell type Study design

Giesbrecht 
(2014)

Canada, British 
Colombia

126 HIV Single Q-PCR Relative, T/S 
ratio

Peripheral blood 
cells

Cross-sectional

Gogia (2015) USA, San Francisco 
General Hospital

89 HIV Single Q-PCR Relative, T/S 
ratio

PBMCs Cross-sectional

Gonzalez- 
Serna (2017)

Canada, A subset of the 
Vancouver Injection Drug 
User Study

95, unclear 
follow-up

HIV,
HCV

Multiple Q-PCR Relative, T/S 
ratio

PBMCs Retrospective 
cohort

Grady (2013) Netherlands, Amsterdam 74 HCV 
mono- 
infection,
HCV-HIV 
coinfection

(Change) 
Two Mea-
surements, 
Not Clear 
Which 
Time 
Points

Flowcytom-
etry and 
fluorescent 
in situ 
hybridization 
(FLOW-
FISH)

Median telo-
mere length of 
T cell subsets 
relative to 
telomere 
length of calf 
thymocytes

T cells Cohort

Hampras 
(2016)

USA, University of South 
Florida and Moffitt Can-
cer Center

336 HPV Single Q-PCR Relative, T/S 
ratio

Peripheral blood 
leukocytes

Cross-sectional 
analysis in 
case-control 
study

Hartling 
(2013)

Denmark, Copenhagen 75 HCV Single Q-PCR Relative, T/S 
ratio

PBMCs Cross-sectional

Hsieh (2015) Unclear ‘n’ differs by cell 
type with maxi-
mum ‘n’ of 29

HIV Single Q-PCR Relative, T/S 
ratio

PBMCs includ-
ing: Proliferative 
CD8 + CD28 + T 
cells, senescent 
CD8 + CD28- T 
cells, CD4+

Cross-sectional 
analysis in 
cohort study

Huang (2020) USA 3,472 H.pylori Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional

Huang (2022) European cohorts 1,388,342 criti-
cally ill COVID-
19. 472,174 LTL

Critically-ill 
COVID-19

Single Q-PCR Relative, T/S 
ratio

Leukocyte Mendelian 
randomization 
study

Imam (2012) Canada, British Colum-
bia Women’s Hospital, 
Vancouver, Canada

99 HIV Single Q-PCR Relative, T/S 
ratio

Leukocyte The relevant 
data was cross- 
sectional data 
but collected 
from a pro-
spective cohort 
study

Jiang (2022) European cohorts LTL: 78,592, 
Covid-19 
susceptibility: 
1,683,768
Covid-19 sever-
ity: 1,887,658

COVID-19 Single Q-PCR Relative, T/S 
ratio

Leukocyte Two-sample 
bidirectional 
Mendelian 
Randomization 
Study

Jiang (2023) UK, UK Biobank telomere length
=472,174.
Sepsis =
486,484.

Sepsis Single Q-PCR Relative, T/S 
ratio

Leukocyte Bidirectional 
Mendelian 
randomization 
(MR) study

Jimenez 
(2016)

Netherlands, Amsterdam 189 HIV Single Q-PCR Relative, T/S 
ratio

PBMCs Cross-sectional 
analysis within 
cohort study

Table 2.  (Continued)

(Continued)
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Author & 
Year

Country & Setting Population 
size

Infection/s Single or 
multi-
ple TL 
measure-
ments

Technique 
of telomere 
measure-
ment e.g. 
qPCR

Type of telo-
mere length 
measure, 
e.g., relative 
or absolute

Cell type Study design

Krasnienkov 
(2022)

Ukraine, Kyiv 106 COVID-19 Single Q-PCR Relative, T/S 
ratio

Peripheral blood 
leukocytes

Cross-sectional

Liang (2024) USA, Veterans Aging 
Cohort Study and Wom-
en’s Interagency HIV 
Study Cohort

Veterans 
Aging Cohort 
Study = 1251
Women’s 
Interagency 
HIV Study 
Cohort = 481

HIV Single Methylation Relative, T/S 
ratio

PBMCS + whole 
blood

Cross-sectional

Liu (2015) Canada, Canada (sev-
eral locations)

922 HIV Single Q-PCR absolute TL Peripheral blood 
leukocytes

Cross-sectional

Ma (2016) China, hospital of North 
Sichuan Medical Col-
lege, Nanchong, Sichuan

396 HBV Single Q-PCR Relative, T/S 
ratio

Peripheral blood 
leukocytes

Cross-sectional

Macamo 
(2024)

South Africa, primary 
healthcare facilities 

100 HIV,
Helminths,
HIV + Hel-
minths

Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional

Malan (2015) South Africa, Dr Kenneth 
Kaunda Education 
district in the North West 
Province

341 HIV Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional

Malan-Muller 
(2013)

South Africa 128 HIV Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional

Manavalan 
(2016)

USA, Columbia Uni-
versity Medical Center 
(CUMC) in New York City

45 HIV Single Q-PCR Relative, T/S 
ratio

Peripheral blood 
osteogenic 
precursor (COP) 
cells

Cross-sectional

Mehta (2021) USA, Translational 
Methamphetamine AIDS 
Research Center, San 
Diego

161 HIV Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional

Meijers (2013) Unclear 159 CMV Single Flow-FISH Relative, T/S 
ratio

Peripheral blood 
mononuclear 
cells (CD4+ and 
CD8 + T cells)

Cross-sectional

Miedema 
(1996)

Unclear, Unclear 21, (unclear 
follow-up)

HIV Multiple Unclear Absolute TRF 
length

PBMCS Cohort

Mongelli 
(2021)

Unclear, Unclear 261 COVID-19 Single Q-PCR Absolute TL Un-specified 
peripheral blood 
cells

Cross-sectional

Muhsen 
(2019)

Israel, Jerusalem 934 H.Pylori Single Southern 
blot

Absolute TL Leukocyte Cross-sectional

Nguyen 
(2022)

USA 3454 Periodon-
titis

Single Q-PCR Absolute (bp) 
and relative 
TL (T/S ratio)

Leukocyte Cross-sectional

Table 2.  (Continued)
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Author & 
Year

Country & Setting Population 
size

Infection/s Single or 
multi-
ple TL 
measure-
ments

Technique 
of telomere 
measure-
ment e.g. 
qPCR

Type of telo-
mere length 
measure, 
e.g., relative 
or absolute

Cell type Study design

Noppert 
(2020)

USA, Data from a large, 
nationally representative 
sample of US adults 
(National Health and 
Nutrition Examination 
Survey (NHANES)

1708 HSV-1,
HSV-2,
CMV,
H.pylori,
HBV,
Combined 
burden

Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional 
study

Panczyszyn 
(2020)

Unclear 88 high-risk 
hpv

Single Q-PCR absolute Non-specific 
blood and cervi-
cal cells

Cross-sectional

Pathai (2013) South Africa, Clinics in 
township communities in 
Cape Town

486 HIV Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional

Petrara (2024) Italy, Department of 
Women’s and Children’s 
Health of the University 
Hospital of Padova

78 HIV Single Q-PCR Relative, T/S 
ratio

PBMCs Cross-sectional

Retuerto 
(2022)

Spain, Madrid 420 COVID-19 Single Q-PCR Absolute TL Peripheral blood 
leukocytes

Cross-sectional

Richardson 
(2000)

USA and France 170 HIV Single Southern 
Blot

TRF length PBMCs Cross-sectional

Saberi (2019) Canada, Vancouver 105, unclear 
follow-up time

HIV,
HCV

Multiple Q-PCR Relative TL 
(T/S ratio)

Leukocyte Cohort

Savrun (2024) Turkey,Emergency 
Department at Ordu 
University

140 COVID-19 Single Q-PCR Relative, T/S 
ratio

Un-specified 
blood cells

Cross-sectional

Sehl (2021) USA, Baltimore, Pitts-
burgh, Los Angeles, 
Chicago

201 HIV,
HBV

Multiple Methylation DNAm-TL Peripheral blood 
mononuclear 
cells

Cohort

Shiau (2021) USA, Columbia Univer-
sity Irving Medical Center 
(CUIMC) in New York 
City

107 HIV Single Methylation DNAm-TL Not clear- says 
blood extracted

Cross-sectional

Shiau (2024) USA, 3 Women’s Inter-
agency HIV Study sites 
(San Francisco, Bronx, 
and Chicago)

190 HIV Single Methylation DNAmTL PBMCs Cross-sectional

Soares (2025) Brazil, São Paulo 112 COVID-19 Single Q-PCR Relative, T/S 
ratio

Sperm cells Cross-sectional

Song (2020) USA, The United States 3,478 periodontitis Single Q-PCR Relative (T/S 
ratio) and 
absolute TL 
(base pairs)

Leukocyte Cross-sectional

Spyridopoulos 
(2009)

Unclear 33 CMV Single Flow-FISH absolute Leukocyte (vari-
ous types)

Cross-sectional

Srinivasa 
(2014)

USA, Boston 142 HIV Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional

Tachtatzis 
(2011)

unclear, unclear 94 HBV Single Q-FISH Mean fluores-
cent intensity

Hepatocytes Cross-sectional

Table 2.  (Continued)
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Author & 
Year

Country & Setting Population 
size

Infection/s Single or 
multi-
ple TL 
measure-
ments

Technique 
of telomere 
measure-
ment e.g. 
qPCR

Type of telo-
mere length 
measure, 
e.g., relative 
or absolute

Cell type Study design

Tahara (2013) Unclear 150 h.pylori Single Q-PCR Relative, T/S 
ratio

Gastric mucosa 
cells

Cross-sectional

Toljic (2023) Serbia, Clinic for
Infectious and Tropical 
Diseases, School of 
Medicine, University of 
Belgrade and unexposed 
blood donor volunteers 
from the Blood Transfu-
sion Institute of Serbia, 
Belgrade

205 HIV Single Q-PCR Relative, T/S 
ratio

Leukocytes of 
whole blood

Cross-sectional

Tucker (2000) UK, West London 
hospitals

21 HIV Single Southern 
blot

TRF length 
measured 
to calculate 
absolute TL

Lymphocytes (4 
cell types)

Cross-sectional

Usadi (2016) USA, 5 major US blood 
centers (Baltimore/
Washington, Detroit, 
Oklahoma City, San 
Francisco, and Los 
Angeles)

135 HTLV-1,
HTLV-2

Single Q-PCR Relative, T/S 
ratio

Peripheral blood 
mononuclear 
cells

Cross-sectional

Wang (2019) Uganda, Mulago 
National Referral Hospi-
tal in Kampala,

434 HIV,
TB

Single Q-PCR Relative, T/S 
ratio

PBMCs Cross-sectional

Wang (2022) China, Shandong Univer-
sity Second Hospital

1318 high risk 
hpv

Single Q-PCR Relative, T/S 
ratio

Epithelial cells Cross-sectional

Womersley 
(2021)

South Africa, community 
health care facilities in 
and around Cape Town

286 (cross- 
sectional), 110 
(longitudinal)

HIV Multiple Q-PCR Relative, T/S 
ratio

Not clear, states 
that DNA was 
extracted from 
whole blood

Cross-sectional 
and cohort

Woods (2023) USA, San Diego County 149 HIV Single Q-PCR Relative, T/S 
ratio

not clear Cross-sectional

Xu (2022) European cohorts, Euro-
pean ancestry studies

telomere length: 
472174. Covid 
susceptibility: 
(1,683,768).
Covid severity: 
(1,388,342)

COVID-19 Single Q-PCR Relative, T/S 
ratio

Leukocyte Bidirectional 
Mendelian 
randomization 
study

Xu (2024) UK, UK Biobank telomere length
=472,174.
Sepsis =
486,484.

Sepsis Single Q-PCR Relative, T/S 
ratio

Leukocyte Bidirectional 
Mendelian 
randomization 
(MR) study

Yang (2024) Canada, Canada (sev-
eral locations)

376 HCV, HHV-
8, HSV-2, 
CMV, 
HSV-1, 
EBV, HIV, 
combined 
burden

Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional

Table 2.  (Continued)
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Author & 
Year

Country & Setting Population 
size

Infection/s Single or 
multi-
ple TL 
measure-
ments

Technique 
of telomere 
measure-
ment e.g. 
qPCR

Type of telo-
mere length 
measure, 
e.g., relative 
or absolute

Cell type Study design

Yoshioka 
(2012)

Japan, the Endoscopy 
Center of Fujita Health 
University Hospital

150 H. Pylori Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional

Zanet (2014) Canada, Vancouver 395 HIV,
HCV,
HBV

Single Q-PCR Relative, T/S 
ratio

Leukocyte Cross-sectional

Zhang (2014) China, Department of 
Thoracic Surgery in the 
Affiliated Tumor Hospital 
of Shantou University 
Medical College

70 high-risk 
hpv

Single Q-PCR Relative, T/S 
ratio

Oesophageal 
squamous 
cell carcinoma 
(ESCC) and 
paired matched 
adjacent noncan-
cerous tissues

Cross-sectional

Zribi (2019) Israel, 14-bed, general 
intensive care
department of the Rabin 
Medical Center, Campus 
Beilinson, Israel

40 Sepsis 2 
Measures

Q-PCR Relative, T/S 
ratio

Unspecified 
blood cells

Cohort

Abbreviations: TL = Telomere length, Q-PCR = Quantitative Polymerase Chain Reaction, TRF = Terminal Restriction Fragment, PBMCs = Peripheral Blood 
Mononuclear Cells, SNP = Single Nucleotide Polymorphism, MR = Mendelian Randomization, ART = Antiretroviral Therapy, CMV = Cytomegalovirus, 
HCV = Hepatitis C Virus, HBV = Hepatitis B Virus, HPV = Human Papillomavirus, HTLV = Human T-Lymphotropic Virus, NHANES = National Health and 
Nutrition Examination Survey, ELISA = Enzyme-Linked Immunosorbent Assay, FISH = Fluorescence In Situ Hybridization, T/S Ratio = Telomere-to-Single 
Copy Gene Ratio, DNAmTL = DNA methylation-based telomere length.

https://doi.org/10.1371/journal.pone.0333107.t002

Table 2.  (Continued)

Infection type

Across the 73 studies, 22 separate infections and 6 different co-infections were investigated. The most frequent pathogen 
was HIV, found in 35 of the 73 studies (48%), followed by Coronavirus Disease 2019 (COVID-19) (10 studies), Cytomega-
lovirus (CMV) (8 studies), Helicobacter Pylori (H.Pylori) and hepatitis C with 6 studies each and hepatitis B (5 studies). All 
other infections had 3 or fewer studies.

The 105 E-O relationships examined in the 73 studies are displayed stratified by infection type, cell type, TL or change 
in TL, TL measure, TL measurement assay and statistical analysis method in S3 Table. There were a total of 89 unique 
E-O relationships. Very few unique E-O relationships were homogeneous with respect to infection type, cell type, outcome 
(TL or change in TL), TL measure (relative or absolute), TL measurement assay, and statistical method. Only HIV, Herpes 
Simplex Virus-1 (HSV-1), CMV and H. pylori had more than two unique homogeneous E-O relationships.

The association of infections with TL

Overall, across all infections, 42 of 89 (47%) unique exposure–outcome relationships showed evidence of association 
(p < 0.05), with infection linked to shorter TL or greater telomere attrition (Table 3). However some of these results were 
unadjusted, of the unique E-O relationships with matching or adjusted analysis 23 of 55 (42%) showed evidence of asso-
ciation (p < 0.05).

By infection type, 23 out of 29 HIV unique E-O relationships (79%) showed an association, and of the unique HIV 
E-O relationships with matching or adjusted analysis, 15 out of 19 (79%) showed an association. For other pathogens, 

https://doi.org/10.1371/journal.pone.0333107.t002
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Fig 2.   Risk of Bias by Domain Across 105 Exposure–Outcome Relationships. D1-confounding, D2-measurement of the exposure, D3- selec-
tion of participants into the study (or into the analysis), D4-post-exposure interventions, D5- missing data, D6- measurement of the outcome, 
D7- selection of the reported result.

https://doi.org/10.1371/journal.pone.0333107.g002

evidence was variable and the number of E-O relationships for other pathogens were small, often with only one unique 
E-O relationship available for each infection type. Four studies investigated the combined burden of multiple infections, 
each looking at different combinations of pathogens; one showed an association between infection burden and TL/TA, 
whereas the other three did not.

Depicted in Forest plots are difference in mean TL by infection status for HIV (Fig 3) (N = 11), CMV (Fig 4) (N = 4), and HSV-1 
(Fig 5) (N = 4). Most HIV studies presenting difference in mean TL showed an association between HIV and reduced TL or 
increased telomere attrition. For CMV and HSV-1 the results were mixed, with only one of three studies (all three studies pre-
sented results for both pathogens) showing an association between infection and reduced TL for both pathogens.

Infection severity

The relationship between infection severity and TL was examined in studies of 34 E-O relationships, yielding mixed results 
(S3 Table). There were insufficient homogenous studies with respect to severity, which made comparisons difficult. The 
most commonly used severity measures for HIV were viral load (n = 4) and HIV progression (fast vs no/slow progression, 
n = 4). For viral load, evidence of an association between increased viral load and shorter telomere length was found in 
two [38,79] of four E-O relationships. For progression status, faster progression was associated with shorter telomere 
length in three [36,60,74] out of four E-O relationships where this was evaluated.

For other pathogens such as CMV and COVID-19 results were less clear and conflicting.

Age and sex

Relatively few studies investigated whether the association between infection and telomere length differed according to 
age or sex. None found strong evidence for interaction, either due to p-values greater than 0.05 or because no statistical 
test was performed (S3 Table).

https://doi.org/10.1371/journal.pone.0333107.g002
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Table 3.  Exposure-outcome relationships by pathogen/infection type.

Pathogen/ 
infection

Number of 
E-O rela-
tionships 
examined

Number 
of unique 
E-O 
relation-
ships1

Maximum 
number 
of unique 
homoge-
nous E-O 
relation-
ships2

Number of unique E-O 
relationships showing 
evidence infection was 
associated (p < 0.05) with 
shorter telomere length or 
greater attrition (% of all 
unique E-O relationships) 3

Number of 
unique E-O 
relationships 
with any 
matching/ 
adjusted 
analysis

Number of unique E-O relation-
ships with matching/ adjusted 
analysis AND showing evi-
dence infection was associated 
(p < 0.05) with shorter telomere 
length or greater attrition (% 
of all unique E-O relation-
ships with matching/ adjusted 
analysis)

Number of 
unique E-O 
relationships 
with high/ very 
high overall risk 
of bias score (% 
of all unique E-O 
relationships)

HIV 35 29 4 23 (79.3) 19 15 (78.9) 21 (72.4)

COVID-19 10 8 None 5 (62.5) 3 2 (66.7) 7 (87.5)

CMV 8 7 4 2 (28.57) 5 1 (20.0) 3 (42.9)

H. Pylori 6 4 2 1 (25.0) 3 0 1 (25.0)

HCV 6 4 None 1 (25.0) 2 1 (50.0) 4 (100.0)

HBV 5 5 2 2 (40.0) 1 0 4 (80.0)

HPV 2 2 None 1 (50.0) 0 0 2 (100.0)

HR-HPV 4 4 None 1 (25.0) 0 0 4 (100.0)

HSV-1 4 4 4 1 (25.0) 4 1 (25.0) 0

Sepsis 3 2 None 0 1 0 1 (50.0)

EBV 2 2 2 0 2 0 0

HSV-2 2 2 2 0 2 0 0

TB 2 1 None 0 0 0 1 (100.0)

MDR-TB 1 1 None 1 (100.0) 0 0 1 (100.0)

Periodontitis 2 1 None 0 1 0 0

C. 
pneumoniae

1 1 None 0 1 0 0

Helminths 1 1 None 1 (100.0) 1 1 (100.0) 0

HHV-6 1 1 None 0 1 0 0

HHV-8 1 1 None 0 1 0 0

HTLV-1 1 1 None 0 1 0 1 (100.0)

HTLV-2 1 1 None 0 1 0 1 (100.0)

Rhinovirus 1 1 None 1 (100.0) 0 0 1 (100.0)

HIV/HCV 
co-infection

1 1 None 1 (100.0) 1 1 (100.0) 1 (100.0)

HIV + Hel-
minths

1 1 None 0 1 0 0

Combined 
Burden 
of HSV-
1,HSV-2, 
CMV, H. 
Pylori, HBV

1 1 None 0 1 0 0

Combined 
burden of 
C. pneumo-
niae, HSV-
1, CMV, H. 
Pylori

1 1 None 0 1 0 0

Combined 
burden of 
CMV, HSV-
1, HHV-6, 
EBV

1 1 None 1 (100.00) 1 1 (100.0) 0

(Continued)
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Pathogen/ 
infection

Number of 
E-O rela-
tionships 
examined

Number 
of unique 
E-O 
relation-
ships1

Maximum 
number 
of unique 
homoge-
nous E-O 
relation-
ships2

Number of unique E-O 
relationships showing 
evidence infection was 
associated (p < 0.05) with 
shorter telomere length or 
greater attrition (% of all 
unique E-O relationships) 3

Number of 
unique E-O 
relationships 
with any 
matching/ 
adjusted 
analysis

Number of unique E-O relation-
ships with matching/ adjusted 
analysis AND showing evi-
dence infection was associated 
(p < 0.05) with shorter telomere 
length or greater attrition (% 
of all unique E-O relation-
ships with matching/ adjusted 
analysis)

Number of 
unique E-O 
relationships 
with high/ very 
high overall risk 
of bias score (% 
of all unique E-O 
relationships)

Combined 
burden 
of CMV, 
EBV, HCV, 
HHV-8, 
HIV, HSV-1, 
HSV-2

1 1 None 0 1 0 0

Total 105 89 N/A 42 (47.2) 55 23 (41.8) 53 (60.0)

1- E-O relationships were considered ‘unique’ if they derived their results from distinct samples (i.e., no overlapping data). When multiple E-O relation-
ships for the same infection reported on the same population, we selected a single study to represent that population, prioritising longitudinal designs, 
then those with the largest sample sizes, and finally the most recent publications.

2- This column shows the largest number of homogeneous E-O relationships for each specific pathogen or infection. E-O relationships were deemed 
‘homogeneous’ if they were directly comparable to each other, i.e., they matched across all the potential sources of heterogeneity (telomere length (TL) 
or change in TL, TL measure, TL measurement assay, and statistical method). For example, if among the CMV studies there were two sets of compara-
ble E-O relationships; one set consisting of two E-O relationships, and the other of three, the largest group of comparable studies would be three. Hence 
“3” would be presented in the table.

3- Some studies had mixed results. This column indicates if their primary outcome was associated with reduced TL

Abbreviations: HIV: Human Immunodeficiency Virus, COVID-19: Coronavirus Disease 2019, CMV: Cytomegalovirus, H. pylori: Helicobacter pylori, HCV: 
Hepatitis C Virus, HBV: Hepatitis B Virus, HPV: Human Papillomavirus, HR-HPV: High-Risk Human Papillomavirus, HSV-1: Herpes Simplex Virus Type 
1, TB: Tuberculosis, MDR-TB: Multidrug-Resistant Tuberculosis, C. pneumoniae: Chlamydia pneumoniae, EBV: Epstein-Barr Virus, E-O: Exposure- 
outcome, HHV-6: Human Herpesvirus 6, HSV-2: Herpes Simplex Virus Type 2, HTLV-1: Human T-Lymphotropic Virus Type 1, HTLV-2: Human  
T-Lymphotropic Virus Type 2

https://doi.org/10.1371/journal.pone.0333107.t003

Fig 3.  Forest plot of HIV studies presenting difference in mean telomere length. The difference in means relates to mean in infected group minus 
mean in control group. 1- Results are from univariate analysis only. *−95% Confidence interval calculated from available data. **- Effect estimate and 
95% confidence interval calculated from available data.

https://doi.org/10.1371/journal.pone.0333107.g003

Table 3.  (Continued)
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https://doi.org/10.1371/journal.pone.0333107.g003
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GRADE assessment

The overall evidence on the associations of HIV, CMV and HSV-1 difference in mean telomere length were classified as 
of very low quality using the GRADE assessment tool (Table 4). For HIV this was due to the observational nature of the 
studies as well as issues with inconsistency, imprecision, and indirectness. For HSV-1 and CMV, all studies were observa-
tional and there was issues with inconsistency.

For the publication bias domain, funnel plots were not performed for any of the infection types. Although the HIV 
exposure group met the conventional minimum threshold for funnel plot analysis (n = 10 studies) [95], 6 of these reported 

Fig 4.  Forest plot of CMV studies presenting difference in mean telomere length. The difference in means relates to mean in infected group minus 
mean in control group. *−95% Confidence interval calculated from available data.

https://doi.org/10.1371/journal.pone.0333107.g004

Fig 5.  Forest plot of HSV-1 studies presenting difference in mean telomere length. The difference in means relates to mean in infected group 
minus mean in control group. *−95% Confidence interval calculated from available data.

https://doi.org/10.1371/journal.pone.0333107.g005

Table 4.  GRADE quality assessment.

Outcome Expo-
sure

Study design and 
no. of studies

Risk 
of bias

Incon-
sistency

Indirect-
ness

Impre-
cision

Publica-
tion bias

Upgrade Quality

Difference in mean blood 
cell telomere length

HIV 11 cross-sectional 
studies

Very 
serious

Very 
serious

Very 
serious

Not 
serious

N/A None ⊕○○○ 
Very low

CMV 4 cross-sectional 
studies

Not 
serious

Serious Not 
serious

Not 
serious

N/A None ⊕○○○ 
Very low

HSV-1 4 cross-sectional 
studies

Not 
serious

Serious Not 
serious

Not 
serious

N/A None ⊕○○○ 
Very low

https://doi.org/10.1371/journal.pone.0333107.t004

https://doi.org/10.1371/journal.pone.0333107.g004
https://doi.org/10.1371/journal.pone.0333107.g005
https://doi.org/10.1371/journal.pone.0333107.t004
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unadjusted effect estimates. This limited comparability with adjusted estimates and introduced systematic bias unrelated 
to publication bias. Consequently, an assessment of publication bias was deemed inappropriate in this context.

Discussion

Summary of key findings

Our systematic review aimed to summarise the relationship between infections and TL or telomere attrition across vari-
ous study designs and infection types. We included 73 studies examining 105 E-O relationships between infections and 
telomere length or telomere attrition. The most frequently represented infection was HIV, which was consistently associ-
ated with reduced TL or increased telomere attrition (79% of E-O relationships). In contrast, evidence for other infections 
was more mixed. Of the four studies investigating pathogen burden, one [15] reported a potential dose-response effect 
with greater telomere attrition with seropositivity to an increasing number of persistent pathogens, however the other three 
[17,27,93] reported no association between pathogen burden and TL/ telomere attrition.

Fifty-nine (56%) of the 105 E-O relationships were rated as having a high- or very-high- risk of bias, suggesting that the 
results may not be reliable. Consequently, while there is some evidence for an association between infections and TL, the 
overall validity findings may be limited due to potential bias of many included studies.

Strengths and limitations

Several methodological strengths enhance the reliability of this systematic review. Firstly, there was comprehensive study 
selection. Our review included a variety of study designs, including cross-sectional, cohort, and Mendelian randomisation 
studies, allowing for a more comprehensive understanding of the infection-telomere relationship. We included studies from 
multiple geographical locations and across a range of pathogen types, allowing us to evaluate the potential differential 
impact of infections across populations. The use of independent reviewers to screen studies and extract data minimised 
selection bias and allowed for reproducible findings. Our approach of categorising studies based on infection type, cell 
type, telomere measurement approach, and statistical analysis method to assess homogeneity and uniqueness allowed 
for meaningful comparisons. Finally, the assessment of risk of bias for each exposure-outcome relationship as well as 
GRADE assessment for comparable HIV, HSV-1 and CMV studies, provides information on the quality and reliability of the 
studies included.

However, our systematic review had several limitations potentially affecting the interpretation of its findings. We were 
unable to systematically identify grey literature due to a cyber-attack on the British library meaning a planned search of 
the EThOS database was not possible [96]. The second reviewer only conducted 10% random sample of data extraction 
so some of the extracted data has not been verified, although this is unlikely to have affected results.

In terms of the limitations of the included literature, we saw considerable heterogeneity with respect to infection type, 
cell type, telomere measurement approaches and statistical analysis method. This between-study heterogeneity limited 
comparison across studies meaning a meta-analysis was not possible as a pooled analysis would have been difficult to 
interpret.

The high or very high risk of bias found in most studies, especially concerning confounding (ROBINS-E Domain 1) and 
participant selection (Domain 2), means the results may not be reliable estimates of the effect of infection on TL. Many 
included studies had inadequate control for confounders such as age, sex, ethnicity, and comorbidities. This inadequate 
accounting for confounding means that many of the associations could be biased as estimates of the effect of infection 
on TL. Additionally, issues with participant selection such as unclear recruitment strategies or the inclusion of participants 
already infected at enrolment, raise concerns about selection bias and further weaken the evidence. These method-
ological shortcomings highlight the need for more rigorously designed studies to reduce bias and improve the validity of 
findings. Most included studies were cross-sectional, which limits the ability to establish causality between infection and 
TL. Longitudinal studies are essential for determining whether infections lead to telomere shortening or if individuals with 
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shorter telomeres are more susceptible to certain infections. Previous studies have suggested the latter, with shorter TL 
associated with greater susceptibility to viral infection and worse clinical outcomes [97,98], highlighting the possibility of a 
reciprocal relationship between infection and TL akin to the “chicken or egg” dilemma.

Most studies focused on chronic infections, with only a few examining the effect of acute infections like COVID-19 on TL. 
Understanding the effect of acute versus chronic infections on telomere dynamics may provide a more comprehensive picture 
of infection-related telomere attrition. Moreover, we found no studies examining vaccination or infection treatments as expo-
sures which limits our ability to assess the likely effectiveness of anti-infective interventions to prevent telomere shortening [22].

Comparison with related literature

To our knowledge, there are no previous systematic reviews of this topic. A previous study [99] (that did not meet our 
inclusion criteria due to a lack of appropriate control group) found that a one unit increase of CMV antibody IgG titre was 
associated with −0.06 (95% confidence interval: −0.11, −0.01) unit decrease of leukocyte TL after adjusting for age, sex, 
body mass index and smoking status. These findings are consistent with just one [15] of the unique CMV studies in the 
present review, with the other four showing no association or inconclusive evidence.

Another study (again excluded due to lack of uninfected comparators) found that the shortest TL was observed three 
months post malaria infection compared to day 0, but that TL recovered after 12 months post-infection when there was no 
longer evidence of difference in TL [100]. This highlights the mixed results observed in our systematic review, suggesting 
that the measurement of TL and the time since infection may require further investigation.

Our review was restricted to studies within adults, however other individual studies [101,102] compared the effect of 
HIV infection vs non-infection on TL in children. The result of these studies in children were mixed, with one [101] conclud-
ing that absolute TL was shorter in HIV-infected and HIV-exposed uninfected (HEU) children compared with  
HIV-unexposed uninfected (HUU) children, but did not differ between HIV-infected and HEU children. Another study 
involving children found no associations between children’s LTL and perinatal antiretroviral therapy (ART) exposure or HIV 
status. This highlights the mixed results observed in our systematic review, suggesting that the measurement of TL and 
the time since infection may require further investigation [102]. However, they did find an association between having a 
detectable HIV viral load and shorter LTL. The authors suggested that these results showed that uncontrolled HIV viremia 
may be associated with acceleration of telomere attrition.

Implications for future research

Future research could focus on under-studied acute infections, employ longitudinal study designs to establish temporality, 
use standardised telomere measurement methods to increase inter-study comparability, and apply comprehensive adjust-
ment for confounders. Immune ageing, measured via telomere length as well as other methods such as epigenetic clocks 
[103], could be explored as a mechanism explaining the relationship between infections and age-related diseases.

Conclusions

Our systematic review highlights a potential association between infection and accelerated immune ageing, measured by 
TL and attrition, particularly in HIV. However, the evidence is limited by methodological issues and rated very low quality 
overall. Addressing these limitations through more robust longitudinal designs, standardised measurement methods, and 
a focus on adjustment for confounding factors will improve the quality of studies addressing this relationship.
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