

RESEARCH ARTICLE

Infection and telomere length: A systematic review

Louis Tunnicliffe^{1*}, Rutendo Muzambi², Jonathan W. Bartlett¹, Laura D. Howe³, Khalid A. Basit¹, Kwabena Asare¹, Georgia Gore-Langton¹, Kathryn E. Mansfield⁴, Veryan Codd⁵, Charlotte Warren-Gash¹

1 Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom, **2** Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, United Kingdom, **3** MRC Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom, **4** School of Health and Care Sciences, University of Lincoln, Lincoln, United Kingdom, **5** Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom

* Louis.Tunnicliffe@lshtm.ac.uk

Abstract

Background

Infections may increase the risk of age-related diseases such as dementia. Accelerated immunological ageing, measurable by telomere length (TL), may be a potential mechanism. However, the relationship between different infections and TL or telomere attrition remains unclear. This systematic review synthesises existing evidence on whether infections contribute to TL or telomere attrition and highlights research gaps to inform future studies.

Objective

To summarise the literature on associations between infections and telomere length or attrition.

Methods

We conducted comprehensive searches across six databases (MEDLINE, EMBASE, Web of Science, Scopus, Global Health, Cochrane Library) from inception to 22 May 2025, using concepts of infections, TL, and study type. Two researchers independently screened studies, extracted data, and assessed risk of bias (ROB) using the ROBINS-E tool. Meta-analysis was unfeasible due to heterogeneity, so a narrative synthesis was conducted. Studies were grouped by infection type, telomere measurement assay, cell type, and statistical approach. A GRADE assessment was performed to evaluate evidence quality.

OPEN ACCESS

Citation: Tunnicliffe L, Muzambi R, Bartlett JW, Howe LD, Basit KA, Asare K, et al. (2025) Infection and telomere length: A systematic review. PLoS One 20(9): e0333107. <https://doi.org/10.1371/journal.pone.0333107>

Editor: Gabriele Saretzki, University of Newcastle, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND

Received: July 17, 2025

Accepted: September 9, 2025

Published: September 23, 2025

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: <https://doi.org/10.1371/journal.pone.0333107>

Copyright: © 2025 Tunnicliffe et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided the original author and source are credited.

Data availability statement: All relevant data are within the manuscript and its [Supporting Information](#) files.

Funding: This systematic review was supported by Charlotte Warren-Gash's Wellcome Career Development Award [225868/Z/22/Z].

Competing interests: The authors have declared that no competing interests exist.

Abbreviations: **AD**, Alzheimer's Disease; **BMJ**, British Medical Journal; **C. pneumoniae**, *Chlamydia pneumoniae*; **CMV**, Cytomegalovirus; **COVID-19**, Coronavirus Disease 2019; **DNAm-TL**, DNA Methylation-Based Estimator of Telomere Length; **EBV**, Epstein-Barr Virus; **E-O**, Exposure-outcome; **FISH**, Fluorescence *In Situ* Hybridisation; **Flow-FISH**, Flow Fluorescence *In Situ* Hybridisation; **HAART**, Highly Active Antiretroviral Therapy; **HBV**, Hepatitis B Virus; **HCV**, Hepatitis C Virus; **HHV-6**, Human Herpesvirus 6; **HIV**, Human Immunodeficiency Virus; **HPV**, Human Papillomavirus; **HR-HPV**, High-Risk Human Papillomavirus; **HSV-1**, Herpes Simplex Virus Type 1; **HSV-2**, Herpes Simplex Virus Type 2; **HTLV-1**, Human T-Lymphotropic Virus Type 1; **HTLV-2**, Human T-Lymphotropic Virus Type 2; **ICD-10**, International Classification of Diseases, 10th Revision; **MDR-TB**, Multidrug-Resistant Tuberculosis; **PCR**, Polymerase Chain Reaction; **PECOS**, Population, Exposure, Comparator, Outcomes, and Study Characteristics; **PRISMA-P**, Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Protocols; **PROSPERO**, International Prospective Register of Systematic Reviews; **Q-FISH**, Quantitative Fluorescence *In Situ* Hybridisation; **Q-PCR**, Quantitative Polymerase Chain Reaction; **SB**, Southern Blot; **STELA**, Single Telomere Length Analysis; **TB**, Tuberculosis; **TeSLA**, Telomere Shortest Length Assay; **TL**, Telomere Length; **TRF**, Terminal Restriction Fragment

Results

Our searches identified 10,349 studies, of which 73 met eligibility criteria. Most (59) were cross-sectional and most were published after 2000, with the earliest from 1996. Most studies were from the USA (17). HIV was the most frequently studied infection (35 studies), with 79% (excluding overlapping samples) reporting an association between HIV and reduced TL or increased telomere attrition. Findings for other infections, including herpesviruses and Human Papillomavirus were more variable. Variation in infection type, measurement assay, cell type, and statistical approach made cross-study comparisons challenging. Most studies had a high ROB, mainly due to unmeasured confounding. The GRADE assessment rated evidence quality as very low.

Conclusions

Our review highlights a potential link between HIV and TL and telomere attrition. More robust longitudinal studies with standardised measurements and better confounder control are needed, particularly for non-HIV infections.

PROSPERO (ID:CRD42023444854)

Background

Infections may contribute to the development of age-related diseases such as cardiovascular disease (CVD) and dementia. Systematic reviews and meta-analyses [1,2] have shown that acute infections, including influenza and COVID-19, are associated with increased CVD risk. Observational evidence shows that a broad range of viral, bacterial and other infections leading to hospital admission are associated with increased risk of major adverse cardiovascular events [3]. Similarly, some infections may be implicated in dementia risk; severe infection syndromes including sepsis and pneumonia are associated with increased long-term dementia risk in large longitudinal studies [4,5] although evidence for association with individual pathogens such as human herpesviruses is less clear [6–8].

One potential mechanism underlying the potential infection-dementia association is accelerated immunological ageing. Immunological ageing refers to the gradual decline in immune system function and can be assessed through telomere length (TL) [9]. Telomeres are repetitive nucleotide sequences at the ends of chromosomes that protect genetic material from degradation. With each cell division, telomeres progressively shorten due to incomplete end-replication. Ultimately, this leads to cellular senescence or apoptosis [10]. Studies have linked shorter telomeres to Alzheimer's disease (AD). One meta-analysis found that individuals with AD have shorter telomeres compared to those without AD [11]. Similarly, a Mendelian randomisation study found that short telomeres were associated with increased risk of AD in both observational and genetic analyses [12].

However, the association between infections and TL remains unclear. Existing studies vary in terms of the infections studied, whether infections are acute or chronic, and the assays used to measure TL [13–15]. There are also variations in the measures of TL used in existing studies as well as study type and statistical analysis method, making it difficult to aggregate evidence [15–19].

Therefore, our systematic review aimed to summarise all available research on the association between infections and TL, or attrition, in adult humans, considering various study designs, telomere measurement methods, and statistical analysis approaches.

Methods

Protocol and registration

Our systematic review followed the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Protocols (PRISMA-P) statement ([S1 File](#)). We also pre-registered (PROSPERO registration number CRD42023444854) and published our protocol prior to starting the review [20–22] ([S2 File](#)).

Eligibility criteria

Studies were considered for inclusion in the systematic review if they met the Population, Exposure, Comparator, Outcomes, and Study characteristics (PECOS) framework criteria [23] presented in [Table 1](#).

Information sources

We searched for published studies across six bibliographic databases: MEDLINE (Ovid interface), EMBASE (Ovid interface), Web of Science, Scopus, Global Health, and the Cochrane Library from database inception to August 31, 2023. The reference lists of included papers were manually examined to find any other relevant studies.

Search

Our search strategy included three concepts: infections, TL, and study type. We combined search concepts using the Boolean ‘AND’ operator. We combined key words with database-specific subject headings for each search concept. We developed and adapted our search for various databases with guidance from a librarian at the London School of Hygiene

Table 1. Summary of systematic review inclusion eligibility criteria.

Population	Humans, adults aged 18 years or older, any geographic area and any setting.
Exposure	Any infection (i.e., any pathogen, site, severity, acute or chronic). Infection diagnosis could have been determined through electronic healthcare records (e.g., using morbidity-coded diagnoses), self-report, antibody measurements, or other laboratory markers of infection. In Mendelian randomisation studies, the exposure was defined as genetic variants linked to infection.
Comparator	The comparison group differed depending on the type of study. Individuals who were not exposed to the infection served as the comparator group for both cross-sectional and cohort studies. In case-control studies, the comparison group consisted of individuals who had normal TL.
Outcome	The outcomes included TL and telomere attrition (change in TL). We included research using any established assay to measure TL [24]. These assays included PCR (Polymerase Chain Reaction), TRF (Terminal Restriction Fragment) analysis, STELA (Single TL Analysis), TeSLA (Telomere Shortest Length Assay) and FISH (Fluorescence In Situ Hybridisation) techniques. We did not restrict by cell type in which TL was assessed.
Study Design	To ensure all possible designs were considered, we included cross-sectional studies, case-control studies, cohort studies, randomised controlled trials of vaccines or antimicrobial treatments, and Mendelian randomisation studies.

<https://doi.org/10.1371/journal.pone.0333107.t001>

and Tropical Medicine. We did not restrict our search on publication date or language. The complete search strategy can be found in [S3 File](#).

Study selection

We initially de-duplicated the papers returned by our search using automatic and manual methods with EndNote 20 software; automatically identified duplicates were manually reviewed and verified to ensure accuracy. If two studies had study samples that completely overlapped and similar findings, only the study with the largest sample size was kept. Studies with partially overlapping samples (or the same sample if results differed between studies) were retained. For studies with completely or almost completely overlapping samples, the one with the largest sample size was kept, and if these were the same, the most recent publication was selected. Two researchers reviewed all titles and abstracts independently against the eligibility criteria. When results differed, reviewers discussed to achieve consensus regarding which articles should proceed to full text review. In cases where the two reviewers could not agree a third reviewer was consulted. We repeated the process for the full-text review.

Data collection

The primary investigator extracted data from all included papers using a standardised data extraction form. To ensure consistency, a second researcher independently extracted data from a random sample of 10% of the included papers and compared the results with those of the primary investigator.

Our standard data extraction form captured data on study characteristics guided by the PECOS framework ([S1 Table](#)). We captured details on: 1) population characteristics (e.g., age, sex, setting); 2) infection exposure (e.g., acute or chronic, pathogen, severity); 3) comparators; 4) outcomes including TL or attrition, measurement assays (e.g., Quantitative Polymerase Chain Reaction (Q-PCR)), and cell type assessed; and 5) study characteristics (setting, study design, follow-up). The results extracted included unadjusted mean/median telomere length measurements as well as the crude and adjusted effect estimates from statistical modelling, e.g., beta coefficients from linear regression, odds ratios from logistic regression, F-values from mixed effect models. Details of any covariates and subgroup analyses were also collected (e.g., by sex or age).

Risk of bias

Some studies reported data on multiple infections, meaning the number of exposure-outcome (E-O) relationships exceeded the number of included studies. Therefore, we assessed risk of bias for each E-O relationship individually, as different E-O relationships within the same study could have varying risk-of-bias scores.

Two researchers independently assessed risk of bias of each E-O relationship using the Risk Of Bias In Non-randomized Studies – of Exposures (ROBINS-E) tool [25]. The ROBINS-E tool evaluates risk of bias in the following domains: Domain 1-confounding, D2-measurement of the exposure, D3-selection of participants into the study (or into the analysis), D4-post-exposure interventions, D5-missing data, D6-measurement of the outcome, and D7-selection of the reported result. For each domain, assessors answered a series of questions regarding the assessed study. Scores from all domains were then synthesised into an overall risk-of-bias rating (low, some concerns, high, very high) based on the ROBINS-E algorithm and further guidance provided in the tool.

Synthesis of results

We conducted a narrative synthesis considering the following potential sources of heterogeneity: infection type, cell type, outcome (TL or change in TL), TL measure (relative or absolute), TL measurement assay, and statistical method. Results were grouped based on these factors, starting with infection type and progressively refining by cell type, outcome,

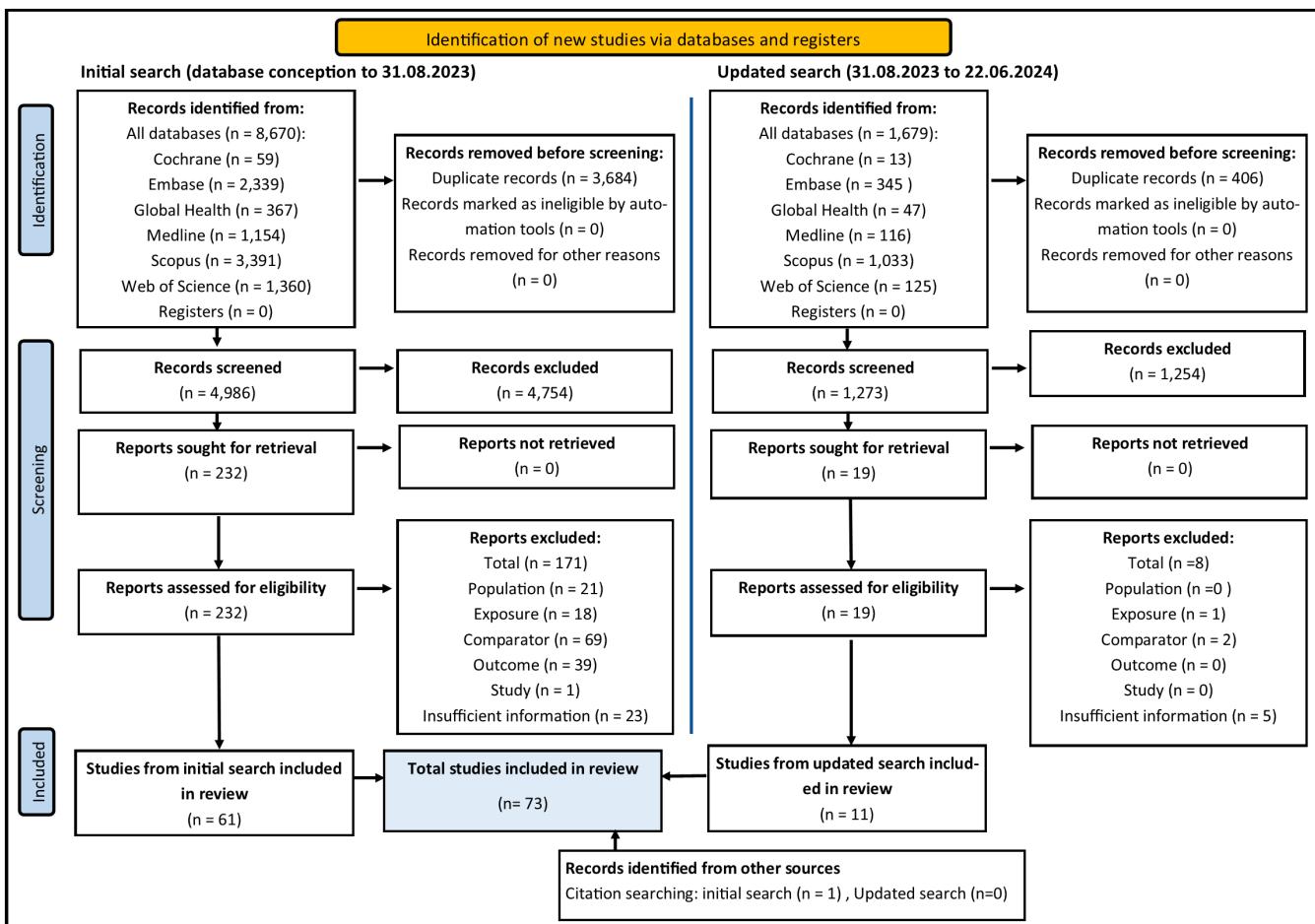
TL measure, assay, and statistical method, with studies in the final group being comparable across all sources of heterogeneity.

We also reported the total number of E-O relationships examined, then the number of unique E-O relationships by infection type. One E-O relationship from each overlapping sample was classed as 'unique'. To determine the unique E-O relationship, priority was given to those with longitudinal designs, followed by studies with the greatest sample size and to the most recent study. We then reported the number of unique homogeneous E-O relationships (defined as homogeneous if they matched all potential sources of heterogeneity). We also presented the number of unique E-O relationships showing evidence of an association (with smaller TL or greater telomere attrition) for each infection type. Given that many relationships were based on unadjusted results, we also reported the number with matched or adjusted analyses demonstrating evidence of association.

We did not meta-analyse due to high inter-study heterogeneity, which would render pooled estimates difficult to interpret. Instead, we presented forest plots for infections with at least three studies that reported the same type of effect estimate (e.g., difference in mean telomere lengths) with 95% confidence intervals, or where both the effect estimate and its 95% confidence interval could be calculated from the available data. To avoid duplication, when two or more studies had overlapping samples, only one was presented in the forest plot, with the same prioritisation criteria used for selecting unique studies. Forest plots were generated for HIV, Cytomegalovirus (CMV), and Herpes Simplex Virus Type 1 (HSV-1), as these infections had the highest number of studies meeting the inclusion criteria.

GRADE assessment

To assess the quality of evidence in the review we applied the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach, which provides a structured framework for rating the certainty of evidence across studies contributing to a specific outcome [26]. To ensure consistency and comparability we applied the same inclusion criteria for GRADE as for forest plots. Specifically, we included infections with at least three studies reporting the same type of effect estimate (e.g., difference in mean telomere lengths) with 95% confidence intervals, or where both the effect estimate and its confidence interval could be calculated from the available data. To avoid duplication, studies with overlapping samples were excluded using the same prioritisation strategy. This approach was taken because GRADE is intended to assess the certainty of a coherent body of evidence and applying it to highly heterogeneous studies with differing outcomes and effect types would not yield meaningful or interpretable assessments. GRADE evaluations were therefore conducted for HIV, CMV, and HSV-1, which had the highest number of sufficiently comparable studies.


The following domains were assessed using GRADE: Risk of bias, inconsistency, indirectness, imprecision, and publication bias. We rated the strength of evidence as high, moderate, low, or very low. The criteria used for determining the quality of evidence can be found in [S4 File](#).

Results

Study characteristics

Our initial search identified 8,670 records, 4,987 remained after removing duplicates. Of 4,987 titles/abstracts screened, 233 were taken to full-text review. After full-text review and citation searching, 62 studies [13,14,19, 27–82] [15–17] and 85 E-O relationships were eligible for inclusion in our review. An updated search conducted on 22.06.2024 identified an additional 1,679 records, of which 11 [83–93] met the inclusion criteria, resulting in a final total of 73 studies and 105 Exposure–Outcome relationships. [Fig 1](#) shows an adapted [94] PRISMA flow diagram summarising the results of the two searches..

Studies included were set across a range of geographical settings, with most (i.e., n=17, 23%) from the US, followed by 7 (10%) from Canada, and the remaining from a variety of, largely high-income, countries. Nine studies presented in conference abstracts did not clearly specify their setting.

Fig 1. PRISMA flow diagram showing how studies were selected for the systematic review. NB- The 'Records screened' stage refers to title and abstract screening and the 'Reports assessed for eligibility' stage relates to full-text screening. Figure adapted from Page et al. (2021), PRISMA 2020 flow diagram [94].

<https://doi.org/10.1371/journal.pone.0333107.g001>

Of the sixty-three studies included, the majority (59, 81%) were cross-sectional. Other study types included cohort, mendelian randomisation, and studies using a mixture of cross-sectional and cohort analyses. The characteristics of the included studies are presented in [Table 2](#).

Risk of bias assessment

Of the 105 infection-telomere relationships in the review, 59 (56%) were assessed based on overall score to be at high or very high risk of bias ([S2 Table](#)). Of the remaining E-O relationships that were not at high/very-high risk of bias, 40 (38%) were assessed as having some concerns, and only six were low risk of bias (6%).

The domain that was most frequently high-risk of bias was Domain 1 (confounding) with over 50% (n=55, 52%) out of 105 infection-telomere relationships at high risk of bias ([Fig 2](#)). Domains 3 (selection) and 4 (post-exposure interventions) also posed challenges, though they were less frequently classified as high risk of bias than Domain 1. However, >85% of infection-telomere relationships were still rated as having 'some concerns' or higher in each of these domains. Domains 2 (measurement of exposure), 5 (missing data), 6 (measurement of outcome), and 7 (selection of reported result) were mostly rated low risk, with over 80% of E-O relationships classified as low risk.

Table 2. Characteristics of included studies.

Author & Year	Country & Setting	Population size	Infection/s	Single or multiple TL measurements	Technique of telomere measurement e.g. qPCR	Type of telomere length measure, e.g., relative or absolute	Cell type	Study design
Aiello (2017)	USA, Six US communities	163	C. pneumoniae, Cmv, hsv-1, h.pylori, Combined burden	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional
Al-Awadhi (2024)	Kuwait, Mubarak Al-kabeer Hospital	287	high risk hpv	Single	Q-PCR	Relative, T/S ratio	Cervical epithelial cells	Cross-sectional
Albosale (2021)	Unclear	100	HPV	Single	Q-PCR	Relative, T/S ratio	Cervical epithelial cells	Cross-sectional
Andreu-Sanchez (2024)	Netherlands, Lifelines cohort	1,243	CMV, Rhinovirus	Single	FLOW-FISH	Absolute TL	Lymphocytes, Granulocytes, Naive T-cells, Memory T-cells, B-cells, NK-cells	Cross-sectional
Auld (2016)	Uganda, Mulago Hospital in Kampala	184	HIV, TB	Single	Q-PCR	Relative, T/S ratio	PBMCs	Cross-sectional
Babu (2019)	India, Chennai	96	HIV	Single	Q-PCR	unclear	PBMCs	Cross-sectional
Benetos (2021)	France, Geriatric Department of the University of Nancy	38	COVID-19	Single	TeSLA and southern blot measurements	absolute	Leukocyte	Cross-sectional
Breen (2022)	USA, The Multicenter AIDS Cohort Study (MACS)	204	HIV	Multiple	DNA methylation	methylation-based estimate	PBMCs	Cohort
Cadinanos (2024)	Spain, La Paz University Hospital, Madrid	384	HIV	Single	Q-PCR	Relative, T/S ratio	Blood telomere length	Cross-sectional
Chico-Sordo (2022)	Spain, IVI-RMA Madrid clinic	65	COVID-19	Single	Q-FISH	Absolute	Granulosa Cells and peripheral blood mononuclear cells	Cross-sectional analysis within a cohort study
Ding (2018)	China, Taizhou prefecture of Zhejiang province	488	HIV	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional
Dowd (2013)	UK, Data are drawn from the Whitehall II study	434	CMV	Single	Q-PCR	Relative, T/S ratio	PBMC	Cross-sectional
Dowd (2017)	UK, Participants were from the Heart Scan subsample of the Whitehall II epidemiological cohort (consists of British civil servants from 20 departments)	400	Cmv, hsv-1, hhv-6, ebv, Combined burden	Multiple	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional and cohort
Freimane (2021)	Latvia,	108	multi drug resistant TB	Single	Q-PCR	Relative, T/S ratio	Peripheral blood cells	Cross-sectional
Gaardbo (2013)	Denmark, Danish hospitals	98	HIV	Single	Q-PCR	Relative telomere length compared to uninfected controls	CD8+ enriched PBMC	Cross-sectional

(Continued)

Table 2. (Continued)

Author & Year	Country & Setting	Population size	Infection/s	Single or multi- ple TL measure- ments	Technique of telomere measure- ment e.g. qPCR	Type of telomere length measure, e.g., relative or absolute	Cell type	Study design
Giesbrecht (2014)	Canada, British Colombia	126	HIV	Single	Q-PCR	Relative, T/S ratio	Peripheral blood cells	Cross-sectional
Gogia (2015)	USA, San Francisco General Hospital	89	HIV	Single	Q-PCR	Relative, T/S ratio	PBMCs	Cross-sectional
Gonzalez-Serna (2017)	Canada, A subset of the Vancouver Injection Drug User Study	95, unclear follow-up	HIV, HCV	Multiple	Q-PCR	Relative, T/S ratio	PBMCs	Retrospective cohort
Grady (2013)	Netherlands, Amsterdam	74	HCV mono- infection, HCV-HIV coinfection	(Change) Two Measurements, Not Clear Which Time Points	Flowcytometry and fluorescent in situ hybridization (FLOW-FISH)	Median telomere length of T cell subsets relative to telomere length of calf thymocytes	T cells	Cohort
Hampras (2016)	USA, University of South Florida and Moffitt Cancer Center	336	HPV	Single	Q-PCR	Relative, T/S ratio	Peripheral blood leukocytes	Cross-sectional analysis in case-control study
Hartling (2013)	Denmark, Copenhagen	75	HCV	Single	Q-PCR	Relative, T/S ratio	PBMCs	Cross-sectional
Hsieh (2015)	Unclear	'n' differs by cell type with maximum 'n' of 29	HIV	Single	Q-PCR	Relative, T/S ratio	PBMCs including: Proliferative CD8+CD28+T cells, senescent CD8+CD28- T cells, CD4+	Cross-sectional analysis in cohort study
Huang (2020)	USA	3,472	H.pylori	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional
Huang (2022)	European cohorts	1,388,342 critically ill COVID-19. 472,174 LTL	Critically-ill COVID-19	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Mendelian randomization study
Imam (2012)	Canada, British Columbia Women's Hospital, Vancouver, Canada	99	HIV	Single	Q-PCR	Relative, T/S ratio	Leukocyte	The relevant data was cross-sectional data but collected from a prospective cohort study
Jiang (2022)	European cohorts	LTL: 78,592, Covid-19 susceptibility: 1,683,768 Covid-19 severity: 1,887,658	COVID-19	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Two-sample bidirectional Mendelian Randomization Study
Jiang (2023)	UK, UK Biobank	telomere length =472,174. Sepsis = 486,484.	Sepsis	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Bidirectional Mendelian randomization (MR) study
Jimenez (2016)	Netherlands, Amsterdam	189	HIV	Single	Q-PCR	Relative, T/S ratio	PBMCs	Cross-sectional analysis within cohort study

(Continued)

Table 2. (Continued)

Author & Year	Country & Setting	Population size	Infection/s	Single or multi- ple TL measure- ments	Technique of telomere measure- ment e.g. qPCR	Type of telomere length measure, e.g., relative or absolute	Cell type	Study design
Krasnienkov (2022)	Ukraine, Kyiv	106	COVID-19	Single	Q-PCR	Relative, T/S ratio	Peripheral blood leukocytes	Cross-sectional
Liang (2024)	USA, Veterans Aging Cohort Study and Women's Interagency HIV Study Cohort	Veterans Aging Cohort Study= 1251 Women's Interagency HIV Study Cohort= 481	HIV	Single	Methylation	Relative, T/S ratio	PBMCS + whole blood	Cross-sectional
Liu (2015)	Canada, Canada (several locations)	922	HIV	Single	Q-PCR	absolute TL	Peripheral blood leukocytes	Cross-sectional
Ma (2016)	China, hospital of North Sichuan Medical College, Nanchong, Sichuan	396	HBV	Single	Q-PCR	Relative, T/S ratio	Peripheral blood leukocytes	Cross-sectional
Macamo (2024)	South Africa, primary healthcare facilities	100	HIV, Helminths, HIV + Helminths	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional
Malan (2015)	South Africa, Dr Kenneth Kaunda Education district in the North West Province	341	HIV	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional
Malan-Muller (2013)	South Africa	128	HIV	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional
Manavalan (2016)	USA, Columbia University Medical Center (CUMC) in New York City	45	HIV	Single	Q-PCR	Relative, T/S ratio	Peripheral blood osteogenic precursor (COP) cells	Cross-sectional
Mehta (2021)	USA, Translational Methamphetamine AIDS Research Center, San Diego	161	HIV	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional
Meijers (2013)	Unclear	159	CMV	Single	Flow-FISH	Relative, T/S ratio	Peripheral blood mononuclear cells (CD4+ and CD8+ T cells)	Cross-sectional
Miedema (1996)	Unclear, Unclear	21, (unclear follow-up)	HIV	Multiple	Unclear	Absolute TRF length	PBMCS	Cohort
Mongelli (2021)	Unclear, Unclear	261	COVID-19	Single	Q-PCR	Absolute TL	Un-specified peripheral blood cells	Cross-sectional
Muhsen (2019)	Israel, Jerusalem	934	H.Pylori	Single	Southern blot	Absolute TL	Leukocyte	Cross-sectional
Nguyen (2022)	USA	3454	Periodontitis	Single	Q-PCR	Absolute (bp) and relative TL (T/S ratio)	Leukocyte	Cross-sectional

(Continued)

Table 2. (Continued)

Author & Year	Country & Setting	Population size	Infection/s	Single or multi- ple TL measure- ments	Technique of telomere measure- ment e.g. qPCR	Type of telo- mere length measure, e.g., relative or absolute	Cell type	Study design
Noppert (2020)	USA, Data from a large, nationally representative sample of US adults (National Health and Nutrition Examination Survey (NHANES))	1708	HSV-1, HSV-2, CMV, H.pylori, HBV, Combined burden	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional study
Panczyszyn (2020)	Unclear	88	high-risk hpv	Single	Q-PCR	absolute	Non-specific blood and cervical cells	Cross-sectional
Pathai (2013)	South Africa, Clinics in township communities in Cape Town	486	HIV	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional
Petrara (2024)	Italy, Department of Women's and Children's Health of the University Hospital of Padova	78	HIV	Single	Q-PCR	Relative, T/S ratio	PBMCs	Cross-sectional
Retuerto (2022)	Spain, Madrid	420	COVID-19	Single	Q-PCR	Absolute TL	Peripheral blood leukocytes	Cross-sectional
Richardson (2000)	USA and France	170	HIV	Single	Southern Blot	TRF length	PBMCs	Cross-sectional
Saberi (2019)	Canada, Vancouver	105, unclear follow-up time	HIV, HCV	Multiple	Q-PCR	Relative TL (T/S ratio)	Leukocyte	Cohort
Savrun (2024)	Turkey, Emergency Department at Ordu University	140	COVID-19	Single	Q-PCR	Relative, T/S ratio	Un-specified blood cells	Cross-sectional
Sehl (2021)	USA, Baltimore, Pittsburgh, Los Angeles, Chicago	201	HIV, HBV	Multiple	Methylation	DNAm-TL	Peripheral blood mononuclear cells	Cohort
Shiau (2021)	USA, Columbia University Irving Medical Center (CUIIMC) in New York City	107	HIV	Single	Methylation	DNAm-TL	Not clear- says blood extracted	Cross-sectional
Shiau (2024)	USA, 3 Women's Inter-agency HIV Study sites (San Francisco, Bronx, and Chicago)	190	HIV	Single	Methylation	DNAmTL	PBMCs	Cross-sectional
Soares (2025)	Brazil, São Paulo	112	COVID-19	Single	Q-PCR	Relative, T/S ratio	Sperm cells	Cross-sectional
Song (2020)	USA, The United States	3,478	periodontitis	Single	Q-PCR	Relative (T/S ratio) and absolute TL (base pairs)	Leukocyte	Cross-sectional
Spyridopoulos (2009)	Unclear	33	CMV	Single	Flow-FISH	absolute	Leukocyte (various types)	Cross-sectional
Srinivasa (2014)	USA, Boston	142	HIV	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional
Tachatzis (2011)	unclear, unclear	94	HBV	Single	Q-FISH	Mean fluorescent intensity	Hepatocytes	Cross-sectional

(Continued)

Table 2. (Continued)

Author & Year	Country & Setting	Population size	Infection/s	Single or multi- ple TL measure- ments	Technique of telomere measure- ment e.g. qPCR	Type of telomere length measure, e.g., relative or absolute	Cell type	Study design
Tahara (2013)	Unclear	150	h.pylori	Single	Q-PCR	Relative, T/S ratio	Gastric mucosa cells	Cross-sectional
Toljic (2023)	Serbia, Clinic for Infectious and Tropical Diseases, School of Medicine, University of Belgrade and unexposed blood donor volunteers from the Blood Transfusion Institute of Serbia, Belgrade	205	HIV	Single	Q-PCR	Relative, T/S ratio	Leukocytes of whole blood	Cross-sectional
Tucker (2000)	UK, West London hospitals	21	HIV	Single	Southern blot	TRF length measured to calculate absolute TL	Lymphocytes (4 cell types)	Cross-sectional
Usadi (2016)	USA, 5 major US blood centers (Baltimore/ Washington, Detroit, Oklahoma City, San Francisco, and Los Angeles)	135	HTLV-1, HTLV-2	Single	Q-PCR	Relative, T/S ratio	Peripheral blood mononuclear cells	Cross-sectional
Wang (2019)	Uganda, Mulago National Referral Hospital in Kampala,	434	HIV, TB	Single	Q-PCR	Relative, T/S ratio	PBMCs	Cross-sectional
Wang (2022)	China, Shandong University Second Hospital	1318	high risk hpv	Single	Q-PCR	Relative, T/S ratio	Epithelial cells	Cross-sectional
Womersley (2021)	South Africa, community health care facilities in and around Cape Town	286 (cross-sectional), 110 (longitudinal)	HIV	Multiple	Q-PCR	Relative, T/S ratio	Not clear, states that DNA was extracted from whole blood	Cross-sectional and cohort
Woods (2023)	USA, San Diego County	149	HIV	Single	Q-PCR	Relative, T/S ratio	not clear	Cross-sectional
Xu (2022)	European cohorts, European ancestry studies	telomere length: 472174. Covid susceptibility: (1,683,768). Covid severity: (1,388,342)	COVID-19	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Bidirectional Mendelian randomization study
Xu (2024)	UK, UK Biobank	telomere length =472,174. Sepsis = 486,484.	Sepsis	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Bidirectional Mendelian randomization (MR) study
Yang (2024)	Canada, Canada (several locations)	376	HCV, HHV-8, HSV-2, CMV, HSV-1, EBV, HIV, combined burden	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional

(Continued)

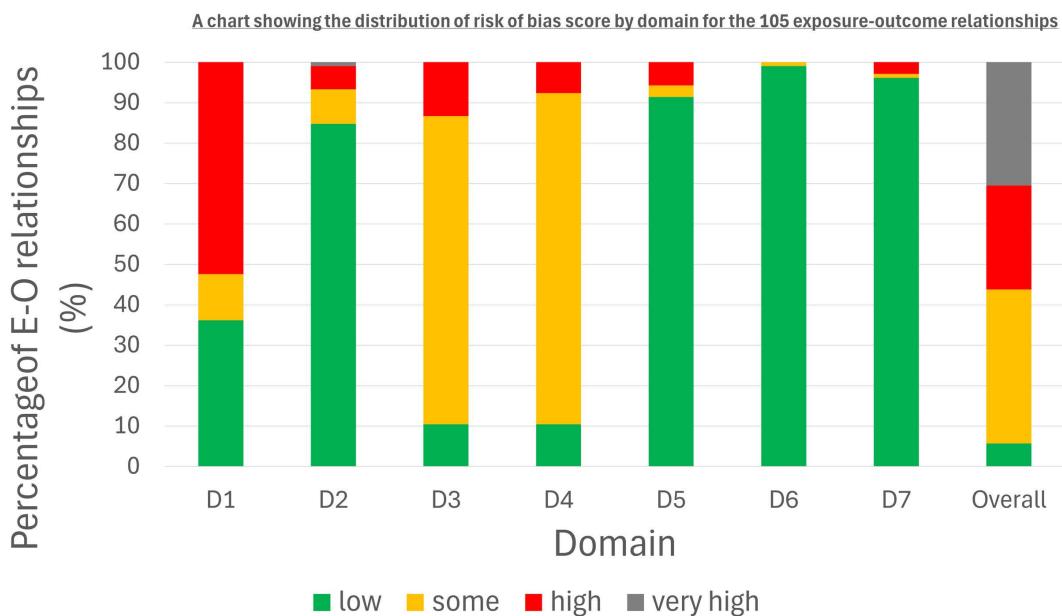
Table 2. (Continued)

Author & Year	Country & Setting	Population size	Infection/s	Single or multi- ple TL measure- ments	Technique of telomere measure- ment e.g. qPCR	Type of telo- mere length measure, e.g., relative or absolute	Cell type	Study design
Yoshioka (2012)	Japan, the Endoscopy Center of Fujita Health University Hospital	150	H. Pylori	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional
Zanet (2014)	Canada, Vancouver	395	HIV, HCV, HBV	Single	Q-PCR	Relative, T/S ratio	Leukocyte	Cross-sectional
Zhang (2014)	China, Department of Thoracic Surgery in the Affiliated Tumor Hospital of Shantou University Medical College	70	high-risk hpv	Single	Q-PCR	Relative, T/S ratio	Oesophageal squamous cell carcinoma (ESCC) and paired matched adjacent noncancerous tissues	Cross-sectional
Zribi (2019)	Israel, 14-bed, general intensive care department of the Rabin Medical Center, Campus Beilinson, Israel	40	Sepsis	2 Measures	Q-PCR	Relative, T/S ratio	Unspecified blood cells	Cohort

Abbreviations: TL=Telomere length, Q-PCR=Quantitative Polymerase Chain Reaction, TRF=Terminal Restriction Fragment, PBMCs=Peripheral Blood Mononuclear Cells, SNP=Single Nucleotide Polymorphism, MR=Mendelian Randomization, ART=Antiretroviral Therapy, CMV=Cytomegalovirus, HCV=Hepatitis C Virus, HBV=Hepatitis B Virus, HPV=Human Papillomavirus, HTLV=Human T-Lymphotropic Virus, NHANES=National Health and Nutrition Examination Survey, ELISA=Enzyme-Linked Immunosorbent Assay, FISH=Fluorescence In Situ Hybridization, T/S Ratio=Telomere-to-Single Copy Gene Ratio, DNAmTL=DNA methylation-based telomere length.

<https://doi.org/10.1371/journal.pone.0333107.t002>

Infection type


Across the 73 studies, 22 separate infections and 6 different co-infections were investigated. The most frequent pathogen was HIV, found in 35 of the 73 studies (48%), followed by Coronavirus Disease 2019 (COVID-19) (10 studies), Cytomegalovirus (CMV) (8 studies), Helicobacter Pylori (H.Pylori) and hepatitis C with 6 studies each and hepatitis B (5 studies). All other infections had 3 or fewer studies.

The 105 E-O relationships examined in the 73 studies are displayed stratified by infection type, cell type, TL or change in TL, TL measure, TL measurement assay and statistical analysis method in [S3 Table](#). There were a total of 89 unique E-O relationships. Very few unique E-O relationships were homogeneous with respect to infection type, cell type, outcome (TL or change in TL), TL measure (relative or absolute), TL measurement assay, and statistical method. Only HIV, Herpes Simplex Virus-1 (HSV-1), CMV and H. pylori had more than two unique homogeneous E-O relationships.

The association of infections with TL

Overall, across all infections, 42 of 89 (47%) unique exposure–outcome relationships showed evidence of association ($p < 0.05$), with infection linked to shorter TL or greater telomere attrition ([Table 3](#)). However some of these results were unadjusted, of the unique E-O relationships with matching or adjusted analysis 23 of 55 (42%) showed evidence of association ($p < 0.05$).

By infection type, 23 out of 29 HIV unique E-O relationships (79%) showed an association, and of the unique HIV E-O relationships with matching or adjusted analysis, 15 out of 19 (79%) showed an association. For other pathogens,

Fig 2. Risk of Bias by Domain Across 105 Exposure–Outcome Relationships. D1-confounding, D2-measurement of the exposure, D3- selection of participants into the study (or into the analysis), D4-post-exposure interventions, D5- missing data, D6- measurement of the outcome, D7- selection of the reported result.

<https://doi.org/10.1371/journal.pone.0333107.g002>

evidence was variable and the number of E-O relationships for other pathogens were small, often with only one unique E-O relationship available for each infection type. Four studies investigated the combined burden of multiple infections, each looking at different combinations of pathogens; one showed an association between infection burden and TL/TA, whereas the other three did not.

Depicted in Forest plots are difference in mean TL by infection status for HIV (Fig 3) (N=11), CMV (Fig 4) (N=4), and HSV-1 (Fig 5) (N=4). Most HIV studies presenting difference in mean TL showed an association between HIV and reduced TL or increased telomere attrition. For CMV and HSV-1 the results were mixed, with only one of three studies (all three studies presented results for both pathogens) showing an association between infection and reduced TL for both pathogens.

Infection severity

The relationship between infection severity and TL was examined in studies of 34 E-O relationships, yielding mixed results (S3 Table). There were insufficient homogenous studies with respect to severity, which made comparisons difficult. The most commonly used severity measures for HIV were viral load (n=4) and HIV progression (fast vs no/slow progression, n=4). For viral load, evidence of an association between increased viral load and shorter telomere length was found in two [38,79] of four E-O relationships. For progression status, faster progression was associated with shorter telomere length in three [36,60,74] out of four E-O relationships where this was evaluated.

For other pathogens such as CMV and COVID-19 results were less clear and conflicting.

Age and sex

Relatively few studies investigated whether the association between infection and telomere length differed according to age or sex. None found strong evidence for interaction, either due to p-values greater than 0.05 or because no statistical test was performed (S3 Table).

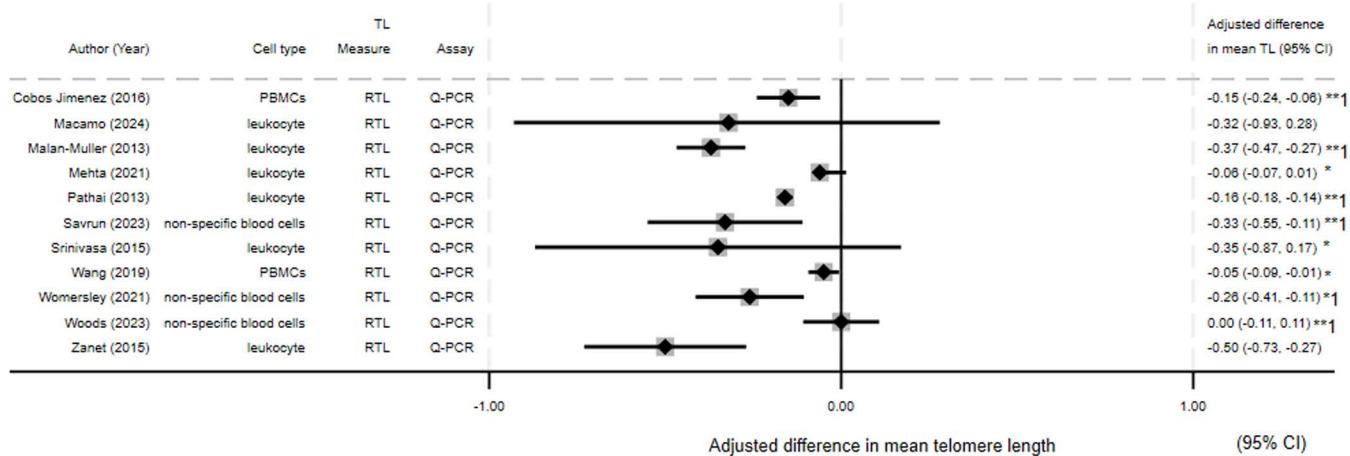
Table 3. Exposure-outcome relationships by pathogen/infection type.

Pathogen/infection	Number of E-O relationships examined	Number of unique E-O relationships ¹	Maximum number of unique homogeneous E-O relationships ²	Number of unique E-O relationships showing evidence infection was associated ($p < 0.05$) with shorter telomere length or greater attrition (% of all unique E-O relationships) ³	Number of unique E-O relationships with any matching/adjusted analysis	Number of unique E-O relationships with matching/ adjusted analysis AND showing evidence infection was associated ($p < 0.05$) with shorter telomere length or greater attrition (% of all unique E-O relationships with matching/ adjusted analysis)	Number of unique E-O relationships with high/ very high overall risk of bias score (% of all unique E-O relationships)
HIV	35	29	4	23 (79.3)	19	15 (78.9)	21 (72.4)
COVID-19	10	8	None	5 (62.5)	3	2 (66.7)	7 (87.5)
CMV	8	7	4	2 (28.57)	5	1 (20.0)	3 (42.9)
H. Pylori	6	4	2	1 (25.0)	3	0	1 (25.0)
HCV	6	4	None	1 (25.0)	2	1 (50.0)	4 (100.0)
HBV	5	5	2	2 (40.0)	1	0	4 (80.0)
HPV	2	2	None	1 (50.0)	0	0	2 (100.0)
HR-HPV	4	4	None	1 (25.0)	0	0	4 (100.0)
HSV-1	4	4	4	1 (25.0)	4	1 (25.0)	0
Sepsis	3	2	None	0	1	0	1 (50.0)
EBV	2	2	2	0	2	0	0
HSV-2	2	2	2	0	2	0	0
TB	2	1	None	0	0	0	1 (100.0)
MDR-TB	1	1	None	1 (100.0)	0	0	1 (100.0)
Periodontitis	2	1	None	0	1	0	0
C. pneumoniae	1	1	None	0	1	0	0
Helminths	1	1	None	1 (100.0)	1	1 (100.0)	0
HHV-6	1	1	None	0	1	0	0
HHV-8	1	1	None	0	1	0	0
HTLV-1	1	1	None	0	1	0	1 (100.0)
HTLV-2	1	1	None	0	1	0	1 (100.0)
Rhinovirus	1	1	None	1 (100.0)	0	0	1 (100.0)
HIV/HCV co-infection	1	1	None	1 (100.0)	1	1 (100.0)	1 (100.0)
HIV+Helminths	1	1	None	0	1	0	0
Combined Burden of HSV-1,HSV-2, CMV, H. Pylori, HBV	1	1	None	0	1	0	0
Combined burden of C. pneumoniae, HSV-1, CMV, H. Pylori	1	1	None	0	1	0	0
Combined burden of CMV, HSV-1, HHV-6, EBV	1	1	None	1 (100.00)	1	1 (100.0)	0

(Continued)

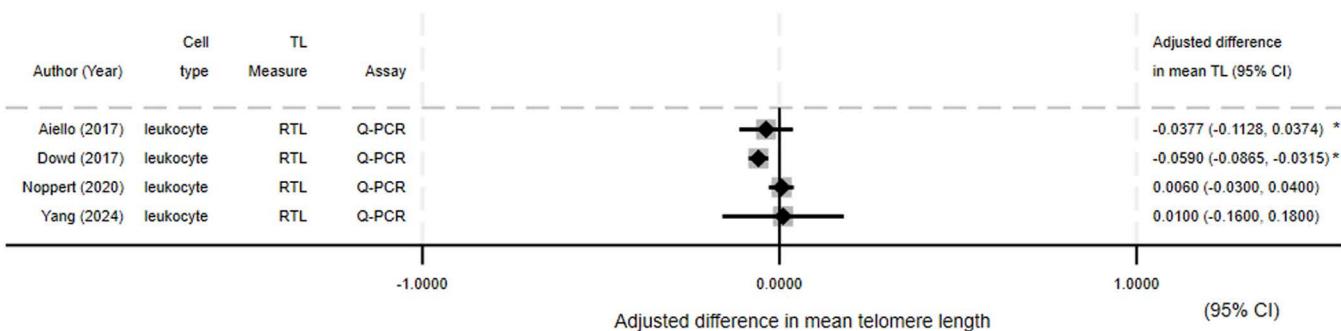
Table 3. (Continued)

Pathogen/ infection	Number of E-O relationships examined	Number of unique E-O relationships ¹	Maximum number of unique homogeneous E-O relationships ²	Number of unique E-O relationships showing evidence infection was associated ($p < 0.05$) with shorter telomere length or greater attrition (% of all unique E-O relationships) ³	Number of unique E-O relationships with any matching/ adjusted analysis	Number of unique E-O relationships with matching/ adjusted analysis AND showing evidence infection was associated ($p < 0.05$) with shorter telomere length or greater attrition (% of all unique E-O relationships with matching/ adjusted analysis)	Number of unique E-O relationships with high/ very high overall risk of bias score (% of all unique E-O relationships)
Combined burden of CMV, EBV, HCV, HHV-8, HIV, HSV-1, HSV-2	1	1	None	0	1	0	0
Total	105	89	N/A	42 (47.2)	55	23 (41.8)	53 (60.0)

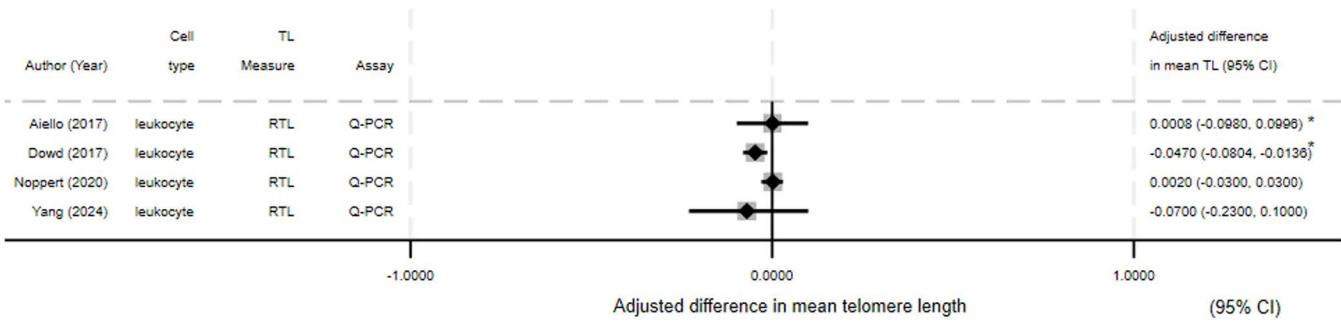

1- E-O relationships were considered 'unique' if they derived their results from distinct samples (i.e., no overlapping data). When multiple E-O relationships for the same infection reported on the same population, we selected a single study to represent that population, prioritising longitudinal designs, then those with the largest sample sizes, and finally the most recent publications.

2- This column shows the largest number of homogeneous E-O relationships for each specific pathogen or infection. E-O relationships were deemed 'homogeneous' if they were directly comparable to each other, i.e., they matched across all the potential sources of heterogeneity (telomere length (TL) or change in TL, TL measure, TL measurement assay, and statistical method). For example, if among the CMV studies there were two sets of comparable E-O relationships; one set consisting of two E-O relationships, and the other of three, the largest group of comparable studies would be three. Hence "3" would be presented in the table.

3- Some studies had mixed results. This column indicates if their primary outcome was associated with reduced TL


Abbreviations: HIV: Human Immunodeficiency Virus, COVID-19: Coronavirus Disease 2019, CMV: Cytomegalovirus, H. pylori: Helicobacter pylori, HCV: Hepatitis C Virus, HBV: Hepatitis B Virus, HPV: Human Papillomavirus, HR-HPV: High-Risk Human Papillomavirus, HSV-1: Herpes Simplex Virus Type 1, TB: Tuberculosis, MDR-TB: Multidrug-Resistant Tuberculosis, C. pneumoniae: Chlamydia pneumoniae, EBV: Epstein-Barr Virus, E-O: Exposure-outcome, HHV-6: Human Herpesvirus 6, HSV-2: Herpes Simplex Virus Type 2, HTLV-1: Human T-Lymphotropic Virus Type 1, HTLV-2: Human T-Lymphotropic Virus Type 2

<https://doi.org/10.1371/journal.pone.0333107.t003>


Fig 3. Forest plot of HIV studies presenting difference in mean telomere length. The difference in means relates to mean in infected group minus mean in control group. 1- Results are from univariate analysis only. *—95% Confidence interval calculated from available data. **- Effect estimate and 95% confidence interval calculated from available data.

<https://doi.org/10.1371/journal.pone.0333107.g003>

Fig 4. Forest plot of CMV studies presenting difference in mean telomere length. The difference in means relates to mean in infected group minus mean in control group. *—95% Confidence interval calculated from available data.

<https://doi.org/10.1371/journal.pone.0333107.g004>

Fig 5. Forest plot of HSV-1 studies presenting difference in mean telomere length. The difference in means relates to mean in infected group minus mean in control group. *—95% Confidence interval calculated from available data.

<https://doi.org/10.1371/journal.pone.0333107.g005>

GRADE assessment

The overall evidence on the associations of HIV, CMV and HSV-1 difference in mean telomere length were classified as of very low quality using the GRADE assessment tool (Table 4). For HIV this was due to the observational nature of the studies as well as issues with inconsistency, imprecision, and indirectness. For HSV-1 and CMV, all studies were observational and there was issues with inconsistency.

For the publication bias domain, funnel plots were not performed for any of the infection types. Although the HIV exposure group met the conventional minimum threshold for funnel plot analysis (n = 10 studies) [95], 6 of these reported

Table 4. GRADE quality assessment.

Outcome	Exposure	Study design and no. of studies	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Upgrade	Quality
Difference in mean blood cell telomere length	HIV	11 cross-sectional studies	Very serious	Very serious	Very serious	Not serious	N/A	None	⊕ooo Very low
	CMV	4 cross-sectional studies	Not serious	Serious	Not serious	Not serious	N/A	None	⊕ooo Very low
	HSV-1	4 cross-sectional studies	Not serious	Serious	Not serious	Not serious	N/A	None	⊕ooo Very low

<https://doi.org/10.1371/journal.pone.0333107.t004>

unadjusted effect estimates. This limited comparability with adjusted estimates and introduced systematic bias unrelated to publication bias. Consequently, an assessment of publication bias was deemed inappropriate in this context.

Discussion

Summary of key findings

Our systematic review aimed to summarise the relationship between infections and TL or telomere attrition across various study designs and infection types. We included 73 studies examining 105 E-O relationships between infections and telomere length or telomere attrition. The most frequently represented infection was HIV, which was consistently associated with reduced TL or increased telomere attrition (79% of E-O relationships). In contrast, evidence for other infections was more mixed. Of the four studies investigating pathogen burden, one [15] reported a potential dose-response effect with greater telomere attrition with seropositivity to an increasing number of persistent pathogens, however the other three [17,27,93] reported no association between pathogen burden and TL/ telomere attrition.

Fifty-nine (56%) of the 105 E-O relationships were rated as having a high- or very-high- risk of bias, suggesting that the results may not be reliable. Consequently, while there is some evidence for an association between infections and TL, the overall validity findings may be limited due to potential bias of many included studies.

Strengths and limitations

Several methodological strengths enhance the reliability of this systematic review. Firstly, there was comprehensive study selection. Our review included a variety of study designs, including cross-sectional, cohort, and Mendelian randomisation studies, allowing for a more comprehensive understanding of the infection-telomere relationship. We included studies from multiple geographical locations and across a range of pathogen types, allowing us to evaluate the potential differential impact of infections across populations. The use of independent reviewers to screen studies and extract data minimised selection bias and allowed for reproducible findings. Our approach of categorising studies based on infection type, cell type, telomere measurement approach, and statistical analysis method to assess homogeneity and uniqueness allowed for meaningful comparisons. Finally, the assessment of risk of bias for each exposure-outcome relationship as well as GRADE assessment for comparable HIV, HSV-1 and CMV studies, provides information on the quality and reliability of the studies included.

However, our systematic review had several limitations potentially affecting the interpretation of its findings. We were unable to systematically identify grey literature due to a cyber-attack on the British library meaning a planned search of the EThOS database was not possible [96]. The second reviewer only conducted 10% random sample of data extraction so some of the extracted data has not been verified, although this is unlikely to have affected results.

In terms of the limitations of the included literature, we saw considerable heterogeneity with respect to infection type, cell type, telomere measurement approaches and statistical analysis method. This between-study heterogeneity limited comparison across studies meaning a meta-analysis was not possible as a pooled analysis would have been difficult to interpret.

The high or very high risk of bias found in most studies, especially concerning confounding (ROBINS-E Domain 1) and participant selection (Domain 2), means the results may not be reliable estimates of the effect of infection on TL. Many included studies had inadequate control for confounders such as age, sex, ethnicity, and comorbidities. This inadequate accounting for confounding means that many of the associations could be biased as estimates of the effect of infection on TL. Additionally, issues with participant selection such as unclear recruitment strategies or the inclusion of participants already infected at enrolment, raise concerns about selection bias and further weaken the evidence. These methodological shortcomings highlight the need for more rigorously designed studies to reduce bias and improve the validity of findings. Most included studies were cross-sectional, which limits the ability to establish causality between infection and TL. Longitudinal studies are essential for determining whether infections lead to telomere shortening or if individuals with

shorter telomeres are more susceptible to certain infections. Previous studies have suggested the latter, with shorter TL associated with greater susceptibility to viral infection and worse clinical outcomes [97,98], highlighting the possibility of a reciprocal relationship between infection and TL akin to the “chicken or egg” dilemma.

Most studies focused on chronic infections, with only a few examining the effect of acute infections like COVID-19 on TL. Understanding the effect of acute versus chronic infections on telomere dynamics may provide a more comprehensive picture of infection-related telomere attrition. Moreover, we found no studies examining vaccination or infection treatments as exposures which limits our ability to assess the likely effectiveness of anti-infective interventions to prevent telomere shortening [22].

Comparison with related literature

To our knowledge, there are no previous systematic reviews of this topic. A previous study [99] (that did not meet our inclusion criteria due to a lack of appropriate control group) found that a one unit increase of CMV antibody IgG titre was associated with -0.06 (95% confidence interval: -0.11 , -0.01) unit decrease of leukocyte TL after adjusting for age, sex, body mass index and smoking status. These findings are consistent with just one [15] of the unique CMV studies in the present review, with the other four showing no association or inconclusive evidence.

Another study (again excluded due to lack of uninfected comparators) found that the shortest TL was observed three months post malaria infection compared to day 0, but that TL recovered after 12 months post-infection when there was no longer evidence of difference in TL [100]. This highlights the mixed results observed in our systematic review, suggesting that the measurement of TL and the time since infection may require further investigation.

Our review was restricted to studies within adults, however other individual studies [101,102] compared the effect of HIV infection vs non-infection on TL in children. The result of these studies in children were mixed, with one [101] concluding that absolute TL was shorter in HIV-infected and HIV-exposed uninfected (HEU) children compared with HIV-unexposed uninfected (HUU) children, but did not differ between HIV-infected and HEU children. Another study involving children found no associations between children’s LTL and perinatal antiretroviral therapy (ART) exposure or HIV status. This highlights the mixed results observed in our systematic review, suggesting that the measurement of TL and the time since infection may require further investigation [102]. However, they did find an association between having a detectable HIV viral load and shorter LTL. The authors suggested that these results showed that uncontrolled HIV viremia may be associated with acceleration of telomere attrition.

Implications for future research

Future research could focus on under-studied acute infections, employ longitudinal study designs to establish temporality, use standardised telomere measurement methods to increase inter-study comparability, and apply comprehensive adjustment for confounders. Immune ageing, measured via telomere length as well as other methods such as epigenetic clocks [103], could be explored as a mechanism explaining the relationship between infections and age-related diseases.

Conclusions

Our systematic review highlights a potential association between infection and accelerated immune ageing, measured by TL and attrition, particularly in HIV. However, the evidence is limited by methodological issues and rated very low quality overall. Addressing these limitations through more robust longitudinal designs, standardised measurement methods, and a focus on adjustment for confounding factors will improve the quality of studies addressing this relationship.

Supporting information

S1 File. PRISMA 2020 checklist.

(DOCX)

S2 File. Infection and telomere length: a systematic review protocol.

(PDF)

S3 File. Search strategy.

(DOCX)

S4 File. GRADE quality assessment reasons to up- or downgrade.

(DOCX)

S1 Table. Data extraction form details.

(DOCX)

S2 Table. Overall and domain-specific risk of bias scores for each exposure-outcome relationship using the ROBINS-E tool.

(DOCX)

S3 Table. Table of 105 exposure-outcome relationships grouped by infection type, cell type, whether the outcome was TL or change in TL, TL measure (relative or absolute), TL measurement assay, and statistical method.

(DOCX)

Acknowledgments

We would like to acknowledge Russel Burke, Assistant Librarian at the London School of Hygiene and Tropical Medicine. His invaluable support helped develop the search strategy for this systematic review.

Author contributions

Conceptualization: Louis Tunnicliffe, Charlotte Warren-Gash.

Data curation: Louis Tunnicliffe.

Formal analysis: Louis Tunnicliffe, Jonathan W Bartlett.

Funding acquisition: Charlotte Warren-Gash.

Investigation: Louis Tunnicliffe.

Methodology: Louis Tunnicliffe, Rutendo Muzambi, Jonathan W Bartlett, Khalid A Basit, Veryan Codd, Charlotte Warren-Gash.

Supervision: Rutendo Muzambi, Jonathan W Bartlett, Charlotte Warren-Gash.

Validation: Khalid A Basit, Kwabena Asare, Georgia Gore-Langton, Kathryn E Mansfield.

Writing – original draft: Louis Tunnicliffe.

Writing – review & editing: Louis Tunnicliffe, Rutendo Muzambi, Jonathan W Bartlett, Laura D Howe, Khalid A Basit, Kwabena Asare, Georgia Gore-Langton, Kathryn E Mansfield, Veryan Codd, Charlotte Warren-Gash.

References

1. Krishna BA, Metaxaki M, Sithole N, Landín P, Martín P, Salinas-Botrán A. Cardiovascular disease and covid-19: A systematic review. *Int J Cardiol Heart Vasc.* 2024;54:101482. <https://doi.org/10.1016/j.ijcha.2024.101482> PMID: 39189008
2. Omidi F, Zangiabadian M, Shahidi Bonjar AH, Nasiri MJ, Sarmastzadeh T. Influenza vaccination and major cardiovascular risk: a systematic review and meta-analysis of clinical trials studies. *Sci Rep.* 2023;13(1):20235.
3. Sipilä PN, Lindbohm JV, Batty GD, Heikkilä N, Vahtera J, Suominen S, et al. Severe infection and risk of cardiovascular disease: a multicohort study. *Circulation.* 2023;147(21):1582–93. <https://doi.org/10.1161/CIRCULATIONAHA.122.061183> PMID: 36971007

4. Muzambi R, Bhaskaran K, Smeeth L, Brayne C, Chaturvedi N, Warren-Gash C. Assessment of common infections and incident dementia using UK primary and secondary care data: a historical cohort study. *Lancet Healthy Longev.* 2021;2(7):e426–35. [https://doi.org/10.1016/S2666-7568\(21\)00118-5](https://doi.org/10.1016/S2666-7568(21)00118-5) PMID: 34240064
5. Sipilä PN, Heikkilä N, Lindbohm JV, Hakulinen C, Vahtera J, Elovainio M, et al. Hospital-treated infectious diseases and the risk of dementia: a large, multicohort, observational study with a replication cohort. *Lancet Infect Dis.* 2021;21(11):1557–67. [https://doi.org/10.1016/S1473-3099\(21\)00144-4](https://doi.org/10.1016/S1473-3099(21)00144-4) PMID: 34166620
6. Farrer TJ, Moore JD, Chase M, Gale SD, Hedges DW. Infectious disease as a modifiable risk factor for dementia: a narrative review. *Pathogens.* 2024;13(11).
7. Blackhurst BM, Funk KE. Viral pathogens increase risk of neurodegenerative disease. *Nat Rev Neurol.* 2023;19(5):259–60.
8. Warren-Gash C, Forbes HJ, Williamson E, Breuer J, Hayward AC, Mavrodaris A, et al. Human herpesvirus infections and dementia or mild cognitive impairment: a systematic review and meta-analysis. *Sci Rep.* 2019;9(1):4743. <https://doi.org/10.1038/s41598-019-41218-w> PMID: 30894595
9. Vaiserman A, Krasnienkov D. Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives. *Front Genet.* 2021;11:630186. <https://doi.org/10.3389/fgene.2020.630186> PMID: 33552142
10. Srinivas N, Rachakonda S, Kumar R. Telomeres and telomere length: a general overview. *Cancers.* 2020;12(3).
11. Forero DA, González-Giraldo Y, López-Quintero C, Castro-Vega LJ, Barreto GE, Perry G. Meta-analysis of telomere length in Alzheimer's disease. *J Gerontol A Biol Sci Med Sci.* 2016;71(8):1069–73. <https://doi.org/10.1093/gerona/glw053> PMID: 27091133
12. Scheller Madrid A, Rasmussen KL, Rode L, Frikke-Schmidt R, Nordestgaard BG, Bojesen SE. Observational and genetic studies of short telomeres and Alzheimer's disease in 67,000 and 152,000 individuals: a Mendelian randomization study. *Eur J Epidemiol.* 2020;35(2):147–56.
13. Benetos A, Lai T-P, Toupance S, Labat C, Verhulst S, Gautier S, et al. The nexus between telomere length and lymphocyte count in seniors hospitalized with COVID-19. *J Gerontol A Biol Sci Med Sci.* 2021;76(8):e97–101. <https://doi.org/10.1093/gerona/glab026> PMID: 335228568
14. Breen EC, Sehl ME, Shih R, Langfelder P, Wang R, Horvath S, et al. Accelerated aging with HIV begins at the time of initial HIV infection. *iScience.* 2022;25(7):104488. <https://doi.org/10.1016/j.isci.2022.104488> PMID: 35880029
15. Dowd JB, Bosch JA, Steptoe A, Jayabalingham B, Lin J, Yolken R, et al. Persistent herpesvirus infections and telomere attrition over 3 years in the Whitehall II cohort. *J Infect Dis.* 2017;216(5):565–72. <https://doi.org/10.1093/infdis/jix255> PMID: 28931225
16. Huang D, Lin S, He J, Wang Q, Zhan Y. Association between COVID-19 and telomere length: a bidirectional Mendelian randomization study. *J Med Virol.* 2022;94(11):5345–53. <https://doi.org/10.1002/jmv.28008> PMID: 35854470
17. Noppert GA, Feinstein L, Dowd JB, Stebbins RC, Zang E, Needham BL. Pathogen burden and leukocyte telomere length in the United States. *Immun Ageing.* 2020;17(1):36.
18. van Baarle D, Nanlohy NM, Otto S, Plunkett FJ, Fletcher JM, Akbar AN. Progressive telomere shortening of Epstein-Barr virus-specific memory T cells during HIV infection: contributor to exhaustion?. *J Infect Dis.* 2008;198(9):1353–7. <https://doi.org/10.1086/592170> PMID: 18816191
19. Saberi S, Kaloger SE, Zhu MMT, Sattha B, Maan EJ, van Schalkwyk J, et al. Dynamics of leukocyte telomere length in pregnant women living with HIV, and HIV-negative pregnant women: a longitudinal observational study. *PLoS One.* 2019;14(3):e0212273. <https://doi.org/10.1371/journal.pone.0212273> PMID: 30840638
20. Booth A, Clarke M, Dooley G, Ghersi D, Moher D, Petticrew M, et al. The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. *Syst Rev.* 2012;1:2.
21. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. *BMJ.* 2015;350:g7647. <https://doi.org/10.1136/bmj.g7647> PMID: 25555855
22. Tunnicliffe L, Muzambi R, Bartlett JW, Howe L, Abdul Basit K, Warren-Gash C. Infection and telomere length: a systematic review protocol. *BMJ Open.* 2024;14(4):e081881. <https://doi.org/10.1136/bmjopen-2023-081881> PMID: 38658004
23. Morgan RL, Whaley P, Thayer KA, Schünemann HJ. Identifying the PECO: A framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. *Environ Int.* 2018;121(Pt 1):1027–31. <https://doi.org/10.1016/j.envint.2018.07.015> PMID: 30166065
24. Montpetit AJ, Alhareeri AA, Montpetit M, Starkweather AR, Elmore LW, Filler K, et al. Telomere length: a review of methods for measurement. *Nurs Res.* 2014;63(4):289–99. <https://doi.org/10.1097/NNR.0000000000000037> PMID: 24977726
25. Higgins JPT, Morgan RL, Rooney AA, Taylor KW, Thayer KA, Silva RA, et al. A tool to assess risk of bias in non-randomized follow-up studies of exposure effects (ROBINS-E). *Environ Int.* 2024;186:108602. <https://doi.org/10.1016/j.envint.2024.108602> PMID: 38555664
26. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ.* 2008;336(7650):924–6.
27. Aiello AE, Jayabalingham B, Simanek AM, Diez-Roux A, Feinstein L, Meier HCS, et al. The impact of pathogen burden on leukocyte telomere length in the Multi-Ethnic Study of Atherosclerosis. *Epidemiol Infect.* 2017;145(14):3076–84. <https://doi.org/10.1017/S0950268817001881> PMID: 28879822
28. Albosale AH, Mashkina EV. Association of relative telomere length and risk of high human papillomavirus load in cervical epithelial cells. *Balkan J Med Genet.* 2022;24(2):65–70. <https://doi.org/10.2478/bjmg-2021-0026> PMID: 36249518

29. Auld E, Lin J, Chang E, Byanyima P, Ayakaka I, Musisi E, et al. HIV infection is associated with shortened telomere length in ugandans with suspected tuberculosis. *PLoS One*. 2016;11(9):e0163153. <https://doi.org/10.1371/journal.pone.0163153> PMID: 27655116
30. Babu H, Ambikan AT, Gabriel EE, Svensson Akusjärvi S, Palaniappan AN, Sundaraj V, et al. Systemic inflammation and the increased risk of inflamm-aging and age-associated diseases in people living with HIV on long term suppressive antiretroviral therapy. *Front Immunol*. 2019;10:1965. <https://doi.org/10.3389/fimmu.2019.01965> PMID: 31507593
31. Chico-Sordo L, Polonio AM, Córdoba-Oriz I, Medrano M, Herraiz S, Bronet F, et al. Telomeres and oocyte maturation rate are not reduced by COVID-19 except in severe cases. *Reproduction*. 2022;164(5):259–67. <https://doi.org/10.1530/REP-22-0243> PMID: 36136831
32. Cobos Jiménez V, Wit FWNM, Joerink M, Maurer I, Harskamp AM, Schouten J, et al. T-Cell activation independently associates with immune senescence in HIV-infected recipients of long-term antiretroviral treatment. *J Infect Dis*. 2016;214(2):216–25. <https://doi.org/10.1093/infdis/jiw146> PMID: 27073222
33. Ding Y, Lin H, Zhou S, Wang K, Li L, Zhang Y, et al. Stronger association between insomnia symptoms and shorter telomere length in old HIV-infected patients compared with uninfected individuals. *Aging Dis*. 2018;9(6):1010–9. <https://doi.org/10.14336/AD.2018.0204> PMID: 30574414
34. Dowd JB, Bosch JA, Steptoe A, Blackburn EH, Lin J, Rees-Clayton E, et al. Cytomegalovirus is associated with reduced telomerase activity in the Whitehall II cohort. *Exp Gerontol*. 2013;48(4):385–90. <https://doi.org/10.1016/j.exger.2013.01.016> PMID: 23403382
35. Freimane L, Barkane L, Igumnova V, Kivrane A, Zole E, Ranka R. Telomere length and mitochondrial DNA copy number in multidrug-resistant tuberculosis. *Tuberculosis (Edinb)*. 2021;131:102144. <https://doi.org/10.1016/j.tube.2021.102144> PMID: 34781086
36. Gaardbo JC, Hartling HJ, Ronit A, Thorsteinsson K, Madsen HO, Springborg K, et al. Different immunological phenotypes associated with preserved CD4+ T cell counts in HIV-infected controllers and viremic long term non-progressors. *PLoS One*. 2013;8(5):e63744. <https://doi.org/10.1371/journal.pone.0063744> PMID: 23696852
37. Giesbrecht CJ, Thornton AE, Hall-Patch C, Maan EJ, Côté HCF, Money DM, et al. Select neurocognitive impairment in HIV-infected women: associations with HIV viral load, hepatitis C virus, and depression, but not leukocyte telomere length. *PLoS One*. 2014;9(3):e89556. <https://doi.org/10.1371/journal.pone.0089556> PMID: 24595021
38. Gogia S, Lin J, Ma Y, Scherzer R, Blackburn E, Farzaneh-Far R. Association of HIV viral load and shorter telomere length. *Topics Antiviral Med*. 2015;23(E-1):353.
39. Gonzalez-Serna A, Ajaykumar A, Gadawski I, Munoz-Fernandez MA, Hayashi K, Harrigan PR, et al. Rapid decrease in peripheral blood mononucleated cell telomere length after HIV seroconversion, but not HCV seroconversion. *J Acquir Immune Defic Syndr*. 2017;76(1):e29–32.
40. Grady B, Nanlohy N, Prins M, Van Baarle D. HCV-infection is not a major determinant of immunosenescence in aging drug users. *J Hepatol*. 2013;58(SUPPL. 1):S139.
41. Hampras SS, Pawlita M, Tommasino M, Park J, Burnette PK, Fenske NA. Interaction between cutaneous human papillomavirus infection and telomere length in association with cutaneous squamous cell carcinoma. *Cancer Res*. 2016;76(14 Supplement).
42. Hartling HJ, Gaardbo JC, Ronit A, Salem M, Laye M, Clausen MR, et al. Impaired thymic output in patients with chronic hepatitis C virus infection. *Scand J Immunol*. 2013;78(4):378–86. <https://doi.org/10.1111/sji.12096> PMID: 23841696
43. Hsieh A, Sattha B, Cote HC. Shorter telomeres in proliferative CD8 CD28 T cells may contribute to HIV-mediated immunosenescence. *Can J Infect Dis Med Microbiol*. 2015;26(SUPPL. SB):46B.
44. Huang JW, Xie C, Niu Z, He LJ, Li JJ. The relation between Helicobacter pylori immunoglobulin G seropositivity and leukocyte telomere length in US adults from NHANES 1999–2000. *Helicobacter*. 2020;25(6):e12760.
45. Imam T, Jitratkosol MHJ, Soudeyns H, Sattha B, Gadawski I, Maan E. Leukocyte telomere length in HIV-infected pregnant women treated with antiretroviral drugs during pregnancy and their uninfected infants. *J Acquir Immune Deficiency Syndr*. 2012;60(5):495–502.
46. Jiang L, Tang B-S, Guo J-F, Li J-C. Telomere length and COVID-19 outcomes: a two-sample bidirectional mendelian randomization study. *Front Genet*. 2022;13:805903. <https://doi.org/10.3389/fgene.2022.805903> PMID: 35677559
47. Jiang T, Mo X, Zhan R, Zhang Y. Causal pathway from telomere length to occurrence and 28-day mortality of sepsis: an observational and mendelian randomization study. *Aging (Albany NY)*. 2023;15(15):7727–40. <https://doi.org/10.1863/aging.204937> PMID: 37543429
48. Liu JCY, Leung JM, Ngan DA, Nashta NF, Guillemi S, Harris M, et al. Absolute leukocyte telomere length in HIV-infected and uninfected individuals: evidence of accelerated cell senescence in HIV-associated chronic obstructive pulmonary disease. *PLoS One*. 2015;10(4):e0124426. <https://doi.org/10.1371/journal.pone.0124426> PMID: 25885433
49. Ma Q, Cai J, Cai Y, Xu Y, Chang F, Xu L. Association of telomere length in peripheral leukocytes with chronic hepatitis B and hepatocellular carcinoma. *Medicine*. 2016;95(39):e4970.
50. Malan-Müller S, Hemmings SMJ, Spies G, Kidd M, Fennema-Notestine C, Seedat S. Shorter telomere length - A potential susceptibility factor for HIV-associated neurocognitive impairments in South African women [corrected]. *PLoS One*. 2013;8(3):e58351. <https://doi.org/10.1371/journal.pone.0058351> PMID: 23472184
51. Manavalan JS, Arpadi S, Tharmarajah S, Shah J, Zhang CA, Foca M, et al. Abnormal bone acquisition with early-life HIV infection: role of immune activation and senescent osteogenic precursors. *J Bone Miner Res*. 2016;31(11):1988–96. <https://doi.org/10.1002/jbmr.2883> PMID: 27283956
52. Mehta SR, Iudicello JE, Lin J, Ellis RJ, Morgan E, Okwuegbuna O. Telomere length is associated with HIV infection, methamphetamine use, inflammation, and comorbid disease risk. *Drug Alcohol Dependence*. 2021;221:108639.

53. Meijers RWJ, Litjens NHR, de Wit EA, Langerak AW, van der Spek A, Baan CC, et al. Cytomegalovirus contributes partly to uraemia-associated premature immunological ageing of the T cell compartment. *Clin Exp Immunol*. 2013;174(3):424–32. <https://doi.org/10.1111/cei.12188> PMID: 23962178
54. Mongelli A, Barbi V, Gottardi Zamperla M, Atlante S, Forleo L, Nesta M, et al. Evidence for biological age acceleration and telomere shortening in COVID-19 survivors. *Int J Mol Sci*. 2021;22(11):6151. <https://doi.org/10.3390/ijms22116151> PMID: 34200325
55. Muhsen K, Sinnreich R, Merom D, Nassar H, Cohen D, Kark JD. Helicobacter pylori infection, serum pepsinogens as markers of atrophic gastritis, and leukocyte telomere length: a population-based study. *Human Genomics*. 2019;13(1):32.
56. Nguyen LM, Chon JJ, Kim EE, Cheng JC, Ebersole JL. Biological aging and periodontal disease: analysis of NHANES (2001–2002). *JDR Clin Trans Res*. 2022;7(2):145–53. <https://doi.org/10.1177/2380084421995812> PMID: 33605165
57. Panczyszyn A, Boniewska-Bernacka E, Glab G. Telomere length in leukocytes and cervical smears of women with high-risk human papillomavirus (HR HPV) infection. *Taiwanese J Obstet Gynecol*. 2020;59(1):51–5.
58. Pathai S, Lawn SD, Gilbert CE, McGuinness D, McGlynn L, Weiss HA, et al. Accelerated biological ageing in HIV-infected individuals in South Africa: a case-control study. *AIDS*. 2013;27(15):2375–84. <https://doi.org/10.1097/QAD.0b013e328363bf71> PMID: 23751258
59. Retuerto M, Lledo A, Fernandez-Varas B, Guerrero-Lopez R, Usategui A, Laluez A, et al. Shorter telomere length is associated with COVID-19 hospitalization and with persistence of radiographic lung abnormalities. *Immunity Ageing*. 2022;19(1):38.
60. Richardson MW, Sverstiuk A, Hendel H, Cheung TW, Zagury JF, Rappaport J. Analysis of telomere length and thymic output in fast and slow/non-progressors with HIV infection. *Biomed Pharmacother*. 2000;54(1):21–31. [https://doi.org/10.1016/s0753-3322\(00\)88637-0](https://doi.org/10.1016/s0753-3322(00)88637-0) PMID: 10721459
61. Sehl ME, Breen EC, Shih R, Chen L, Wang R, Horvath S, et al. Increased rate of epigenetic aging in men living with HIV prior to treatment. *Front Genet*. 2022;12:796547. <https://doi.org/10.3389/fgene.2021.796547> PMID: 35295196
62. Shiao S, Arpadi SM, Shen Y, Cantos A, Ramon CV, Shah J. Epigenetic aging biomarkers associated with cognitive impairment in older African American adults with human immunodeficiency virus (HIV). *Clin Infect Dis*. 2021;73(11):1982–91.
63. Song W, Yang J, Niu Z. Association of periodontitis with leukocyte telomere length in US adults: a cross-sectional analysis of NHANES 1999 to 2002. *J Periodontol*. 2021;92(6):833–43. <https://doi.org/10.1002/JPER.20-0269> PMID: 32996594
64. Spyridopoulos I, Hoffmann J, Aicher A, Brümmendorf TH, Doerr HW, Zeiher AM, et al. Accelerated telomere shortening in leukocyte subpopulations of patients with coronary heart disease: role of cytomegalovirus seropositivity. *Circulation*. 2009;120(14):1364–72. <https://doi.org/10.1161/CIRCULATIONAHA.109.854299> PMID: 19770396
65. Srinivasa S, Fitch KV, Petrow E, Burdo TH, Williams KC, Lo J, et al. Soluble CD163 is associated with shortened telomere length in HIV-infected patients. *J Acquir Immune Defic Syndr*. 2014;67(4):414–8. <https://doi.org/10.1097/QAI.0000000000000329> PMID: 25197827
66. Tachtatzis PM, Aravindhan A, Penrhyn-Lowe S, Scarpini C, Verma S, Parker R. Hepatitis B virus (HBV) replication is confined to hepatocytes with longer telomeres within livers with accelerated ageing. *Gastroenterology*. 2011;140(5 SUPPL. 1):S899.
67. Tahara T, Shibata T, Okubo M, Ishizuka T, Ichikawa Y, Miyata M. Telomere length in non-neoplastic gastric mucosa correlates with *H. pylori* infection, degree of gastritis and non-steroidal anti-inflammatory drugs (NSAIDs) use. *United European Gastroenterol J*. 2013;1(1 SUPPL. 1):A250.
68. Toljic B, Milašin J, De Luka SR, Dragović G, Jevtović D, Maslać A, et al. HIV-Infected patients as a model of aging. *Microbiol Spectr*. 2023;11(3):e0053223. <https://doi.org/10.1128/spectrum.00532-23> PMID: 37093018
69. Tucker V, Jenkins J, Gilmour J, Savoie H, Easterbrook P, Gotch F, et al. T-cell telomere length maintained in HIV-infected long-term survivors. *HIV Med*. 2000;1(2):116–22. <https://doi.org/10.1046/j.1468-1293.2000.00010.x> PMID: 11737334
70. Usadi B, Bruhn R, Lin J, Lee TH, Blackburn E, Murphy EL. Telomere length, proviral load and neurologic impairment in HTLV-1 and HTLV-2-infected subjects. *Viruses*. 2016;8(8).
71. von Känel R, Malan NT, Hamer M, Malan L. Comparison of telomere length in black and white teachers from South Africa: the sympathetic activity and ambulatory blood pressure in Africans study. *Psychosom Med*. 2015;77(1):26–32. <https://doi.org/10.1097/PSY.0000000000000123> PMID: 25469684
72. Wang L-N, Wang L, Cheng G, Dai M, Yu Y, Teng G, et al. The association of telomere maintenance and TERT expression with susceptibility to human papillomavirus infection in cervical epithelium. *Cell Mol Life Sci*. 2022;79(2):110. <https://doi.org/10.1007/s00018-021-04113-0> PMID: 35098380
73. Wang S, Chang E, Byanyima P, Huang P, Sanyu I, Musisi E, et al. Association between common telomere length genetic variants and telomere length in an African population and impacts of HIV and TB. *J Hum Genet*. 2019;64(10):1033–40. <https://doi.org/10.1038/s10038-019-0646-9> PMID: 31388112
74. Wolthers KC, Bea G, Wisman A, Otto SA, de Roda Husman AM, Schaft N, et al. T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. *Science*. 1996;274(5292):1543–7. <https://doi.org/10.1126/science.274.5292.1543> PMID: 8929418
75. Womersley JS, Spies G, Tromp G, Seedat S, Hemmings SMJ. Longitudinal telomere length profile does not reflect HIV and childhood trauma impacts on cognitive function in South African women. *J Neurovirol*. 2021;27(5):735–49. <https://doi.org/10.1007/s13365-021-01009-4> PMID: 34448146

76. Woods SP, Teixeira AL, Martins LB, Fries GR, Colpo GD, Rocha NP. Accelerated epigenetic aging in older adults with HIV disease: associations with serostatus, HIV clinical factors, and health literacy. *Geroscience*. 2023;45(4):2257–65. <https://doi.org/10.1007/s11357-023-00759-9> PMID: 36820957
77. Xu W, Zhang F, Shi Y, Chen Y, Shi B, Yu G. Causal association of epigenetic aging and COVID-19 severity and susceptibility: a bidirectional Mendelian randomization study. *Front Med (Lausanne)*. 2022;9:989950. <https://doi.org/10.3389/fmed.2022.989950> PMID: 36213637
78. Yoshioka D, Shibata T, Tahara T, Ichikawa Y, Yonemura J, Okubo M. Telomere length in non-neoplastic gastric mucosa and its relationship to *H. pylori* infection, degree of gastritis and non-steroidal anti-inflammatory drugs (nsaids) use. *Gastroenterology*. 2012;142(5 SUPPL. 1):S530.
79. Zanet DL, Thorne A, Singer J, Maan EJ, Sattha B, Le Campion A, et al. Association between short leukocyte telomere length and HIV infection in a cohort study: no evidence of a relationship with antiretroviral therapy. *Clin Infect Dis*. 2014;58(9):1322–32. <https://doi.org/10.1093/cid/ciu051> PMID: 24457340
80. Zhang D-H, Chen J-Y, Hong C-Q, Yi D-Q, Wang F, Cui W. High-risk human papillomavirus infection associated with telomere elongation in patients with esophageal squamous cell carcinoma with poor prognosis. *Cancer*. 2014;120(17):2673–83. <https://doi.org/10.1002/cncr.28797> PMID: 24840723
81. Zribi B, Uziel O, Lahav M, Mesilati Stahy R, Singer P. Telomere length changes during critical illness: a prospective, observational study. *Genes (Basel)*. 2019;10(10):761. <https://doi.org/10.3390/genes10100761> PMID: 31569793
82. Krasnienkov DS, Gorodna OV, Kaminska TM, Podolskiy VV, Podolskiy VV, Nechyporenko MV, et al. Analysis of relative average length of telomeres in leukocytes of women with COVID-19. *Cytol Genet*. 2022;56(6):526–9. <https://doi.org/10.3103/S0095452722060056> PMID: 36466075
83. Al-Awadhi R, Alwehaidah MS, AlRoomy M, Kapila K. Relative telomere length in cervical exfoliated cells among women with high-risk human papillomavirus. *Pathobiology*. 2024;91(3):180–6.
84. Andreu-Sánchez S, Ripoll-Cladellas A, Culinscaia A, Bulut O, Bourgonje AR, Netea MG, et al. Antibody signatures against viruses and microbiome reflect past and chronic exposures and associate with aging and inflammation. *iScience*. 2024;27(6):109981. <https://doi.org/10.1016/j.isci.2024.109981> PMID: 38868191
85. Cadiñanos J, Rodríguez-Centeno J, Montejano R, Esteban-Cantos A, Mena-Garay B, Jiménez-González M, et al. Partial recovery of telomere length after long-term virologic suppression in persons with HIV-1. *Open Forum Infect Dis*. 2024;11(10):ofae550. <https://doi.org/10.1093/ofid/ofae550> PMID: 39416992
86. Liang X, Aouizerat BE, So-Armah K, Cohen MH, Marconi VC, Xu K, et al. DNA methylation-based telomere length is associated with HIV infection, physical frailty, cancer, and all-cause mortality. *Aging Cell*. 2024;23(7):e14174. <https://doi.org/10.1111/ace.14174> PMID: 38629454
87. Macamo ED, Mkhize-Kwitshana ZL, Duma Z, Mthombeni J, Naidoo P. Telomere length in a South African population co-infected with HIV and helminths. *Curr Issues Mol Biol*. 2024;46(7):6853–67. <https://doi.org/10.3390/cimb46070409> PMID: 39057051
88. Petrara MR, Ruffoni E, Carmona F, Cavallari I, Zampieri S, Morello M, et al. HIV reservoir and premature aging: risk factors for aging-associated illnesses in adolescents and young adults with perinatally acquired HIV. *PLoS Pathog*. 2024;20(9):e1012547. <https://doi.org/10.1371/journal.ppat.1012547> PMID: 39312589
89. Savrun A, Dirican E. Analysis of telomere length in patients with COVID-19 and investigation into its relationship with clinical- demographic data. *Cukurova Med J*. 2023;48(3):833–43.
90. Shiau S, Zumpano F, Wang Z, Shah J, Tien PC, Ross RD, et al. Epigenetic aging and musculoskeletal outcomes in a cohort of women living with HIV. *J Infect Dis*. 2024;229(6):1803–11. <https://doi.org/10.1093/infdis/jiae016> PMID: 38366369
91. Soares MR, de Carvalho RM, Dos Santos Cirino H, Martins R, Miranda Furtado CL, Santana BAA, et al. Effect of SARS-CoV-2 infection on sperm telomere length. *J Assist Reprod Genet*. 2025;42(4):1167–75. <https://doi.org/10.1007/s10815-025-03408-6> PMID: 39934464
92. Xu J, Zhu G, Zhang H. Causal relationship between telomere length and sepsis: a bidirectional Mendelian randomization study. *Sci Rep*. 2024;14(1):5397. <https://doi.org/10.1038/s41598-024-56205-z> PMID: 38443473
93. Yang NY, Hsieh AYY, Chen Z, Campbell AR, Gadawska I, Kakkar F, et al. Chronic and latent viral infections and leukocyte telomere length across the lifespan of female and male individuals living with or without HIV. *Viruses*. 2024;16(5):755. <https://doi.org/10.3390/v16050755> PMID: 38793637
94. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71. <https://doi.org/10.1136/bmj.n71> PMID: 33782057
95. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. *J Clin Epidemiol*. 2001;54(10):1046–55. [https://doi.org/10.1016/s0895-4356\(01\)00377-8](https://doi.org/10.1016/s0895-4356(01)00377-8) PMID: 11576817
96. Library B. Learning lessons from the cyber-attack: British Library Cyber Incident Review. 2024.
97. Cohen S, Janicki-Deverts D, Turner RB, Casselbrant ML, Li-Korotky HS, Epel ES, et al. Association between telomere length and experimentally induced upper respiratory viral infection in healthy adults. *Jama*. 2013;309(7):699–705.
98. Wang Q, Codd V, Raisi-Estabragh Z, Musicha C, Bountziouka V, Kaptoge S, et al. Shorter leukocyte telomere length is associated with adverse COVID-19 outcomes: a cohort study in UK Biobank. *EBioMedicine*. 2021;70:103485. <https://doi.org/10.1016/j.ebiom.2021.103485> PMID: 34304048
99. Lin Z, Gao H, Wang B, Wang Y. Cytomegalovirus infection and its relationship with leukocyte telomere length: a cross-sectional study. *Mediators Inflamm*. 2021;2021:6675353. <https://doi.org/10.1155/2021/6675353> PMID: 33628118

100. Asghar M, Yman V, Homann MV, Sondén K, Hammar U, Hasselquist D, et al. Cellular aging dynamics after acute malaria infection: a 12-month longitudinal study. *Aging Cell*. 2018;17(1):e12702. <https://doi.org/10.1111/acel.12702> PMID: 29143441
101. Shiao S, Strehlau R, Shen J, Violari A, Patel F, Liberty A. Biomarkers of aging in HIV-infected children on suppressive antiretroviral therapy. *J Acquir Immune Defic Syndr*. 2018;78(5):549–56.
102. Côté HCF, Soudeyns H, Thorne A, Alimenti A, Lamarre V, Maan EJ, et al. Leukocyte telomere length in HIV-infected and HIV-exposed uninfected children: shorter telomeres with uncontrolled HIV viremia. *PLoS One*. 2012;7(7):e39266. <https://doi.org/10.1371/journal.pone.0039266> PMID: 22815702
103. Duan R, Fu Q, Sun Y, Li Q. Epigenetic clock: a promising biomarker and practical tool in aging. *Ageing Res Rev*. 2022;81:101743. <https://doi.org/10.1016/j.arr.2022.101743> PMID: 36206857