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Abstract
The advancement in computing technology, online learning platforms, and pedagogi-
cal tools enable educators and learners to connect without temporal and geographical
boundaries. The existing deep learning models to predict student performance are either
simple recurrent neural networks or artificial neural networks employing demographic
and hand-crafted features. This manuscript proposes a model, MultIFAR, that infuses
multi-dimensional information representing different aspects of student behavior with an
attention-driven deep learning model integrating bidirectional long short-term memory
and convolutional networks to learn student representation efficiently. MultIFAR employs
student demographic, assessment, and VLE-interaction to understand different aspects
of student behavior from multifaceted data. MultIFAR includes bidirectional long short-
term memory to process and capture patterns from demographic, assessment, and inter-
action information. The model applies a convolutional operation on the daily interaction
information with the VLE. We also implement the attention mechanism to assign weight
to significant features. The empirical evaluation over the Open University Learning Ana-
lytics (OULA) dataset establishes the efficacy of MultIFAR against the state-of-the-art
approaches and baseline methods. Considering accuracy, MultIFAR reports results from
80.31% to 97.12% over the four different problems of student performance prediction.
The ablation analysis reveals that diurnal interaction shows the highest, whereas demo-
graphic attributes show the least impact on MultIFAR accuracy. We also extend MultIFAR
to predict at-risk and high-performing students early. We also evaluate the model over
the balanced dataset and multiclass scenario.

Introduction
In this century, rapid advancement in computing technology has influenced every aspect of
human life. Likewise, the education sector is also influenced by the development of various
tools and platforms such as Blackboard and Moodle. These tools change the student’s learn-
ing behavior. These tools have facilitated access to educational content without geographical
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and temporal limitations. Millions of students access educational content through the massive
open online courses (MOOCs) and virtual learning environments. The students’ interac-
tions with digital learning platforms generate a significant dataset that we can analyze to gain
insights into learner behavior and identify the factors influencing student performance. The
existing literature includes approaches where researchers have used VLE-generated data to
comprehend the learning process and further presented statistical analysis, machine learning,
and data mining techniques to automatically predict at-risk students [1], student performance
[2], and early drop-outs [3]. The early prediction of student performance will help educational
institutions and instructors to take corrective measures at different levels by providing the
required remedial material and support to students predicted as low performers.

(https://units.imamu.edu.sa/deanships/SR/rs/fp/
Pages/msar1.aspx). The funders had no role in
study design, data collection and analysis,
decision to publish, or preparation of the
manuscript.

Competing interests: No authors have
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Prior studies generally predict student performance using traditional machine learning. In
these studies, authors characterize students based on features extracted from demographic,
socioeconomic, academic, and interaction information. The extracted features are used to
train machine learning models such as random forest, decision tree, linear regression, and
support vector machine to predict student performance [2,4]. However, feature engineering
is time-consuming, tedious, and manual. Advancements in neural networks have promis-
ing results in diverse NLP applications, namely, sentiment analysis, speech recognition, and
machine translation. The researchers also utilize deep learning in educational analytics prob-
lems, namely student performance prediction [2,5] and early dropout prediction [6,7]. How-
ever, it is largely unexplored, whereas existing studies use feature engineering for student
characterization. In [2], authors define a list of 54 student attributes and select the top 30
using singular value decomposition. The selected attributes are passed through a dense arti-
ficial neural network (ANN), constituting three hidden layers for learning and predicting
student performance. Ramanathan andThangavel [8] apply the steepest gradient Minkowski
sommon to map for attributes selection, which further passes through a dense neural network
consisting of long short-term memory (LSTM) network for student performance prediction.
The researchers have utilized the advancement in deep learning and presented models to pre-
dict various aspects of student academic success [9–12]. In [9], authors select the significant
feature from the OULA dataset using the butterfly fitness function and further train the deep
neural network to predict student performance. Likewise, existing approaches generally intro-
duce hand-crafted features and pass them to an ANN, recurrent neural network (RNN), or a
straightforward network. Therefore, existing literature on one of the most widely used bench-
mark datasets in learning analytics, OULA, utilizes either classical machine learning or deep
neural networks with multiple dense layers to predict student performance as a binary classifi-
cation problem. These approaches generally apply techniques to select significant features and
further train models over these for student performance prediction. To the best of our knowl-
edge, we are the first ones to model daily student interaction with the learning platform as a
2d matrix representing their diurnal rhythmic behavior. We also model student interaction
with 20 types of VLE materials to capture their interaction information during the three peri-
ods: before and after course commencement and finally, overall interaction. Therefore, in con-
trast to existing studies evaluated over the OULA dataset, MultIFAR models the multidimen-
sional information representing different aspects of student behavior using attentional LSTM
and CNN networks and further infuses them to learn the aggregate student representation. It
is further passed through a dense layer to predict the student’s academic performance.

This study introduces a deep neural network model, MultiFAR, developed to analyze
diverse categories of student information, including demographic, academic performance,
and VLE interaction data. The model is trained to accurately predict student performance in
a course by leveraging the multifaceted dataset. In the model, CNN extracts spatial and tem-
poral features from image datasets, utilizing convolutional and max-pooling layers. It enables
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the model to capture intricate patterns and correlations within the data, paving the way for
more accurate predictions. However, researchers also use CNN in text-processing problems
because of its ability to extract high-level features [13]. In this paper, we model clickstream
information, representing student interaction with VLE as diurnal behavior to capture their
inter- and intra-day interactions. Further, we apply six-layer CNN over it to extract high-level
interaction features. The clickstream information is sequential, so we apply BiLSTM to learn
temporal features, further augmented with student assessment information. The BiLSTM is a
recurrent neural network architecture for sequential information, incorporating context for a
particular feature in the forward and backward directions. The existing literature reveals that
demographic and socio-economic factors also affect student performance. Therefore, we also
create a 9-dimensional demographic vector and pass it through a BiLSTM network to include
background information. The CNN and BiLSTM architectures have no specified mechanism
to handle and weigh significant features. We have introduced an attention layer to address
this limitation in the CNN and BiLSTM architectures. It allows the model to focus more on
the crucial features. Subsequently, the extracted features from all three components are com-
bined and processed through a dense layer. Following this, a model utilizes a softmax layer to
predict the student performance. In conclusion, we summarize the main contributions in the
following points:

● Jointly models and infuses multidimensional information in the form of demographic,
assessment, and interaction information to the devised deep architecture.
● Presents a novel attention-driven Covolutional and BiLSTM network-based
deep model to process and learn student representation using the multidimensional
information.
● Conduct an in-depth comparative evaluation using a benchmark dataset to investi-
gate the model efficacy. Also, we carried out a detailed component ablation analysis to
meticulously assess the influence of each behavioral component.
● Evaluate the model for early prediction of student performance to facilitate decision-
makers and institutions for early intervention.

1 Literature survey
Numerous methodologies exist in the literature for analyzing and modeling the diverse facets
of student accomplishment in virtual learning environments. These aspects include dropout
prediction [6,14,15], at-risk student prediction [1], performance prediction [2,16], and iden-
tification of slow learners [17]. We can classify the existing approaches in educational data
mining into two broad categories: predictive analytics and learning analytics [18]. The predic-
tive analytics approaches aim to predict student performance, failure rate, and at-risk students
[19]. In learning analytics, authors collect and analyze student information to gain insights
into their learning behavior, cognition, and interaction experience to improve their attain-
ment. The existing literature has review articles that provide detailed discussions of the evo-
lution of educational data mining [18–20]. In classical feature engineering-based machine
learning, researchers have used categories of features, namely, socio-demographic, assess-
ment, VLE-interaction, and academic history for student performance prediction [21,22]. In
these approaches, researchers have used different machine learning models like Naive Bayes,
NBTree, J48, SVM, kNN, Random Forest, and XGBoost for predicting student performance
[23–27].

The classical machine learning-based approaches characterize students using a set of man-
ually devised features, which is time-consuming and tedious. Recently, researchers have
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observed the rapid use of deep learning, CNN, and RNN algorithms in diverse applications of
NLP and computer vision [28–30]. The researchers have presented deep learning approaches
to investigate various aspects of student performance, namely, drop-out prediction [6,31],
wheel-spinning problem [32], and knowledge retention [5]. Similarly, they have presented
deep learning approaches to predict student grades in a course/program [2,8,16]. In an early
approach, Alam et al. [33] defined features based on the user’s activity and trained a deep
belief network along with five other classical machine learning models to classify students
into low, medium, and high rankers. Raga and Raga [34] modeled the student activities in
a Moodle using a simple feed-forward neural network to predict their performance in mid-
term and final exams early. The author used the activity log of 885 students and found that
data from an extended period positively impacts the model accuracy. In [35], authors pre-
sented course-specific Multilayer Perceptron and RNN-based models to predict grades in
future courses employing the student’s previous grades. Waheed et al. [2] first handcrafted a
54 feature extracted from students’ demographic, assessment performance, and click-stream
information. They applied SVD for dimensionality reduction and modeled it using a simple
artificial neural network. They extended the presented approach for early prediction of at-risk
and high-performing students.

In a study [16], Karimi et al. modeled the relationship between the student and course as a
knowledge graph. They applied the graph convolution network to train the student and course
embeddings. They also employed LSTM to encode student behavioral data and then com-
bined it with student and course embeddings to forecast student performance in a course. In
their research, Tao et al. [36] utilized a graph convolutional network, a neural architecture for
graph data, to predict student performance. Ramanathan andThangavel (2021) employed a
stacked LSTM-based deep learning model to forecast student performance in a course. These
approaches model the sequential nature of student socio-economic and clickstream data gen-
erated through interaction with VLE using recurrent neural networks. Recently, researchers
exploited the advancement in deep learning and presented models to predict various aspects
of student academic success [9–12,37]. In a recent study, Wang et al. [11] applied collabora-
tive filtering to preprocess the dataset and then used metadata clustering to resolve the imbal-
ance of academic features. It further trains the XGBoost-enhanced model to predict student
performance. In another study [9], authors used the butterfly fitness function to select sig-
nificant features from the OULA dataset and further trained the deep neural network to pre-
dict student performance. In another approach, Junejo et al. [38] presented a convolution and
LSTM-based model to predict student grades. They processed a Jordanian dataset, extracted
46 features, and converted it as single-channel data to pass it to the model. Researchers have
also presented multiclass classification approaches over the OULA dataset to predict the four
categories of students rather than modeling them as a binary class problem [39,40]. This
manuscript focuses on binary classification, although we also evaluated the MultiFAR for
multiclass classification.

2 Proposed methodology
This section outlines the workflow of the proposed methodology for predicting student per-
formance. Fig 1 provides the graphical representation of MultiFAR architecture. The following
subsections present a precise and comprehensive description of each layer of the model.

2.1 Data preprocessing and modeling
We will harness input data to model three main behavioral characteristics of students. These
are described briefly in the following paragraphs.
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Fig 1. Architecture of MultiFAR for attention-driven representation learning.

https://doi.org/10.1371/journal.pone.0333099.g001

2.1.1 Socio-economic information. In the existing studies, researchers have demon-
strated that socio-economic and demographic information of students influenced their out-
put in a course [2,25]. The socio-economic behavior, represented using S , has 9 attributes,
namely, gender, region, and highest education to characterize the students in terms of socio-
economic information.

2.1.2 Assessment-interaction behavior. This representation is based on the following
three behavioral representations, which are described in the following paragraphs:

Assessment performance. The student’s performance in internal assessment of a course
is generally considered an early indicator of their final performance. The Open Univer-
sity in the OULA dataset evaluates students considering three methods: tutor-mediated
assessment (TMA), computer-mediated assessment (CMA), and final exam. In a course, an
instructor conducts assessments through multiple tutor-mediated and computer-mediated
Finally, students are assessed using a final exam. Each assessment exam has a different relative
weight. We include only tutor-mediated evaluations and the final exam because the weight
of computer-mediated exams is lower and insignificant than the TMA and final exam. We
include student performance only in the first five TMA and final exam to characterize their
performance. Finally, a student’s performance is represented using a set of 6 attributes. We
consider only five TMA assessments because most courses have less than five assessment
exams.

Submission behavior. In a course, instructors provide assignments to students with a
deadline. Its submission behavior also reflects student punctuality and sincerity. Therefore, we
model the submission behavior of a student considering the deadline. In the OULA dataset,
most courses have five assignments. As a result, we represent the student submission behavior
using a set of 5 attributes.

Aggregate activity-interaction. The click-stream information representing student
interaction with a VLE is vital for predicting student performance in a course. In the OULA
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dataset, a student can access 20 types of resources over the VLE. Students can assess these
resources even before the course commencement. Therefore, we extract student interaction
with 20 types of VLE resources in three periods: (i) before the course commencement, (ii)
after the course commencement, and (iii) overall. We compute the sum of all interactions for
each resource type for the three periods. Finally, the activity-interaction behavior of a student
is represented using a 60-d feature.

Finally, MultiFAR concatenates three behavior vectors to represent the student assessment-
interaction-based behavior representationA, using a 71-d feature vector.

2.1.3 Diurnal VLE-interaction. The click-stream information representing student inter-
action with resources over VLE is vital in finding regularity in the diurnal interaction pat-
tern. It contains the number of interactions and the underlying date with a particular resource
for each student. To observe the evolution of student interaction behavior with the available
resources, we count everyday student interactions with each resource. Similarly, the model
computes the sum of interactions with each of the 20 resources every day. In the OULA
dataset, students generally start interaction one month before the commencement of a course
up to a maximum of 9 months. We model the student interaction behavior from one month
before the course commencement to 200 days, considering only 200 days, although the course
duration is between 235 to 270 days. It is because, before selection, we conducted an analysis
of all the modules and found that there was hardly any interaction data after 200 days. After
200 days, most of the values were 0. So, we consider only the first 200 days of data to avoid
sparseness. Finally, we represent the diurnal VLE-interaction, represented using I , with 20
different activities using a matrixMd×a, where d and a represent the number of days having
interaction and the number of activities, respectively.

2.2 BiCAT layer
This section presents a detailed functional description of the proposed model, consisting
of a stacked BiLSTM network, convolutional neural network, and attention layers. A brief
description of these layers, components, and their functionality is presented in the following
subsections.

2.2.1 Stacked BiLSTM network. The socio-economic and assessment-based representa-
tions are passed to a separate 2-layer stacked BiLSTM network. The BiLSTM, short for Bidi-
rectional Long Short-Term Memory, represents an evolution of the LSTM cell, which is a
type of RNN architecture designed to handle sequential data and model temporal dynamic
behavior [41]. The fundamental advantage of BiLSTM over LSTM lies in its ability to address
the vanishing gradient problem more effectively. The LSTM architecture consists of memory
blocks that are created from memory cells, and empower it to make informed decisions about
what to retain and what to discard. This feature equips LSTM networks with the capability to
learn and retain long-range contextual information, making them adept at capturing com-
plex sequential patterns. An LSTM cell is composed of three fundamental components known
as digital gates: the input gate it, the forget gate ft, and the output gate ot that together with a
memory cell state ct play a crucial role in the functioning of the LSTM network. The it at time
stamp t performs the pivotal function of regulating the flow of information into the cell, and
it also updates the cell’s state to a new value using a specific mathematical equation (see Eq 1).
Concurrently, the forget gate is responsible for determining the extent to which information
is to be discarded at time t, employing its distinct equation (see Eq 2). It calculates the can-
didate cell value ̃Ct using Eq 3. Then, it computes the current cell state value Ct using 4. The
output gate ot is determined by 5, and in the last, it computes the final value ht of the LSTM
cell at time t using 6. In the given set of equations, the symbolsW and b correspond to the

PLOS One https://doi.org/10.1371/journal.pone.0333099 October 24, 2025 6/ 26

https://doi.org/10.1371/journal.pone.0333099


ID: pone.0333099 — 2025/10/22 — page 7 — #7

PLOS One Multidimensional information fusion for student performance prediction

weight and bias vectors, respectively. The 𝜎() denotes the sigmoid function, which introduces
non-linearity in the neural network. Similarly, tanh signifies the hyperbolic tangent function.
Furthermore,⊗ denotes the element-wise multiplication operation applied component-wise
to the vectors or matrices involved in the computation.

it = 𝜎(Wi ⋅ [ht–1, xt] + bi) (1)

ft = 𝜎(Wf ⋅ [ht–1, xt] + bf) (2)

̃Ct = tanh(WC ⋅ [ht–1, xt] + bC) (3)

Ct = ft ⊗ Ct–1 + it ⊗ ̃Ct (4)

ot = 𝜎(Wo ⋅ [ht–1, xt] + bo) (5)

ht = ot ⊗ tanh(Ct) (6)

This study opted to use BiLSTM instead of regular LSTM to empower the model to cap-
ture both forward and backward contexts. The BiLSTM achieves this by employing a pair of
LSTM networks: one captures future context by processing the representation vector from
left to right (forward LSTM), and the second LSTM captures historical context by processing
the representation vector from right to left (backward LSTM). This results in the generation
of two hidden states, ⃗ht and ⃖ht, as demonstrated mathematically in Eqs 7 and 8, respectively.
The BiLSTM combines ⃗ht and ⃖ht to learn ht 9. The deep recurrent neural network is known for
its ability to learn low-level feature representation. It also accommodates greater model com-
plexity, as detailed in Pascanu’s work [42]. To this end, the model employs a 2-layer stacked
BiLSTM to capture better low-level feature representation. We then direct the two result-
ing feature vectors into separate attention layers to further enhance their significance in the
model.

⃗hi = L⃗STM(fi) (7)

h⃖i = L⃖STM(fi) (8)

hi = [ ⃗hi, h⃖i] (9)

2.2.2 Convolutional neural network. The socio-economic and assessment-based repre-
sentations are injected into separate stacked-BilSTM networks because these are sequential
information. However, BiLSTM cannot extract vital local features. To observe student diurnal
interaction behavior with VLE, we pass the daily interaction information across 20 activities
into a convolutional neural network. CNN is a type of neural architecture primarily employed
to process grid-format data, such as images and text arranged in a matrix [43]. One of the
main advantages of CNN is its ability to effectively extract local and position-invariant fea-
tures from the data [13]. CNN performs two operations - convolution and pooling to extract
relevant features from the grid-shaped data. In these, convolution uses filters in matrix form
over the input representation and extracts high-level relevant features called feature-
map. These feature-map capture relevant patterns and structures present in the input data.
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The pooling operation down-sample the feature-map by selecting critical features and reduc-
ing the spatial dimensions. The researchers originally designed the convolutional network
to process and analyze image datasets. Later, it gained widespread adoption in various natu-
ral language processing and text classification tasks because of its ability to capture intricate
patterns and features from textual data. In deep CNNs, the higher layers build over the lower
layers capture rich and complex features [44]. To this end, we implemented a six-layer CNNs.
Once the CNNs have extracted the feature vector, an attention layer further processes it. This
layer dynamically assigns weights to each feature, evaluating their discriminative power and
relevance. It ensures that the most influential features are given priority in predicting student
performance, resulting in improved model performance.

2.3 Attention and concatenation layer
At this stage, the model infuses the three feature vectors learned through temporal BiLSTM
and spatial CNN.These feature vectors are then fed into an attention layer to determine their
respective attention scores, with higher scores assigned to significant features and lower scores
given to less important ones. Suppose hf is the learned feature vector of f, first, it passes this
representation to a dense layer to learn the output representation h′f (see Eq 10). Further-
more, the attention layer computes the similarity between h′f and vf, a random vector. Finally,
the attention layer calculates the attention score using a softmax function as defined mathe-
matically in Eq 11. The vertex tensor vf is initially randomized and then learned with other
parameters during the training process, as described in [45].

h′f = tanh(whf + b) (10)

𝛼f =
exp(h′fvf)

∑f exp(h′fvf)
(11)

Finally, the model takes the attention-based feature representation of three feature vec-
tors and combines them into a single feature representation. This combined representation is
then input into a dense layer, which processes the information and produces an output. The
output from the linear layer is further fed into a softmax layer, which classifies the student’s
performance based on the processed features.

3 Experimental setup and evaluation results
This section assesses the MultiFAR model over the popular Open University Learning
Analytics dataset. The dataset description encompasses its key attributes, including size,
feature categories, and other details. Following this, a thorough performance analysis of
the model is conducted, which involves assessing its accuracy, precision, recall, loss, and
AUC. Moreover, we conducted a detailed comparative evaluation to compare the Mul-
tiFAR with state-of-the-art (SOTA) approaches, transformer-based models, and base-
line methods. We also evaluated MultiFAR for multiclass prediction and investigated the
balanced version of the OULA dataset. Furthermore, we conduct a component ablation
analysis to uncover the influence of each component of MultiFAR over its performance.
It will result in valuable insights regarding the importance of each neural architecture of
MultiFAR.
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3.1 Dataset description and evaluation metrics
We evaluate MultiFAR over the widely used educational data mining dataset - OULA [46]. It
contains data on student performance in internal assessments and final exams, demographic
information, and interaction with various learning materials over the VLE in the form of a
clickstream for 32593 students. The authors collected data over 9 months from 2014 to 2015
for seven courses. In the dataset, courses are called modules, and teaching semesters are pre-
sentations. The dataset has 7 Excel files containing all the information. Based on the mark in a
course, students are divided into four categories, namely, pass, fail, distinction, and
withdrawn having 12361, 7052, 3024, and 10156 students, respectively.

We investigate the effectiveness of the presented model using four metrics: accuracy, pre-
cision, recall, loss, and AUC. In this study, we convert predicting student performance in a
course into four binary classification problems. For example, in the pass/fail predic-
tion problem, pass is a positive class, and fail is a negative class. Accuracy in this con-
text refers to the proportion of correctly predicted grades out of the total students. This mea-
sure reflects the ratio of correctly predicted student grades to the total number of students
whose grades are classified by the model. Mathematically, it is defined as outlined in Eq 12.
It’s important to note that false positives (FP) indicate the number of negative class students
incorrectly classified as positive. Precisionmeasures the proportion of correctly predicted
positive class grades out of all the student grades predicted as positive. Mathematically, Eq
13 defines its calculation. Recall quantifies the ratio of correctly predicted positive class stu-
dent grades to the total number of positive student grades, as defined in Eq 14. The loss func-
tion measures the total difference between the predicted class instances and the actual class
instances. It represents the sum of the discrepancies between the predicted and underlying
actual class instances. Lastly, AUC, the area under the curve, is a metric used to evaluate the
performance of a binary classification model. AUC measures a model’s ability to distinguish
between positive and negative classes.

accuracy = TP + TN
TP + FP + TN + FN

(12)

precision = TP
TP + FP

(13)

recall = TP
TP + FN

(14)

3.2 Training detail
TheMultiFAR utilizes a two-layer stacked BiLSTM to process the sequential information vec-
tor. Each layer of the network has 512 memory cells. Moreover, the model incorporates a
six-layer convolutional network for representation learning from interaction data. The first
three convolutional layers have 512 filters with a kernel size of 2× 2. Thereafter, the MultiFAR
applies a max-polling operation of 3× 1 to the feature-map. The last three convolution layers
also have 512 filters, but kernel size is 2× 1. Later, a max pooling operation of 2× 1 is applied
on the resulting feature-map. The MultiFAR further takes three separate feature vectors. To
prevent overfitting, a dropout of 0.5 is applied. This layer forwards the output to a sigmoid
layer with 2 neurons for classification. Considering optimization, the model applies categori-
cal cross-entropy to minimize the loss. The MultiFAR uses the Adam optimizer with a learn-
ing rate of 0.001. In the evaluation, the MultiFAR is trained over five-fold cross-validation. We
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used this evaluation strategy in every experiment in this manuscript. This approach ensures a
robust assessment of the MultiFAR performance.

3.3 Performance evaluation results
We thoroughly assess the effectiveness of the MultiFAR over the OULA dataset using five
standard evaluation metrics: accuracy, precision, recall, loss, and AUC. We investigate the effi-
cacy of MultiFAR with three state-of-the-art (SOTA) models: [2,47,48] and two transformer-
based models [49,50]. Also, we performed the comparison with five baseline models con-
structed fromMultiFAR. Table 1 presents the experimental results of MultiFAR along with
SOTA models [2,47,48], transformer-based models [49,50], and baselines. All the compared
models have used the OULA dataset to evaluate their efficacy and used the same hyperparam-
eter adjustment. It’s important to note that the OULA dataset categorizes the student grades
in distinction, pass, fail, and withdrawn categories. This paper models predict-
ing student grades as a binary classification problem for different pairs of student grade cat-
egories. The first two problems predict at-risk students, whereas the last two predict high-
performers. A brief discussion of the four classification problems is given in the following
subsections:

3.3.1 Prediction of at-risk students. It is crucial to identify and provide support to at-
risk students in a course. In this paper, MultiFAR predicts two categories of at-risk students:
those who failed and those who withdrew from the course. We transformed the task of pre-
dicting at-risk students into a binary classification problem consisting of two cases. Firstly, we
predicted students at risk of failure alongside successful students, termed as the pass/fail
problem. Secondly, we predicted students who might withdraw from a course alongside suc-
cessful students, known as the pass/withdrawn problem. In both cases, pass and dis-
tinction students are combined in a single group called pass having 15385 students.
The experimental results for the two categories of problems are present in 2–9 columns of the
third row of Table 1. The MultiFAR model for pass/fail and pass/withdrawn show
an accuracy of 89.57 and 97.12, respectively. Similarly, we can observe the results considering
precision, recall, loss, and AUC for the two categories of problem.

3.3.2 Prediction of high-performers. TheMultiFAR predicts high-performers
(distinction) along with pass students and those who are at risk of failure. It will model
these two combinations as separate binary classification problems: distinction/fail
and distinction/pass. The MultiFAR in distinction/pass predicts a student
will either pass only or get the distinction. In distinction/fail, the model predicts that
either a student will achieve a distinction or fail. The last ten columns of Table 1 present the
evaluation results corresponding to these two problems for MultiFAR along with SOTA and
baseline approaches. The MultiFAR accuracy for distinction/fail and distinc-
tion/pass problems is 92.06 and 80.31, respectively. MultiFAR performs poorly in dis-
tinction/pass category due to significant data imbalance between the distinction and
pass students in a ratio of 1 ∶ 4.

3.4 Comparative evaluation
To investigate the effectiveness of MultiFAR, we conduct a comprehensive comparison with
three SOTA [2,47,48], two transformer-based models [49,50] and five baseline approaches.
The comparison methods are briefly outlined in the following paragraphs:

[2] The authors introduced 54 features based on socio-economic, assessment, and VLE-
interaction information. They applied singular value decomposition to select the top
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30 features and passed it to a simple artificial neural network with 3 hidden layers for
four categories of binary classification problems. They also evaluated the model using
the OULA dataset.

[47] This study presents a sequential engagement-based academic performance predic-
tion network (SEPN). It includes two main components: an engagement detector and a
sequential predictor. The engagement detector has CNN to track student engagement
patterns based on their daily activities. The sequential predictor uses LSTM to learn the
interaction from the engagement feature spaces and demographic features.

[48] The authors investigated the prediction of student performance in a self-paced envi-
ronment. To this end, they investigated the performance of an LSTMmodel in predict-
ing students at risk of failure in a self-paced course. They also evaluated this study over
the OULA dataset.

Huang [49]: To evaluate the performance of MultiFAR against the transformer-based
models, we compared it with two models for tabular data. The first, TabTransformer,
is a transformer-based deep model suitable for tabular data. It utilizes self-attention
mechanisms to model the dependencies between categorical and numerical features. Its
ability to create contextual embeddings for categorical information makes it suitable for
the OULA dataset.

Cholakov [50]: This model an extension of the TabTransformer model, having integrated
gated multilayer perceptron, which enhances feature selection and interaction model-
ing. This model is suitable for situations where the datasets are noisy and incomplete.
Therefore, it is suitable for OULA and educational datasets as student and interac-
tion information is generally missing or incomplete. It balances complex and simple
transformations easily to model student behavior for predicting their performance.

Simple Model The MultiFAR model uses stacked BiLSTM and deep CNN layers. In this
baseline, we use a single BiLSTM and CNN layer to observe the impact of multiple
BiLSTM and CNN layers on the model performance.

BiLSTM_CNN The proposed model incorporates an attention mechanism to emphasize
relevant features, allowing a more nuanced and focused approach to analyzing the stu-
dent information. To fully comprehend the influence of attention within the model,
we analyzed the removal of attention layers. By executing the model without these
attention layers, we aimed to assess the impact on the model’s ability to predict student
performance.

ANN This baseline concatenates the socio-economic, assessment-activity, and VLE-
interaction feature vectors into a 4679 dimensional vector. This vector is given to a
deep artificial neural network with three hidden layers having 50, 30, and 15 neurons.

AttBiLSTM In the third baseline, we use the stacked BiSTM network for representation
learning of socio-economic, assessment, and activity-based feature vectors. Later, the
model injects trained vectors into attention layers for student performance prediction.

AttCNN This baseline passes the diurnal VLE interaction representation into an
attention-driven CNN for predicting student performance.

Table 1 presents the evaluation results of the MultiFAR compared to SOTA and baselines
models considering the accuracy, precision, recall, loss, and AUC. It reveals that MultiFAR
outperforms the three SOTA models [2,47,48] in all cases except three. However, the perfor-
mance difference in these cases is comparative and not significantly different. The investiga-
tion of MultiFAR results with two transformer-based models reveals that MultiFAR outper-
forms these two models except in nine instances. These transformer-based models show com-
parative performance but don’t beat MultiFAR. The results show that the MultiFAR exhibits
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improvement over SOTA and transformer-based models. A simplified version of the Multi-
FAR called simple model, performs best among the baseline approaches. AttCNN, which
models using only the interaction component, shows the worst performance. In Table 1, the
best-performing approach considering each metric is shown in bold font. Fig 2 presents the
confusion matrix representation for all the four classification task. Also, a graphical visualiza-
tion of comparative performance with SOTA considering accuracy, precision, recall is shown
using Fig 3.

3.4.1 Evaluation over balanced dataset. The benchmark dataset, OULA, used in this
paper is unbalanced. In the real world, generally, fewer students withdraw from a course
or fail a course. However, we evaluated the MultIFAR efficacy with the SOTA and baseline
models over the balanced datasets to further investigate the potency of MultIFAR under a
balanced dataset scenario. To this end, to balance the dataset for a particular problem, say,
pass/fail, we first select the minimum number of instances from these two categories.
Then, we randomly select the same number of instances from the second class. We don’t over-
sample because they may not reflect the real-world distribution of student categories. The
experiment with the MultIFAR, SOTA, and baseline models is performed with the earlier
parameter settings. We conducted the evaluation considering the accuracy, precision, recall,
loss, and AUC. The experiment is performed for all four categories of problems: pass/fail,
pass/withdrawn, distinction/fail, and distinction/pass. The underly-
ing results considering the evaluation metrics along the SOTA and baselines are presented in
Table 2.

The investigation of Table 2 results over the balanced dataset reveals that results over the
balanced dataset are improved compared to the original dataset. The performance of the
SOTA and baseline models also shows improved performance. However, they are behind
the MultiFAR considering all metrics except a few instances. Among the baseline, AttCNN
shows the best result and even outperformed our model for pass/fall considering
recall. Another interesting observation is that MultiFAR performs best over the distinc-
tion/fail and distinction/pass, where the baseline and SOTA models fail to show
comparative performance. This may be due to the small number of instances in these datasets.
In Table 2, the best-performing approach considering each metric is shown in bold font.

3.5 Analysis of impact of deep neural components
In the comparative evaluation, we constructed baselines by removing neural components
from the MultiFAR model. For example, the BiLSTM_CNN baseline is created by excluding
the attention mechanism fromMultiFAR. This section thoroughly investigates the impact of
fundamental architectures included in the MultiFAR, and Tables 1 and 2 presents the under-
lying results. This investigation finds a comprehensive understanding of the influence of each
neural component and its settings on the grade classification performance of MultiFAR. Upon
analysis, we found that the MultiFAR consistently performs better than the baseline Sim-
ple Model in all cases except for three instances. It justifies the inclusion of stacked BiL-
STM and deep CNN in the proposed MultiFAR model and shows that it improves the Mul-
tiFAR performance. Also, baseline BiLSTM_CNN performs lower than the MultiFAR in all
cases. It establishes that the attention mechanism in the MultiFAR positively impacts its per-
formance. Also, to investigate the efficacy of BiLSTM, we constructed the AttCNN baseline,
whereas to observe the impact of multi-convolutional layers, we created AttBiLSTM. Com-
paratively poor results of these baseline models also justify using stacked BiLSTM and multi-
convolutional layers with the attention mechanism. In the ANN baseline, we concatenate all
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Fig 2. Confusion matrix for the imbalanced dataset.

https://doi.org/10.1371/journal.pone.0333099.g002

three behavioral components into a 4679-d vector. It also shows a pattern of subpar perfor-
mance. Consequently, the outcomes obtained from numerous established baseline approaches
underscore the effectiveness of MultiFAR and its constituent elements in addressing diverse
student performance prediction tasks.

3.6 Behavior ablation analysis
In this section, we conduct behavior ablation analysis to meticulously assess the impact of
each of the three behavioral components: S ,A, and I on predicting student performance. To
investigate the influence of a specific information component, we exclude it from the model.
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Fig 3. A graphical representation of comparative results of MultiFAR with SOTA and baseline approaches.

https://doi.org/10.1371/journal.pone.0333099.g003

Further, we execute the updated model to study the change in result, representing the impact
of that component. For instance, we exclude the assessment vector from the model to study
the influence of assessment-related behavior. Following the model updation, we carefully
observed and reported its performance. The second row of Table 3 provides the underlying
results. We conducted thorough experimentation for the remaining two components and doc-
umented our findings. Table 3 presents the result of behavior ablation analysis. The results
corresponding to a component showing the highest degradation in the MultiFAR perfor-
mance are shown in bold font. The table indicates that the II component has the most sig-
nificant impact on MultiFAR performance for Pass/Fail and Pass/Withdrawn cat-
egories across evaluation metrics, except for recall. However, it moderately affects the Mul-
tiFAR performance for the Distinction/Fail and Distinction/Pass categories.
One interesting observation is that excluding the I component improves MultiFAR perfor-
mance in the Distinction/Pass category, considering accuracy and precision. The socio-
economic component, S , also shows good discriminating power, especially in the Distinc-
tion/Fail and Distinction/Pass tasks. However, it is not as discriminative as the I
component. The assessment-interaction component,A, shows the least impact on the Mul-
tiFAR performance. Based on a comprehensive analysis, we can infer that the I component
has the most significant adverse impact on the MultiFAR performance. In contrast, theA
component exhibits the least impact.

3.7 MultiClass classification
The OULA dataset captured information related to four categories of students: distinc-
tion, fail, pass, and withdrawn. In the previous subsections, MultiFAR is evaluated
for binary classification, as the proposed model is designed for binary classification problems.
To further establish the efficacy of MultiFAR, we also investigate its prediction potential for
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multiclass classification, while preserving the original labels intact. To this end, we imple-
mented MultiFAR and SOTA models as a multiclass model, and the results are presented
in Table 4. MultiFAR shows a moderate performance compared to the binary classification.
Table 4 also includes the results for SOTA and transformer-based models. We implemented
SOTA models using the hyperparameter setting as done in the Sect 3.4. We evaluate the
models considering the precision, recall, F1-Score and accuracy. We also present the macro
average and weighted average results for precision, recall, and F1-Score. Table 4 results indi-
cate that our model, MultiFAR, performs best considering precision and F1 metrics for both
macro average and weighted average. MultiFAR also performs best for the weighted average of
recall. On the contrary, SOTA models perform best in terms of accuracy and macro average
of recall. Among the models, Waheed et al. [2] perform worst, and transformer-based model
by Huang et al. [49] shows the best performance. Among the category-level performances,
MultiFAR and SOTA models show the worst and best performances for distinction and
withdrawn categories, respectively. The worst performance for the distinction cate-
gory could be attributed because of class imbalance as distinction class has relatively less
number of instances.

3.8 Impacts for educational institutions and policy implications
We could not evaluate the MultiFAR over a real-world scenario due to the unavailability of
any recent real-world dataset. However, we demonstrated the efficacy of MultiFAR in diverse
conditions, namely, imbalanced and balanced datasets, presenting an early detection version
of MultiFAR, investigating its performance with different sets of information through com-
ponent ablation analysis, and also analyzing the effect of various neural network parameters.
From the perspective of institutional practice, the investigated results demonstrated the Mul-
tiFAR efficacy and its practical application as an early predictor of student performance. The
presented model will facilitate decision-making around early and contextually relevant inter-
ventions for students at risk of failure. It will help institutions and policymakers devise strate-
gies and pedagogical policies to provide assistance to at-risk students at crucial junctures and
monitor their performance and growth. It will also help institutions to early identify the at-
risk students through the analysis of their VLE-engagement. It can also be used by institutions
in identifying the meritorious and high-performers so that further assistance can be provided
to them so that they do not get distracted.

The insights from this data-driven study demonstrate the possibility of its real-world util-
ity using a reduced dataset. It can also be applied elsewhere as a helpful springboard from
which policy stakeholders can formulate pedagogical policies and support guidelines. How-
ever, this study has limitations because the dataset is not recent and may not reflect the cur-
rent scenario. Furthermore, it includes a limited number of demographic attributes, which
could have a strong impact on student success. However, MultiFAR results demonstrate that
interaction information inhibits strong patterns that can be utilized to predict student per-
formance. Also, fewer demographic attributes provide an opportunity to avoid the ethical
problems highlighted by critical authors with the use of personal and demographic data [51].

3.9 Ethical aspects
All the experiments in this research are conducted for academic purposes to understand the
impact of different categories of information on student performance. The OULA dataset
used in the manuscript is a freely available benchmark dataset. So, we don’t need any consent
for its usage. The OULA paper [46] describes that the data anonymization was done as per the
ethical and privacy requirements of Open University. Therefore, this dataset doesn’t include
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Table 5.MultiFAR results for early student performance prediction over datasets from different quarters.
Model Pass/Fail Pass/Withdrawn Distinction/Fail Distinction/Pass

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss
Q1 87.88 0.324 95.61 0.133 83.68 0.427 76.21 0.620
Q2 88.79 0.322 97.36 0.093 84.07 0.386 76.37 0.610
Q3 86.90 0.387 96.89 0.109 82.63 0.515 76.31 0.565
Q4 88.59 0.315 97.10 0.102 87.11 0.342 76.57 0.543

https://doi.org/10.1371/journal.pone.0333099.t005

any private information about students and modules. We didn’t share any information from
this dataset with any third party or other researcher and further ensure that we will not share
it in the future. Those who need any information can get it directly from the authors of this
paper [46]. A piece of detailed information regarding different ethical aspects of this dataset
can be found in the original OULA manuscript [46].

4 Early prediction of student performance
The early prediction of student performance is crucial for the institution’s decision-making
process regarding early intervention. We extended the proposed MultiFAR model for early
performance prediction. To achieve this, we divided each module period into four equal quar-
ters - Q1, Q2, Q3, and Q4. The module period is one month from the module start date to the
last interaction date. In the early detection approach, we assume the socio-economic behav-
ior S like discussed in Sect 2.1.1 because this information for a student is available before the
module presentation. Also, the assessment-interaction behaviorA includes student perfor-
mance in internal exams and assignment submission behavior, which are generally unavail-
able in the early days of module presentation. Therefore, we exclude these two behaviors while
representing the assessment-interaction behavior. As a result,A will now be only 60-d. How-
ever, the 60-dA vector will be constructed using only the available click-stream up to that
quarter. If the length of each quarter is 60 days, thenA for quarter Q2 will be computed based
on click-stream information available up to 120 days. Finally, the diurnal VLE-interaction
vector I will be created using only the click-stream VLE-interaction information available
up to that quarter. Finally, we train the model using student representation for each quarter
dataset for the four categories of problems.

4.1 Early prediction of at-risk students
The early prediction of at-risk students is paramount for making well-informed decisions.
Like Sect 3.3.1, we focus on the early identification of two categories of at-risk students: (i)
those who are at risk of academic failure and (ii) those who are at risk of dropping out of
course. The early intervention for both groups is essential for providing the necessary support
and resources to help them succeed. These two categories of students are potentially at-risk
students. We investigate the early prediction of these student grades considering accuracy
and loss against those who perform well in the course. This results in two binary classifica-
tion problems: Pass/Fail and Pass/Withdrawn. We evaluate these two problems over
the four quarters of the dataset. The underlying results are given in Table 5. It is evident from
the table that our proposed model predicts the two categories of at-risk students with an accu-
racy of 87.88 and 95.61, respectively, using only 25% of click-stream data and socio-economic
information. We can further observe that, generally, the model performance increases as we
integrate the information from succeeding quarters. However, one interesting observation is
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that when we add the third quarter data to the earlier data, model performance decreases in
both categories of problems.

4.2 Early prediction of high-performers
The early prediction of potential high-performers can help policymakers focus on such stu-
dents. To this end, we predict the high performers of a course using the information gen-
erated during the early phase of module presentation. Like Sect 3.3.2, we early predict the
high performers with fail and pass categories of students. The results for predicting Dis-
tinction/Fail and Distinction/Pass grades classification problems are given
in the last two columns of Table 5. It includes results for datasets across the four quarters
of student information. The table shows that in the case of Distinction/Fail, Mul-
tiFAR can predict the high performers with an accuracy of 83.68% using information gen-
erated during the quarter of a course period. Also, it increases to 87.11% as we extend
the dataset from quarter Q1 to the four quarter data of click-stream and socio-economic
information. However, in the case of distinction/pass, our models show consid-
erably good performance with Q1 data, but it doesn’t improve as more quarters data is
augmented.

4.3 Comparative evaluation
We also assessed the comparative evaluation of our early prediction approach with SOTA
models [2,47,48] at different quarters of data to classify four categories of students. Fig 4
presents the comparative evaluation of our model with SOTA models considering accuracy.
We can observe from Fig 4(a) and 4(b) that considering early prediction of at-risk students,
MultiFAR significantly outperforms the SOTA models using only Q1 or Q2 datasets that are
crucial for decision and policymakers. However, SOTA models show comparative perfor-
mance as more quarters of data are augmented. However, our model still performs better. For
early prediction of high-performer considering distinction/fail classification problem, Multi-
FAR outperforms SOTA models with an accuracy of 83.68%, using click-stream data gener-
ated during the first quarter of the module. Also, when the models are trained corresponding
to three-quarters of the dataset, [2] performs better than MultiFAR, though the difference is
insignificant. However, our model shows poor performance in the early prediction of high-
performers with pass students across all the quarters of the dataset. One interesting observa-
tion from Distinction/Pass results is that the performance is nearly consistent over all
four quarters of datasets for both MultiFAR and comparison approaches. Similarly, the com-
parative evaluation considering loss over the datasets from different quarters can be found in
Fig 5. The careful analysis of the figure reveals that MultiFAR outperforms SOTA models in
most cases across various quarters of datasets.

The poor performance of our model considering accuracy and loss in the case of dis-
tinction/pass cannot be a case of concern. However, the early prediction of at-risk
students is more important than that of high-performers. In this line, our model performs
significantly well in the early case with only a quarter of the dataset.

5 Concluding remarks and future direction of works
This paper introduced an attention-driven hybrid neural network aimed at predicting the aca-
demic performance of students who are at risk as well as who are high-performing students in
a course. The students are predicted into four categories: distinction, pass, fail, and
withdrawn using multifacet student information. We evaluated the proposed model over
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Fig 4. Comparative evaluation results of MultiFAR for four student classification tasks: Pass/Fail,
Pass/Withdrawn, Distinction/Fail and Distinction/Pass considering accuracy over the datasets
from different quarters.

https://doi.org/10.1371/journal.pone.0333099.g004

a widely recognized benchmark dataset. The experimental analysis reveals that how students
interact with the VLE is a good predictor of student’s overall academic success. Our research
found that while socio-economic behavior is substantial, it has minimal impact on student
performance whereas VLE-interaction information shows the highest impact. We expanded
our approach to early predict the students who are at risk of underperforming or dropping out
from the course and students who are likely to excel. It will help university decision-makers
intervene early and take corrective action. Our expanded model showed good performance
in predicting at-risk and dropout students using the data from the first quarter only. In our
upcoming research endeavors, we aim to improve our current methodology further to refine
our ability to predict student performance. It will involve integrating more comprehensive
student feedback data and leveraging cutting-edge natural language processing techniques
to gain deeper insights. Furthermore, we are keen to investigate the influence of various VLE
activities on student performance, aiming to uncover valuable insights that can inform future
educational practices.

PLOS One https://doi.org/10.1371/journal.pone.0333099 October 24, 2025 22/ 26

https://doi.org/10.1371/journal.pone.0333099.g004
https://doi.org/10.1371/journal.pone.0333099


ID: pone.0333099 — 2025/10/22 — page 23 — #23

PLOS One Multidimensional information fusion for student performance prediction

Fig 5. Comparative evaluation results of MultiFAR for four student classification tasks: Pass/Fail,
Pass/Withdrawn, Distinction/Fail and Distinction/Pass considering loss over the datasets from
different quarters.

https://doi.org/10.1371/journal.pone.0333099.g005
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