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Abstract 

Modeling the complex nonlinear dynamics of Brushless DC motors has been a prom-

inent research focus over the past two decades, driven by their superior advantages 

and widespread industrial applications. Despite extensive efforts, achieving high-

efficiency prediction of speed and torque responses remains a challenge. This study 

proposes a hybrid machine learning-based approach using the Nonlinear Autore-

gressive Neural Network with Exogenous Inputs. The method combines artificial 

neural networks and system identification techniques to enhance predictive accuracy 

in nonlinear dynamic systems. For both speed and torque modeling, optimal time 

delays and neural network layer sizes are selected to accurately capture the ripple 

effects under a multi-step input signal applied to a three-phase inverter. The pro-

posed models yield Mean Square Error values as low as 10–4 for speed and 10–3 for 

torque. Regression coefficients of 1.000 for speed and 0.998 for torque are achieved 

consistently across training, validation, testing, and additional testing phases, follow-

ing a data split of 70% for training and 15% each for validation and testing. To further 

evaluate generalization, the approach is tested using a distinct multi-step input volt-

age signal, with the results confirming the robustness and superiority of the proposed 

method in both speed and torque prediction. Comparative analysis with existing 

literature demonstrates the dominance of the proposed models. These high-fidelity 

models can serve as a foundation for designing advanced controllers aimed at effi-

cient speed regulation and torque ripple mitigation in Brushless DC motors.
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1.  Introduction

The modern industrial landscape has been significantly shaped by electric motors, 
particularly DC motors, which remain vital in diverse industrial applications. Among 
these, brushless DC (BLDC) motors have gained prominence due to their high effi-
ciency, fast dynamic response, and minimal maintenance needs, resulting from the 
elimination of brushes and mechanical commutators [1–3]. Structurally, BLDC motors 
feature a permanent magnet rotor and trapezoidal back-EMF waveform, making them 
suitable for motion-control applications in electric vehicles, robotics, and biomedical 
systems [4–7]. However, a critical drawback in BLDC motor operation is torque ripple, 
primarily caused by current ripple, cogging torque, and non-ideal back-EMF wave-
forms [2,7]. These ripples contribute to vibration, acoustic noise, and mechanical 
stress, which reduce operational lifespan and reliability [8]. BLDC motors are nonlin-
ear systems requiring a three-phase inverter and electronic commutation. Modeling 
their dynamics involves accounting for various nonlinearities, including commutation 
effects [9,10], cogging torque [11], and disturbances. While some conventional linear 
models [12] attempt simplifications, they often fail to capture the real-world behavior 
of BLDC motors under dynamic loading. Accurate modeling requires precise param-
eter identification. Studies have explored techniques such as step voltage response 
[13], torque sensor-based measurements [14], and least squares algorithms [15–17]. 
These methods vary in cost and accuracy. Furthermore, modeling speed and torque 
characteristics is essential for performance optimization [18]. Research has investi-
gated system responses to different configurations [19,20], with modeling strategies 
ranging from transfer functions [21], state-space models [22], and hybrid estimation 
methods [23]. In [24], a discrete nonlinear matrix-vector model was proposed, while 
[25] used real-time experimentation and Arduino-based data acquisition to identify 
speed behavior. Regulation approaches using PI control and PWM voltage variation 
are also studied in [26]. Artificial Neural Networks (ANNs) are widely used for model-
ing BLDC behavior [27,28], but most efforts focus only on speed, neglecting torque 
ripple. For instance, [27] used NARX and least squares to model speed under vari-
ous voltage profiles but excluded torque. [28] explored speed and efficiency based on 
motor geometry. [29–31] focused on state prediction or back-propagation methods, 
but reported low speed accuracy or lacked dynamic torque handling. Other works 
[32,33] addressed speed modeling via zero-crossing back-EMF detection, which 
limits ripple estimation.

Despite this progress, many existing models suffer from critical limitations most 
rely on single-step inputs, which fail to excite full system dynamics [13,27], few stud-
ies attempt to model both speed and torque ripple under multi-step voltage inputs, 
which are more realistic for operational conditions, physics-based models are limited 
by oversimplified assumptions [34], prior studies often fail to generalize well under 
noisy or unseen input profiles [35].

To overcome these limitations, this study proposes a hybrid data-driven model-
ing approach using the Nonlinear Autoregressive Neural Network with Exogenous 
Inputs (NARX-NN). Unlike Feedforward ANN (FF-ANN), which captures static 
mappings, or Recurrent Neural Networks (RNNs), which are resource-intensive 
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and prone to vanishing gradients, NARX-NN explicitly models temporal dependencies by incorporating delayed inputs 
and outputs [36–38]. This makes it highly effective for modeling nonlinear, time-varying systems such as BLDC motors. 
While deep learning models like LSTM and GRU have shown promise for sequential data, their computational demands 
and training data requirements limit real-time applicability in embedded systems [39]. NARX-NN offers a better trade-off 
between accuracy, complexity, and real-time feasibility. [40] predicted the speed and torque of BLDC motor separately 
using NARX-NN technique, but in that case, the two parameters of DC input voltage and mechanical input torque are 
taken as input training features. The hidden layer size of 20 and time delay of 2 is used for both separate cases. But the 
problem lies here is that only relevant features for each speed and torque should be chosen who have a correlation with 
each of the output. In this paper, for speed, only phase voltages, phase currents and load torque are chosen as only rel-
evant feasible features while for torque, only electromotive force and phase current are chosen as only relevant feasible 
features. Due to less input features for torque, definitely there will be half layer sizes required for torque as compared to 
speed. Similarly, whenever there will be a change in any of these input features, both the relevant features will be clearly 
effected due to that change.

In this study, we extend the classical NARX-NN by incorporating preprocessing techniques, including correlation 
between several input features and output; hybrid training strategies to avoid overfitting and enhance convergence, multi-
step excitation signal design to simulate realistic motor inputs [41].

The proposed method demonstrates high accuracy in capturing both speed and torque ripples, validated through 
performance metrics such as Regression (R) and Mean Square Error (MSE) across training, validation, testing, and 
additional test sets. Comparative performance confirms its superiority over classical and ANN-based models, with robust 
generalization even under dynamic and noisy conditions. The developed model is suitable for embedded deployment 
and has potential applications in electric vehicle drives, industrial automation, robotic manipulators, and motor health 
diagnostics [42,43]. Despite its advantages, the proposed approach has limitations. The model does not yet account for 
temperature-dependent variations or real-time hardware-in-the-loop (HIL) implementation. These aspects are suggested 
for future work. The key contributions of this study includes a critical assessment of existing BLDC modeling methods, 
highlighting their shortcomings in ripple modeling under realistic inputs, justification and implementation of NARX-NN over 
traditional physics-based and alternative ANN models (e.g., FF-ANN, RNN), a novel combination of preprocessing, multi-
step excitation, and hybrid training strategies to improve generalization, and demonstration of capability to simultaneously 
model speed and torque ripples with high accuracy under dynamic input conditions. The NARX-NN model is designed to 
effectively learn the dynamic and transient characteristics of a system by using past values of both inputs and outputs. 
Unlike traditional ARX models that are limited to linear relationships, the NARX-NN incorporates nonlinear mappings 
through a neural network, allowing it to handle more complex system behaviors. By feeding delayed input and output 
sequences into the network, it learns how the system evolves over time, especially during rapid changes or disturbances. 
When implemented in a feedback configuration, where the network uses its own predictions as part of the input for the 
next time step, it becomes even more capable of simulating long-term behaviors. This structure makes it suitable for 
capturing not only steady-state responses but also intricate transient response. The architecture of the NARX-NN enables 
it to effectively capture variations in speed and torque, including dynamic behaviors like overshoot and settling time, which 
are typically not handled well by a basic feedforward artificial neural network. Despite its suitability for nonlinear dynamic 
systems, the NARX-NN model does come with limitations. It requires careful selection of input/output lags and hidden 
layer architecture, which may demand iterative tuning. Additionally, its performance can degrade if the training data lacks 
sufficient excitation or variability, potentially impacting generalization under unseen or noisy conditions. These aspects are 
further discussed in the conclusion section.

The categorization of this research paper is as follows. Section I gives a thorough introduction and literature review, 
section II represents the background theory of mathematical model and method adopted, section III gives detail on simu-
lation & results, section IV discusses the results, while section V concludes the study.
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2.  Methods

2.1.  Mathematical modeling of BLDC motor

A comprehensive BLDC motor dynamical model is given in [23]. The BLDC motor model is composed of two primary 
components. The first is the electrical section, responsible for computing the electromagnetic torque and motor current. 
The second is the mechanical section, where the BLDC motor and the inverter equivalent circuit facilitate the rotor’s 
revolution. The electrical model captures the dynamics of the phase currents, which are governed by Kirchhoff’s Voltage 
Law (KVL) for each phase. For simplicity, it is assumed that the stator windings are symmetrical, variations in the stator’s 
self-inductance with rotor position, as well as the mutual inductance between the stator windings, are negligible, stator 
resistance Rs and self-inductance Ls are constant.

The back EMF is modeled as a function of rotor position and speed, and represented using flux linkages Φ′.
Applying KVL to phases a, b, and c gives:

	

dia
dt

=
1
3Ls

(2vab + vbc – 3Rsia + λpωm(–2Φ′
a +Φ′

b +Φ′
c))

	 (1)

Similarly, the equations for other phase currents and are obtained by cyclically permuting the phase variables.

	

dib
dt

=
1
3Ls

(–vab + vbc – 3Rsib + λpωm(–2Φ′
b+Φ′

c +Φ′
a))

	 (2)

The current continuity condition for a balanced three-phase system without a neutral wire requires:

	
dic
dt

= –(
dia
dt

+
dib
dt

)
	 (3)

The electromagnetic torque is expressed in Eq. (4) as:

	 Te = pλ (–2Φ′
aia +Φ′

bib +Φ′
cic)	 (4)

which is derived from the Lorentz force law and the flux linkage expressions.
The rotor angular velocity and position are defined by Equations (5) as:

	
dωm

dt
=

1
J
(Te – Tf – F ωm – Tm)

	 (5)

Rotor position θ is then updated by integrating angular velocity as given in equation (6):

	
dθ
dt

= ωm
	 (6)

The electrical and mechanical parameters utilized in the aforementioned equations are listed in Table 1.

2.2.  Methodology adopted

The BLDC motor comprising of the mathematical equations, presented in the above section, is fed from a 3-Phase 
inverter, which is given DC input voltage from a DC source. The simulation is carried out for a period of 10 seconds. The 
basic diagram comprising of how simulation of BLDC motor is carried out in MATLAB/Simulink and data of Speed and 
Torque is acquired later on using a simout block, can be depicted from Fig 1.
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The detailed methodology after data-acquisition is represented in Fig 2. The acquired dataset is then filtered using only 
suitable input features. These suitable features are added after finding the correlation using basic correlation function in 
MATLAB between each feasible input feature and each output speed or torque. It includes phase voltages, phase cur-
rents, and Load Torque as input for Speed and Electromotive Force & Phase current as inputs for torque. For modeling 
purposes, the data is segregated into two sets, one for each speed estimation and torque estimation. The structure of 
NARX-NN Network is chosen for estimation of each output, is selected due to its ability to handle dynamic time-series 
data. The data is splitted in to a ratio of 70% for Training and 15% for each validation and Testing.

The hidden layer size of 20 for speed and 10 for torque while 2 time delays for each input and output are chosen 
heuristically. In this study, the selection of model hyperparameters—such as the number of hidden neurons and time 
delays—was conducted empirically, guided by domain-specific knowledge of BLDC motor dynamics. This approach is 
common in engineering-focused applications where resource constraints, deployment feasibility, and model interpret-
ability take precedence over exhaustive optimization. Specifically, as 20 hidden neurons are used for the speed model 
and 10 for the torque model, along with two-time delays for inputs and outputs. These values were identified through 
repeated trial-and-error experiments, balancing model complexity and prediction accuracy. While this may not ensure 
globally optimal configurations, the empirical results demonstrated reliable performance within the tested operational 
envelope. It is acknowledged that heuristic selection may limit adaptability to significantly different motor configura-
tions or operating environments. However, in motor modeling applications, models are often tuned per system and 
re-calibrated with minimal data. Moreover, systematic optimization methods (e.g., grid search or Bayesian optimization) 
are computationally intensive and may not offer significant performance gains relative to the increased cost in practical 
use cases. Future extensions of this work could incorporate automated hyperparameter tuning strategies to enhance the 

Table 1.  Description of electrical and mechanical parameters.

Symbols Description Symbols Description

Ls Stator Inductance p No. of Pole Pairs

Rs Stator Resistance Te Electromagnetic Torque

ia, ib, ic Stator Phase Currents J Combined inertia of Rotor and load

vab, vbc, vca Phase to Phase Voltages F Combined viscous friction of rotor and load

Φa, Φb, Φc Electromotive Forces per unit value to
the amplitude of flux

θ Angular position of rotor

ωm Angular Velocity Tf

λ Amplitude of flux induced by rotor
permanent magnets in stator phases

Tm Mechanical torque at motor shaft

https://doi.org/10.1371/journal.pone.0333080.t001

Fig 1.  Input-Output Data Acquisition of BLDC Motor. 

https://doi.org/10.1371/journal.pone.0333080.g001

https://doi.org/10.1371/journal.pone.0333080.t001
https://doi.org/10.1371/journal.pone.0333080.g001
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model’s scalability across diverse motor types and environments, particularly in large-scale or cloud-based predictive 
maintenance systems.

After that, training algorithm of Levenberg-Marquardt (LM) is chosen due to the reason that it is well suited for optimiz-
ing complex nonlinear systems. It does so by combining Gradient Descent and Gauss-Newton methods, which makes it 
more robust in handling nonlinearities. Furthermore, LM provides fast convergence as compared to standard back propa-
gation algorithms, and it adjusts the time size dynamically, making the training process more stable and reducing the risk 
of slow convergence. Other advantages include higher accuracy in parameter estimation, avoiding getting trapped in local 
minima and well suited for Neural Networks.

After selecting these, the training gets started, whenever any of the criteria is met, the training gets stopped. After the 
training is stopped, MSE and R values are checked, if MSE values are up to 10–2 and regression values closer to 1 in 
each training, testing and validation, the values are accepted. If criteria is unmet, the network architecture is re-tuned 
(adjust layer size, delays) and training is re-initiated. Once performance is satisfactory, the model is finalized and tested 
with unseen data. If the new test results meet the same performance criteria, the model is considered validated. A high-
level overview of the process is illustrated in Fig 2.

2.3.  Simulation and results

2.3.1.  Input-output dataset generation.  The Input-Output dataset is generated by using a Discrete Power GUI block 
of sample time 50e-06 s in simulation. The default values set in the Permanent Magnet Synchronous Machine (PMSM 
are set. The multi-step input signal is connected to a Controlled Voltage Source (CVS) block, which is then connected to 
Universal Bridge, which acts as a 3-phase inverter. The default values of block are used, output of block are three phase 
voltages Va, Vb, and Vc given gate signals, phase voltages are then connected BLDC motor block. The output of BLDC 
motor block are different parameters including stator currents, stator back-emf signals, rotor angular velocity and position, 

Fig 2.  Detailed Methodology in Flowchart.

https://doi.org/10.1371/journal.pone.0333080.g002

https://doi.org/10.1371/journal.pone.0333080.g002
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electromagnetic torque with input of load torque and phase voltages. The detailed simulation of BLDC motor in Simulink is 
shown in Fig 3.

The multi-input DC voltage signal fed to 3-phase inverter during which input and output data is acquired is given below 
in Fig 4. Similarly, load torque fed to BLDC motor is shown below in Fig 5.

Speed and torque are two outputs that are to be modeled. The actual speed and torque responses of BLDC motor 
acquired by providing the above DC voltage signal is shown below in Figs 6 and 7. The ripples in curves can be clearly 
seen.

Fig 3.  Detailed Simulation of BLDC Motor for Data Acquisition in Simulink.

https://doi.org/10.1371/journal.pone.0333080.g003

Fig 4.  DC Input Voltage for Training.

https://doi.org/10.1371/journal.pone.0333080.g004

https://doi.org/10.1371/journal.pone.0333080.g003
https://doi.org/10.1371/journal.pone.0333080.g004
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A total of 200003 samples for all the inputs and outputs are exported to workspace after carrying out simulation. For 
each Speed and Torque, the relevant features, i.e., inputs are gathered and a fitness value is acquired of each feature for 
speed and torque. For Speed modeling, Phase voltages, Phase currents, and Load Torque are taken as training inputs 
while only Electromotive Force and Phase current are taken training inputs for modeling of Torque. Only the best features 
with fitness value greater than zero based upon the correlation between the input and output are finalized and given in 
Table 2, which will be used for training purposes.

Fig 5.  Input Load Torque.

https://doi.org/10.1371/journal.pone.0333080.g005

Fig 6.  Actual Speed Response for Training.

https://doi.org/10.1371/journal.pone.0333080.g006

https://doi.org/10.1371/journal.pone.0333080.g005
https://doi.org/10.1371/journal.pone.0333080.g006
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The algorithm, data division, parametric measure, layer size and time delay used for each speed and torque are given 
in Table 3.

The finalized NARX-NN structure for each speed and torque are represented below in Figs 8 and 9 respectively. For 
estimation of Speed, the structure given below depicts 7 features, one output response, hidden layer size of 20. It is taking 
both x(t) and y(t) as inputs because it is taking past values with past time delays of 2 for both inputs and output.

Fig 7.  Actual Torque Response for Training.

https://doi.org/10.1371/journal.pone.0333080.g007

Table 2.  Best features for speed and torque.

Speed Torque

Va Ia

Vb

Vc

Ia

Ib Ea

Ic

TL

https://doi.org/10.1371/journal.pone.0333080.t002

Table 3.  Tuning parameters for speed and torque model.

Tuning Parameters Speed Torque

Data Division Random Random

Algorithm Used Levenberg-Marquardt (LM) Levenberg-Marquardt (LM)

Performance Mean Square Error (MSE) Mean Square Error (MSE)

Layers 2 2

Time Delay 2 2

Layer Sizes 20 10

https://doi.org/10.1371/journal.pone.0333080.t003

https://doi.org/10.1371/journal.pone.0333080.g007
https://doi.org/10.1371/journal.pone.0333080.t002
https://doi.org/10.1371/journal.pone.0333080.t003
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Fig 8.  Proposed NARX-NN Structure for Estimation of Speed.

https://doi.org/10.1371/journal.pone.0333080.g008

https://doi.org/10.1371/journal.pone.0333080.g008
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Fig 9.  Proposed NARX-NN Structure for Estimation of Torque.

https://doi.org/10.1371/journal.pone.0333080.g009

https://doi.org/10.1371/journal.pone.0333080.g009
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For estimation of Torque, the structure given below depicts 2 features, one output response and hidden layer size of 10.
The training progress results for each speed and torque are shown in Tables 4 and 5 respectively.
2.3.2.  Modelling results of speed.  The modeling results of Speed model including training state results, error 

histogram, response plot and Autocorrelation of error are shown below in the Figs 10–13.
2.3.3.  Modelling results of torque.  The modeling results of Torque model including training state results, error 

histogram, performance plot, response plot and Autocorrelation of error are shown below in the Figs 14–18.

Table 4.  Training progress results for speed.

Unit Initial Value Stopped Value Target Value

Epochs 0 1000 1000

Elapsed Time – 00:13:30

Performance 4.06e + 06 0.000305 0

Gradient 2.06e + 07 18.9 1e-07

Mu 0.001 0.01 1e + 10

Validation Checks 0 0 6

https://doi.org/10.1371/journal.pone.0333080.t004

Table 5.  Training progress results for torque.

Unit Initial Value Stopped Value Target Value

Epochs 0 1000 1000

Elapsed Time – 00:11:29

Performance 1.52e + 03 0.000899 0

Gradient 4.53e + 03 0.0149 1e-07

Mu 0.001 0.0001 1e + 10

Validation Checks 0 0 6

https://doi.org/10.1371/journal.pone.0333080.t005

Fig 10.  Training State Results of Speed Model.

https://doi.org/10.1371/journal.pone.0333080.g010

https://doi.org/10.1371/journal.pone.0333080.t004
https://doi.org/10.1371/journal.pone.0333080.t005
https://doi.org/10.1371/journal.pone.0333080.g010
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2.3.4.  Additional testing results.  For additional testing of both speed and torque models, a unique testing signal is 
applied with unique steps in the DC input voltage signal to further test the models. The unique testing signal is shown 
below in the Fig 19.

Fig 11.  Error Histogram of Speed Model.

https://doi.org/10.1371/journal.pone.0333080.g011

Fig 12.  Response Plot of Speed Model.

https://doi.org/10.1371/journal.pone.0333080.g012

https://doi.org/10.1371/journal.pone.0333080.g011
https://doi.org/10.1371/journal.pone.0333080.g012
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1)	SPEED TESTING RESULTS

The testing signal is applied to both the speed model and the BLDC motor system, a comparison plot is shown between 
the actual response and the modeled response is Fig 20.

The error histogram and autocorrelation of error are shown in Figs 21 and 22 respectively.

Fig 13.  Autocorrelation Error of Speed Model.

https://doi.org/10.1371/journal.pone.0333080.g013

Fig 14.  Training State Results of Torque Model.

https://doi.org/10.1371/journal.pone.0333080.g014

https://doi.org/10.1371/journal.pone.0333080.g013
https://doi.org/10.1371/journal.pone.0333080.g014
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2)	TORQUE TESTING RESULTS

The testing signal is applied to both the torque model and the BLDC motor system, a comparison plot is shown between 
the actual response and the modeled response is Fig 23. The error histogram and autocorrelation of error are shown in 
Figs 24 and 25 respectively.

Fig 15.  Error Histogram of Torque Model.

https://doi.org/10.1371/journal.pone.0333080.g015

Fig 16.  Validation Performance Plot of Torque Model.

https://doi.org/10.1371/journal.pone.0333080.g016

https://doi.org/10.1371/journal.pone.0333080.g015
https://doi.org/10.1371/journal.pone.0333080.g016
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2.3.5.  Combined statistical results.  The acquired combined statistical results for training, validation, testing and 
additional testing for each estimated model of speed and torque model are presented in Table 6.

2.3.6.  Discussion and analysis.  One can analyze from the plots of Speed and Torque that whenever DC input 
voltage changed at a specific instant changed or Load torque is varied, the speed and torque is changed. The Speed and 

Fig 17.  Response Plot of Torque Model.

https://doi.org/10.1371/journal.pone.0333080.g017

Fig 18.  Autocorrelation Error Plot of Torque Model.

https://doi.org/10.1371/journal.pone.0333080.g018

https://doi.org/10.1371/journal.pone.0333080.g017
https://doi.org/10.1371/journal.pone.0333080.g018
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Torque exhibits nonlinear phenomena in BLDC motor, which are dependent on several parameters. To fully capture the 
dynamics of BLDC motor, is a trivial process.

The proposed hybrid ML based modelling approach using NARX-NN captured the dynamics of both speed and torque 
of BLDC motor very efficiently including transient and steady state behavior along with capturing all the ripples too. If we 
take in to account all the factors for both modelling, all the results whether graphic or statistically, NARX-NN emerges to 

Fig 19.  DC Input Voltage Signal for Additional Testing.

https://doi.org/10.1371/journal.pone.0333080.g019

Fig 20.  Additional Testing of Speed Model and Actual Speed Response.

https://doi.org/10.1371/journal.pone.0333080.g020

https://doi.org/10.1371/journal.pone.0333080.g019
https://doi.org/10.1371/journal.pone.0333080.g020
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be powerful tool for estimating the Speed and Torque of BLDC motor. Both models depicted superb performance in terms 
of MSE and R values in each training, testing, validation and additional testing. Speed model has R values of ‘1’ while 
Torque Estimator has R values equal to 0.9988, similarly, for speed model, MSE values acquired are up to 10–4 for Speed 
model and 10–3 for Torque model. For additional testing, MSE values up to 10–4for Speed and 0.0061 value for Torque is 

Fig 21.  Error Histogram of Additional Testing for Speed.

https://doi.org/10.1371/journal.pone.0333080.g021

Fig 22.  Autocorrelation of Error of Additional Testing.

https://doi.org/10.1371/journal.pone.0333080.g022

https://doi.org/10.1371/journal.pone.0333080.g021
https://doi.org/10.1371/journal.pone.0333080.g022
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obtained while ‘R’ value of 1 is obtained in case of speed model and R value of 0.9988 is obtained for Torque model. The 
values obtained directly reflects the exact match between the modelled response and actual response of BLDC motor for 
each speed and torque. The values thus obtained in this research study are far better than statistical results obtained in 
[29,30], in which only 83.34% accuracy is achieved using a third-order transfer function model and 90% accuracy respec-
tively for speed prediction. Similarly, the results are far better than [27] in which 98% validation accuracy is achieved for 

Fig 23.  Additional Testing of Torque Model and Actual Torque Response.

https://doi.org/10.1371/journal.pone.0333080.g023

Fig 24.  Error Histogram for Additional Testing.

https://doi.org/10.1371/journal.pone.0333080.g024

https://doi.org/10.1371/journal.pone.0333080.g023
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prediction of speed of BLDC motor. A comparison table comparing results with existing techniques and methods in the 
literature review is given in Table 7.

From the above modelling statistical results, shown in the table, it can be seen that the proposed NARX-NN framework 
accurately estimated the BLDC motor speed and torque with very low MSE and high R values across all datasets. Further 
testing it on additional test data further confirms the model robustness as it obtained the same MSE and R values. The 

Fig 25.  Autocorrelation of Error for Additional Testing.

https://doi.org/10.1371/journal.pone.0333080.g025

Table 6.  Finalized results of speed and torque models.

Observations MSE R

S T S T S T

Training 140001 3.0469e-04 0.0090 1 0.9988

Validation 30000 3.1264e-04 0.0094 1 0.9986

Testing 30000 3.0949e-04 0.0089 1 0.9988

Additional Testing 20003 3.0916e-04 0.0061 1 0.9988

https://doi.org/10.1371/journal.pone.0333080.t006

Table 7.  Comparison table.

Method/Technique Applied for Modelling Output MSE R-Value Prediction Accuracy

ANN [28] Speed 0.001849 – –

TF Based Modelling [29] Speed – – 83.34%

Grey Box Model Estimation [30] Speed – – 90%

ANN [31] Speed 1.5 0.9801 98%

BEMF ZCD: Typical [32,33] Speed – 0.998 99.84%

Proposed NARX-NN Structure Speed 0.00030949 1 99.999%

Torque 0.0061 0.9988 99.98%

https://doi.org/10.1371/journal.pone.0333080.t007

https://doi.org/10.1371/journal.pone.0333080.g025
https://doi.org/10.1371/journal.pone.0333080.t006
https://doi.org/10.1371/journal.pone.0333080.t007
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error autocorrelation and histograms demonstrate the statistical soundness of residuals. When compared with traditional 
and AI-based techniques from literature, the proposed approach outperforms its superiority in terms of both accuracy and 
reliability. There is no any work done on the prediction of Torque of BLDC motor in the literature whose metrics can be 
compared.

The proposed NARX-NN can be used to design controllers with ease. In future, in the first option, Model Predictive 
Control (MPC) based on proposed NARX-NN model can be designed. The NARX-NN model can be used to predict 
future speed and torque responses based on current and past inputs. The control inputs (PWM duty cycle, voltage) can 
be optimized to minimize the speed and torque errors. Then a cost function can be implemented to ensure the smooth 
control actions and minimization of torque ripples. In the second option, Adaptive Proportional-Integral (PI)/Sliding Mode 
Controller can be tuned. The proposed NARX-NN model will helps in real-time estimation of system parameters, allow-
ing the dynamic tuning of a PI or Sliding Mode Controller (SMC). Adaptive gain adjustment to get improved performance 
under load torque variations and disturbances can be achieved. For a third option, Reinforcement Learning (RL)-based 
optimization can be used. RL or Deep Learning (DL) techniques can be used to refine control actions in it. The RL agent 
will interact with the proposed NARX-NN model to learn optimal control strategies which will balance speed regulation and 
torque ripple minimization.

5.  Conclusion

This study presents a hybrid machine learning approach based on the NARX neural network to effectively model the non-
linear dynamics of a Brushless DC (BLDC) motor, capturing both transient and steady-state behavior with high accuracy. 
The proposed model employs a two-layer neural network architecture, utilizing a hidden layer with 20 neurons and two 
time delays for both input and output, integrating the ARX model structure within a neural network framework. The data-
set was divided into 70% for training and 15% each for validation and testing. The developed speed and torque models 
demonstrated excellent predictive performance, achieving Mean Square Error (MSE) values as low as 10–4 for speed and 
10–3 for torque. Regression (R) values reached 1.000 for the speed model and 0.998 for the torque model across all data 
partitions, including additional testing, confirming the robustness and reliability of the proposed method. Further validation 
was conducted using a novel multi-step input signal, with the results reaffirming the effectiveness of the approach. When 
compared with existing studies on BLDC motor modeling, the proposed technique outperforms previous methods in terms 
of accuracy and generalization, making it a strong candidate for future applications in control system design for speed 
regulation and torque ripple mitigation.
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