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Abstract 

Background

Primary Sjögren’s syndrome (pSS) is an autoimmune and inflammatory disorder that 

may affect the lungs, leading to interstitial lung disease (ILD). However, the diag-

nosis of progression from pSS to ILD is frequently delayed due to unstandardized 

interdisciplinary diagnostic criteria and a lack of reliable shared biomarkers. This 

diagnostic challenge, compounded by significant pathophysiological divergence in 

target organs, has hindered elucidation of their comorbidity mechanisms. This study 

employs integrated bioinformatics to identify shared biomarkers in pSS and ILD, deci-

phers their pathogenic mechanisms, and predicts targeted therapeutics via network 

pharmacology

Methods

From the Gene Expression Omnibus (GEO) database, we retrieved gene expression 

profiles of pSS and ILD. Differential expression gene (DEG) analysis was performed 

on the profiles, followed by further screening using four machine learning algorithms. 

Concurrently, weighted gene co-expression network analysis (WGCNA) was applied 

to identify gene modules, and enrichment analysis of WGCNA-derived genes was 

conducted to explore their biological functions. Genes obtained from WGCNA and 

machine learning approaches were then intersected to identify candidate biomarkers 

for pSS-ILD. The diagnostic potential of these candidate genes was evaluated in both 

discovery and validation sets using receiver operating characteristic (ROC) curves. 

Finally, we performed immune cell infiltration analysis of candidate genes, regulatory 

network construction for transcription factor (TF)-gene and miRNA-gene interactions, 

drug-target prediction, and molecular docking coupled with molecular dynamics simu-

lations for predicted drugs.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0333070&domain=pdf&date_stamp=2025-10-06
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Results

Differential expression analysis identified 25 shared genes between pSS and ILD 

gene expression profiles, with machine learning algorithms refining six key genes 

from these DEGs. WGCNA revealed 39 intersecting genes significantly enriched in 

biological processes including cell division, oocyte maturation, and metabolic regu-

lation. Intersection of machine learning and WGCNA results yielded two hub genes 

(CYSLTR1 and SIGLEC10), both demonstrating robust diagnostic value in discovery 

and validation cohorts. Immune cell infiltration profiling showed: upregulation of acti-

vated CD4+ memory T cells and memory B cells; downregulation of resting NK cells. 

Regulatory network analysis indicated FOXC1, hsa-mir-27a-3p, hsa-mir-195-5p, 

and hsa-miR-26a-5p as potential coregulators of CYSLTR1 and SIGLEC10 expres-

sion. Finally, ten candidate drug compounds targeting the hub genes were priori-

tized, exemplified by:Rev-5901 (CTD 00002161), Zafirlukast (BOSS database) and 

Montelukast (CTD 00003205). Molecular docking demonstrated substantial binding 

affinity of both montelukast and zafirlukast for CYSLTR1, while molecular dynamics 

simulations further validated the stability of their complexes.

Conclusion

This study revealed that CYSLTR1 and SIGLEC10 demonstrate diagnostic potential 

for pSS-ILD. Their mechanism of action likely involves synergistically upregulating 

memory B cells to promote disease progression. Furthermore, we identified mon-

telukast as a potential therapeutic agent. This discovery holds promise for improving 

clinical outcomes for pSS-ILD patients.

1.  Introduction

Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disorder characterized 
by lymphocyte infiltration of exocrine glands [1], particularly the salivary and lacrimal 
glands. This immune-mediated process leads to progressive glandular dysfunction, 
culminating in xerostomia and keratoconjunctivitis sicca [2]. Extraglandular manifes-
tations include arthralgia, fatigue, synovitis, neuropathy, and respiratory symptoms 
such as dyspnea and cough [3]. pSS arises from the interplay of genetic, viral, and 
inflammatory factors [4], with its heterogeneous clinical spectrum causing significant 
long-term deterioration in patients’ quality of life. The underlying pathomechanisms 
remain incompletely understood.

Interstitial lung disease (ILD) refers to a group of diffuse pulmonary disorders 
affecting alveoli, pulmonary interstitium, and bronchioles. Pathologically defined 
by varying degrees of interstitial inflammation and fibrosis, ILD ultimately causes 
parenchymal damage [5]. Its classification system is heterogeneous, encompassing 
connective tissue disease-associated ILD (CTD-ILD), idiopathic interstitial pneu-
monia (IIP), exposure-related ILD, and other rare subtypes [6]. While recent years 
have witnessed growing focus on the pathogenesis of CTD-ILD [7–9], research on 
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pSS-associated ILD (pSS-ILD) predominantly relies on clinical evaluations and systematic analyses based on imaging 
and histopathology, leaving its core pathogenic mechanisms elusive.

Respiratory involvement represents the most frequent extraglandular manifestation in pSS, with the incidence of inter-
stitial lung disease (ILD) ranging from 6% to 23% [10,11]. Although pSS-ILD is often considered indolent, a retrospective 
study by Gao et al. demonstrated that 25% of patients died during follow-up, with respiratory failure accounting for 61% 
of mortality [12], establishing ILD as a severe and life-threatening complication of pSS. ILD often described as a late 
complication of pSS, the prevalence of ILD increases with disease duration [7]. This phenomenon may reflect diagnostic 
sensitivity improvements, as technological advances in pulmonary assessment are narrowing the age gap between pSS 
and ILD diagnoses [13]. Consequently, early detection of pSS-ILD poses a major clinical challenge and is critical for ther-
apeutic management and prognosis. Current diagnosis relies primarily on high-resolution computed tomography (HRCT), 
abnormal pulmonary function tests (PFTs), and histopathological evidence from lung biopsies [14]. HRCT exhibits supe-
rior sensitivity over PFTs, increasing ILD detection rates from 16% to 25% [10]. However, due to factors such as radia-
tion exposure from imaging examinations and poor patient compliance with invasive procedures, the application of ILD 
for early diagnosis in the course of pSS is limited. Various biomarkers, serving as a non-invasive screening method, are 
emerging as promising tools for screening pSS-ILD. Recently, KL-6 has been identified as a serum biomarker associated 
with both detection and severity assessment of CTD-ILD [15]. Additionally, multiple studies recognize anti-Ro52 antibody 
as an independent risk factor for pSS-ILD progression [16–18]. Recent years have seen a proliferation of therapeutic 
interventions for pSS-ILD, predominantly palliative approaches. However, the complex multifactorial pathogenesis of pSS-
ILD compromises drug target specificity, necessitating further mechanistic investigation. For instance, while combining 
antifibrotic agents with conventional immunosuppressants represents the current therapeutic paradigm, its non-selective 
nature yields suboptimal efficacy in specific ILD subtypes [19].

IIP encompass subtypes such as idiopathic pulmonary fibrosis (IPF) and nonspecific interstitial pneumonia (NSIP). 
Recent studies have revealed associations in pathogenesis and overlapping pathological features between IPF and other 
ILDs. Renzoni et al. found consistent MUC5B staining in the airways and honeycombing areas of IPF and other ILDs, 
with similar radiological and histological findings [20]; Hoffmann-Vold et al. demonstrated that during the progression of 
both IPF and CTD-ILD, PDGF-AA, PDGF-BB, M-CSF, and VEGF exhibit consistent trends of change, collectively driving 
pathological alterations. These alterations include growth factor activation, changes in cytokine and chemokine levels, 
vascular remodeling, and epigenetic reprogramming of fibroblasts, among others [21]; Furthermore, Distler and his team 
discovered that IPF and other ILDs share common activation responses in pro-fibrotic signaling pathways, including 
platelet-derived growth factor (PDGF), transforming growth factor-β (TGFβ), hedgehog signalling, and WNT signal-
ling [22]. Consequently, despite differing initial etiologies, IPF and other ILDs may progress through shared molecular 
pathways. NSIP is the most common pattern in primary pSS-ILD [23]. It can be secondary to connective tissue disease 
(CTD-NSIP) or idiopathic (INSIP) [24]. CTD-NSIP and INSIP share some similarities in clinical manifestations and imaging 
features. Notably, ILD may be the initial presenting symptom of CTD, and follow-up studies have found that ultimately 15% 
of patients with INSIP are diagnosed with CTD-NSIP [25]. Given the overlapping pathogenic mechanisms between IIP and 
other ILD, we aim to explore potential shared molecular pathways between IIP and pSS, thereby addressing the knowl-
edge gap in the field of pSS-ILD.

Critical gaps persist in elucidating shared molecular mechanisms between pSS and ILD, impeding targeted therapeutic 
development. For instance, while pSS salivary glands feature B-cell infiltration and germinal center formation, ILD lung 
tissues exhibit Th1/Th17 polarization and macrophage recruitment, yet the mechanisms governing immune cell migration 
and phenotypic conversion between these sites remain unelucidated [26]. Key molecular switches, such as the drivers 
of inflammation-to-fibrosis transition, remain unidentified, and proposed serum biomarkers for pSS-ILD lack integration 
with mechanistic pathways and computational validation [27]. These deficits directly contribute to delayed diagnosis and 
non-targeted therapeutic approaches.
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To establish an early diagnostic basis and investigate pathogenic pathways leveraging biomarkers for pSS-ILD, 
this study integrated gene expression profiles of pSS and IIP from Gene Expression Omnibus (GEO) databases, 
then employed differential expression analysis, machine learning, and weighted gene co-expression network analysis 
(WGCNA) to identify hub genes. Subsequent analyses included functional enrichment, immune cell infiltration assess-
ment, TF-gene regulatory networks, and miRNA-gene interactions. Potential therapeutic agents were screened through 
computational approaches The study workflow is illustrated in Fig 1. Based on this bioinformatic analysis, we aimed to 
screen key pathogenic genes to elucidate the pathogenesis of pSS-ILD. This approach not only provides a framework for 
future research but also identifies promising therapeutic drug candidates, ultimately aiming to improve patients’ quality of 
life.

Fig 1.  Study flowchart.

https://doi.org/10.1371/journal.pone.0333070.g001

https://doi.org/10.1371/journal.pone.0333070.g001
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2.  Materials and methods

2.1.  Data sources

The Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) was used to acquire gene expres-
sion datasets for pSS and IIP [28]. According to the search criteria as follows: (1) Homo sapiens was the source of the 
samples, (2) the dataset encompassed both case and control groups, (3) a minimum of 10 samples per group. Four 
gene expression datasets were finally obtained, namely GSE84844, GSE66795, GSE32537 and GSE110147 (Table 1). 
Among them, the dataset of GSE84844 consisted of 30 pSS samples and 30 healthy samples.The dataset of GSE66795 
consisted of 131 pSS samples and 29 healthy samples.The dataset of GSE32537 consisted of 167 IIP samples and 
50 healthy samples.The dataset of GSE110147 consisted of 37 IIP samples and 11 healthy samples. For our analysis, 
GSE84844 and GSE32537 were designated as the discovery sets, while GSE66795 and GSE110147 served as the vali-
dation sets.

2.2.  Identification of differentially expressed genes (DEGs)

GSE84844 and GSE32537 were standardized using the “limma” and “pheatmap” packages of R software (version 4.4.1). 
Differences were analyzed between the case and healthy groups, and to identify DEGs, the screening criteria were set as 
adjusted p-values < 0.05 and |log2-fold change (FC)| ≥ 0.5. The Volcanograms of DEGs were plotted utilizing the “ggvol-
cano” package. The common DEGs of pSS and IIP were obtained using the Venn diagram.

2.3.  Machine learning screening of hub genes

This study employed four machine learning algorithms for feature selection: Support Vector Machines-Recursive Feature 
Elimination (SVM-RFE), Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and XGBoost. 
SVM-RFE algorithm is implemented via the “e1071” package, screening features based on their correlation with target 
classes. LASSO regression is executed using the “glmnet” package in R, which applies L1 regularization to shrink coef-
ficients of non-critical variables to zero for feature selection. RF is analyzed using the “randomForest” package, which 
ranks features by calculating importance scores. XGBoost algorithm is applied through the “xgboost” package, involving 
multiple iterations to compute global feature importance scores by weighting the frequency and quality of feature splits in 
decision trees.

The intersection of genes identified by all four algorithms was visualized using a Venn diagram, and these overlapping 
genes were designated as core genes for the pSS and IIP datasets.

2.4.  Weighted gene co-expression network analysis (WGCNA) and enrichment analysis

Using the “WGCNA” package in R software to identify highly correlated co-expressed gene modules [29]. First, for subse-
quent analysis, we selected genes that exhibited variance scores within the top 25%. Second, the data were processed 
to remove the outlier samples. Third, utilizing the “select soft threshold” feature, we constructed a scale-free network 
to identify the optimal soft-threshold power β. Fourth, a topological overlap matrix (TOM) was generated based on the 

Table 1.  An overview of the GEO datasets utilized in this study.

GSE number Platform Cases Controls Tissue Disease Group

GSE84844 GPL570 30 30 Peripheral blood pSS Discovery

GSE66795 GPL10558 131 29 Peripheral blood pSS Validation

GSE32537 GPL6244 167 50 Lung tissue IIP Discovery

GSE110147 GPL6244 37 11 Lung tissue IIP Validation

https://doi.org/10.1371/journal.pone.0333070.t001

https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1371/journal.pone.0333070.t001
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neighbor-joining matrix. Fifth, co-expressed gene modules were classified using average hierarchical clustering and 
dynamic tree-cutting methods. Sixth, to evaluate the relationship between modules and clinical features, we calculated 
gene significance (GS) and module membership (MM), and the most strongly correlated and positively correlated modules 
were extracted for further gene information analysis. Finally, pSS gene modules were intersected with IIP gene modules 
using a Venn diagram to obtain the intersected genes.

A key advantage of WGCNA lies in its ability to directly associate these co-expression modules with clinically relevant 
traits. These modules naturally represent biologically meaningful gene sets with evidence of coordinated expression. Enrich-
ment analysis applied to these modules directly interrogates the collective biological function of the putative co-regulated 
gene sets. Therefore, we utilized the “clusterProfiler” and “ggplot2” packages to perform functional enrichment analysis and 
visualization on the genes filtered by WGCNA. Functional enrichment analysis encompasses both Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The GO analysis is divided into three main categories: 
biological process (BP), cellular component (CC), and molecular function (MF), while The KEGG analysis provides a com-
prehensive investigation into gene functions, highlighting statistically significant pathways that are enriched in genes.

2.5.  Identification of diagnostic biomarkers as well as expression analysis and diagnostic evaluation

In order to learn more about the pathogenesis of pSS-ILD, the hub genes derived from the machine analysis and the 
genes screened by WGCNA were taken to be intersected, and the resulting genes were considered to be the diagnostic 
biomarkers of pSS and IIP. We carried out statistical analysis utilizing GraphPad Prism (version 8.0.2) to compare the 
differences in expression of the diagnostic biomarkers across the four datasets. A column-line graph model was then con-
structed and calibration curves were plotted using the “rms” R package. Each gene was given a relative expression point, 
with the “Total Points” indicates the cumulative total of these points for the specified genes. Finally, the “pROC” package 
was utilized to carry out the receiver operator characteristic (ROC) analysis for diagnostic biomarkers, and to determine 
the performance of the diagnostic biomarkers in differentiating between diseased and healthy groups, ROC curves were 
plotted, and the area under the curve (AUC) was used as the evaluation criterion. An adjusted p-value < 0.05 was set as 
the criterion for statistically meaningful.

2.6.  Analysis of immune cell infiltration

In this study, we used the online website CIBERSORTx (https://cibersortx.stanford.edu/) to obtain the percentage of 22 
immune cells in GSE84844 and GSE32537, and the immune cell ratios were visualized utilizing the “ggplot2”, “corrplot”, 
and “vioplot” packages within the R programming environment. The expression differences of 22 types of immune cells 
between the two diseases, as well as the correlation analysis of immune cells, were obtained. Subsequently, Spearman 
correlation analysis was employed to determine the relationship between diagnostic biomarkers and immune cells, with a 
p-value < 0.05 was set as the criterion for statistically significance.

2.7.  Construction of transcription factors(TFs)-genes and miRNA-genes regulatory networks

TFs and miRNAs for diagnostic biomarkers were searched using the JASPAR database and TarBase database of the 
NetworkAnalyst 3.0 tool (https://www.networkanalyst.ca/), and network-based visualization of the results was achieved by 
implementing Cytoscape (version 3.10.0) for regulatory network modeling.

2.8.  Predicting relevant drugs

Using the “DsigDB” database of the Enrichr platform (https://maayanlab.cloud/Enrichr/enrich), the drugs associated with 
the predicted diagnostic biomarkers were predicted, and those with p-values <0.05 were retained and visualized in a 
three-line table based on the analytical outcomes.

https://cibersortx.stanford.edu/
https://www.networkanalyst.ca/
https://maayanlab.cloud/Enrichr/enrich
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2.9.  Molecular docking and molecular dynamics simulation

Protein sequences corresponding to target genes were obtained from the UniProt database. Corresponding crystal 
structures were subsequently retrieved from the PDB database and preprocessed using PyMOL software. Concurrently, 
3D structures of drug compounds were downloaded from PubChem, with OpenBabel employed for format conversion 
and structural optimization. Molecular docking was performed using AutoDock Vina. Docking results were visualized and 
analyzed in PyMOL.

Molecular dynamics simulations were conducted using GROMACS 2022.3. Proteins were modeled with the 
Amber99SB-ILDN force field, small-molecule ligands were parameterized with GAFF2, and solvation was implemented 
using the TIP3P water model. System preparation involved adding solvent molecules and counterions for charge neutral-
ization. Energy minimization was performed via the steepest descent algorithm, followed by 1,000,000-step equilibration 
to ensure proper system relaxation. Production simulations were then run for 100 ns under isothermal-isobaric conditions 
of 300 K and 100 kPa. Based on the trajectories, analyses were performed for root mean square deviation (RMSD), root 
mean square fluctuation (RMSF), solvent accessible surface area (SASA), radius of gyration (Rg), hydrogen bond occu-
pancy, and free energy changes.

3.  Results

3.1.  Identification of DEGs

Differential expression analysis of the pSS cohort (GSE84844) uncovered 593 candidate genes (DEGs) exhibiting sig-
nificant transcriptional alterations, including 561 being over-expressed and 32 being under-expressed (Fig 2A). In the IIP 
dataset (GSE32537), 1,430 DEGs were identified, with 859 over-expressed and 571 under-expressed genes. (Fig 2B). 
Using the Venn diagram (Fig 2C), 25 common DEGs were obtained between pSS and IIP, of which 17 were up-expressed 
and 8 down-expressed.

3.2.  Hub genes identified through machine learning

In the pSS dataset (GSE84844), we selected 21 genes by means of the SVM-RFE algorithm, where the screening 
conditions were the highest accuracy and the minimum error (Fig 3A). 12 genes were screened out in the LASSO regres-
sion algorithm corresponding to the minimum binomial deviation (Fig 3B). In the RF classifier, we ultimately chose the 
15 genes that were ranked highest based on their importance. (Fig 3C). XGBoost selected the top 10 genes by impor-
tance score (Fig 3D). Finally, the four machine algorithms of the pSS dataset were intersected to obtain 6 overlapping 
genes (Fig 3E). In the IIP dataset (GSE32537), 13 genes were found by the SVM-RFE algorithm (Fig 3F), 17 genes were 
screened by LASSO regression (Fig 3G), and the top 15 genes that were ranked highest based on their importance were 
found by the RF classifier (Fig 3H). XGBoost selected the top 10 importance-ranked genes (Fig 3I). Similarly, 6 overlap-
ping genes were obtained from the IIP dataset (Fig 3J).

3.3.  Weighted gene co-expression network analysis and enrichment analysis

Gene modules exhibiting the highest correlation in the pSS or IIP datasets were screened by the WGCNA method. The 
pSS dataset (GSE84844) was analyzed with the optimal soft thresholding power was 4. (Fig 4A). The analysis revealed a 
total of 12 modules, of which the turquoise module (correlation coefficient = 0.71, p = 1e-09) and brown module (correlation 
coefficient = 0.69, p = 5e-09) possess 2013 and 412 genes respectively, and exhibit the highest degree of positive correla-
tion with the disease (Figs 4B, C). Furthermore, scatterplots demonstrated a positive correlation between MM and GS for 
both the turquoise and brown modules (Fig 4D).

Similarly, in the IIP dataset (GSE32537), the optimal soft thresholding power was 4 (Fig 4E). A comprehensive anal-
ysis determined a total of 13 modules (Fig 4F, G), and to ensure consistency with the pSS dataset, the blue module 
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(correlation coefficient = 0.71, p = 2e-25) and the tan module (correlation coefficient = 0.55, p = 2e-13) containing 395 and 
45 genes respectively, and exhibit the highest degree of positive correlation with IIP. The module memberships in the blue 
module and the tan module with gene significance showed positive correlation through scatter plot (Fig 4H). Finally, 39 
overlapping genes of the pSS and IIP associated modules were obtained using the Venn diagram (Fig 4I).

To investigate the biological characteristics and pathways of the 39 key genes identified through WGCNA, we con-
ducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. 
In each category of the GO analysis, the top five terms are listed (Fig 5A). BP was mainly enriched for sister chromatid 
segregation, nuclear chromosome segregation, and chromosome separation. CC was mainly enriched for chromosomes, 
specific granules, condensed chromosomes in the mitotic region, and condensed chromosomes. MF was mainly enriched 
for extracellular matrix binding, components of the extracellular matrix that confer elasticity, and protein kinase B binding. 
KEGG pathway enrichment analysis highlighted six pathways primarily associated with progesterone-mediated oocyte 
maturation, terpene skeleton biosynthesis, and butyric acid metabolism (Fig 5B). These results suggest that pSS and IIP 
are associated with the processes of cell division, oocyte maturation and metabolic regulation.

Fig 2.  Shared DEGs in pSS (GSE84844) and IIP (GSE32537). (A, B) Volcanograms of DEGs in pSS and IIP. (C) The Venn diagram analysis revealed 
common DEGs between pSS and IIP. DEGs, differentially expressed genes.

https://doi.org/10.1371/journal.pone.0333070.g002

https://doi.org/10.1371/journal.pone.0333070.g002
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Fig 3.  Machine learning in screening hub genes. (A,B,C,D) The results of SVM-RFE algorithm, LASSO regression, RF classifier and XGBoost 
algorithm for pSS. (E) Venn diagram presents the six genes identified through four distinct algorithms within pSS. (F,G,H,I) The results of SVM-RFE algo-
rithm, LASSO regression, RF classifier and XGBoost algorithm for IIP. (J) Venn diagram presents the six genes identified through four distinct algorithms 
within IIP.

https://doi.org/10.1371/journal.pone.0333070.g003

https://doi.org/10.1371/journal.pone.0333070.g003
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3.4.  Identification of diagnostic biomarkers as well as expression analysis and diagnostic evaluation

In order to obtain plausible diagnostic biomarkers, two genes, CYSLTR1 and SIGLEC10, obtained as potential diagnos-
tic biomarkers, were taken as intersections of the hub genes obtained by machine learning with the genes screened by 
WGCNA using a Venn diagram (Fig 6).

Fig 4.  Common gene signatures in pSS dataset (GSE84844) and IIP dataset (GSE32537) datasets using WGCNA algorithm. (A) Determination 
of optimal soft-thresholding power for pSS analysis. (B) Dendrogram of co-expressed gene clusters identified in pSS datasets. (C) Module-trait associa-
tion heatmap generated for pSS cohorts. (D) Scatter plot visualization of gene significance-module membership correlations within turquoise and brown 
co-expression modules in pSS cohorts. (E) Determination of optimal soft-thresholding power for IIP analysis. (F) Dendrogram of co-expressed gene clus-
ters identified in IIP datasets. (G) Module-trait association heatmap generated for IIP cohorts. (H) Scatter plot visualization of gene significance-module 
membership correlations within blue and tan co-expression modules in IIP cohorts. (I) Comparative Venn analysis of shared genes at the intersection of 
the two modules of pSS and IIP.

https://doi.org/10.1371/journal.pone.0333070.g004

https://doi.org/10.1371/journal.pone.0333070.g004
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Fig 5.  GO and KEGG pathway enrichment analyses of the overlapping genes by WGCNA algorithm. (A) GO enrichment analysis was conducted 
for the intersecting genes. (B) KEGG enrichment analysis was carried out on the intersecting genes.

https://doi.org/10.1371/journal.pone.0333070.g005

https://doi.org/10.1371/journal.pone.0333070.g005
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The accuracy of the above 2 genes as diagnostic biomarkers for pSS and IIP was evaluated by examining their expres-
sion levels and diagnostic effects. In the discovery set (GSE84844, GSE32537), the expression level of SIGLEC10 was 
significantly lower in the patient cohort than in the control cohort, and the expression of CYSLTR1 was significantly higher 
in the disease cohort than in the control cohort (Figs 7A, B). Nomograms of the 2 genes were then plotted, the relative 
expression scores of each gene were calculated, and the total score was determined (Figs 7C, D). According to the ROC 
curves, the AUC values of SIGLEC10 = 0.828 and CYSLTR1 = 0.902 in the pSS dataset, and SIGLEC10 = 0.912 and CYS-
LTR1 = 0.896 in the IIP dataset, which had good diagnostic performance (Fig 7E, F).

To further examine the capacity of potential diagnostic biomarkers to discriminate between diseased and healthy pop-
ulations, the validation cohort (GSE66795, GSE110147) was used to assess the differential expression and diagnostic 
efficacy of the two aforementioned genes. The resultant plots showed that both CYSLTR1 and SIGLEC10 had significant 
expression differences in the validation datasets, and the trend was consistent with the discovery datasets (Fig 8A, B). 
Similarly, Nomogram prediction models (Fig 8C, D) and ROC curves (Fig 8E, F) were plotted for both genes, showing that 
both genes show promise as diagnostic biomarkers for pSS and IIP.

3.5.  Immune cell infiltration analysis

We assessed the degree of immune cell infiltration in discovery datasets utilizing the CIBERSORT algorithm, to investi-
gate the association between immune cells and pathological mechanisms in pSS and IIP. The proportions of 22 immune 
cell types in these datasets were visualized as bar graphs (Figs 9A, B). Box plots illustrating variations in immune cell 
infiltration revealed that, compared to healthy controls, the pSS group exhibited elevated levels of memory B cells, resting 
memory CD4 + T cells, activated memory CD4 + T cells, gamma delta T cells, M2 macrophages, and activated dendritic 
cells, while regulatory T cells (Tregs) and resting NK cells were reduced (Fig 9C). In the IIP group, increased infiltration 
was observed for memory B cells, plasma cells, CD8 + T cells, activated memory CD4 + T cells, follicular helper T cells, 
Tregs, resting dendritic cells, and resting mast cells. Conversely, naive CD4 + T cells, resting NK cells, monocytes, M1 

Fig 6.  Identification of common key genes by integrating machine learning with WGCNA analysis.

https://doi.org/10.1371/journal.pone.0333070.g006

https://doi.org/10.1371/journal.pone.0333070.g006
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Fig 7.  Validation of the key genes in discovery sets. (A, B) The expression levels of the two key genes in the pSS (GSE84844) and the IIP 
(GSE32537) discovery sets. (C, D) Nomogram construction of the two key genes in the pSS (GSE84844) and the IIP (GSE32537) discovery sets. (E, F) 
The ROC curves of the two key genes in the pSS (GSE84844) and the IIP (GSE32537) discovery sets. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).

https://doi.org/10.1371/journal.pone.0333070.g007

https://doi.org/10.1371/journal.pone.0333070.g007
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Fig 8.  Validation of the key genes in validation cohorts. (A, B) The expression levels of the two key genes in validation cohorts for pSS (GSE66795) 
and IIP (GSE110147). (C, D) Nomogram construction of the two key genes in validation cohorts for pSS (GSE66795) and IIP (GSE110147). (E, F) The 
ROC curves of the two key genes in discovery cohorts for pSS (GSE66795) and IIP (GSE110147). (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).

https://doi.org/10.1371/journal.pone.0333070.g008

https://doi.org/10.1371/journal.pone.0333070.g008
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Fig 9.  Assessment of immune cell infiltration characteristics. (A, B) The composition of immune cell infiltration in pSS (GSE84844) and 
IIP(GSE32537). (C, D)Boxplots showing the differences in immune cell infiltration between groups in pSS (GSE84844) and IIP (GSE32537) (*p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001). (E, F) These heatmaps illustrate the relationships among various immune cells in pSS ( GSE84844) and IIP 
(GSE32537). (G, H) Association between infiltrating immune cells and two diagnostic biomarkers.

https://doi.org/10.1371/journal.pone.0333070.g009

https://doi.org/10.1371/journal.pone.0333070.g009
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macrophages, eosinophils, and neutrophils showed decreased infiltration (Fig 9D). Notably, memory B cells, activated 
memory CD4 + T cells, and resting NK cells displayed consistent trends in both the pSS and IIP groups.

Furthermore, correlation heatmaps for the 22 immune cell types revealed that in the pSS dataset, resting dendritic 
cells exhibited positive association with Tregs and M1 macrophages (r = 0.80 and r = 0.69, respectively), while M1 macro-
phages demonstrated a significant positive association with activated mast cells (r = 0.55). Neutrophils, on the other hand, 
were inversely associated with CD8 + T cells and monocytes (r = −0.55 and r = −0.52, respectively), and naive B cells were 
inversely associated with plasma cells (r = −0.53) (Fig 9E). In the IIP dataset, activated NK cells demonstrated a positive 
correlation with resting mast cells (r = 0.47), plasma cells were positively correlated with CD8 + T cells (r = 0.49), and resting 
B cells demonstrated a positive correlation with Tregs (r = 0.46). Conversely, activated NK cells were inversely associated 
with activated memory CD4 + T cells (r = −0.47) (Fig 9F).

Finally, an interaction assessment was carried out to explore associations linking the 2 diagnostic biomarkers and 22 
immune cell types. The results revealed that in the pSS dataset (Fig 9G), CYSLTR1 exhibited positive correlations with 
memory B cells, activated dendritic cells, M2 macrophages, activated memory CD4 + T cells, and gamma delta T cells. In 
contrast, SIGLEC10 showed negative correlations with these same immune cell types. Additionally, Tregs were inversely 
associated with CYSLTR1 but positive association with SIGLEC10, which demonstrated concordance with the expression 
patterns exhibited by both target genes in the pSS set. In the IIP dataset (Fig 9H), neutrophils, monocytes, resting NK 
cells, and naive CD4 + T cells displayed positive correlations with SIGLEC10 and negative correlations with CYSLTR1. 
Conversely, memory B cells, resting dendritic cells, resting mast cells, and Tregs exhibited positively associated with 
CYSLTR1 and negatively correlated with SIGLEC10, consistent with the observed gene expression patterns. Notably, the 
correlation of memory B cells with both genes was consistent across both the pSS and IIP datasets, suggesting that mem-
ory B cells might be instrumental in the common mechanisms of pSS and IIP.

3.6.  Construction of transcription factor-gene and miRNA-gene regulatory networks

To gain deeper insights into disease progression, we established TFs-gene and miRNA-gene regulatory networks. The 
TF-gene network comprised 14 nodes and 13 edges (Fig 10A), while the gene-miRNA network included 39 nodes and 
41 edges (Fig 10B). Remarkably, in the TF-gene network, FOX1 is implicated in the transcription of two key genes. In the 
miRNA-gene network, hsa-mir-27a-3p, hsa-mir-195-5p and hsa-miR-26a-5p interact with these genes. This suggests that 
these factors might jointly modulate the transcription of CYSLTR1 and SIGLEC10.

3.7.  Prediction of related drugs

We identified a total of 33 drugs associated with candidate diagnostic biomarkers in the DSigDB database. These 10 
possible drug molecules which were identified through p-value-based ranking include Rev 5901 CTD 00002161, leukot-
riene D4 CTD 00007224, leukotriene C4 CTD 00007223, VERLUKAST CTD 00002469, LXB4 BOSS, montelukast CTD 
00003205, zafirlukast BOSS, zafirlukast TTD 00011894, zafirlukast, zafirlukast CTD 00002560 (Table 2).

3.7.  Molecular docking and molecular dynamics simulation

We selected FDA-approved montelukast and zafirlukast as candidate drugs for molecular docking and molecular dynam-
ics simulations with the core target CYSLTR1.

Molecular docking results revealed binding energies of −6.78 kcal/mol for montelukast and −9.54 kcal/mol for zafir-
lukast with the receptor, indicating stable binding for both compounds. Visualization of the docking results provided an 
intuitive representation of the drug-receptor interaction patterns (Fig 11A).

Molecular dynamics simulations were employed to further validate complex stability. Results demonstrated that 
the CYSLTR1-montelukast complex rapidly reached equilibrium around 20 ns, with its RMSD values stabilizing at 
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Fig 10.  Regulatory networks involving TFs-genes and miRNAs-genes for two key genes. (A) TFs-genes regulatory network. (B) miRNAs-genes 
regulatory network. Key genes represented by triangles.

https://doi.org/10.1371/journal.pone.0333070.g010

Table 2.  The top ten related predicted drug compounds.

Term P-value Combined score Genes

Rev 5901 CTD 00002161 0.001099 13617 CYSLTR1

leukotriene D4 CTD 00007224 0.001699 7965 CYSLTR1

leukotriene C4 CTD 00007223 0.001699 7965 CYSLTR1

VERLUKAST CTD 00002469 0.002098 6160 CYSLTR1

LXB4 BOSS 0.002298 5516 CYSLTR1

montelukast CTD 00003205 0.002398 5239 CYSLTR1

zafirlukast BOSS 0.002897 4168 CYSLTR1

zafirlukast TTD 00011894 0.0028979 4168 CYSLTR1

zafirlukast 0.0036966 3105 CYSLTR1

zafirlukast CTD 00002560 0.0042954 2590 CYSLTR1

https://doi.org/10.1371/journal.pone.0333070.t002

https://doi.org/10.1371/journal.pone.0333070.g010
https://doi.org/10.1371/journal.pone.0333070.t002
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approximately 1.2 nm and fluctuations remaining within 0.5 nm, signifying system stability thereafter. In contrast, the 
CYSLTR1-zafirlukast complex exhibited slightly higher RMSD values and greater fluctuation amplitude, yet maintained 
an overall stable trend (Fig 11B). The Rg values for the montelukast complex displayed a progressive decrease, ulti-
mately stabilizing near 3.2 nm, suggesting this ligand promotes a more compact spatial conformation of CYSLTR1 (Fig 
11C). Although the Rg values for the zafirlukast complex were marginally higher than those of montelukast, its curve also 
plateaued, indicating a relatively compact and stable overall conformation (Fig 11D). Hydrogen bond analysis confirmed 
stable hydrogen bond interactions between both ligands and the target protein (Figs 11E, F). RMSF analysis revealed 
significantly higher fluctuation peaks across multiple residue regions in the zafirlukast complex, whereas the montelu-
kast complex exhibited lower overall RMSF levels with smoother fluctuations, demonstrating that montelukast binding 
enhances protein structural stability and restricts local flexibility (Fig 11G). SASA results showed decreased values for 
both complexes post-binding, indicating reduced protein surface area. Notably, the zafirlukast complex exhibited higher 
overall SASA values compared to montelukast, suggesting montelukast binding may induce a more compact protein struc-
ture with reduced solvent exposure (Fig 11H). The minimum free energy state for the montelukast complex clustered near 
RMSD = 1.2 nm and Rg = 3.25 nm (Fig 11I), with the energy well position aligning with the stable RMSD and Rg values, 
validating conformational reliability. The zafirlukast complex exhibited two distinct energy minima near RMSD = 1–1.3 nm 
and Rg = 3.20–3.30 nm (Fig 11J), separated by a low energy barrier. This suggests a potential conformational transition 
pathway, explaining the higher RMSD fluctuations observed in the CYSLTR1-zafirlukast complex.In summary, montelukast 
forms a structurally rigid complex with the receptor, inducing receptor compaction and exhibiting higher binding affinity. In 
contrast, the zafirlukast-bound receptor maintains moderate flexibility with conformational dynamics.

4.  Discussion

Current research on pSS-ILD predominantly comprises meta-analyses and systematic reviews, with limited exploration of 
shared molecular pathways and genetic foundations. This study pioneers the integration of machine learning with WGCNA 
to elucidate common pathological mechanisms between pSS and IIP, thereby offering mechanistic insights for future pSS-
ILD investigations and potential therapeutic targets to improve patient prognosis.

In this study, we identified 39 disease-associated genes that are common to both pSS and IIP. Based on GO and 
KEGG functional enrichment analyses, some key signaling pathways were revealed, such as chromosome segrega-
tion, oocyte maturation, and butyric acid metabolism. pSS patients have an abnormally active immune system, and the 
extensive proliferation of immune cells, including B cells and T cells, along with the activation and clonal expansion of 
lymphocytes, play essential roles in the development of pSS. Aberrant cell division could result in immune cell dysfunction 
and further exacerbating immune system disorders. A major feature of ILD is fibrosis of lung tissue, and proliferation of 
fibroblasts is a key step in the fibrotic process [30]. Signaling pathways associated with cell division, including the inacti-
vation of the Hippo pathway, will lead to YAP/TAZ dephosphorylation in the pathological state of pulmonary fibrosis, enter 
the nucleus, bind to transcription factors such as TEADs, activate CTGF and CYR61, and promote the proliferation and 
activation of fibroblasts [31]. The incidence of pSS rises with age, and it is particularly prevalent among women in the 
middle-aged to elderly population, especially those between 40 and 60 years old. It is more common in [32,33], during 
this stage, levels of progesterone and estrogen, which are associated with oocyte maturation, decline, suggesting that 
abnormal hormone levels may contribute to the development of pSS, lthough this association requires further investiga-
tion. Reduced levels of butyric acid-producing intestinal bacteria are present in patients with pSS [34]. This may lead to 
decreased levels of SCFAs such as butyric acid, thereby affecting their role in immunomodulation. Secondly, butyric acid 
can maintain immune homeostasis by inhibiting dendritic cell maturation [35] and promoting Treg cell proliferation [36]. 
This suggests that butyrate supplementation or increasing butyric acid production by regulating the intestinal flora may 
have some potential therapeutic effects in alleviating the symptoms of pSS.
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Then, using machine learning and Venn diagram, we obtained two candidate diagnostic markers: CYSLTR1, 
SIGLEC10. In comparison to the healthy control cohort, notable variations in the expression levels of these two genes 
were observed within the patient cohort, the expression of CYSLTR1 was significantly elevated, whereas the expression 
of SIGLEC10 was markedly reduced. Moreover, the accuracy of their diagnostic models was high according to the ROC 
curves, proving that the two genes have a good performance in distinguishing between diseased patients and healthy 
individuals.

Cysteinyl Leukotriene Receptor 1 (CYSLTR1), the main receptor for leukotrienes C4, D4, and E4, triggers pathological 
changes such as increased vascular permeability, airway smooth muscle constriction, eosinophil migration, and mucus 
secretion by binding to leukotrienes, playing a pivotal regulatory role in various inflammatory and fibrotic diseases. When 
activated by leukotrienes, this receptor initiates downstream signling pathways that stimulate pro-inflammatory cytokine 
release, immune cell recruitment, and tissue fibrosis progression.Recent research has revealed dual pathogenic mech-
anisms of CYSLTR1 in psoriasis. Its activation promotes nuclear translocation of the NF-κB signaling pathway, elevating 
expression of pro-inflammatory cytokines such as TNF-α and IL-6.Through modulation of the RORγt transcription factor, 
it enhances Th17 cell differentiation, leading to release of key cytokines including IL-17, thereby exacerbating cutaneous 
inflammation and abnormal keratinocyte hyperproliferation [37]. In pulmonary fibrotic disorders, the CYSLTR1 pathway 
contributes to pathogenesis via dual regulatory mechanisms. First, it facilitates the transition from inflammation to fibro-
sis. Activation of CYSLTR1 on alveolar macrophages promotes TGF-β1 secretion, inducing fibroblast-to-myofibroblast 
differentiation and increasing extracellular matrix deposition. Second, in drug-induced lung injury models, CYSLTR1 

Fig 11.  Molecular docking and molecular dynamics simulation. (A) Molecular docking poses of montelukast and zafirlukast bound to CYSLTR1. 
(B) Time-dependent RMSD changes for CYSLTR1 complexes with montelukast and zafirlukast. (C, D) Rg profiles for montelukast-CYSLTR1 and 
zafirlukast-CYSLTR1 complexes. (E, F) Hydrogen bond formation for montelukast-CYSLTR1 and zafirlukast-CYSLTR1 complexes. (G) RMSF patterns 
of montelukast-CYSLTR1 and zafirlukast-CYSLTR1 complexes. (H) SASA variations montelukast-CYSLTR1 and zafirlukast-CYSLTR1 complexes. (I, J) 
Free energy landscapes of montelukast-CYSLTR1 and zafirlukast-CYSLTR1 conformational states.

https://doi.org/10.1371/journal.pone.0333070.g011

https://doi.org/10.1371/journal.pone.0333070.g011
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hyperactivation triggers mitochondrial ROS burst, resulting in apoptosis of hepatic sinusoidal endothelial cells-a process 
directly linked to upregulated ALOX5/5-LOX pathway activity [38]. Based on these findings, we propose that CYSLTR1 
likely serves as a pivotal hub in the pathogenesis of pSS-ILD, driving disease progression by mediating the transition from 
inflammatory responses to fibrotic phenotypes. This mechanistic insight suggests that CYSLTR1 functions not only as a 
core molecular switch connecting early inflammation with advanced fibrosis, but also represents a novel therapeutic target 
for intervening in disease outcomes. Consequently, further experimental investigations are warranted to validate these 
observations.

Sialic acid-binding Ig-like lectin 10 (SIGLEC10), a member of the Siglec family of immunoreceptors, is often thought to 
interact with CD24, triggering an inhibitory signaling cascade that suppresses the destructive inflammatory response in 
sepsis, infections, hepatic injuries, and chronic graft-versus-host reactions [39]. We propose that during the progression of 
pSS-ILD, downregulated SIGLEC10 expression may enhance autoimmune responses by releasing immunosuppression. 
SIGLEC10 is also critically involved in tumor immune evasion [40]. Multiple studies have demonstrated that SIGLEC10 
serves as a significant immunosuppressive mediator in gastric, hepatocellular and cervical cancers, and helps tumors 
evade immune surveillance by interfering with the normal function of NK cells and inhibiting cross-presentation of dendritic 
cells [41–43]. Thus, in autoimmune diseases, functional impairment of SIGLEC10 may similarly disrupt immune tolerance 
to self-antigens, leading to amplified aggressive immune responses. These findings indicate that as an inhibitory receptor 
on multiple immune cells, SIGLEC10 potentially contributes to pSS-ILD progression through its downregulation-induced 
immune hyperactivation.

In the immune microenvironment of pSS and IIP, elevated proportions of memory B cells and activated memory CD4 + T 
cells were observed, whereas a marked reduction in resting NK cells was evident. In several studies, memory B cells 
and activated memory CD4 + T cells exhibited a marked augmentation frequency in patients with pSS relative to healthy 
controls [44,45]. Memory B cells possess the capacity to swiftly transition into plasma cells, subsequently generating a 
substantial quantity of autoantibodies, such as anti-SSA and anti-SSB antibodies [46], when they encounter antigen again, 
which are intricately linked to the pathogenesis of pSS. In the course of the disease progression of pSS, aerobic glycolysis 
of activated memory CD4 + T cells is enhanced, leading to the overproduction of IFN-γ and IL-17A, which promotes the 
expansion and maturation processes of B lymphocytes and exacerbates the autoimmune response [47]. In ILD disease, 
these two types of immune cells interact with alveolar epithelial cells and fibroblasts, exacerbating the inflammatory 
response and fibrosis of lung tissues [48,49]. The functional and mechanistic roles of NK cells in pSS and ILD have yet 
to be fully elucidated across diverse pathophysiological contexts. Considering their capacity to directly lyse target cells 
and secrete cytokines, NK cells may contribute to the perpetuation and amplification of autoimmune responses [50]. In 
summary, these immune cells may be involved in the transition from immune activation to fibrosis during the course of 
pSS-ILD.

Our results suggest that FOXC1, hsa-mir-27a-3p, hsa-mir-195-5p, and hsa-miR-26a-5p may be important regulators 
of the two shared genes. FOXC1 demonstrates elevated expression across a wide spectrum of cancers and is intricately 
associated with tumor invasion, metastasis, and clinical outcomes. For example, in non-small cell lung cancer(NSCLC), 
FOXC1 drives tumor advancement and suppresses the immune microenvironment through its mediation of LINC00301 
in regulating the HIF1α pathway [51]. It has been discovered that Hsa-mir-27a-3p exerts a significant regulatory function 
during the course of colorectal cancer development. For example, Hsa-mir-27a-3p might decrease the synthesis of colla-
gen I and III in lung fibroblasts through suppressing the Wnt3a/β-catenin pathway in pulmonary fibrosis [52], which may be 
relevant to the disease progression of ILD that we studied. In addition, by regulating the RXRα/β-catenin pathway, hsa-
mir-27a-3p is capable of influencing various vital activities of cancer cells, such as proliferation, migration and invasion. 
Studies have shown that hsa-mir-195-5p can inhibit the autophagy process of lung adenocarcinoma cells and reduce 
their resistance to gemcitabine by targeting the E2F7/CEP55 signaling axis [53]. Hsa-mir-195-5pa serves as a biological 
indicator for assessing the risk of lung cancer, and also regulate the expression of Indian hedgehog to control the process 
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of osteogenic differentiation in human adipose-derived mesenchymal stem cells [54]. Hsa-miR-26a-5p influences the 
osteogenic differentiation of chondrocytes in arthritis through the activation of the NF-κB signaling pathway [55]. In colon 
cancer (CRC), the expression level of hsa-miR-26a-5p is reduced, and it regulates the expression of MTDH by interacting 
with SNHG5, a long chain non-coding RNA, thus affecting the proliferative and metastasis of CRC cells [56]. In summary, 
hsa-mir-27a-3p may have an effect on pulmonary fibrosis in pSS-ILD disease progression, and FOXC1, hsa-mir-195-5p 
and hsa-miR-26a-5p have not been sufficiently investigated in pSS and ILD, which deserves further study.

Our drug prediction analysis identified montelukast as a promising therapeutic candidate for pSS-ILD. Molecular dock-
ing and dynamics simulations revealed a compact, rigid complex formation between montelukast and the target receptor, 
indicative of potent inhibitory effects potentially halting disease progression. Given the pivotal role of CYSLTR1 in auto-
immune pathogenesis, exploration of CYSLTR1 antagonists for therapeutic repurposing has gained significant momen-
tum.One study demonstrated, CYSLTR1 expression is increased in psoriatic skin lesions, and studies have shown that 
montelukast, a CYSLTR1 antagonist, has demonstrated significant potential in the therapeutic management of diverse 
connective tissue disorders. For example, it can address psoriasis by suppressing the differentiation of Th17 cells [37]. 
In rheumatoid arthritis, CYSLTR1 expression was also found to be up-regulated [57]. Under the influence of montelukast, 
the secretion of metalloproteinases, such as MMP-3, MMP-13, IL-8 and IL-6, by synovial fibroblasts is diminished, thereby 
attenuating joint inflammation [58]. Furthermore, in multiple sclerosis, montelukast might treat the disease by impeding the 
migration of Th17 cells [59]. In contrast, zafirlukast—currently indicated for asthma management—represents an unex-
plored therapeutic candidate for CTD-ILD. Our simulations demonstrate its formation of a moderately flexible receptor 
complex with relaxed structural constraints, suggesting tissue-selective disease suppression through allosteric blockade. 
CYSLTR1 antagonists demonstrate significant therapeutic potential across autoimmune disorders, with montelukast 
emerging as a particularly viable strategy for pSS-ILD pending further in vitro/in vivo validation and optimization.

Additionally, our study is subject to some limitations. First, constrained by the limited sample size of the datasets 
and the absence of data from patients with concurrent pSS and ILD, the statistical power and generalizability of our 
findings may be limited. Future studies could expand sample sizes and systematically incorporate comorbidity data 
to enhance the reliability and clinical applicability of conclusions. Second, due to missing clinical variables in public 
databases, we were unable to adjust for covariates such as age and sex, potentially introducing confounding effects. 
We recommend validating findings in cohorts with complete clinical records to address this limitation. Third, due to 
the limited availability of high-throughput data meeting the inclusion criteria in online databases and to avoid the 
impact of inter-platform batch effects and differences in gene coverage on the reliability of conclusions, this study 
exclusively incorporated microarray datasets. Subsequent research is recommended to validate the findings using 
bulk RNA-seq datasets, which offer greater sensitivity, dynamic range, and quantification accuracy. Additionally, 
experimental validation through in vitro and in vivo models was beyond the scope of this study. The biological rele-
vance of our findings would benefit from further exploration in subsequent laboratory studies and clinical practice. 
Nevertheless, this work identifies potential biomarkers for pSS-ILD diagnosis. Delving into shared molecular mech-
anisms between these conditions will not only elucidate the nature of disease comorbidity but also provide a critical 
theoretical foundation for developing cross-disease precision diagnostic tools and targeted therapies, ultimately 
improving patient prognosis.
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