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Abstract

Background

Heart failure (HF) is a major cardiovascular disease with high mortality worldwide,
whose pathophysiology is multifaceted. Hypoxia has emerged as a critical factor con-
tributing to the progression of heart failure. We aimed to examine the expression and
functions of LncRNA Kcng1ot1 in hypoxia-induced cardiomyocytes in the process of
HF.

Methods

HOC2 cell model was simulated by hypoxia treatment. TUNEL, ELISA, Western Blot
and qRT-PCR assay were carried out to evaluate cell pyroptosis, inflammation and
dysfunction. Subsequently, we identified the direct downstream target of Kcng1ot1 by
bioinformatics analysis, RNA pull-down, double Luciferase reporter gene and other
functional experiments.

Results

Firstly, Kcng1ot1 levels was revealed to be upregulated in hypoxia cells than in
control cells, and miR-27b-3p showed the opposite trend. And as expected, inhibi-
tion of Kcng1ot1 and overexpression of miR-27b-3p both protected H9C2 against
hypoxia-induced pyroptosis, inflammation and dysfunction. Moreover, miR-27b-3p
was proved to bind with Kcng1ot1 and participated in Kecng1ot1-mediated H9C2
injury under hypoxia by regulating the Wnt3a/B-Catenin/NLRP3 signaling pathway.

Conclusions

Collectively, our study demonstrated that inhibition of Kcnq1ot1 protected cardiomyo-
cyte against hypoxia-induced injury possibly via sponging miR-27b-3p, which could
be useful as biomarkers and therapeutic targets for HF patients.
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Introduction

Heart failure (HF) is a multifaceted clinical syndrome characterized by both systolic
and diastolic dysfunction, leading to an imbalance between the demand for and
supply of oxygenated blood [1]. This debilitating condition affects around 26 million
individuals globally and results in over 1 million hospitalizations annually in the United
States and Europe [2]. Furthermore, HF significantly contributes to high morbidity and
mortality rates, as it elevates the risk of stroke [3]. Although recent advancements in
medical and instrumental therapies have shown promise in improving cardiac func-
tion, HF continues to be a leading cause of death worldwide [4]. Current treatment
strategies remain limited in their ability to alleviate symptoms and halt disease pro-
gression, highlighting the urgent need for a deeper understanding of HF to facilitate
the development of innovative therapeutic approaches.

Noncoding RNAs (ncRNAs) are a category of RNA molecules that do not code for
proteins. Remarkably, about 98% of the human genome consists of ncRNAs [5], which
play crucial regulatory roles within extensive communication networks [6]. Among
these, long ncRNAs (IncRNAs) and microRNAs (miRNAs) have recently garnered sig-
nificant attention due to their vital functions in regulating cell proliferation, differentiation,
apoptosis, and migration [7,8]. For instance, silencing of XIST improved cardiac func-
tion and survival rate and reduced apoptosis and pyroptosis in septic rats in vivo [9].

Recent studies have highlighted the important role of KCNQ1 overlapping tran-
script 1 (Keng1ot1) in cardiac diseases. Silencing Kcng1ot1 has been shown to
reduce pyroptosis and fibrosis in diabetic cardiomyopathy [10]. Additionally, Kcng1ot1
influences chromatin structure and Kcnq1 expression during heart development [11].
Knockdown of Kcng1ot1 has also been demonstrated to offer protection against cell
apoptosis in cases of myocardial ischemia/reperfusion injury following acute myocar-
dial infarction (AMI) [12].

LncRNAs have been shown to influence messenger RNA (mRNA) expres-
sion through a competing endogenous RNA (ceRNA) regulatory network at the
post-transcriptional level [13]. This ceRNA mechanism involves INcCRNAs competing
with mRNAs for binding to miRNAs, thereby reducing the inhibitory effects of miRNAs
on mMRNA targets [14]. The ceRNA network involving Kcng1ot1 has been extensively
studied. For example, kcng1ot1 promotes macrophage lipid accumulation and accel-
erates the development of atherosclerosis through the miR-452-3p/HDAC3/ABCA1
pathway [15].

In our prior research, we investigated the alleviation of atrial fibrosis (AF) in atrial
fibrillation rats by Wnt3a-targeted regulation of the signaling of Wnt/B-Catenin through
miR-27b-3p overexpression [16].

Given these findings, we aim to examine the function and the potential ceRNA role
of IncRNAKcng1ot1 and miR-27b-3p in hypoxia-caused cardiomyocytes.

Materials and methods
Cell culture and treatment

HIC2 cells (Pricella, China) were propagated in the dulbecco’s modified eagle
medium (DMEM) culture medium (Gibco, China) with 10% FBS (Excell Bio, China)
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and 1% Penicillin-Streptomycinas (P/S, Beyotime, China) as supplements at 37°C supplied with 5% CO,. To make
hypoxic injury, HOC2 cells were incubated in a hypoxic incubator containing 5% CO,, 94% N, and 1% O, for 12h then
cultured with the normal medium in a normoxic incubator for 2h.

Cell transfection

si-Kcng1ot1, miR-27b-3p inhibitor, miR-27b-3p mimic, and their respective negative controls (NC) were purchased from
Ribobio (Guangzhou, China). An equal amount of H9C2 cells were seeded in a 6-well plate and Lipofectamine 3000 trans-
fection reagent (ThermoFisher, USA) and used for cell transfection. The transfection time was 24h.

RNA extraction and quantitative real-time PCR (qRT-PCR)

Based on the supplier’s instruction, total RNA samples were extracted with Cell/Tissue Total RNA Isolation Kit V2 (RC112,
Vazyme, China) and used for generating cDNA with HiScript lll 1st Strand cDNA Synthesis Kit (R312, Vazyme, China). Taq
Pro Universal SYBR qPCR Master Mix (Q712, Vazyme, China) was acquired for gRT-PCR. Relative gene expression was
standardized to GAPDH or U6 after calculating with 27T method.

The primer sequence is as follows: Kcnq1ot1: forward: 5-TATGGCAAAACCCGGATGGG-3’; reverse:
5-TGGCTAGTCCCGATAGGGTG-3'. miR-27b-3p: forward: 5’- GCGCGTTCACAGTGGCTAAG-3’; reverse: 5'-
AGTGCAGGGTCCGAGGTATT-3". GAPDH: forward: 5-CCCTTAAGAGGGATGCTGCC-3’; reverse: 5'-
TACGGCCAAATCCGTTCACA-3'. U6: forward: 5-GGAGACACGCAAACGGAAG-3’; reverse:
5-AGTGCAGGGTCCGAGGTATT-3'.

Western blot (WB)

Total protein in cells was extracted by using RIPA lysis buffer (Beyotime, China). The proteins were separated by SDS
PAGE and were transferred onto PVDF membranes. After blocking for 1h at room temperature with 5% non-fat milk in
Tris buffered saline-0.01% Tween 20 (Biosharp, China), the membranes were incubated with primary antibodies at 4°C
overnight for detection of Wnt3a (26744—1-AP, Proteintech, China), B-Catenin (A19657, ABclonal, China), p-p-Catenin
(AP1076, ABclonal, China), NLRP3 (A5652, ABclonal, China), Caspase-1 (31020-1-AP, Proteintech, China), Fibronectin
(66042—1-Ig, Proteintech, China), Collagen Il (ab184993, Abcam, UK) and B-tubulin(66240—1-Ig, Proteintech, China).
After three washes with Tris buffered saline-0.01% Tween 20, the membranes were incubated with the corresponding
secondary antibody for 1h at room temperature. The signals were developed by using the chemiluminescence detection
kit (NCM Biotech, China), and the blots were finally monitored via ECL detection system (JP-K600, China).

Enzyme-linked immunosorbent assay (ELISA)

Concentrations of interleukin (IL)-13 and IL-18 in the culture medium were determined using ELISA kits (COIBOBIO,
China). The optical value of each well was determined at 450 nm using a microplate reader and converted to the corre-
sponding concentration according to the standard curve.

TdT-mediated dUTP Nick-End Labeling (TUNEL) assay

TUNEL Apoptosis Assay Kit was produced by Beyotime (C1088, China) and acquired for assessing the cell samples in
accordance with the user manual. After washing in phosphate buffer saline (PBS), cell samples were probed with TUNEL
detection kit after permeabilization. Cell nuclei were counterstained with 4’,6-diamidino-2-phenylindole (DAPI), then esti-
mated with optical microscopy.

Immunofluorescence (IF) staining

H9C2 cells or primary cardiomyocytes were fixed, permeabilized and blocked. Then, the cells were incubated with
GSDMD-N antibody (CST, USA) at 4°C overnight and incubated with Cy3-conjugated secondary antibody (Yeasen, China)
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in a dark room at 37°Cfor 1h. DAPI was used for nucleus staining. Cells were then observed under optical microscopy and
representative images were captured.

Dual-luciferase reporter assays

The wild-type (WT) and mutated (MUT) Kcnq1ot1 fragments covering the miR-27b-3p binding sites were synthesized and
inserted into pmirGLO luciferase Vector, termed Kcng1ot1-Wt/Mut reporter vectors. The H9C2 cells were co-transfected
with Keng1ot1 WT/MUT and miR-27b-3p mimic/NC. After incubation, cells were collected to measure the firefly and renilla
luciferase activity using the Luciferase Assay kit (Beyotime, China). Relative luciferase activity was normalized using the
renilla luciferase activity.

RNA pull down

The RNA extracts from H9C2 samples were cultivated with the biotin-labelled Kcng1ot1 probe (Kcng1ot1 biotin probe) or
Kcng1ot1 no-biotin probe as NC, along with the magnetic beads for 1h. The pulled-down complex was monitored by qRT-
PCR method.

RNA immunoprecipitation (RIP) assay

The H9C2 samples in RIP lysis buffer were harvested and mixed with the magnetic beads-bound specific antibody to
Argonaute2 (Ago2) or Immunoglobulin G (IgG) as NC in the RIP buffer for 1h. Precipitated RNAs were subjected to qRT-
PCR analysis for confirming the presence of binding sites.

Statistics

Data were analyzed and plotted using Graphpad 9 (Version 9.4). Al 2023 collates the graph. All data were represented by
means+SD, and the statistical difference between groups was tested by t-test or one-way test, and the p value<0.05 was
considered as significant difference.

Results
Hypoxia induces inflammation, myocardial remodeling, and pyroptosis of cells

The Wnt signaling pathway plays a crucial role in cardiac development, cell proliferation, and differentiation [17,18]. In
HF, abnormal activation of the Wnt signaling pathway may lead to pathological remodeling of myocardial cells, includ-

ing fibrosis [19], apoptosis [20] and pyroptosis [21]. As expected, compared to the normoxia control group, we observed
a significant activation of the Wnt signaling pathway in H9C2 cells in the hypoxia group, which was evidenced by an
increase in Wnt3a, a decrease in p--Catenin, and an increase in 3-Catenin at the protein levels (Fig 1A). Studies have
demonstrated that the activation of the Wnt signaling pathway may influence the activation of the NLRP3 inflammasome,
which subsequently activates Caspase-1, leading to the production of IL-1f and IL-18, thereby triggering an inflammatory
response [22,23]. In our study, we measured the increased levels of NLRP3, Caspase-1, IL-1(3, and IL-18 in hypoxic cells
using qRT-PCR, WB, or ELISA (Fig 1B-C), proving the activation of this pathway in hypoxia induced cardiomyocytes.
Fibronectin and Collagen Ill, as critical components of the extracellular matrix (ECM), also play significant roles in the
onset and progression of HF [24]. They influence the structure and function of the heart by participating in processes such
as myocardial remodeling, inflammatory responses, and fibrosis [25]. In our study, we also assessed the increased levels
of them in hypoxic cells using qRT-PCR and WB (Fig 1D). Myocardial pyroptosis is an important contributor to the onset
and progression of heart failure, as it promotes inflammatory responses, leads to the release of cytokines, and facilitates
myocardial remodeling [26,27]. Using TUNEL staining and IF for GSDMD-N, we measured the levels of pyroptosis and
found that they were elevated in hypoxic HO9C2 cells (Fig 1E—F). These data collectively indicated that hypoxia triggered
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Fig 1. Effect of hypoxia on H9C2 cells. (a) Protein levels of Wnt3a, p-3-Catenin and 3-Catenin were detected by WB. (b) Protein levels of NLRP3 and
Caspase-1 were detected by WB. (c) Levels of IL-13 and IL-18 were detected by ELISA. (d) Protein levels of Fibronectin and Collagen Il were detected
by WB. (e) TUNEL staining. (f) IF for GSDMD-N in the normoxia control group and hypoxia group. n=3, *p<0.05, **p<0.01, ***p<0.001.

https://doi.org/10.1371/journal.pone.0332892.9001
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inflammatory responses, myocardial remodeling, and pyroptosis in HI9C2 cells, potentially through the Wnt3a/B-Catenin/
NLRP3 signaling pathway.

Inhibition of IncRNA Kcnqg1ot1 attenuates hypoxia-induced cell damage

To start with, we observed that the level of Kcng1ot1 was significantly increased in hypoxia group as compared to the
control group (Fig 2A). To further explore the functional effects of Kcng1ot1 on hypoxia-injured H9C2 cells, si-Kcng1ot1 or
si-NC was transfected into H9C2 cells, and the si-Kcng1ot1 was successfully silenced (Fig 2B). Further functional assay
results showed that cell damages triggered by hypoxia were attenuated when Kcng1ot1 was silenced. As compared to the
Hypoxia+si-NC group, the Wnt signaling pathway (Fig 2C-D), inflammatory responses (Fig 2E—G), ECM components

(Fig 2H-1), and cell pyroptosis (Fig 2J—K) were decreased in the Hypoxia+si-Kcng1ot1 group. These data collectively indi-
cated that inhibition of Kcng1ot1 could attenuates hypoxia-induced cell damage.

miR-27b-3p attenuates hypoxia-induced cell damage

In our prior research, we investigated the alleviation of AF in atrial fibrillation rats by Wnt3a-targeted regulation of the sig-
naling of Wnt/B-Catenin through miR-27b-3p overexpression [16]. Therefore, we also want to verify the role of miR-27b-3p

in this hypoxic cell model. We firstly observed that the level of miR-27b-3p was significantly decreased in hypoxia group as
compared to the control group (Fig 3A), and miR-27b-3p mimic or NC was successfully transfected into HI9C2 cells (Fig 3B).
Further functional assay results showed that cell damages introduced by hypoxia were attenuated when Keng1ot1 was
silenced. As compared to the NC group, the Wnt signaling pathway (Fig 3C-D), inflammatory responses (Fig 3E-G), ECM
components (Fig 3H-I), and cell pyroptosis (Fig 3J-K) were decreased in the miR-27b-3p mimic group. These data collec-
tively indicated that miR-27b-3p could attenuates hypoxia-induced cell damage, similar to Kcng1ot1 silencing.

LncRNA Kcnq1ot1 works as a sponge for miR-27b-3p

To analyse the molecular mechanism, the subcellular localization of Kcng1ot1 was predicted through the LncATLAS web-
site (http://Incatlas.crg.eu/) [28], predicting that IncRNA MIAT might be located in the nucleus (Fig 4A). And a nuclear/cyto-
sol fractionation assay confirmed that Kcng1ot1 was mainly expressed in the nucleus (Fig 4B). In order to reveal whether
Kcng1ot1 functioned to H9C2 cells in miR-27b-3p mediated signaling, the regulatory relationship between them was stud-
ied. gqRT-PCR data showed that transfection of cells with si-Kcng1ot1 significantly up-regulated miR-27b-3p expression,
when compared to si-NC group (Fig 4C), which indicated that miR-27b-3p was negatively regulated by Kcng1ot1. Then,
bioinformatics analysis showed that Kcng1ot1 contains a binding site of miR-27b-3p (Fig 4D).

To validate whether Kcng1ot1 could directly bind with miR-27b-3p, the affinity between them was researched by RNA pull
down assay in HIC2 cells, and the results demonstrated that miR-27b-3p was enriched in Keng1ot1 biotin group (Fig 4E),
suggesting that miR-27b-3p might bind with Kcng1ot1. For the further exploration of the regulation of Kcng1ot1 on miR-
27b-3p, luciferase reporter assay was performed. The luciferase activity of Kcng1ot1-WT reporter was suppressed by
enforced expression of miR-27b-3p, while that of Kcng1ot1-MUT reporter was not affected (Fig 4F). Our previous research
has validated the interaction between miR-27b-3p and Wnt3a using a firefly luciferase reporter gene [16]. Therefore,
based on the above data, we speculate that Kcng1ot1 competes with miR-27b-3p to enhance the expression of Wnt3a.

Inhibition of Kcng1ot1 protects H9C2 cells against hypoxia-induced cell damage via up-regulation of miR-27b-3p

In order to validate the abovementioned hypothesis, an inhibitor specific for miR-27b-3p was transfected into HIC2 cells.
The expression of miR-27b-3p was significantly decreased in miR-27b-3p inhibitor group than that in the NC group

(Fig 5A). Of note, the Wnt signaling pathway (Fig 5B—C), inflammatory responses (Fig 5D—F), ECM components

(Fig 5G—-H), and cell pyroptosis (Fig 51-J) were increased in the Hypoxia+si-Kcng1ot1+miR-27b-3p inhibitor group, than
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Fig 4. Effect of Kcng1ot1 on miR-27b-3p. (a) Subcellular localization of Kcng1ot1 predicted through the LncATLAS website. (b) The possible major
expression of Kecng1ot1 in the nucleus of cardiomyocytes via nuclear/cytosolic fractionation assay. (c) RNA levels of miR-27b-3p by gRT-PCR in the si-NC
group and si-Kenqg1ot1 group. (d) The binding sites between Keng1ot1 and miR-27b-3p utilizing starBase. (€) RNA pull down assay of the binding between
Keng1ot1 and miR-27b-3p. (f) Luciferase reporter assay of the combination between Keng1ot1 and miR-27b-3p. n=3, *p<0.05, **p<0.01, ***p<0.001.
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those in Hypoxia+si-Kcng1ot1+inhibitor-NC group. Collectively, it seems that the effects of Kcnq1ot1 are impeded when
miR-27b-3p is knocked down. Thus, we preliminarily conclude that inhibition of Kcng1ot1 promotes the activation of
Whnt3a/B-Catenin/NLRP3 signaling pathways and cell pyroptosis possibly via regulating miR-27b-3p.

Discussion

Hypoxia could result in myocardial cell injuries, which further lead to the initiation of several cardiovascular diseases,
including HF and AMI. It is significant to find key molecules that protect cardiomyocytes from hypoxia-caused injury. The
hypothesis of the present study was that inhibition of Kcng1ot1 could protect H9C2 cells against hypoxia-introduced cell
injury. Therefore, based on previous research, predictions from the database, interaction experiment and functional assay,
this study found that Kcng1ot1 was upregulated in hypoxia cells and miR-27b-3p showed the opposite trend, inhibition of
Kcng1ot1 and overexpression of miR-27b-3p both protected HOC2 against hypoxia-induced pyroptosis, inflammation and
dysfunction. Moreover, miR-27b-3p was confirmed as the target of Kcnq1ot1 and participated in Keng1ot1-mediated H9C2
injury under hypoxia by regulating the Wnt3a/pB-Catenin/NLRP3 signaling pathway (Fig 6).

A growing number of IncRNAs have been linked to various kinds of cardiovascular diseases. For instance, increased
expression of LncRNA Kcna2 Antisense RNA led to an increased incidence of ventricular arrhythmias in association with
heart failure [29]. LncRNA UCA1 was able to promote the progression of cardiac hypertrophy, a condition associated with
a series of cardiovascular diseases, including heart failure [30]. In our study, we explored the functional role of Kcng1ot1,
in hypoxia-injured H9C2 cells, aiming to evaluate the importance of Kcng1ot1 in HF caused by myocardial infarction. It
is worth noting that in non-cardiovascular fields, we have also found examples of Kcnq1ot1 activating the Wnt/B-catenin
signaling pathway [31], as well as examples of Kcng1ot1 promoting cell pyroptosis by inhibiting miRNA and upregulating

Hypg' Inflammat

Kcnq1ot1¢

miR-27b-3p _) Whnt3a -—) B-Catenin ‘—) N".

ot

Fig 6. Schematic of Kcng1ot1/miR-27b-3p/Wnt3a axis under hypoxia. Kcnq1ot1 sequesters miR-27b-3p to activate Wnt3a/B-Catenin/NLRP3-
mediated pyroptosis, fibrosis and inflammation.

https://doi.org/10.1371/journal.pone.0332892.9006
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NLRP3 [32], which had something in common with our study. In cardiovascular fields, Li et al have revealed the role of
Kcng1ot1 to induce HOC2 apoptosis in myocardial ischemia/reperfusion (I/R), which is a major cause for AMI [33], while
our study focused on molecular mechanism of hypoxia-induced cell damage during the process of HF. The following lim-
itations should be taken into consideration as interpreting our findings. We performed our study in H9C2, but it may not tell
the whole story concerning the exact mechanisms of Kcng1ot1, which could not be extrapolated to primary cell level and
animal level, even if they share some similarities. Moreover, our findings may be useful as biomarkers and therapeutic
targets for HF, but further studies in rats and clinical trials are warranted to dissect its mechanisms and clinical application.

Conclusion

Collectively, this paper discussed the ceRNA role of Kcng1ot1 in hypoxia-induced cardiomyocytes. Kcng1ot1 elevated
Whnt3a expression to facilitate cardiomyocyte injury via sequestering miR-27b-3p, shedding a new light on the pathogene-
sis of HF.
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