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Abstract

Critical transitions occur when a system undergoes a sudden shift from one state to
another. Early warning signals (EWS) are indicators that can be used to potentially antici-
pate critical transitions in such systems, which may be temporal or spatio-temporal. Tem-
poral systems are those whose state varies over time, whereas spatio-temporal systems
also vary over a spatial domain. While temporal EWS can be applied to spatio-temporal
systems by averaging over the spatial domain, spatially-informed EWS should, in prin-
ciple, be able to outperform their temporal counterparts by making use of the additional
spatial information. We seek to understand how EWS for spatial systems compare to
those used for temporal systems. To facilitate comparison, we explore how EWS per-
formance is measured. We use the strength of EWS trends, quantified using Kendall’s

7, as a proxy for performance. Other factors, such as robustness to choices of param-
eters used for detrending, statistical significance, and agreement with expected EWS
behaviour, are considered. This assessment of EWS based on these factors enables

an informed comparison and decision regarding which signals to apply to different sys-
tems for potential indications of critical transitions. We find that while spatially-informed
EWS generally offer improved performance over temporal EWS for the example systems
studied, we find the choice is system specific.

Introduction

Tipping points, also known as critical transitions or regime shifts, occur when a system
undergoes a relatively sudden shift from one (stable) state to another [1]. Many phenomena
from different fields display sudden shifts, including climate and ecological systems such as
the shift at the end of the Younger Dryas event ‘where the Arctic warmed 7 °C in 50 years’ [2]
and the desertification of North Africa from a savanna-like state with lakes to a desert [2,3].
Physiological systems also display abrupt transitions. These include asthma attacks, where
airways display bistability between nearly closed and open states in spatially distributed pat-
terns known as clustered ventilation defects [4-6]. Another example of physiological phe-
nomena considered to display tipping points are epileptic seizures [7]. Often these shifts are
the result of small changes in the underlying conditions of the system, and the consequences
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of the transitions are undesirable. Furthermore, restoring the underlying conditions of some
systems to values which preceded the transition do not necessarily revert the system back to
its original state. As critical transitions are present in a rich variety of systems and are not eas-
ily reversible, we would like to be able to predict critical transitions in advance, allowing for
potential mitigation.

Early warning signals (EWS) are quantitive metrics derived from data that have the poten-
tial to predict critical transitions. Temporal EWS are metrics which have the potential to
anticipate critical transitions in temporal systems. Spatial EWS are indicators which have
the potential to anticipate critical transitions in systems which have spatial structure. Spa-
tial EWS are of interest because spatio-temporal systems provide a richer data set; this means
that for each point in time there is spatially distributed data from which to compute indica-
tors of potential critical transitions, which may allow for better predictions of critical transi-
tions [8]. It is important to acknowledge that while EWS have the potential to predict critical
transitions, they are not definitive predictors.

Temporal EWS can also be applied to spatio-temporal systems by applying the EWS to a
temporal data set derived from the spatio-temporal data, for example the spatial mean of a
system. Hence, temporal EWS can be compared to spatio-temporal EWS (for spatio-temporal
systems). This is of interest as tipping points in temporal systems are well understood com-
pared to tipping points in spatio-temporal systems, and have been characterised to a relatively
small number of underlying mechanisms [9,10]. However, the temporal data sets derived
from spatio-temporal systems disregard the changes in the spatial structure and reduce the
additional information of a system captured in spatio-temporal data sets. This results in the
following question: how do spatial and multivariate EWS, which take advantage of spatio-
temporal data, compare to temporal EWS applied to reduced systems derived from spatio-
temporal systems?

In this paper we address this question by computing EWS for spatial data sets and com-
pare EWS by quantifying trends in the signals using Kendall’s 7. Furthermore, we analyse the
robustness of Kendall’s 7 against detrending parameters used when preparing data sets and
computing EWS. We extend the existing comparison of EWS to include the eigenvalues of the
covariance matrix [11] which has previously only been compared to spatial variance, spatial
skewness, and spatial correlation but not their temporal counterparts. A significant subject of
this current work is measuring the performance of an EWS, as this facilitates their compari-
son. At present, different methods and quantifications are sometimes used, making compar-
ison difficult. Kendall’s T rank correlation coeflicient is often used to quantify the trend of an
EWS over a given interval [6,11-15]. Hence, in this paper we explore how trends of the signals
are used as a proxy for their performance.

We use elements of the methodologies presented by Dakos et al. [12] and Kéfi et al. [16] to
compare spatially informed and temporal EWS for spatio-temporal systems. Previously Dakos
et al. [12] developed a methodology for applying temporal EWS to time series data. Further-
more, Kéfi et al. [16] developed a methodology for applying spatial EWS to spatio-temporal
systems. Following these approaches for applying EWS is the Spatial early warning signs R
package, the use of which is discussed in Génin et al. [17]. A summary of the existing available
software tools for estimating spatially informed and temporal EWS can be found in ref [18].

We apply our analysis of EWS to three synthetic data sets and one empirical data set. The
first model is intrinsically discrete, in which using a system of coupled lattice points natu-
rally describes the behaviour of the system. Hence the first model we use is a stochastic lat-
tice dynamical system (SLDS). The second model is obtained by approximating the original
model and taking the continuum limit to obtain a reaction-diffusion equation with added
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noise. This second model is a stochastic partial differential equation (SPDE). Often in prac-
tice when studying spatial EWS, synthetic data sets are generated using SLDS obtained by
discretising reaction-diffusion equations or spatially extending a one-dimensional dynami-
cal system by defining a lattice of state variables and including diffusion between neighbour-
ing lattice sites using the discrete Laplacian; both approaches result in the same general form
of SLDS [11,13,16,19]. Hence we discretise the derived stochastic reaction-diffusion equa-
tion to obtain an SLDS model with similar structure to models which have previously been
used to study spatial EWS. The third model is a spatially extended dynamical system from
ecology with added noise. The empirical data set used contains a transition from savanna to
woodland in the Serengeti ecosystem along a spatial (rather than temporal) gradient which is
correlated with an increase in annual rainfall. This data set has been previously used to study
spatial EWS by Deb and Dutta [20] and can be found in a previous study by Eby et al. [21].
From these synthetic and empirical data sets we analyse how the EWS behave for the dif-
ferent synthetic data sets. This analysis allows for informed EWS choice. Additionally, we
deduce that EWS can respond differently, in important ways, to different models of the same
system.

Methods
Early warning signals

Temporal EWS. We consider four generic temporal EWS which are the variance, skew-
ness, and autocorrelation of a time series data set (the autocorrelation is measured using both
the autoregression coefficient at-lag-1, and the autocorrelation function coefficient). We esti-
mate the variance and skewness using backwards rolling windows of length W on detrended
temporal data sets. We define W; as the number of data points contained within the window.
Backwards rolling windows estimate the signal at time ¢ using the previous W; data points -
assuming that the previous states of the system can be used as approximation for an ensemble
at time . We estimate the autocorrelation of the time series using the autocorrelation function
at lag 1 and also fit an autoregressive model of order 1 between the the variables X; and X; 4
over a backwards rolling window of length W,. We take the indicator at time ¢ as the autore-
gressive coeflicient estimated from the autoregressive model of order one computed using the
values in the backwards rolling window.

Spatially-informed EWS. The five spatially-informed EWS we consider are the spatial
variance, spatial skewness [22], spatial correlation [19], largest eigenvalue of the covariance
matrix, and the percentage that the largest eigenvalue accounts for of the total variation [11].
We compute the spatial variance and spatial skewness using the spatial information avail-
able in a given snapshot at time f using detrended spatio-temporal data sets. Both of these
EWS are typically multivariate, as permuting the lattice elements does not result in a differ-
ent value of the indicator at time ¢ [16]. It should be noted that this is not true in general. For
coarse grained spatial data these indicators are no longer invariant to permutations of the lat-
tice sites [23]. We compute the spatial correlation using Moran’s I at lag-1 for elements that
share an edge (and not a vertex). Spatial correlation is a true spatial EWS as it is not invariant
under permutations of the lattice sites. This is because permuting the lattice sites results in a
different adjacency matrix W used in the calculation of Moran’s I.

The eigenvalues of the covariance matrix can be used as indicators of critical transitions
as Chen et al. have shown that under certain conditions the largest eigenvalue and the pro-
portion that the largest eigenvalue accounts for the total variation increase as the system
approaches a critical transition [11]. The unbiased empirical covariance matrix Sofan N X N
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lattice of state variables X;; at time ¢ indexed by i,j = 1, ..., N, is estimated using a backwards
rolling window as follows. Let the state variables be re-indexed using linear subscripts where
i,j=1,..., N?, then the elements of the covariance matrix can be estimated as

Sjkznilzl(xij_xj)(xik—xk) (1)

where Sj;. is the covariance of the variables X; and Xj. The number of snapshots in the rolling
window is n, and Xj;, X are the averages of the variables Xj, Xy within the window. We com-
pute the unbiased covariance matrix using MATLAB’s cov() function. The eigenvalues of the
estimated covariance matrix were calculated using MATLAB’s eig() function. The eigenvalues
of the covariance matrix are multivariate EWS. A spatial permutation of the lattice sites does
not affect the covariance of the variables X; and X}, hence the covariance matrix S remains
unchanged, and therefore the eigenvalues of the matrix are invariant to spatial permutations
of the lattice elements.

Detrending

Spatio-temporal data sets and temporal data sets are often detrended prior to computing
EWS. For signals computed using temporal averaging over a window such as the variance for
temporal data sets or the eigenvalues of the covariance matrix for spatio-temporal data sets,
the mean of the data must be approximately stationary. To ensure the mean is approximately
stationary, we must detrend the data, as ‘non-stationarities in the mean can cause false indica-
tors of impending transitions’ [12]. We detrended temporal data using linear detrending, and
detrended spatio-temporal data sets uniformly by removing the spatial mean, meaning we
subtracted the same value from each lattice site at a given time to obtain the spatio-temporal
residuals which are then used to compute spatially informed EWS. Consequently, as we
detrend spatio-temporal data sets by uniformly removing the spatial mean of each snapshot
and therefore neither a window size or smoothing bandwidth is required, then several spa-
tial/multivariate EWS do not need to be tested for their robustness to detrending parameters,
and are therefore invariant to choices of W,.

Measuring the performance of EWS

We use Kendall’s 7 to measure the strength of a trend in an EWS. Consequently, we consider
the magnitude of the trend in the signal as a partial proxy for its performance. Additionally,
we also consider the significance and robustness of the signals. Kendall’s 7 is computed from
the EWS and the bifurcation parameter for synthetic data sets produced from models where
a known underlying bifurcation parameter changes linearly with time, such as the data sets
we have used where the bifurcation parameter is proportional to et, where € is the time scale
separation of the fast and slow dynamics. In empirical data sets where it is not known whether
there is a single underlying parameter which is changing and is responsible for the transition,
the correlation is between the signal and time (assuming an unmeasurable underlying bifur-
cation parameter changing linearly with time). Less commonly, the correlation can be com-
puted between the signal and a spatial index of the data. This is the case for data sets where
the system responds to an underlying driving variable which changes along a spatial gradient,
such as rainfall in an ecosystem.

In existing methodologies for applying EWS to spatio-temporal or temporal data sets, sig-
nificance testing of the trends takes place in order to determine that trends identified in the
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signals are used not due to chance alone [3,12-14,16]. In these papers the authors use para-
metric tests to identify statistically significant trends. This is achieved by creating surrogate
data sets using various methods to then determine the probability that the trend in the data

is not due to chance alone. We have used the non-parametric modified Mann-Kendall test as
proposed by Hamed and Rao [24] to determine statistical significance of a signals trend. The
modified Mann-Kendall test accounts for autocorrelation in the data, which occurs in EWS
computed using sliding overlapping windows. Chen et al. show that the non-parametric mod-
ified Mann-Kendall test and parametric significance testing yield similar results in the case of
low-dimensional systems with Gaussian noise [25]. The benefit of the non-parametric test is
that surrogate data sets are not necessary to estimate the statistical significance. This increases
the computational efficiency and reduces the additional choice required when implementing a
parametric method of choosing an appropriate method to generate surrogate data sets. Details
on the modified Mann-Kendall test can be found in S2 Appendix.

EWS and their trends are sensitive to choices of parameters used to compute them; con-
sequently the window size is a crucial methodological choice. As the window size is a cru-
cial methodological choice, we perform a sensitivity analysis (similar to refs [3,12,14,15])
to understand how Kendall’s 7 is influenced by these choices. In this sensitivity analysis
we compare Kendall’s 7 to changes in the window size. Furthermore, as an additional met-
ric/consideration of EWS performance, we also consider the proportion of window sizes that
produce significant trends. Hence, a well-performing EWS should be robust to a large range of
parameter choices used when computing the signals.

In addition to assessing the significance and robustness of trends identified in EWS, we
further improve our methodology for assessing trends in EWS by repeating simulations of
each model. For each model we simulate 100 data sets. For each realisation we compute the
EWS, from which we compute the Kendall’s T values and their associated p-value using the
Modified Mann-Kendall test. Repeating simulations allows us to obtain an estimation of the
spread of the trends, in addition to how they respond to changes in the window size. Further-
more, repeating simulations of the models improves the significance analysis of the trends.
This is because we use repeated realisations to obtain the percentage of significant trends
across all realisations of the data rather than relying on the p-value from a single realisation of
each system.

Models and data sets

We use two physiological models and one ecological model that undergo critical transitions
to generate data sets which we use to compare EWS. Furthermore, we also compare EWS for
a real-world empirical ecological data set to improve the strength of our results. The physio-
logical models describe the behaviour of coupled terminal airways of asthmatic lungs. When
an asthma attack occurs, airways constrict in clusters. This airway constriction, known as clus-
tered ventilation defects, occurs as spatially distributed patterns which vary (at least partially)
from event to event. Therefore, the abrupt shift from homogeneous to clustered ventilation
distributions is a spatial tipping point [4]. The ecological model describes a biomass under
harvesting which undergoes a critical transition from a abundant state to an over-exploited
state. The empirical data set we have used contains spatially distributed vegetation data from
the Serengeti-Mara ecosystem [20,21]. The data set contains a binary representation of either
woodland or grassland, as savanna transitions to forest across a spatial (rather than temporal)
gradient. This spatial gradient is correlated with a change in mean annual rainfall across the
region.
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Model details. The first model [6] is a stochastic lattice dynamical system (SLDS) where
the state variables are airway radii r;j, indexed on an N X N lattice £, with bifurcation param-
eter x which describes the constricting force due to smooth airway muscle activation. Here
we do not review the physiological modelling but refer the reader to ref [6], which is in turn
an empirical reduction of ref [5]. The second model is a stochastic partial differential equa-
tion (SPDE) derived from the intrinsically discrete SLDS model first described in ref [6]. This
SPDE model is formulated to resemble the reaction-diffusion models with additive white
noise commonly used to generate synthetic spatio-temporal data used in the study of spa-
tial EWS. The third model is a spatial ecological model which describes a spatially distributed
biomass under harvesting, with bifurcation parameter ¢ which describes the harvesting rate.
This spatial ecological model has been widely used to study spatial EWS and is derived from
a well-studied one-dimensional ecological model with alternative stable states [11,12,19,26].
The one-dimensional model describing the total biomass was adapted by including a disper-
sion term given by the discrete Laplacian and by introducing a multidimensional white noise
process, cdW;;. In each model we use the stochastic fast-slow framework described in [10]
where the bifurcation parameter is the slow state variable whose dynamics evolve linearly
with time and are controlled by the timescale separation parameter € where 0 < ¢ < 1. Full
descriptions of the three models can be found in S3 Appendix.

Each stochastic fast-slow system we use undergoes a bifurcation of the quasi-static equilib-
rium in the singular limit (¢ — 0) with zero noise (o = 0). We generate data sets along a gradi-
ent of the bifurcation parameter which exceeds the the location of the bifurcation of the fast
subsystem in the singular limit. This is because in the non-singular limit with noise, the tip-
ping location is not necessarily equal to the location of the bifurcation of the fast subsystem,
but can occur prior to or after the bifurcation of the fast subsystem. This early/delayed tip-
ping relative to the bifurcation of the fast subsystem can occur for a variety of reasons. Noise
induced tipping can occur before the bifurcation and the timescale separation can cause the
tipping event to be delayed over a long time period; effectively delaying the shift of the sys-
tem to an alternative state. Hence the tipping points for the non-singular limit systems with
non-zero noise are hard to find analytically due to changes in the parameters € and o.

Data subset selection. For reasons we have just discussed, the location of the tipping
points are random variables, and therefore have associated distributions. This is important
because we use repeated simulations of the models to produce multiple realisations of the
data sets; as this allows us to improve our understanding of the significance and spread of the
trends in the signals. By understanding how the tipping locations are distributed it allows us
to: a) generate data sets which always contain the tipping point for choices of the noise and
time scale separation, and furthermore b) select intervals of the EWS for trend analysis that
always precede the potential tipping locations.

The actual location of the tipping points in the synthetic data sets are estimated from
observing where the sudden shift in the spatial mean occurs. Previously Dakos et al. [3] com-
pute and assess EWS for historical empirical data containing transitions. In these data sets the
tipping point has already occurred and must be chosen from observing the data set; likewise
we estimate the location of the tipping points by observing the spatial mean of our systems.
In the airway SLDS model the tipping point is observed to typically occur at x &~ 1.03, in the
airway SPDE model the tipping point is observed to typically occur at x &~ 0.95, which can be
seen in Fig 1. These observed tipping points occur for a white noise term where 0 =0.01, on a
20 X 20 lattice, with a time scale separation of € = 0.01. For the harvesting model, we observed
the tipping point to typically occur at ¢ & 2.6 for o = 0.1, for a 100 X 100 lattice with a time
scale separation of € = 0.001.
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Estimating the lower bound of the distribution of tipping locations provide an upper
bound for the subsection of the EWS used for trend analysis. Other factors must also be con-
sidered when selecting the lower bound of the subsection of the EWS used to compute the
trend. For example, the airway data sets are generated from models for which the under-
lying eigenstructure is known [5] and does not display critical slowing down (CSD) for all
bifurcation parameter values before the transition. In these models, the leading eigenvalue
of the fast subsystem does not increase monotonically but rather decreases before monoton-
ically increasing after approximately x = 0.6. Hence, for these models we expect to indirectly
capture CSD using the EWS in the region of the data where the leading eigenvalue increases
monotonically. Therefore, we compute Kendall’s 7 for the EWS associated with the subsection
of the bifurcation parameter range where the leading eigenvalue is increasing and prior to
the tipping point. This is not the case for the harvesting model, hence any subset of the EWS
preceding the transition should provide indication of CSD.

The subsets of the data sets used for EWS analysis are those which lie in the following
intervals of the underlying bifurcation parameter: x € [0.6,1], x € [0.52,0.92], c € [1,2.55]
for the SLDS, SPDE, and harvesting model respectively. For the empirical ecological data we
computed the trend using all data points prior to the transition. Furthermore, we prepared the
raw transect data according to the methods described by Eby et al. [21]; resulting in a spatio-
temporal data set of forty-seven 50 X 50 lattices. The subsets used for analysis for each model
are indicated by the regions of the data sets shaded red in Fig 1.
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Fig 1. Spatial mean of each model with location of observed tipping points. The spatial mean of each model is plotted
against the underlying bifurcation parameter. In each image, the red shaded region indicates the subsection of the bifurca-
tion parameter range used to assess the trends of the EWS computed from the spatial and temporal data sets. The vertical
black dashed line indicates the typically observed tipping point in each system for the parameter values that we have used.

https://doi.org/10.1371/journal.pone.0332695.9001
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Synthetic data sets are produced from the models numerically using the Euler-Maruyama
method. For each model, a SLDS describes the fast subsystem and the underlying bifurcation
parameter is incorporated as a state variable in the slow-subsystem. The time scale separa-
tion between the fast and slow subsystems for the airway models is € = 0.01; for the harvesting
model we use a timescale separation of € = 0.001. In each case the models we solve numer-
ically are SLDS; data sets for the reaction-diffusion SPDE model were obtained by first dis-
cretising to obtain a SLDS. In each model the initial conditions are the unperturbed homo-
geneous equilibrium of the fast subsystem. We used periodic boundary conditions. For the
airway models we used a white noise with standard deviation o = 0.01 and ¢ = 0.1 for the har-
vesting model. All data sets are produced over ranges of the underlying bifurcation parame-
ters such that the critical transitions of the systems are always present in the data sets.

Data resolution. In practise, observations of real-world systems are limited by factors
such as costs or sampling methods - often resulting in small data sets with low and potentially
irregular frequency. Under the fast-slow framework, the temporal resolution of the raw data
produced by the Euler-Maruyama method is high. Therefore we down-sampled the raw data
to better reflect data sets observed from real-world systems. For the airway models we down-
sampled the raw data to data sets containing one thousand 20 X 20 lattices. For the harvest-
ing model we down-sampled the raw data to data sets of forty 100 X 100 latices. It is impor-
tant to note that the frequency of the observations should be chosen to be shorter than the
characteristic time scales of the slowest return rate of the system [2,12,27].

The range of window sizes we use to assess the robustness of signals is dependent on the
properties of the data sets. For the airway data sets we let the window size vary from 5 to 50
percent of the entire length of the data set. For the ecological data sets we let the window size
vary from 25 to 50 percent. In the harvesting model data set containing only 40 spatial snap-
shots, a small window size would contain too few points to accurately estimate the values
of the EWS. Hence, for low-temporal-high-spatial-resolution data as is commonly found in
empirical ecological data sets we must be careful when detrending data and computing EWS
from windows containing insufficient data points. Further work could explore how the error
introduced using small window sizes when computing EWS affects the statistical significance
and robustness of the trends.

Results

We computed Kendall’s T to quantify the trends of various spatial and temporal EWS, for
multiple realisations of several models that undergo tipping. These values alongside other
considerations act as a proxy for the performance of an EWS. Using this measure of EWS per-
formance enables us to compare the EWS. Additional factors that have been considered when
evaluating EWS are the robustness and statistical significance of the trends. For clarity, in

the following two sections we present the results for the airway data sets and ecological data
sets separately. Figs 2 to 4 display the robustness, statistical significance, and magnitude of
the trends as well as their directions for the different data sets. Table 1 contains the mean and
standard deviation of Kendall’s 7 for each EWS that is invariant to changes in the windows
size; as well as the associated percentage of trends that are statistically significant.

Airway data sets

Fig 2 shows the results for data sets for two different models (SLDS and SPDE) of the same
physiological system. It can be clearly seen that the multivariate EWS significantly outper-
form the temporal EWS for the SPDE model (blue). This is because they have strong trends (¢
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Fig 2. Kendall’s 7 against W for airway model data sets. (Row 1) Mean Kendall’s T values for airway models as the window size is varied from 5 to 50 percent with
standard deviation given by error bars. Each panel displays the sensitivity of 7 for the SLDS model (red) and the SPDE model (blue). (Row 2) Percentage of statistically
significant Kendall’s 7 values as the window size is varied.

https://doi.org/10.1371/journal.pone.0332695.9002
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Fig 3. Kendall’s T against W for harvest model data sets. (Row 1) Mean Kendall’s T values for harvest model as the window size is varied from 25 to 50 percent with
standard deviation given by error bars. Each panel displays the sensitivity of 7 for the harvest model. (Row 2) Percentage of statistically significant Kendall’s T values as
the window size is varied.

https://doi.org/10.1371/journal.pone.0332695.g003

close to 1), that agree with the expected behaviour of the signals (increase indicating the phe-
nomena CSD may be present), furthermore the trends are robust (as they do not vary much as
the window size is changed), and they are statistically significant for all window percentages
considered. Furthermore, we find for the SPDE model that all temporal EWS (except skew-
ness) have decreasing trends, disagreeing with the expected behaviour indicating that these
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Fig 4. Kendall’s 7 against W for Transect-5. (A) Kendall’s T values for Transect-5 data as the window size is varied from 25 to 50 percent. (B) p-values of Kendall’s T
value as the window size is varied.

https://doi.org/10.1371/journal.pone.0332695.g004

Table 1. Trends for spatially informed EWS invariant to changes in window size.

SLDS SPDE Harvest Transect-5
EWS T std Tsig (%)|T std Tsig (%)|T std Tsig (%) |T p-value
Spatial variance  |0.332 {0.052 100 0.505 {0.027 100 0.635 [0.064 100 0.156 {0.207
Spatial skewness |0.003 |0.043 |15 -0.011 [0.032 |11 -0.001 [0.109 |9 -0.137 |0.178
Spatial correlation [0.739 |0.026 [100 0.632 {0.023 100 0.861 {0.030 |100 0.565 {0.001

Mean and standard deviation of Kendall’s T for spatial EWS invariant to changes in the window size for each model.
As well as the percentage of simulated data sets which generate EWS with statistically significant trends, denoted 7sig
(%). Transect-5 data set is empirical (has one realisation) hence we present Kendall’s 7 and its p-value instead.

https://doi.org/10.1371/journal.pone.0332695.t001

EWS perform poorly on these data sets. This partially supports that for the SPDE model data
sets, the multivariate EWS outperform the temporal EWS. Additionally, when considering the
mean 7 values for the SPDE model contained in Table 1 we see that they are less than those
of the multivariate EWS. Based on these results we conclude that the best EWS for the SPDE
model data sets are the eigenvalues of the covariance matrix.

From Fig 2 we see that neither category of EWS outperforms another for the SLDS model
(red), with the exception of skewness. This is because there is similar robustness and statis-
tical significance for all EWS across the range of considered window percentages. Further-
more, we see that the temporal EWS (except skewness) all display trends disagreeing with
their expected behaviour, whereas the multivariate EWS trends agree for approximately half
of the window range considered. We find from Table 1 that the spatial correlation performs
well (agrees with expected behaviour, strong trend, statistically significant) and conclude that
the spatial correlation and skewness perform well for these data sets.

In Fig 2 we have displayed the results for the two models to show that EWS behave dif-
ferently for different mathematical models of the same system. Recognising this difference
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is important as commonly used models in the study of spatial EWS are discretised reaction-
diffusion systems. Hence we find that we should not extrapolate results for EWS performance
based on synthetic data from discretised reaction-diffusion systems; as the same EWS can
perform differently on other models of the same system.

Ecological data sets

Fig 3 displays the results for the harvesting model. From this figure we can immediately see
that there is essentially zero spread of the Kendall’s T values about their means, for all EWS
and across all considered window percentages. This is expected as the lattices used are quite
large (100 100). Furthermore, each EWS is robust and statistically significant except the coef-
ficient of the autocorrelation function. From Table 1 we can see that both the spatial variance
and spatial correlation perform well too, however the spatial skewness performs poorly for
these data sets. Based on trend strength, agreement with expected behaviour, statistical signif-
icance and robustness; we cannot conclude that either category of EWS outperforms another
as most EWS applied to these data sets perform well.

Fig 4 displays the results for the empirical ecological data set. Immediately we can see
that all trends are statistically significant with the exception of the percentage that the lead-
ing eigenvalue accounts for the total variation. From Table 1 we see that the trends for both
spatial variance and skewness are weak and statistically insignificant. Comparing the results
across all EWS for this data set, we see that the largest eigenvalue of the covariance matrix,
the standard deviation, and the spatial correlation appear to give the best indication of the
transition.

Discussion

In this study, we have evaluated and compared the performance of spatial and temporal EWS
as potential indicators of critical transitions in spatio-temporal systems. We have explored
how to evaluate the performance of an EWS to facilitate comparison. From our results, we
find that neither category of EWS typically outperforms the other. We can therefore conclude
that the practical application of which EWS to use for a given spatio-temporal data set is case
dependent. We acknowledge that a complete understanding of why different EWS outperform
one another for different systems is beyond the scope of this current work; however, we offer
potential explanations for the results obtained, as well as some avenues for future research.
Furthermore, we have demonstrated the following result. It is important to be careful not
to overuse and be reliant on SLDS models obtained from discretising reaction-diffusion mod-
els when studying EWS. This is because the results obtained for the SPDE model do not nec-
essarily extend to the SLDS model; therefore, we cannot assume that an analysis of EWS for
a SPDE model will extend to other spatial models for the same system. Hence, we conclude
that over-reliance on reaction-diffusion models as test cases may be misleading and does not
extend to other spatial systems.

Evaluating performance

Previously, measuring the strength of the trend using Kendall’s 7 has often been used as a
quantitative proxy for the performance of EWS. We assess EWS performance using additional
factors that must be considered when applying EWS to real world data sets. We have consid-
ered how different characteristics of data sets affect which EWS might best provide an indi-
cation of critical transitions for a given data set. Characteristics of data sets, such as dimen-
sion, resolution, and size, affect which EWS should be used for a given data set. For example,
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some spatial EWS can be computed from a single snapshot, whereas others require a back-
wards window in order to be computed. EWS that do not require selecting a window size
when they are computed have the benefit that they produce signals of equal length to the data
from which they are estimated. This is particularly useful for low-temporal-resolution data
sets, such as ecological data sets with few snapshots observed at a low frequency. Whereas for
spatial data sets with low-spatial/high-temporal resolution (such as those available in phys-
iology), it is more feasible to use EWS computed using window-based approaches, as there

is sufficient data to apply these methods. Hence, the characteristics of the data sets them-
selves must be considered when applying different EWS. Therefore, in addition to quantita-
tive metrics such as trend strength, statistical significance, and robustness, we recommend
considering the qualitative characteristics of data sets and their impact on methodological
choices.

Misleading trends

There are many possibilities why the EWS do not provide indications of critical transitions,
even for systems where we know the dynamics and expected outcomes of the EWS. In Fig 2,

it can be seen that the variance and autocorrelation indicators for both the SLDS and SPDE
models display negative trends for most of the window sizes considered, disagreeing with the
expected behaviour of these signals. For each model considered, we know the eigenstructure
explicitly. This allows us to understand which modes destabilise when the system undergoes a
critical transition, as these are associated with the leading eigenvalues. Furthermore, we know
that destabilisation is associated with eigenvalues crossing the imaginary axis, allowing us to
infer that CSD is present in the leading modes and therefore measures of CSD should perform
well as EWS for transitions in these systems.

We applied generic EWS such as variance and autocorrelation measures to the spatial mean
of the SLDS system. We identified unexpected behaviour such as decreasing trends in vari-
ance and autocorrelation in the spatial mean for the entire range of the underlying bifurcation
parameter prior to the transition.

We have demonstrated that the eigenvalues for the system do not monotonically approach
zero from below but rather decrease for 0 < x < 0.6 and then monotonically increase for 0.6 <
x. From this behaviour, we would only expect CSD measures to increase for 0.6 < x mono-
tonically. Furthermore, from the linearisation we can only conclude that CSD should be
detectable in the eigenmodes of the system, and cannot conclude that it is detectable in the
spatial mean. However, we may often only be able to obtain a mean value time series of a sys-
tem or some other univariate observable; therefore, it is important to understand how low-
dimensional EWS behave on univariate data sets of intrinsically high-dimensional systems.

Despite CSD potentially being detectable in the system, we still do not observe increas-
ing trends in the variance and autocorrelation for 0.6 < x. One potential explanation may
be that the spatial mean is not an ideal univariate observation for these systems, and effects
such as those demonstrated by Morr et al. (where internal noise interference can impact EWS
behaviour prior to critical transitions [28]) could be a potential explanation for the misleading
trends.

Future work

One could explore how different univariate observables of intrinsically spatially distributed
systems affect the performance of EWS results. Instead of applying temporal EWS to the
spatial mean or other average measures, one could apply temporal EWS to the time series
obtained from a single location within the spatio-temporal system. However, identifying the
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ideal location for observing the system with the goal of predicting potential tipping points
could be challenging.

Other areas for improving the comparison of indicators lie in changing how the perfor-
mance of an indicator is assessed. One potential avenue for assessing performance would be
to include forewarning times. Determining the forewarning time of signals is complicated, as
identifying when a signal becomes statistically significant is challenging, yet ideally should be
considered when quantifying the performance of an EWS. In this current work, we have not
included this factor in our assessment; however, calculating when a signal becomes statisti-
cally significant is possible, and we direct the reader to [29] for more details.

Furthermore, the EWS we have considered are not exhaustive, and could include other
options such as the discrete Fourier transform [30], dynamic mode decomposition [6], finite
time Lyapunov exponent [31] or patch based indicators such as the patch size distribu-
tion [13,32].
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