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Abstract

Rapid point of care tests for respiratory infections are associated with high rates of
false negative results which can drive empiric, and potentially inappropriate, antibiotic
use. Because infectious pathogens alter VOC composition, unique VOC signatures

in biospecimens hold the potential to discriminate bacterial and viral infections from
uninfected controls. One approach for rapid identification of respiratory pathogens

is the electronic nose (e-nose), a sensor device that uses artificial intelligence to
recognize disease-specific patterns in VOC profiles of gaseous mixtures. In this
preclinical proof of concept study, we tested the validity of an e-nose to discriminate
PCR-confirmed cases of infection with three viral pathogens (SARS-CoV-2, RSV,
influenza A) from uninfected controls using nasopharyngeal test swab media. Using
exploratory factor analysis, the e-nose discriminated both influenza A and SAR-CoV-2
from uninfected controls. To assess sensitivity and specificity, we applied factor
analysis-based threshold values and obtained high levels of sensitivity (96.30%) and
specificity (90.62%) for influenza A and more modest levels for SARS-CoV-2 (sensi-
tivity=75%, specificity=68.57%). We did not apply threshold values to RSV samples
because the e-nose sensors showed low discriminatory power for that pathogen. Our
findings support proof of concept of the validity of the e-nose to discriminate common
viral respiratory pathogens. Our use of binary thresholds for influenza A, which are
easily adapted to point-of-care settings, yielded superior sensitivity results and com-
parable specificity results when compared to rapid tests. We recommend that future
studies apply our analytic approach to samples of human breath to determine if these
findings can be replicated or improved.
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Introduction

Inappropriate antibiotic therapy for viral respiratory infection in the absence of con-
current bacterial infection is a leading cause of antimicrobial resistance [1]. Rates of
antibiotic use for viral infections have been reported to range from 14% to 83% [2,3].
Moreover, the COVID-19 pandemic exacerbated antibiotic overprescription. Between
March, 2020 and August, 2021, approximately half of COVID-19 inpatients received
ceftriaxone suggesting limitations discriminating SARS-CoV-2 from community-
acquired pneumonia [4]. While rapid point of care tests with acceptable sensitivity
and specificity are now available for SARS-CoV-2, rapid tests for respiratory syncy-
tial virus (RSV) and influenza are associated with high rates of false negative results
[5,6]. This lack of sensitivity can drive empiric, and potentially inappropriate, antibiotic
use.

One method for rapidly screening common respiratory pathogens is analysis of
volatile organic compounds (VOC), gases that are endogenously formed as meta-
bolic byproducts [7]. Infectious pathogens alter VOC composition, thus unique VOC
signatures in exhaled breath and supernatants of infected cell lines have discrim-
inated bacterial and viral infections from uninfected controls [8—10]; however, to
our knowledge, there have been no studies comparing the unique VOC signatures
among viral respiratory pathogen infections. Determining unique viral pathogen VOC
signatures holds the potential to promote accelerated administration of appropriate
antiviral therapies and avert antibiotic misuse.

One innovative approach for rapid identification of respiratory pathogens is the
electronic nose (e-nose). The e-nose is a sensor device that uses artificial intelli-
gence to recognize disease-specific patterns in VOC profiles of gaseous mixtures.
The e-nose contains an array of carbon-based sensors coated with a non-conducting
polymer surface. Individual VOC adsorb onto multiple sensors and induce swelling of
the polymer coat and a change in the sensors’ electrical resistance [11] (see Fig 1).
The VOC profile creates a unique electrical resistance response, known as a smell-
print, that can be analyzed using algorithms that recognize disease-specific patterns
[12]. A growing body of evidence has supported the validity of e-nose-generated
breath smellprints to discriminate persons with various diseases from healthy con-
trols, including lung infections [12—14].

To our knowledge, there have been no studies to investigate the discriminant valid-
ity of viral transport media (VTM) smellprints collected from persons who present with
respiratory symptoms. VOC signatures of remnant VTM specimens can be quickly
analyzed at point of care using an e-nose, thus analyses are warranted to determine
if they yield superior sensitivity and specificity results than commercially available
rapid point of care tests. In this preclinical proof of concept study, we investigated the
presence of unique VOC signatures in nasopharyngeal test swab media collected
from persons with PCR-confirmed viral infections and uninfected controls using an
e-nose. We hypothesized that the e-nose would discriminate VOC signatures in swab
media from persons with infection with SARS-CoV-2, RSV, and influenza A, as well
as uninfected controls.
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The electronic nose contains an array of polymer sensors that change resistivity
based on adsorption of VOC. Because each sensor is unique, the analysis
yields unique resistance changes that comprise the response.

Reproduced with Creative Commons license from: Dragonieri S, Quaranta VN,
Portacci A, Ahroud M, Di Marco M, Ranieri T, Carpagnano GE. Effect of food
intake on exhaled volatile organic compounds profile analyzed by an electronic
nose. Molecules. 2023 Jul 30;28(15):5755.

Fig 1. Mechanism of Electronic Nose.

https://doi.org/10.1371/journal.pone.0332399.9001

Materials and methods
Participants and materials

This study was submitted to the Institutional Review Board of Rush University Medical Center (RUMC) who determined
that it was non-human subjects research and exempted from review. Nasopharyngeal swabs were collected from adults
and children presenting to RUMC clinics with symptoms of upper respiratory infection between November, 2022 and Feb-
ruary, 2023. All swabs were placed in viral transport media (VTM) and analyzed in a BSL-2 laboratory in the Rush Division
of Clinical Microbiology using a molecular multiplex assay (MMPA). The MMPA can simultaneously confirm the presence
of SARS-CoV-2, RSV, and influenza A. All VTM specimens and MMPA results were de-identified. VTM specimens that
were obtained from dually infected individuals were excluded. Remnant VTM specimens of approximately 1.8 milliliters
were transferred to conical tubes and stored in a -70°C freezer until e-nose analyses were performed. Immediately prior to
e-nose analyses, frozen VTM specimens were thawed for 20 minutes in a 4°C refrigerator and analyzed under a laminar
flow hood. One ml of each specimen was transferred to a 40 ml autosampler vial with a rubber stopper screw top.

E-nose analyses

All analyses of specimens were performed using the Cyranose 320 e-nose (Sensigent, Baldwin Park, CA). The Cyranose
320 contains an array of 32 nanocomposite sensors that change resistivity based on adsorption of VOC. Because each
sensor is unique, the analysis yields 32 unique resistance changes that are calculated as (R - Ro)/Ro, where R is the
sensor’s maximum resistance and R is the baseline resistance. The Cyranose 320 has shown high levels of reproducibil-
ity for biological specimens including stool (five replicate measurements of three separate stool specimens showed mean
ICC=0.997 for each specimen) [15] and breath (within day ICC range=0.75 to 0.84; 7-day between-day ICC range=0.57
to 0.76) [16].

In accordance with the manufacturer’s instructions, prior to specimen analyses the Cyranose 320 sampled and purged
room air for six minutes to establish a baseline exposure to the ambient environment. Next, a needle was inserted to vent
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the vial, thus equilibrating pressure and promoting reproducibility, and the snout of the e-nose punctured the septum to
sample the headspace. Each specimen was analyzed once following a procedure of 10 seconds of sampling ambient air,
10 seconds of sampling the specimen headspace, and 35 seconds of purging.

Data analysis

All data analyses were performed using Stata v. 18 (College Station, TX). Because the sampling of each specimen’s
headspace for 10 seconds yielded multiple values for each sensor, we calculated the mean score for each individual
sensor for each specimen’s readings, after excluding the first reading per the guidance of the e-nose manufacturer. We
then performed exploratory factor analysis (EFA) with oblique rotation using the mean values for each of the 32 sen-
sors. We utilized this approach over others, such as random forests (RF) and support vector machine (SVM), due to our
limited sample size (N=119). Other machine-learning approaches, including RF and SVM, are computationally intense
and require a large event to variable ratio [16]. For the present study, this would have required a sample size of 330. Also,
because we did not have well-defined, theoretically-based factor structures for confirmation, we chose to utilize EFA over
confirmatory factor analysis.

Results

We obtained VTM specimens from 119 individuals with the following MMPA results: SARS-CoV-2 (n=29; 24.37%), RSV
(n=31; 26.05%), influenza A (n=29; 24.37%), and negative for all tested pathogens (n=30; 25.21%).

Exploratory factor analysis on all 32 sensors yielded a three-factor solution that accounted for 97.4% of the variation.
Parallel analysis, which is the gold standard for dimension reduction and measure validation, [17] suggested discarding
Factor 3 and retaining Factors 1 and 2; however, because Factor 2 consisted of only one sensor, it was discarded. Thus
all subsequent analyses were performed on Factor 1 data.

The rotated factor loadings were relatively consistent and high for Factor 1, although 10 sensors showed factor load-
ings below 0.90. While it has been suggested that variables with factor loadings above 0.50 should be retained for sample
sizes comparable to ours (N=119), [18] we selected a higher threshold (0.90) because we examined sensor data, not
variables. Using these data, which also allowed for strong correlations among sensors, we applied this higher threshold
for factor loadings, rather than the commonly accepted 0.50. Using this threshold, ten sensors were eliminated from the
analyses, leaving 22 sensors to comprise Factor 1.

Bartlett’s test of sphericity was significant (X?=12209.606; p <0.0001), suggesting that Factor 1 sensor values were not
intercorrelated, and Kaiser-Meyer-Olkin Measure of sampling adequacy was 0.974, indicating that our sample size was
adequate to support the analyses. Mean scores for each specimen type are shown in Table 1. There were statistically
significant differences in average Factor 1 scores by specimen type (F=21.27, p<0.001). Average Factor 1 scores were
largest for influenza A (0.0786), followed by SARS-CoV-2 (0.0698) and RSV (0.0638). The mean Factor 1 score for unin-
fected control specimens was (0.0644).

Next, we examined the sensitivity and specificity of Factor 1 for discriminating between infected and uninfected spec-
imens using receiver operating curves (ROC). As shown in Fig 2, Factor 1 values had the least power for discriminating

Table 1. Specimen Types and Mean Scores on Factor 1.

Type N (%) Factor 1 Mean Score (SD) ANOVA
SARS-CoV-2 29 (24.37%) 0.0698 (0.001) F=21.27, p<0.001
RSV 31 (26.05%) 0.0638 (0.002)

Influenza A 29 (24.37%) 0.0786 (0.001)

Uninfected control 30 (25.21%) 0.0644 (0.001)

https://doi.org/10.1371/journal.pone.0332399.t001
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Fig 2. ROC Comparing Pathogen Type to Uninfected Controls.

https://doi.org/10.1371/journal.pone.0332399.9002

between RSV and uninfected specimens (ROC=0.4527) and were acceptable for discriminating between SARS-CoV-2
and uninfected specimens (ROC=0.7644). Notably, ROC values were highest for discriminating between influenza A and
uninfected specimens (ROC=0.9264).

Fig 3 shows ROC curves for Factor 1 comparisons between specimens that were or were not positive for a given
pathogen and were or were not uninfected controls. The best iteration of these analyses was for Factor 1 scores of influ-
enza A specimens compared to non-influenza A specimens. The associated area under the curve was the largest of any
of the comparisons (0.898). Each of the other comparisons, RSV to non-RSV, SARS-CoV-2 to non-SARS CoV-2, and
uninfected control to non-uninfected control produced ROC curves with unacceptably low scores.
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Fig 3. ROC Analysis to Compare Specimen Types.

https://doi.org/10.1371/journal.pone.0332399.9003

Detailed output from the ROC analyses suggested values at which Factor 1 scores could be used to discriminate
between uninfected specimens and both influenza A and SARS-CoV-2 specimens. To further test this proof of concept, we
calculated two binary variables and performed two additional ROC analyses. The first analysis utilized a binary variable for
influenza A that was constructed using the threshold of 0.0714. This value was determined from the initial ROC analysis
reported above and corresponded to the level at which influenza A infected specimens were largely predicted correctly.
Factor 1 scores above 0.0714 were assigned as influenza A probable. When this designation was compared to the actual
influenza A specimens, we found that 26 of the 27 specimens with scores greater than 0.0714 were influenza A, while
29 of the 32 specimens with values below 0.0714 were uninfected. Table 2 shows sensitivity of 96.30% and specificity of
90.62%, with an area under the curve of 0.93.

These analyses were repeated with the lower Factor 1 scores indicated for SARS-CoV-2 specimens. A binary variable
was calculated using the threshold of 0.0693 to determine whether these procedures could reasonably predict SARS-
CoV-2. With this measure, higher values were considered SARS-CoV-2 positive probable, lower values were assigned
SARS-CoV-2 negative probable. Based on this lower threshold, 18 of 24 specimens were correctly predicted to be

Table 2. Comparisons of Specimen Prediction to Actual Specimen Type.

Specimen Type No Flu Probable (N/%) Yes Flu Probable (N/%) Total Discriminant Validity
Uninfected control 29 (96.66%) 1(3.34) 30 Sensitivity =96.30%
Influenza A 3(10.34%) 26 (89.65%) 29 ﬁg?/clfggggom%
Total 32 27 59 NPV = 96.67%

ROC Area=0.93
Specimen Type No COVID-19 Probable (N/%) Yes COVID-19 Probable (N/%) Total Discriminant Validity
Uninfected control 24 (80.00%) 6 (20.00%) 30 Sensitivity =75.00%
COVID-19 11 (37.93%) 18 (62.07%) 29 ggflci_f:izty(;g&W%
Total 35 24 59 NPV=80.00%

ROC Area=0.71

https://doi.org/10.1371/journal.pone.0332399.t002
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SARS-CoV-2. Additionally, we found that 24 of 35 specimens were correctly predicted to be uninfected. ROC analysis
showed sensitivity of 75% and specificity of 68.57%, with ROC area of 0.71.

Discussion

We showed that a commercially available e-nose could discriminate unique VOC signatures in nasopharyngeal swab
VTM. Specifically, using data from 22 sensors that were identified using EFA, we were able to discriminate both
influenza A and SAR-CoV-2 from uninfected controls, but we did not find acceptable power to discriminate RSV from
uninfected controls. These findings are consistent with a growing body of e-nose studies that have found unique
VOC signatures in breath and nasal specimens obtained from persons with confirmed viral or bacterial respiratory
infection [8,19-23]

We extended the body of e-nose literature by applying factor analysis-based threshold values to assess sensitivity and
specificity to discriminate viral infections from uninfected controls. Our model showed high levels of sensitivity (96.30%)
and specificity (90.62%) for influenza A and more modest levels for SARS-CoV-2 (sensitivity =75%, specificity =68.57%).
These findings are significant because they were derived from an analytic approach designed to promote the use of
e-nose technology for point of care testing. Commonly used approaches to analyze e-nose data include principal com-
ponent analysis and neural networks, neither of which is feasible for point of care testing and interpretation. In contrast,
binary threshold values that discriminate cases from controls scores are easily interpreted at point of care and hold the
potential to avert inappropriate antibiotic use pending return of confirmatory test results. Sensitivity and specificity analy-
ses, as well as the ROC area, suggest that these procedures are more robust for identifying influenza A specimens than
for SARS-CoV-2 specimens.

We did not apply threshold values to RSV specimens because the Factor 1 sensors showed low discriminatory power
for that pathogen. It is not clear why the discriminatory power for RSV was lower than influenza A and SARS-CoV-2. All
three pathogens are RNA viruses with low fidelity polymerases [24,25], suggesting that intravariant differences in VOC
signatures are not a likely explanation for this finding. In support of this conclusion, we found the highest discriminatory
power for influenza A, a virus whose genomic mutation rate has been shown to be 23.9 fold higher than SARS-CoV-2 [26].
It is also possible that differences in the induced immune responses explained the low discriminatory power. Compared to
influenza A, RSV induces a more dysregulated immune response characterized by weak T cell responses and higher risk
of strain-specific reinfection [27]. Additionally, RSV replication kinetics are slower than influenza A potentially affecting the
timing of peak VOC expression and discriminatory power [28].

We chose not to separate our specimens into training and independent validation datasets. In this proof of concept
study, our priority was to explore whether the respiratory pathogens showed unique VOC signatures. Our findings sup-
port follow-up studies to test whether the obtained algorithm can discriminate pathogen-associated VOC signatures in an
independent dataset.

One limitation was the use of VTM, rather than breath, specimens. We chose to analyze VTM specimens because (a)
there is no consensus on a standardized protocol for collecting breath for VOC signatures, thus the validity of the results
may be compromised by the failure to control poorly characterized/unknown extraneous sources of variance, and (b)
nasopharyngeal swabs, rather than breath specimens, are obtained at point of care for rapid respiratory pathogen identi-
fication. Consequently, we chose to concurrently analyze VTM specimens with an alternative technology to determine if it
produced superior sensitivity and specificity results.

A second limitation was the absence of participant demographic and clinical information that may have informed inter-
pretation of the findings. Smoking status, age, medications, and co-morbidities, such as diabetes mellitus and asthma,
have been associated with unique VOC signatures [29-32]. Accordingly, we cannot rule out that heterogeneity in these
parameters across the viral infection groups limited our ability to discriminate RSV from the other pathogens or to achieve
higher discriminatory power for SARS-CoV-2.
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A third limitation is the possibility that our use of high thresholds for eigenvalues resulted in an overfitted model. Our
interest was in identifying the sensors most likely to differentiate among different pathogens encountered in a clinical
setting. Initial EFA results returned eigenvalues that were high for all the sensors, and our choice to retain only those that
were above 0.90 may have resulted in an overfitted and less generalizable model. Methods to assess EFA overfitting
include checking factor stability in split samples, examining model communalities, and evaluating differences relative to
alternative extraction methods. As described below, we performed these analyses and found mixed results.

We split the sample into two random subsets and repeated the EFA procedures on each subset, as stable factor load-
ings across subsets suggest less risk of overfitting [33]. We found that the rotated factor loadings for the subsets (n=59
and n=60) were similar to those for the full sample with two exceptions. For subset 1 (n=60), three sensors that had been
excluded in the full sample due to loadings below.90 had sensor values above 0.90. For subset 2 (n=59), one sensor that
had been excluded for loadings below 0.90 had factor loadings above 0.90. It should be noted that in each of these cases,
the factor loadings in the subset analysis were less than 0.91.

Our examination of model communalities returned results consistent with an overfitted model. When the 22 sensors
retained for inclusion in the instrument were subjected to additional factor analysis, h? or communalities values were
higher than 0.80 which may indicate overfitting [34].

To assess differences compared to an alternative extraction method, we replicated our analyses using principal com-
ponents factors and maximum likelihood extraction. We found nearly identical results which argued against an overfitted
model.

Given these findings, we are unable to draw conclusions about the overfitting of our model. The most substantial
concern with overfitted results is a lack of generalizability. Given the exploratory nature of this study, we take a somewhat
liberal view on whether our use of a high threshold for eigenvalues resulted in less generalizable findings. We concede
that it is possible that our approach does not generalize well to other populations or contexts. More research in this area
will help determine if this approach using e-nose data and methods is viable.

In conclusion, our findings support proof of concept of the validity of the e-nose to discriminate common viral respi-
ratory pathogens. Moreover, our use of binary thresholds for influenza A, which are easily adapted to point-of-care set-
tings, yielded superior sensitivity results (96.3%) and comparable specificity results (90.62%) when compared to rapid
tests (sensitivity range =50-70%; specificity range =95-99%) [6]. We recommend that future studies apply our analytic
approach on specimens of human breath to determine if these findings can be replicated or improved.
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