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Abstract

Clinical assessments for neuromuscular disorders, such as Spinal Muscular Atro-

phy (SMA) and Duchenne Muscular Dystrophy (DMD), continue to rely on subjective
measures to monitor treatment response and disease progression. We introduce a
novel method using wearable sensors to objectively assess motor function during daily
activities in 19 patients with DMD, 9 with SMA, and 13 age-matched controls. Pediatric
movement data is complex due to confounding factors such as limb length variations in
growing children and variability in movement speed. Our approach uses Shape-based
Principal Component Analysis to align movement trajectories and identify distinct kine-
matic patterns, including variations in motion speed and asymmetry. Both DMD and
SMA cohorts have individuals with motor function on par with healthy controls. Notably,
patients with SMA showed greater activation of the motion asymmetry pattern. We fur-
ther combined projections on these principal components with partial least squares (PLS)
to identify a covariation mode with a canonical correlation of r=0.78 (95% CI: [0.34,
0.94]) with muscle fat infiltration, the Brooke score (a motor function score) and age-
related degenerative changes, proposing a novel motor function index. This data-driven
method has the potential to inform future home deployments with wearable devices,
allowing better longitudinal tracking of treatment efficacy for children with neuromuscular
disorders.

Introduction

Emerging drugs, including gene and cell therapies, are rapidly developing as transformative
treatments for rare and degenerative diseases. Duchenne Muscular Dystrophy (DMD), the
most prevalent genetic cause of death in boys, and Spinal Muscular Atrophy (SMA), a lead-
ing genetic cause of infant mortality, have witnessed groundbreaking advancements with
therapies such as anti-sense oligonucleotides and gene replacement therapies [1-3]. Despite
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these strides, the landscape of drug development remains hindered by significant challenges,
primarily due to the difficulty in recruiting larger cohorts. This issue is further complicated
by the subjective nature and imprecision of current trial outcome measures. These often rely
on observational motor assessments, such as the Brooke Upper Extremity Scale, which mea-
sures arm function in patients with DMD [4], and the Children’s Hospital of Philadelphia
Infant Test of Neuromuscular Disorders (CHOP-Intend), which evaluates motor function

in infants with SMA [5]. Both scales, along with other observational methods, may be sus-
ceptible to clinical bias, and may not capture subtle changes critical for evaluating treatment
efficacy.

The emergence of wearable-based motion assessments presents a promising solution to
these challenges. By embedding sensors into everyday activities, continuous, home-based
monitoring becomes feasible, offering a holistic view of patient health beyond sporadic clin-
ical visits [6-9]. This approach facilitates the collection of longitudinal data with greater
ease and frequency, enabling more accurate tracking of disease progression and treatment
effects over time [10-12]. In contrast to traditional methods that rely on intermittent clinical
evaluations, wearable sensors allow for the seamless gathering of comprehensive movement
data in a naturalistic setting, reducing the burden on patients and their families [13,14].

However, pediatric movement data is inherently complex, due to confounding factors
such as limb length variations in growing children, variability in movement speed, and dif-
fering cognitive and developmental abilities. These issues can significantly alter movement
trajectory representations, complicating the analysis and comparison of motion trajectories,
especially in a young population where consistent movement speeds are difficult to achieve
[15,16]. Robust methods for temporal alignment are essential for accurately comparing and
analyzing trajectories to understand variables such as disease progression across various ages,
phenotypes, and stages of the disease.

Moreover, many existing classifiers in digital medicine rely on black-box features [17-21],
making it challenging for clinicians to trust their outputs [22,23]. In order to address these
challenges, we utilize Shape-based Principal Component Analysis to simultaneously tem-
porally align movement trajectories and quantify patient behavior in terms of interpretable
shape-based phenotypes [24-26]. This method identifies and correlates specific movement
patterns with clinical metrics such as muscle fat infiltration and motor function scores. By
providing transparent and intuitive results, our approach has the potential to provide objec-
tive feedback on treatment progress compared to existing methods.

Materials and methods

Overview of the approach

Fig 1 presents a comprehensive workflow for analyzing Activities of Daily Living (ADL)
using sensor-based data and various clinical measures, described in Table 1. Initially, raw
sensor signals (X) are collected during ADL tasks. These signals are then aligned or regis-
tered using phase amplitude separation [27] and subjected to Shape-based Principal Com-
ponent Analysis (PCA) in the shape space. The scores from this shape space are analyzed
using Partial Least Squares (PLS) analysis to explore the covariation between the sensor
signals (X) and multiple outcome measures (Y), including age, ultrasound measures (Cross
Sectional Area, Average Echogenicity), dynamometer measures (Normalized Elbow Torque),
and Brooke scores. The aim is to understand the relationships and potential predictive power
of sensor data concerning these outcome measures, despite the absence of a gold standard
for Y.
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Fig 1. Overview of the study and the proposed shape analysis pipeline. Wearable sensors capture IMU signals from participants performing activities of
daily living. This data is combined with shape analysis and external assessments to develop a canonical index of motor function.

https://doi.org/10.1371/journal.pone.0332383.9001

Table 1. Description of clinical measures against which we correlate our wearable features.

Clinical Measure Description

Brooke Score The Brooke Upper Extremity Scale is a 6-point ordinal scale used to
classify upper limb function and track progression in neuromuscular
disorders. A higher score indicates greater impairment [4].

Cross-Sectional Area (CSA, cm?) Represents the anatomical size of a muscle. Larger CSA generally implies
more muscle fibers and higher force-generating capacity [28].

Normalized Elbow Torque (NET, Elbow torque normalized by forearm length to allow for comparison

Nm/cm) across individuals.

Average Echogenicity (Avg_Echo, gsv) Echogenicity quantifies a muscle’s ability to reflect ultrasound waves.

In SMA, motor neuron degeneration leads to increased echogenic-
ity due to fibrous and fatty tissue replacement [29]. In DMD, loss of
dystrophin similarly results in muscle degradation and fat infiltration,
raising echogenicity [30].

https://doi.org/10.1371/journal.pone.0332383.t001

Experimental protocol

This study, approved by the University of Virginia’s Institutional Review Board for Health
Sciences Research (protocol #HSR200178), recruited participants through the Pediatric Neu-
romuscular Clinic at the University of Virginia Children’s Hospital [31]. Patients diagnosed
with either SMA or DMD participated, along with age and sex-matched healthy controls

(N = 13). The recruitment started on February 11, 2021 and ended on September 19, 2021.
All adult participants and guardians of minor participants gave their written consent. All par-
ticipants’ demographic data are shown in Table 2. Participants wore MetaMotionR+ (Mbi-
entLab, San Francisco, CA, USA) sensors on both dominant and non-dominant hands, with
accelerometer and gyroscope data collected at 200 Hz [32]. Activities of daily living (ADLs)
including rotating a door knob, raising a cup, arm curl, door knocking, and moving a paddle
were performed by the participants. The Brooke Upper Extremity Scale was employed to pro-
vide a standardized metric for comparison across all cohorts [4]. Following data processing,
a subset of participants were excluded from subsequent analysis due to sensor malfunction
(N = 2), young age and refusal to cooperate (N = 2), deceased (N = 1), participant withdrawal
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Table 2. Demographics of participants.

Cohort Healthy SMA DMD
Participants (N) 13 9 19

Age Range 2-35 2-19 4-35
Mean Age + SD (yrs) 152 +10.6 74+6.3 142 +9.4
Sex (M/F) 8/5 2/7 18/1
Ambulatory (N) 13 4 8
Forearm Length + SD (cm) 239+5.7 17.6 £5.5 20.7£3.9

https://doi.org/10.1371/journal.pone.0332383.t002

(N =1), or lack of discernible motion (N = 4). This resulted in a final analysis dataset of
31 participants (DMD = 15, SMA = 7, Healthy = 9). Considering the rarity of both SMA and
DMD, this sample size is considered relatively large for studies investigating these conditions.

Curve registration and shape PCA

Let {8i:[0,T] = R, i=1,2,...,n} be the set of curves representing motions for n subjects.
In our case, it represents the gyroscope signals of y-axis collected from the sensor on domi-
nant wrist of participants. The gyroscope was selected because it measures angular velocity,
which reduces the impact of variations in limb length. Our goal is to perform temporal align-
ment and phase-amplitude separation of these curves. The temporal alignment of a curve is
based on a time-warping function y : [0, T] — [0, T] that has the following properties. A y
is smooth, strictly increasing (i.e., its derivative is strictly positive), and is invertible with a
smooth inverse. Furthermore, ¥(0) = 0 and y(T) = T. Such functions are called positive diffeo-
morphisms or phases and help facilitate temporal alignments. Let the set of all time-warping
functions be I. For a curve f3; and a y €T, the composition 8;(y(¢)) or (8; o y)(t) defines the
time warping of §3; by y.

We begin the alignment approach using the pairwise problem. Given two curves, §; and
B2, we seek a time warping function ¥, such that the peaks and valleys in 8, o y, are optimally
aligned to those of 3. Historically, one would use the optimization argminyer |81 - B2 © 7|

to solve the alignment problem, where |f] =1/ fOT f(t)?* dt represents the classical .2 norm. In
practice, the L% of a function is approximated using a finite sum from its uniformly-sampled

points, |f] ~+/ (% Z]]= f(t;)?). However, this optimization has several mathematical and

computational shortcomings, and a modern approach utilizes the concept of Square-Root
Velocity Functions (SRVFs). The SRVF of a curve §; is given by g;(t) = sign(£;(£))\/|8:(t)].

If we time warp a curve f3; into f3; o ¥, then the SRVF of the new curve is given by (g; o ¥)\/7.
This sets up the so-called elastic approach to curve alignment. The optimal alignment of 3, to
f1 is given by solving the optimization problem:

Vz=arg¥lei§‘ lg1 - (g2 0)V7 17 (1)

where ¢q1, q, are SRVFs of 31, 85, respectively. This optimization is solved using the efficient
Dynamic Programming Algorithm (DPA) [33]. Fig 2 illustrates this optimization where

Fig 2a shows an example of arm curl 8; and Fig 2b shows the temporal rate or warping func-
tion y; of that arm curl. Fig 2c shows two misaligned curves ;, 8>, and Fig 2d shows the
aligned curves 3; and 8, o y;'. The minimum value in Eqn 1 results in distance between the
shapes of 1 and 3;:

da(Br, B2) = infy, @1 - 2 072\/%“ (2)
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Fig 2. A simulated illustration of the alignment of arm curls. (a) An example of an arm curl. (b) Temporal rate or warping function of this arm curl. (c) An
example of misaligned arm curls. (d) Functions after alignment.

https://doi.org/10.1371/journal.pone.0332383.g002

An important property of this distance is that it is unchanged by arbitrary time warpings of
B1 and 3,. That is,

da(ﬁl’ﬁZ) = da(ﬁl o Va;ﬁZ ° yb)’ fOI' anY Ya Vb € r.

Therefore, it can be used to compare biomechanical signals without any influence of the
rates at which the activities are performed.

This pairwise alignment can now be extended to align multiple curves and to separate their
phases and amplitudes.

= in (3 (minq- B ONANIE 3
Z arg;gg(; (ry{}érrl la- (i or)V/7il )) 3)

This optimization is solved iteratively. Each iteration includes two steps: (1) aligning indi-
vidual SRVFs g;s to the current f1, using Eqn. 1 repeatedly and (2) Updating the estimate of
using cross-sectional average of current aligned SRVFs according to:

1 n
Qo = ;Z(% oYIWTi-
i1

We stop the iteration when the updates result in small changes. The FDASRSF [27]
provides implementations of this solution in MATLAB, Python, and R. The outputs of this
procedure are: (1) f,,: the overall mean shape of the given curves, (2) {y;}: the phases that
align individual curves to the mean shape, and (3) {f; = 8; 0¥/ }: the set of aligned curves
or amplitudes of the original curves. In summary, each individual curve §3; is decomposed
into its phase y; and amplitude §; such that 8; = §; 0 y;". Fig 3 shows examples of this separa-
tion. In each row, the first column shows the original data (Figs 3a and 3e), the second col-
umn shows the phases {y; } (Figs 3b and 3f), the third column shows the mean f, (Figs 3¢
and 3g), and finally the last column shows the aligned amplitudes {£;} (Figs 3d and 3h). The
aligned functions {;} represent the shapes of given curves and can be now analyzed using
Shape PCA.

Let {g;} be the SRVFs of the aligned functions {§;}. We can calculate the covariance func-
tion of these SRVFs and obtain the principal directions of variability by performing Singular
Value Decomposition (SVD) on the covariance function, C, = U,Z; VST. This process is called
Shape PCA because it involves conducting functional PCA in the SRVF space of the aligned
functions, where the phase is already separated. After obtaining the Shape PCA principal
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Fig 3. (a-d) Results on performing phase amplitude separation on healthy and (e-h) DMD/SMA cohorts.

https://doi.org/10.1371/journal.pone.0332383.g003

directions, we can calculate the projections on these principal directions as ¢, = (i, Usk)-
Here, {c, } represents the finite-dimensional Euclidean representations of the aligned
functions or shapes and can be referred to as principal components or coefficients. These
coefficients or components are also called Vertical Principal Components (VPCs).

Statistical analysis

In order to get more robust results from Shape PCA and also handle multiple visits of par-
ticipants, we run Shape PCA 100 times with a random visit taken for each subject. Then we
flip the sign of SVD to get the principal components to be sign aligned with the components
of the first trial. Then a mean PC score is computed across these runs as a representation
embedding for each participant.

To gauge the variability in the relationship between wearable modes and clinical variables,
we utilized bootstrapping. We generate a distribution of canonical correlations derived from
10000 bootstrap replicates. In each replicate, we randomly sampled participants with replace-
ments to form a new training set (70% of the data), while the remaining 30% served as a hold-
out test set. PLS was fitted on the resampled training data, and its performance, measured by
canonical correlation, was assessed on the corresponding test set [34]. This approach captures
the uncertainty in estimated relationships due to sampling variability. All the correlations
were measured using the Pearson correlation coefficient.

For the mixed linear model regression, the random effects accounted for variation in inter-
cepts across different participants (Participant ID), while the fixed effects included the effects
of age, cohort, and their interaction. In this analysis, the p-values were calculated using two-
sided Wald tests [35]. The significance level was set at a = 0.01, and significance was achieved
when the interaction effects were statistically different from zero, indicating a significant
influence of these interactions on the dependent variable. Additionally, p-values were adjusted
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for multiple comparisons using the Benjamini-Hochberg method [36]. Shape PCA, PLS, and
mixed linear model regression were performed using the FDASRSF [27], Scikit-learn [37],
and statsmodels [38] packages, respectively. All other analyses were conducted using Python
3.11.

Results
Insights from curve registration

To illustrate phase amplitude separation with an example, we initially generate data with a
symmetric shape and purely amplitude variation (Fig 4a). To demonstrate phase variability,
we generate several temporal warping functions (Fig 4b). These warping functions indicate
the rate at which a motion is performed (slower or faster). Combining the amplitude varia-
tion with these warping functions results in both phase and amplitude variation (Fig 4c). The
mean of these functions yields the red curve, which is asymmetric (Fig 4f), despite the original
shapes being symmetric. However, performing phase amplitude separation separates the hor-
izontal variation from the vertical one. This process temporally aligns the functions (Fig 4d),
recovers the warping functions (Fig 4e), and a mean shape (depicted in blue) that is sym-
metric (Fig 4f). This technique provides a much more accurate representation of the original
shape.

In Fig 3, we present the results of phase-amplitude separation applied to arm curl trajec-
tories from two groups: healthy participants in the top left plot (Fig 3a) and participants with
DMD/SMA in the plot below (Fig 3e). The raw trajectories, particularly from the healthy
cohort, exhibit phase variability, where similar shapes occur at different times across dif-
ferent trajectories. Phase-amplitude separation is applied specifically to the healthy trajec-
tories, aligning these functions temporally and deriving a mean shape. The resulting elastic
mean shape of healthy arm curls is depicted in the third plot (Fig 3¢), accompanied by the
corresponding temporal warping functions shown in the second plot (Fig 3b). These warp-
ing functions illustrate the variability in phase alignment across different trajectories within

Original Functions (B;) b Warping Functions (y;) cPhase x Amplitude Variability (B; ¢ y;)
0.50 100 0.50
0.25 751 0.25
0.00+ 50 0.00+
-0.25 1 251 —0.257
—0.50 1 0] —0.50
Euclidean vs Shape Mean
0.50+ 1004 0.501 —— Euclidean Mean
0.251 754 0.25 —— Shape Mean
0.00 50 A 0.00
—0.251 25 —0.254
-0.50 . . . ( , 04 : . , ’ | -050q . . ‘ . .
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Fig 4. Results on performing curve registration and Fréchet mean calculation with temporal matching. (a) Signals with only amplitude variability, (b)
Warping functions, (c) Signals with amplitude and phase variability, (d) Signals after registration, (e) Reconstructed warping functions, (f) Euclidean and
Shape mean. Note how the shape mean (blue) captures the symmetric shape better than the Euclidean mean (red).

https://doi.org/10.1371/journal.pone.0332383.9004
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the healthy group. From the top right plot (Fig 3d), we observe that the peaks and valleys
of the healthy trajectories align closely with the healthy mean shape, indicating effective
alignment.

In the second row of Fig 3, we depict the trajectories of participants with DMD/SMA
(Fig 3e). Applying phase amplitude separation within this group, we compute the mean
shape of DMD/SMA, shown in Fig 3g. In Fig 3h, we align the DMD/SMA trajectories not
to their own mean but to the mean shape derived from healthy participants. This approach
aims to highlight deviations from the healthy mean shape. Here, we observe a notable dis-
parity between the peaks and valleys of the DMD/SMA cohort and the healthy mean. As
depicted visually in Fig 3f, the DMD/SMA trajectories require substantial warping to align
them with the healthy mean, indicating greater shape variability compared to the healthy
trajectories.

Discovering modes of variation in trajectories

In Figs 5a-c, we conducted Shape PCA on arm curl trajectories across all cohorts to iden-
tify key patterns of variation. The first principal component (VPC1, Fig 5a) primarily reflects
changes in angular speed while maintaining a consistent curl shape. Starting from the mean
shape (u, depicted in black), moving one standard deviation along the positive direction of
VPCI (1 + 1ov, shown in red) reveals a reduction in angular velocity. This pattern explains
50.86% of the variance across all participants.

The second mode of variation (VPC2, Fig 5b) illustrates asymmetry in the motion. Start-
ing from the mean shape (u, depicted in black), progressing one standard deviation along
the positive direction of VPC2 (1 +  1ov, shown in red) reveals a decrease in the height of
the peak of the curl while the trough remains unchanged. This pattern explains 27.53% of the

FPCA Modes of Variation (with alignment)

VPC1 Curl, 50.86% b VPC2 Curl, 27.53% C VPC3 Curl, 21.61%
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- H
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Fig 5. (a-c) Vertical modes of variation obtained from shape PCA on the curl data. (a) The first mode represents scaling, (b) the second asymmetry in
motion while (c) the last represents noise. (d-f) Modes of variation obtained from knocking data. (d) The first mode represents scaling. (e) The second mode
represents asymmetry in motion while (f) the last represents sensor noise.

https://doi.org/10.1371/journal.pone.0332383.g005
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t:0/19

variance across all participants. To validate this observation, we examine joint velocity vec-
tors for two participants (Fig 6). This analysis indicates that these participants face difficulty
during the upward motion phase, while the downward phase occurs more quickly, possibly
influenced by gravitational effects. The third mode of variation (VPC3, Fig 5¢) captures vari-
ability in the trajectory’s tail. This mode likely reflects sensor noise or temporal segmentation
noise.

The second row (Figs 5d-f) displays the results of Shape PCA applied to knocking motion
curves. Similar patterns to those observed previously emerge. VPC1 appears to represent scal-
ing (Fig 5d), indicating variations in the speed of the knocking motion. On the other hand,
VPC2 seems to capture asymmetry (Fig 5e) between the speed of the first and second knock-
ing motion. Finally, VPC3 reflects some form of sensor noise (Fig 5f). We also conducted
Shape PCA on additional activities such as moving a paddle and twisting a door knob. How-
ever, these experiments yielded less interpretable results, with principal components showing
less structured patterns. Consequently, we focus exclusively on two actions going forward:
arm curls and knocking motion.

Analyzing cohort differences

In Fig 7, we analyze differences in wearable features (X) and clinical measures (Y) among
three cohorts. Boxplots are shown for several variables: Age, Brooke score, Average
Echogenicity (indicating fat infiltration into tissue), and Normalized Elbow Torque (a normal-
ized measure of strength across age ranges). Additionally, we present projections on the four
modes of variation: VPC1 and VPC2 obtained from arm curl and knocking motions. Both
DMD and SMA cohorts exhibit higher Average Echogenicity (Fig 7c) compared to Healthy,
indicating greater fat infiltration into tissue. Consequently, they also show lower Normalized
Elbow Torque (Fig 7d), suggesting reduced strength. In the second row (Figs 7e-h), we dis-
play boxplots of wearable features. Both DMD and SMA show large variance in VPC1 Curl
(Fig 7e), with higher functioning patients on par with healthy individuals. Furthermore, SMA
cohort demonstrate lower speed in knocking motion compared to Healthy (Fig 7g). Notably,
VPC2 Curl activation (Fig 7f), which indicates motion asymmetry, is more pronounced in
SMA compared to DMD and Healthy. This finding is intriguing given the biological differ-
ences between DMD, which involves progressive muscle fiber deterioration due to dystrophin
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Fig 6. Interpretation of vertical principal component 2 of arm curl (VPC2 Curl) in videos of 2 participants. The participants performed the upward
motion of the arm curl more slowly than the downward motion, likely due to the resistance posed by gravity.
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Fig 7. Boxplots of some demographic variables along with important clinical measures and feature dimensions. (a) Age, (b) Brooke score, (c) Average
Echogenicity (Avg_Echo (gsv)), (d) Normalized Elbow Torque (NET (Nm/cm)), (e) VPC1 Curl (Speed), (f) VPC2 Curl (Asymmetry), (g) VPC1 Knock
(Speed), and (h) VPC2 Knock (Asymmetry).

https://doi.org/10.1371/journal.pone.0332383.9007

deficiency, and SMA, which affects spinal motor neurons. It suggests that SMA may impair
subtle motion control, resulting in asymmetries in motion patterns.

Correlations between functional modes and clinical measures

In Fig 8, we examine the correlations of modes of variation obtained from each activity with
the clinical measures described in Table 1. In the top row (Fig 8a), we observe stronger cor-
relations between VPCI and age for DMD and SMA compared to the Healthy cohort. This
positive correlation suggests that as age increases, VPC1 also increases, indicating a reduction

VPC1 Curl Cohort Correlations
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Fig 8. Pearson cross-correlation of different VPC modes with clinical measures for DMD (N = 15), SMA (N =7), and
healthy (N =9). (a) Cross correlations for VPC1 Curl (speed), and (b) VPC1 knock (speed).

https://doi.org/10.1371/journal.pone.0332383.9008
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in angular speed. This stronger correlation in DMD and SMA may be due to the progressive
nature of these diseases affecting both patient groups. An increase in VPCI correlates with

a decrease in strength, as seen in the Normalized Elbow Torque (NET). Additionally, VPC1
for DMD shows a positive correlation with Average Echogenicity (Avg_Echo), which aligns
with increased fat infiltration in muscle fibers, leading to tissue weakening. In both DMD
and SMA, VPCl is positively correlated with the Brooke score, where higher scores indicate
poorer muscle function. No correlation with Healthy is shown since Brooke was only col-
lected for patient cohorts. The second row, VPC1 Knock (Fig 8b), which represents scaling in
knocking motion, shows a similar but weaker correlation pattern. Since the direction of the
VPCI Knock is reversed (moving one standard deviation to the right of the mean implies an
increase in speed), its correlations have opposite signs compared to the VPC1 Curl.

Combining modes of variation

To develop a comprehensive index for assessing function in DMD and SMA cohorts (Healthy
was omitted due to missing Brooke), we employed PLS to combine projections atop the prin-
cipal component dimensions and correlate them with clinical variables. To gauge the variabil-
ity in the relationship between wearable modes and clinical variables, we utilized bootstrap-
ping. Fig 9 (first column) illustrates the distribution of canonical correlations derived from
10000 bootstrap replicates. As shown in the first row of Fig 9, our primary canonical dimen-
sion (0.76 X speed curl-0.59 X speed knock +0.18 X asymmetry curl +0.18 X asymmetry knock)
achieved a median canonical correlation of r = 0.78, with a 95% confidence interval of [0.34,
0.94] across the 10000 bootstrapped test sets. This indicates a robust association between

this linear combination of wearable features and dimensions such as muscle fat infiltration
(Avg_Echo), Brooke score, and age-related degenerative changes. The narrower spread of
coeflicients for speed of motion (VPC1 Curl and VPC1 Knock) underscores their particu-

lar significance within this dimension. Following them are asymmetry in curl motion (VPC2
Curl) and asymmetry in knocking motion (VPC2 Knock). Given the lower correlations and
higher variance in coefficient estimates observed in the second and third modes (r = 0.01 and
r=0.17, respectively), we opted for the first canonical dimension as our motor function index.
This decision was guided by its stronger bootstrapped correlation and more stable coefficient
estimates.

Distribution of PLS Coefficients
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Fig 9. Distribution of canonical correlations (first column) and coefficients. Our first canonical dimension has a median correlation of r = 0.78 (95% CI
[0.34, 0.94]) with dimensions of muscle fat infiltration (Avg_Echo), Brooke score, and Age-related degenerative changes. Speed of curl (VPC1 Curl) and
knock (VPCI Knock) have tighter spread in distribution than the asymmetry features (VPC2 Curl and VPC2 Knock).

https://doi.org/10.1371/journal.pone.0332383.g009
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Comparison with other decomposition techniques

We compared our algorithm with other low-rank decomposition techniques: specifically,
Functional PCA (FPCA) without phase-amplitude separation [39] and Non-negative Matrix
Factorization (NMF) [40]. The modes of variation obtained from each technique are illus-
trated in Fig 10, and the corresponding canonical correlations are summarized in Table 3. Our
framework achieves a higher median canonical correlation and a narrower confidence interval
for the first component.

Age and VPCI relationship

In Fig 11, we examined the relationship between age and speed of movement in DMD, SMA,
and Healthy control groups. We conducted linear mixed-effects regression, modeling VPC1
Curl as an interaction between age and cohort. Specifically, for DMD (g = 1.337, corrected
p=0.001) and SMA (B = 2.530, corrected p = 0.002) cohorts, the positive slope coeflicients
indicate an age-related decline in the speed of curl, suggesting a loss of ability. Conversely, the
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Fig 10. Comparison of different decomposition methods, (a-c) shape PCA with alignment leads to much more interpretable modes of variation than
(d-f) NME and (g-i) FPCA without alignment because of the phase variability.

https://doi.org/10.1371/journal.pone.0332383.g010
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Table 3. Performance comparison for different algorithms reported in terms of bootstrapped canonical
correlation of each component.

Algorithm Component Median (50th [5-95]% Confidence
percentile) Percentile
Shape PCA (Aligned) 1 0.78 [0.34, 0.94]
NMEF (No alignment) 1 0.63 [0.01, 0.94]
Functional PCA (No alignment) 1 0.36 [-0.3,0.81]
Shape PCA (Aligned) 2 0.01 [-0.66, 0.66]
NMF (No alignment) 2 0.28 [-0.47,0.81]
Functional PCA (No alignment) 2 0.18 [-0.60, 0.85]
Shape PCA (Aligned) 3 0.17 [-0.72,0.71]
NMEF (No alignment) 3 0.14 [-0.59, 0.77]
Functional PCA (No alignment) 3 -0.01 [-0.67, 0.69]

https://doi.org/10.1371/journal.pone.0332383.t003

Age vs VPC1 by Cohort
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Fig 11. Relationship between Age and VPC1 Curl in DMD, SMA, and healthy control groups. Here, colored lines
represent the regression estimated conditional mean of each cohort, and points represent the VPC1 values of each
participant.

https://doi.org/10.1371/journal.pone.0332383.9011

Healthy cohort did not show a significant temporal loss of function. The intercept term for
individuals with DMD and SMA showed negative values, suggesting initially higher motion
speeds. This finding might be attributed to the presence of higher-functioning individuals
within these cohorts.

Discussion and future work

Our approach holds promise in both clinical practice and research studies for several reasons.
Firstly, by leveraging shape analysis of motion trajectories captured by wearable sensors, we
extract rich, quantitative data that traditional clinical assessments may overlook. This pro-
vides a more comprehensive understanding of motor function in children with neuromuscu-
lar disorders, enabling tailored interventions and therapies. The use of Shape PCA allows us to
identify nuanced patterns in movement, such as scaling and asymmetry, across various daily
activities. These insights are crucial for clinicians to assess functional limitations and track
changes over time more accurately than conventional methods permit.

Moreover, the PLS technique uncovers a covariation mode that correlates strongly
with clinical measures like muscle fat infiltration, strength assessments, motor function
indices, and age. This PLS-derived mode serves as an interpretable index of motor function,
offering transparency and clinical relevance, which contrasts with the black-box nature of

PLOS One | https://doi.org/10.1371/journal.pone.0332383 October 10, 2025 13/17



https://doi.org/10.1371/journal.pone.0332383.t003
https://doi.org/10.1371/journal.pone.0332383.g011
https://doi.org/10.1371/journal.pone.0332383

PLOS One Obijective functional index for pediatric motor function

many current movement analysis tools. Practically, our method supports the development of
home-based monitoring systems. These systems can continuously collect data over extended
periods, reducing the necessity for frequent clinic visits and enhancing patient convenience.
This longitudinal data collection not only facilitates the early detection of subtle functional
changes but also empowers caregivers to report on daily functions more comprehensively.

Furthermore, integrating activity recognition algorithms into these systems will enhance
their utility by providing detailed insights into how children perform activities of daily
living. This holistic approach paints a clearer picture of functional capabilities, aiding clin-
icians in making informed decisions about treatment adjustments and interventions. The
non-intrusive nature of wearable sensors is particularly advantageous for monitoring dis-
ease progression, especially in patients undergoing novel therapies such as gene replacement
therapy. It is also helpful for use in other pediatric populations with different neurodevelop-
mental problems. Telemedicine, supported by wearable sensors, enables continuous remote
monitoring of participants in digital clinical trials, reducing the need for in-person visits. This
approach enhances trial accessibility, supports participant retention, and ultimately improves
data quality and patient outcomes.

We acknowledge several limitations of our study. While we examined multiple move-
ments, not all yielded interpretable Shape PCA modes and were therefore excluded from the
motor function index. Several factors may explain this. First, movements with high inter-
individual variability may require a larger sample size to reliably estimate the covariance
structure in Shape PCA. Additionally, certain tasks (e.g., rotating a doorknob or moving
a paddle) produced noisier data than others, potentially due to their greater difficulty for
participants compared to simpler actions like the arm curl. It is also possible that a single
wearable sensor lacks the resolution to capture subtler movements, leading to challenges in
segmentation and registration.

We also excluded some younger participants who were unable to follow complex instruc-
tions, which may limit the generalizability of our findings. To address these issues, we are
refining our study design to focus on movements that are easier for most participants to
perform-arm curl and knock, in particular, showed strong potential.

Although we used the MetaMotionR+ sensor, which is not FDA-approved, the Shape PCA
approach is sensor-agnostic and compatible with consumer-grade wearables. Several FDA-
approved alternatives (e.g., Actigraph LEAP [41], Empatica Embrace [42]) may be viable for
clinical implementation. Finally, due to limited repeat visits, we focused on cross-sectional
analysis; future work will aim to increase follow-up data to examine longitudinal changes in
motor function, including progression, stability, or regression, in relation to disease course
and treatment response.

Despite these limitations, we believe that our methodological approach not only advances
the field of movement analysis in neuromuscular disorders but also promises practical appli-
cations in enhancing patient monitoring, clinical decision-making, and therapeutic outcomes.
Future research efforts will focus on expanding participant cohorts, validating our findings
across diverse populations, and refining our approach to accommodate varying clinical con-
texts and needs.
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