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Abstract 

Food intake is a key regulator of the digestive system function; however, little is 

known about organ- and sex-specific differences in food-driven regulation. We placed 

male and female C57Bl/6 mice on time-restricted feeding (TRF), limiting access 

to food to an 8-hour window. Food was added either at dark (ZT12) or light (ZT0) 

onset for 14 days. Afterwards, the feeding period was delayed by 4 hours for half 

the mice, and the respective TRF regime continued for another 14 days. TRF from 

ZT12 to ZT20 led to the highest weight gain in females and the lowest in males, while 

improving intestinal transepithelial resistance (TEER) in both sexes. However, it also 

diminished food-anticipatory gene expression of several hepatic genes, particularly in 

female mice. Shifting food access to ZT16 increased weight gain and reduced fasting 

glucose levels in male mice, while also inducing strong food-driven gene expression 

changes in hepatic and duodenal tissues in both sexes. Feeding during the early 

lights-on phase (ZT0-ZT8) caused only minor physiological changes. However, it led 

to an overall downregulation of hepatic and an upregulation of duodenal and gas-

tric gene expression and blunted the food-anticipatory expression response in both 

sexes. Delaying feeding until ZT4 was highly detrimental, reducing TEER and further 

disrupting gene expression in the stomach and liver in both sexes. In contrast, at 

least partial restoration of food-driven gene expression was seen in the duodenum, 

particularly in males. These findings highlight the strong sex- and organ-specific 

effects of food intake time on physiological and gene expression responses. Notably, 

we observed a lack of alignment in gene-expression responses between the gut and 

liver, underscoring tissue-specific sensitivity to feeding cues.
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Introduction

The ability to measure time has played such an important role in human development 
that clocks are among our oldest inventions. Entire scientific disciplines, such as 
chronometry, have been devoted to understanding timekeeping and developing new 
standards. And yet, our own biological clock remains incompletely understood. While 
progress has been made in uncovering how organisms align their internal rhythms to 
external cues, such as the light-dark cycle, the response to the timing of food intake 
is less explored. Thus, the tissue- and sex-specificity of food entrainment, as well as 
its molecular mechanisms, remain partially unresolved.

Self-sustaining, cell-autonomous circadian clocks are essential components of our 
biology [1]. Early studies revealed diurnal oscillations in body temperature [2–4], food 
intake [5], and organ-specific functions, such as renal excretion of water and salts 
[6,7]. It is now well established that the circadian clock drives rhythmic expression of 
approximately 43% of our protein-coding genes and over a thousand noncoding RNAs 
[8], regulating major physiological functions across most tissues and organs [9].

At the molecular level, the mammalian molecular circadian clock consists of a 
transcriptional-translational feedback loop, present in nearly every cell. The core 
look includes the positive regulators CLOCK and BMAL1, which heterodimerize to 
activate gene transcription in the negative limb, including Per1–3 and Cry1–2. These 
proteins form complexes and return to the nucleus to inhibit the activity of CLOCK-
BMAL1 heterodimer, completing the loop [1,10–14]. Additional regulatory layers 
involve orphan receptors such as REV-ERBs and RORs, connecting circadian output 
to nutrient metabolism, especially lipid homeostasis [15,16], and post-translational 
modifications that fine-tune the clock output [1].

These mechanisms allow the circadian system to align with external cues or 
“zeitgebers” [17], such as light, food, and physical activity. The formed rhythm can 
also be influenced by age, race, geographical location, and sex [18–21]. The light-
dark cycle is the best-researched zeitgeber, entraining the central circadian oscillator 
in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN synchronizes 
peripheral clocks through neural and hormonal outputs, as well via regulation of body 
temperature. However, peripheral organs and tissues, including the gastrointestinal 
(further: GI) tract and liver, also possess autonomous circadian oscillators that can 
shift phase in response to local zeitgebers such as food intake, exercise, and drugs 
of abuse [22–30].

Circadian misalignment arising from conflicting zeitgebers contributes to increased 
risks of cardiovascular, metabolic, immune, neurological, and even psychiatric disor-
ders [31,32]. In contrast, alignment of feeding time with the light-dark cycle improves 
health [33,34], and time-restricted feeding (TRF), usually confining food intake to 
8–10 hours per day, can alleviate obesity and improve cardiovascular outcomes in 
both rodents [35–38] and humans [39–42].

While substantial progress has been made in understanding food entrainment, 
the field still lacks an integrative view encompassing multiple peripheral tissues, 
both sexes, and various time scales. Research has focused primarily on the liver, 
where food-driven regulation of gene expression and metabolic pathways is well 
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documented, even when it leads to uncoupling from SCN-driven rhythms and causes inflammatory consequences 
[22,43–50]. In contrast, digestive organs such as the stomach and small intestine, despite being essential for food uptake 
and expressing clock genes [24,51–55], remain underexplored in food-entrainment research, particularly under in vivo 
conditions.

Efforts to localize food-entrainable oscillator (FEO, drives food anticipatory activity (FAA)) in the digestive system have 
yet to identify specific tissue or molecular mechanism; however, it appears that FEO might not rely on canonical clock 
genes [56–58]. Some studies suggest involvement of GI hormones like ghrelin, whose food-driven secretion might act on 
central and peripheral receptors [59]. Additional food-driven responses include changes in gut microbiota, lipid profiles, 
inflammation, other GI hormone and short-chain fatty acid secretion, and gastric contractility [60–64], suggesting that 
digestive organs play a central role in food-regulated physiology.

Importantly, peripheral organs can entrain to TRF independently of SCN, with organ-specific rates of adaptation 
[22,51,57,65–67] with some changes persisting even after a return to ad libitum feeding [68]. The regulatory mechanisms 
are complex, involving diverse functions, gene networks and signaling pathways, that often yield contrasting results 
under similar conditions [68,69]. While some studies suggest that peripheral clocks play a role in coordinating food-driven 
responses, cooperation between multiple organs, for example, liver, muscle, and adipose tissue, also appears to be 
important for regulating redox, lipid, and glucose metabolism [70–73].

Another underexamined factor in food entrainment is biological sex. There is evidence that SCN morphology, neuro-
peptide, and clock gene expression differ between males and females [74–76], alongside with hormone secretion, cir-
cadian period and behavioural rhythms [77,78]. In the context of TRF, male mice display earlier and more pronounced 
FAA [79] than females and additional sex-specific differences have been reported in gene expression in kidney and heart 
[67]. Liver responses to feeding time appear more comparable between sexes [67], but studies focusing on hepatic post-
translational regulation have only been conducted in females [80]. The exclusion of one sex from most studies continues 
to limit our understanding of sex-specific entrainment.

In this study, we investigated how time-restricted feeding influences food-driven, sex-specific regulation of weight gain, 
glucose handling, intestinal barrier function, and genes expression in murine digestive system. Male and female mice 
were subjected to an 8-hour TRF regime starting either at the onset of the dark (ZT12) or light (ZT0) phase, with or without 
a 4-hour feeding delay following 14 days of entrainment. Rather than aiming to characterize circadian rhythmicity, we 
focused on food-driven responses at three key physiological timepoints: food anticipation, intake, and postprandial period, 
and how these responses change due to the duration of entrainment. This approach enables us to detect organ- and 
sex-specific shifts in gene expression in relation to feeding time.

Materials and methods

Ethical approval

All experimental procedures and handling involving mice were approved by the University of Melbourne Animal Ethics 
Committee (application #1914983) and performed in compliance with the Australian code for the care and use of animals 
for scientific purposes.

Experimental animal origin and housing

In total, 180 male and 180 female C57Bl/6 mice (RRID:IMSR_JAX:000664) from the Animal Resources Centre (Canning 
Vale, WA, Australia) were used in the study. All mice arrived at the local animal facility aged 5–7 weeks and were housed 
in groups of five, under a 12:12 h light-dark (further: LD) cycle, at 22 ± 1 °C, 55–60% humidity, with standard chow (Bara-
stoc 102108, 12.8 MJ/kg, Ridley Corporation, Melbourne, Australia) and water provided ad libitum. After three days of 
post-arrival adjustment to the local facility, mice were transferred to either LEDDY cages (black cages with individual light-
ing systems) (Cat# GM500) or to the Aria ventilated cabinet (Cat# 9BIOC44R4Y1, both from Tecniplast, Buguggiate, Italy), 
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and the light onset of 12:12 h LD cycle was adjusted such that the sample collection from day-fed and night-fed mice 
could be done in parallel. Mice were adjusted to the new 12:12 h LD cycle and housing conditions for 1 week, based on 
observations that young mice re-entrain within 5–10 days, especially regarding peripheral rhythms [81] and their activity 
[82]. Chow and water were provided ad libitum during this time. After this week, mice were weighed at the end of the dark 
phase (Zeitgeber time (ZT) 24). Obtained values were recorded as pre-time-restricted feeding weights (further: pre-TRF) 
and used as a baseline for later weight gain calculations.

Food entrainment of mice

Overall, two independent experiments were performed due to space and infrastructure limitations, with random allo-
cation of TRF groups. No ad libitum fed group was used in this study. Food intake was not measured, as mice were 
group-housed.

After a 1-week adjustment to the new LD cycle, all mice within a cage (n = 5) were placed on the same TRF schedule 
for 14 days (Fig 1, Pre-shift days). In some groups, TRF was started with a 1–2 day delay to avoid overlapping sacri-
fice and sample collection. During TRF, mice had access to standard chow for 8 h per day, either starting at dark onset 
at (ZT12, “Restricted night-fed”, grey bar in Fig 1) or at light onset (ZT0, “Restricted day-fed”, yellow bar), followed by a 
16 h fasting period. To prevent mice from consuming leftover food debris during fasting, each group rotated between two 
cages: a “food cage” during feeding hours and an “empty cage” with no chow during fasting period. Water was provided 
ad libitum at all times. Mice were weighed weekly at the end of their respective feeding period (Fig 1, blue arrows).

Fig 1.  Food entrainment schedule. Bars indicate the placement and length of the feeding period. Arrows show weekly weight measurement time-
points. Mice were sacrificed on the 3rd, 7th, or 14th day after feeding shift. Letters indicate sacrifice timepoints on each day: A = food anticipation, F = food 
intake, P = postprandial period. n = 5 per sacrifice timepoint per sex.

https://doi.org/10.1371/journal.pone.0332295.g001

https://doi.org/10.1371/journal.pone.0332295.g001


PLOS One | https://doi.org/10.1371/journal.pone.0332295  September 10, 2025 5 / 26

After 14 days of TRF, the feeding window was delayed by 4 hours for half of the mice (Fig 1, Day 15). These new 
groups were designated as ‘Restricted shifted night-fed’ (ZT16-ZT0, dark grey bar) and ‘Restricted shifted day-fed’ 
(ZT4-ZT12, orange bar). The other half of the mice continued their original TRF. Weight gain measurements were contin-
ued as previously stated (Fig 1, blue arrows).

Mice were sacrificed on days 3, 7 and 14 after this shift, to assess food-driven responses at three biologically revelant 
timepoints: 1) food anticipation (“A”): after 16 h of fasting, just before the anticipated feeding; 2) food intake (“F”): 4 h into 
the feeding period; 3) postprandial period (“P”): 4 h after the end of the feeding window. On each sacrifice day, at each 
timepoint, five female and five male mice were sacrificed.

Mice were anesthetized with isoflurane (Cat# FGISO0250, Pharmachem, Eagle Farm, Australia), and euthanized by 
a cervical dislocation. Body weight was recorded, and the following organs and tissues were collected and snap-frozen 
using liquid nitrogen: the right lobe of the liver, the dorsal half of the stomach, and the duodenal mucosa. Dduodenal 
mucosa was collected by opening the first 2 cm of the duodenum and scraping its inner surface with a surgical scalpel at 
a 45-degree angle. The ileum (5 cm proximal from the cecum) was collected only during the food intake timepoint (Fig 1, 
“F”) for measurements of intestinal permeability and TEER.

Blood glucose measurements

Blood glucose was measured at the food anticipation timepoint (Fig 1, “A”). A drop of blood from the tail vein was applied 
on the Accu-Chek® Performa Test strip (Cat# 06454038020), and glucose concentration was measured with Accu-Chek® 
Performa (Cat# 05894964014) blood glucose meter (both from Roche Diagnostics, Manheim, Germany).

Intestinal electrical resistance measurements

The ileum collected during the food intake timepoint (Fig 1, “F”) was cut in half. Both pieces were placed in Krebs-
Henseleit buffer (11.1 mM glucose, 118 mM NaCl, 4.8 mM KCl, 1.0 mM NaH

2
PO

4
, 1.2 mM MgSO

4
, 25 mM NaHCO

3
, 2.5 mM 

CaCl
2
, pH 7.4), opened along the mesenteric border and pinned (full-thickness) onto Ussing chamber sliders (Cat# 

P2311, 0.3 cm2 apertures, Physiological Instruments, San Diego, USA). Sliders were inserted in the middle of two-part 
Ussing chambers (EasyMount Diffusion Chambers, Physiologic Instruments, San Diego, USA), and 5 ml Krebs-Henseleit 
buffer solution was added to the serosal side of the tissue. The mucosal side of the tissue received 5 ml of modified 
Krebs-Henseleit buffer, where glucose was substituted with 11.1 mM mannitol. This was done to avoid apical uptake of 
glucose while still maintaining an osmotic balance. Buffers in both chambers were kept at 37oC and bubbled with carbo-
gen (5% CO

2
, 95% O

2
) to maintain an optimal pH level. A multichannel voltage-current clamp (VCC MC6, Physiologic 

Instruments, San Diego, USA) was applied to each chamber through a set of four electrodes (2 voltage sensing and 2 
current passing electrodes) and agar bridges (3% agarose/3 M KCl in the tip and backfilled with 3 M KCl), installed on 
opposite sides of the tissue. The tissue was left to equilibrate for 20 min before clamping the voltage to 0 V.

To calculate TEER (Ω·cm2), 2-sec pulses of 2 mV were administered to tissue every 60 sec for 1 h, and the measured 
net resistance was multiplied by the surface area. Voltage and short circuit current (Isc) measurements were recorded 
using a PowerLab amplifier and the software LabChart® 5 (RRID:SCR_017551, both ADInstruments, Sydney, Australia).

RNA extraction

The RNA isolation was randomized and done in small batches (24 samples) to ensure representation of various TRF 
groups in the same batch, as well as fast processing and good RNA quality. Total RNA from approx. 20 mg of the right lobe 
of the liver, dorsal half of the stomach, and scraped duodenal mucosa was extracted using ISOLATE II RNA Mini Kit (Cat# 
BIO-52073, Meridian Bioscience, Cincinnati, USA) with the following adjustments to the manufacturer’s instructions. First, 
tissue pieces were immediately snap-frozen in 2 ml screw-cap tubes containing Lysing Matrix D (Cat# 6540−434, Lot# 
99999, MP Biomedicals, Irvine, USA) and stored at -80oC until further processing. Second, the volume of the provided 
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lysis buffer was increased to 500 μl per sample, and 5 μl of β-mercaptoethanol was added. Lysis buffer was applied while 
the samples were still frozen and immediately followed by lysis at 6000 rpm for 2 x 30 sec in a Precellys 24 homogenizer 
(RRID:SCR_022979, Cat# 03119–200-RD010, Bertin Technologies SAS, Montigny-le-Bretonneux, France). The volume 
of RNAse-free Ethanol (Cat# EA043, Chem-supply, Gillman, Australia), used for RNA binding, was also increased to 500 
μl per sample, and lysate-ethanol filtration through the provided column was done in two consecutive steps. The centrif-
ugation time for all washing steps was increased to 1 min to ensure better removal of wash buffers. Samples were eluted 
in 100 μl (liver) or 60 μl (stomach, duodenal mucosa) of RNase-free water (Cat# 10977−015, Lot# 2186758, Invitrogen by 
Life Technologies, Grand Island, USA). The elution step was repeated using the initial eluate to increase the RNA yield. 
The quality and quantity of the extracted RNA were assessed using a 2200 Tape Station (RRID:SCR_014994, Agilent 
Technologies, Santa Clara, USA) and a Nanodrop ND-1000 UV spectrophotometer (RRID:SCR_016517, NanoDrop Tech-
nologies, Wilmington, USA), respectively.

The synthesis of cDNA was performed using 100 ng RNA in a 20 μl total reaction volume using an iScript Reverse Tran-
scription Supermix kit (Cat# 1708841, Bio-Rad, Hercules, USA) without any changes from the manufacturer’s instructions. 
Samples were split across 96-well plates, with 6 negative controls included on each plate, these were randomly chosen 
RNA samples where no cDNA synthesizing enzyme was added. Synthesis reaction was carried out using PCRExpress 
(Cat# 630−003, Thermo Hybaid, Franklin, USA) or Bio-Rad T100™ (RRID:SCR_021921, Bio-Rad, Hercules, USA) ther-
mal cyclers.

Determination of gene expression

After cDNA synthesis, 10 μl of each cDNA sample was delivered to the Translational Research Facility within Monash 
Health Translational Precinct to determine gene expression levels using the Fluidigm Digital Array Integrated Fluidic 
Circuits [83] (further: IFCs). First, all cDNA samples underwent quality control, where expression of either Gapdh (forward 
primer: TGACCTCAACTACATGGTCTACA, reverse: CTTCCCATTCTCGGCCTTG) or β-actin (forward primer: GGCTG-
TATTCCCCTCCATCG, reverse: CCAGTTGGTAACAATGCCATGT) was tested as SYBR assays using QuantStudio 6 Flex 
RealTime PCR reader (RRID:SCR_020239, Thermo Fisher Scientific, Waltham, USA). Afterwards, samples underwent 
pre-amplification according to the manufacturer’s instructions [84]. In short, all 24 TaqMan assays for genes of interest 
(Table 1) were first pooled and diluted in Tris-EDTA buffer (pH 8.0) to a final concentration of 180 nM per assay. Then 3.75 
μl of gene assay mix was added to 1.25 μl of cDNA sample and pre-amplified for 14 cycles using Veriti™ 96-well Thermal 
Cycler (RRID:SCR_021097, Cat# 9902, Thermo Fisher Scientific, Waltham, USA). Pre-amplified cDNA samples were 
further diluted 1:5 with Tris-EDTA buffer (pH 8.0) and loaded on the 192.24 Dynamic array IFC (Cat#100–6266, multiple 
lots used, Fluidigm, San Francisco, USA) together with gene assays, following Fluidigm® 192.24 Real-Time PCR Work-
flow Quick Reference PN 100–6170 [84]. Two array plates per each organ were used, with random sample allocation. 
The qPCR reaction was performed using the Biomark™ HD system (RRID:SCR_022658, Cat# BMKHD, Fluidigm, San 
Francisco, USA).

Data analysis and statistics

Experimental data analysis was performed using GraphPad Prism v8.2 (RRID:SCR_002798, GraphPad Software, San 
Diego, CA, USA). Normality testing of the data was not conducted due to the limited sensitivity of such tests with small 
sample sizes. However, since the group sizes and variances were comparable, we used parametric tests with additional 
non-parametric tests when appropriate, given their robustness under these conditions.

To demonstrate weight gain, data from each mouse within the same feeding group and sex (n = 90 for pre-TRF, week 
1 and week 2; n = 30 for week 3, n = 15 for week 4) were pooled and shown as a mean group value and 95% Confidence 
Interval, CI. Significant differences in weekly weight gain between the night-fed group and other feeding groups were 
assessed by Two-way analysis of variance (ANOVA) with Šidák’s multiple comparison test.
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Measured TEER values were submitted to an outlier test, with all values outside of mean + /- 2*(standard deviation 
interval) excluded from further analysis. This was done to exclude tissue pieces that might have been damaged during the 
resistance measurements.

Weight at the time of sacrifice (Fig 2B), fasting blood glucose values, and TEER values were shown as separate data 
points per individual mouse, together with the mean group value and standard deviation (Further: SD). Two-way ANOVA 
was used together with Dunnett’s multiple comparison test to determine differences between all experimental groups inde-
pendently of the sacrifice day. However, only significant differences between the night-fed group and other TRF regimes 

Table 1.  TaqMan Gene assays used to determine relative gene expression levels.

Assigned group by function Gene Gene accession number Assay ID Tested in samples from:

Reference gene 18s (Rn18s) NR_003278.3 Mm04277571_s1 Liver, stomach, duodenum

Core clock genes Clock NM_001289826.1 Mm00455950_m1

Bmal1 (Arntl) NM_001243048.1 Mm00500226_m1

Glucose sensing, transport and metabolism Tas1r2 NM_031873.1 Mm00499716_m1

Sglt1 (Slc5a1) NM_019810.4 Mm00451203_m1

Glut2 (Slc2a2) NM_031197.2 Mm00446229_m1

Pepck (Pck1) NM_011044.2 Mm01247058_m1

Gys2 NM_145572.2 Mm01267381_g1 Liver

Amino acid and peptide transport Pept1 (Slc15a1) NM_053079.2 Mm04209483_m1 Liver, stomach, duodenum

B0at1 (Slc6a19) NM_028878.3 Mm01352157_m1

Lipid metabolism Mttp NM_001163457.1 Mm00435015_m1

Fasn NM_007988.3 Mm00662319_m1

Cyp7a1 NM_007824.2 Mm00484152_m1

Pparα NM_001113418.1 Mm00440939_m1

Srebf1 NM_011480.3 Mm00550338_m1 Liver

Biosynthesis of NAD+ Nampt NM_021524.2 Mm00451938_m1

Hormone signalling Ffg21 NM_020013.4 Mm00840165_g1

Igf-1 NM_001111274.1 Mm00439560_m1

Tph1 NM_001136084.2 Mm01202614_m1 Stomach and duodenum

Sst NM_009215.1 Mm00436671_m1

Ghrl NM_001286404.1 Mm00612524_m1

Gast NM_010257.3 Mm00439059_g1 Stomach

Lepr NM_001122899.1 Mm00440181_m1

Pga5 NM_021453.4 Mm01208256_m1

Gip NM_008119.2 Mm00433601_m1 Duodenum

Gcg AF276754.1 Mm00801714_m1

Cck NM_031161.4 Mm00446170_m1

Pro-/Anti- inflammatory response TNFα NM_013693.3 Mm99999068_m1 Liver, stomach, duodenum

Il-6 NM_031168.1 Mm00446190_m1

Il-17a NM_010552.3 Mm00439619_m1

Crp NM_007768.4 Mm00432680_g1 Liver

Gpx1 NM_008160.6 Mm00656767_g1

Gpx2 NM_030677.2 Mm00850074_g1 Stomach and duodenum

18s was used as a reference gene for the calculation of relative expression ratios (R), using the following formula: R = 2-(Ct(test RNA)-Ct(18S RNA)). All relative 
expression ratios were further normalized against the average value shown by night-fed males at the food anticipation timepoint (Fig 1, point “A”) on the 
3rd day after the feeding shift.

https://doi.org/10.1371/journal.pone.0332295.t001

https://doi.org/10.1371/journal.pone.0332295.t001
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Fig 2.  Physiological effects of time-restricted feeding. A: Post-feeding weights were normalized to individual pre-food entrainment (pre-TRF) values. 
Mean (95% CI) shown, n = 90 mice per sex at pre-TRF, week 1 and week 2; week 3 n = 30 mice per sex; week 4 n = 15 mice per sex. Two-way ANOVA 
with Šidák’s multiple comparison test, showing differences between the night-fed group and other TRF regimes on each sacrifice week, *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001. B: Differences in recorded sacrifice weights. Values normalized to individual pre-TRF values. C: Fasting glucose 
values recorded at food anticipation timepoint. D: Transepithelial electrical resistance (TEER) in the ileum, recorded at food intake timepoint. B to D: 
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on each sacrifice day and the differences between values recorded on various sacrifice days within the same feeding 
group are shown in the figure.

To show gene expression differences between male and female mice, normalized expression ratios of mice repre-
senting the same feeding group, sacrifice timepoint, and sex were pooled together and shown as a tile within a heatmap. 
Fold changes in gene expression were shown as Log2 values. To further demonstrate the differences in gene expres-
sion between the food anticipation, intake, and postprandial period (=timepoint-specific differences), the nonparametric 
Kruskal-Wallis test was used together with Dunn’s multiple comparison test (food anticipation timepoint vs food intake or 
vs postprandial period). The p-values were shown as: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ***p ≤ 0.0001. Differences in gene 
expression introduced by the 4 h feeding shift were assessed with the same statistical test, comparing values between 
shifted and non-shifted groups at the same timepoint (e.g., night-fed postprandial vs shifted night-fed postprandial). The 
p-values were shown as: £p ≤ 0.05, ££p ≤ 0.01, £££p ≤ 0.001, ££££p ≤ 0.0001.

Results

Time-restricted feeding impacts weight gain, fasting glucose levels, and intestinal permeability in a sex-specific 
manner

To determine how feeding time affects various physiological parameters, we first recorded the baseline (pre-TRF) weights 
of all experimental mice (180 males and 180 females). One day later, we placed mice on TRF, starting at either ZT12 
(night-fed, NF) or ZT0 (day-fed, DF), with feeding restricted to 8 h in 24 h period. After 14 days half the mice from each 
group underwent additional 4 h feeding delay (to ZT16 or ZT4, forming shifted night-fed, SNF and shifted day-fed, SDF 
groups, respectively). This approach enabled us to study time-of-feeding effects and shift-induced responses across 
sexes (Fig 1).

Weight gain

The experimental weights were related to their pre-TRF values and expressed as a change in percentage (%) over time. 
Weight gain in the NF group was used as a control value, allowing the determination of the impact of lights-on feeding and 
delay shifts; moreover, this regimen is also the closest to the natural food intake pattern in mice [85].

We observed TRF- and sex-specific differences in weight gain. NF females gained the most weight, while night-fed 
males gained the least (Fig 2A, in grey). In contrast, feeding during the light-on phase (DF, SDF) suppressed weight gain 
in females, but increased it in males, especially when feeding start was shifted to ZT4 (SDF) (Fig 2A, yellow and orange). 
Male mice were overall more responsive to 4 h food delay shifts, with both resulting in a significant increase in weight gain. 
However, weight gain differences between TRF regimes in both sexes, tended to lessen over time, with only SDF mice 
showing significantly different weight gain by week 4.

The bodyweight was also recorded at each sacrifice timepoint: food anticipation (after 16 h fast, when mice expect to be 
fed, Fig 1, “A”), food intake (4 h after food was added, Fig 1, “F”) and postprandial period (4 h after food was removed, Fig 
1, “P”) on all sacrifice days. The earliest sacrifice was performed on Day 3 after the delayed feeding shift (Day 3), followed 
by sacrifices on Day 7 and Day 14.

We then compared the sacrifice weights to pre-TRF values (Fig 2B, blue dashed line) and observed that DF and 
SDF mice, especially females, showed higher weight loss at the food anticipation timepoint, with some even reaching or 

Mean (SD) shown, n = 5 mice per sex per timepoint. Two-way ANOVA with Dunnett’s multiple comparison test, showing differences between the night-
fed group and other TRF regimes on each sacrifice day and differences between various sacrifice days (Day 3 as a control) within each feeding group, 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

https://doi.org/10.1371/journal.pone.0332295.g002

https://doi.org/10.1371/journal.pone.0332295.g002
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dipping below the pre-TRF weights. In male mice, this effect disappeared under longer entrainment (Fig 2B, top panel, 
Food anticipation). Weights at the food intake timepoint (Fig 2B, Food intake) tended to increase over time for all TRF 
regimes, especially in male mice.

Weights during the postprandial period (Fig 2B, Postprandial) did not differ between TRF regimes, suggesting similar 
rates of weight loss after 4h fasting.

Blood glucose

Fasting blood glucose was measured at the food anticipation timepoint (Fig 1, “A”). We observed that female DF and male 
SDF mice showed significantly lower fasting blood glucose levels on Day 3, when compared to their NF counterparts (Fig 
2C). However, these differences disappeared by Day 14 post-shift, suggesting metabolic adaptation. Interestingly, delay-
ing the food intake until the late lights-on phase (SDF) quickly restored the blood glucose levels in female mice to NF-like 
values (Fig 2C, grey vs orange vs yellow).

Intestinal barrier function (TEER)

Ileum from mice sacrificed during the food intake timepoint (Fig 1, “F”) was used to determine TEER that reflects 
intestinal epithelial resistance. All feeding groups, independently of sex, showed similar TEER values on sacrifice 
Day 3 (Fig 2D, Day 3). However, TEER increased significantly in NF male mice over time, indicating improved barrier 
integrity under nighttime feeding. In contrast, SDF in both sexes and DF in male mice led to a significant decrease by 
Day 14 (Fig 2D, Day 14), implying that feeding during the lights-on phase leaves a detrimental impact on intestinal 
permeability.

Feeding time alters gene expression in the digestive system in an organ- and sex-specific manner

To assess the molecular impact of TRF, we examined the expression of genes involved in the molecular clock, nutrient 
metabolism, and immune response in the liver, stomach, and duodenal mucosa. Tissue samples were collected from all 
experimental animals on sacrifice days 3, 7, and 14 (post-shift), at three physiologically meaningful timepoints: food antic-
ipation, food intake, and postprandial period (Fig 1, “A”, “F” and “P”, respectively). Gene expression was first normalized 
against the housekeeping gene 18s and then to the expression level in NF male mice at the food anticipation timepoint on 
sacrifice Day 3. Afterwards, the data from each experimental group (same sex, sacrifice day, and timepoint) was pooled 
and shown as a single tile within the heatmap.

Gene expression responses fell into three broad categories: (1) non-responsive, (2) timepoint-specific, and (3) 
shift-specific. Time-point specific changes were classified as significant changes in expression between food anticipa-
tion and one of the other timepoints within the same TRF group (shown as *p). Shift-specific changes were defined as 
expression differences between shifted and unshifted groups at matched ZTs (shown as $p). It is important to note that our 
chosen sampling resolution did not allow assessment of rhythmic parameters like phase or amplitude; thus, we cannot 
describe circadian rhythmicity per se.

Food-driven regulation of Bmal1 and Clock is organ-specific

To investigate whether the timing of food intake affects the expression of core clock genes, we analysed Bmal1 and 
Clock expression in the liver, stomach, and duodenum. We observed that only Bmal1, but not Clock, showed consis-
tent, significant differences across food anticipation, feeding and/or postprandial timepoints in both sexes and all tested 
organs (Fig 3, *p).

It has been shown that in ad libitum fed mice, Bmal1 expression in the liver typically peaks during the late dark phase 
(between ZT20 and ZT0) [73]. We observed higher expression of the hepatic Bmal1 at the food intake or postprandial 
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Fig 3.  Changes in Bmal1 and Clock expression in male and female mice under TRF. Sample collection timepoints shown at the top: A = food 
anticipation, F = food intake, P = postprandial period. Feeding conditions shown on the left: NF = night-fed (ZT12 – ZT20), SNF = shifted night-fed (ZT16 – 
ZT24), DF = day-fed (ZT0 – ZT8), SDF = shifted day-fed (ZT4 – ZT12). Relative gene expression values (Log2) were normalized to NF male mice on sac-
rifice day 3 at the food anticipation timepoint and pooled by sex, timepoint, and sacrifice day. The mean value of each experimental group is shown as an 
individual tile (n = 4-5 mice). Non-parametric Kruskal-Wallis test with Dunn’s multiple comparison test used to show timepoint-specific (food anticipation 
vs intake or vs postprandial period) differences in gene expression on each sacrifice day, *p < 0.05, **p < 0.01, ***p < 0.001. The same test was used to 
assess shift-specific differences (non-shifted vs shifted) at each timepoint, $p < 0.05, $$p < 0.01.

https://doi.org/10.1371/journal.pone.0332295.g003

https://doi.org/10.1371/journal.pone.0332295.g003
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timepoint under all tested TRF regimes, consistent with food-responsive regulation, as these occurred at different and 
sometimes opposite ZTs (Fig 1). Although some timepoint-specific responses were present for the hepatic Clock gene, 
they were less consistent.

In contrast, Bmal1 expression in the stomach and duodenum responded poorly to daytime feeding (Fig 3). In DF and 
SDF groups expression levels were more uniform across timepoints or diminished over time. However, in NF and SNF 
mice of both sexes, Bmal1 expression in these organs was increased at the postprandial timepoint. The Clock gene 
showed little variation across timepoints, consistent with previous findings that this gene is not strongly responsive in the 
stomach [53].

The 4 h feeding delay had a minimal and inconsistent effect on Bmal1 or Clock expression, with only occasional differ-
ences appearing between shifted and non-shifted groups (Fig 3, differences shown as $p). Notably, DF and SDF led to a 
reduction in hepatic Bmal1 and Clock expression, while in the stomach and duodenum the opposite effect was observed 
(Fig 3).

Sex-specific differences in gene expression patterns were also present. In some cases, for example, for Bmal1 and 
hepatic Clock under NF or SNF, female mice showed early (Day 3 post-shift) timepoint-specific differences that weakened 
over time, while males developed more persistent responses over time.

Food intake during the lights-on phase downregulates hepatic gene expression

Similar to our observations with Bmal1, the expression of hepatic genes related to nutrient metabolism and inflammatory 
responses was generally lower in both male and female DF and SDF mice (Fig 4). Although timepoint-specific differences 
were present for multiple genes, not all showed consistent responses to the tested TRF regimes, suggesting a limited 
effect of food intake timing on hepatic gene regulation.

Unexpectedly, Pparαand Srebf1, the principal transcription factors regulating hepatic lipid metabolism [86] and previ-
ously observed to respond to TRF [47,87], showed only sporadic timepoint-specific changes (Fig 4, *p). The most notable 
effect was downregulation of Pparα in SNF females at the postprandial timepoint, observed on multiple sacrifice days. The 
4h food intake delay also led to only minor changes, with some gene upregulation in SNF males over prolonged entrain-
ment (Fig 4, $p).

However, not all nutrient metabolism genes were unresponsive to TRF. Genes encoding fatty acid synthase (Fasn), 
glycogen synthase (Gys2), and nicotinamide adenine dinucleotide (NAD+) biosynthetic enzyme (Nampt) showed 
clear food-timing-induced expression changes, similar to observations before [47]. Expression of genes encoding 
phosphoenolpyruvate carboxykinase (Pepck) and fibroblast growth factor 21 (Fgf21) were modulated by TRF as well 
(Fig 4, *p). While DF and SDF triggered some timepoint- and sex-specific responses for these genes, the most consis-
tent effects in both sexes were observed for SNF. In contrast, Fgf21 was strongly downregulated at food intake and/or 
postprandial timepoint under all TRF regimes, especially under longer entrainment. Given the role of Fgf21 in nutrient 
and energy homeostasis and its known induction during fasting [88], this expression pattern may reflect an adaptation 
to the daily 16 h fast, persistently peaking during food anticipation, regardless of when feeding occurs within the light-
dark cycle.

The response of inflammatory markers to food intake timing was less clear. TNFαshowed an inconsistent upregulation 
at the food intake timepoint under SNF and SDF, and Gpx1 displayed no timepoint-specific pattern.

Sex-specific differences followed a pattern similar to that already seen with clock genes. Females often showed early 
timepoint-specific differences that diminished or disappeared over time, while males showed delayed but more persistent 
gene expression changes (Fig 4., e.g., Fasn, Pepck, Gys2, Nampt). Male mice were also more likely to alter their gene 
expression in response to the feeding shift, especially after the 4-hour delay during the dark phase (SNF vs NF, $p, see 
Fig 4: Pparα,Srebf1,Fasn, Cyp7α1, Mttp, Gys2).
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Fig 4.  Hepatic gene expression changes in male and female mice under TRF. Sample collection timepoints shown at the top: A = food anticipation, 
F = food intake, P = postprandial period. Feeding conditions shown on the left: NF = night-fed (ZT12 – ZT20), SNF = shifted night-fed (ZT16 – ZT24), 
DF = day-fed (ZT0 – ZT8), SDF = shifted day-fed (ZT4 – ZT12). Relative gene expression values (Log2) were normalized to NF male mice on sacrifice 



PLOS One | https://doi.org/10.1371/journal.pone.0332295  September 10, 2025 14 / 26

TRF fails to elicit gene responses in the stomach

As a part of the digestive tract, the stomach is directly exposed to ingested food and has been shown to synchronize 
certain hormonal responses with mealtime [89]. In our study, gastric gene expression was largely unresponsive to TRF 
(Fig 5), similar to findings in rats [57]. The most consistent observation was an overall upregulation of gene expression 
(independently of the timepoints) under lights-on feeding conditions (Fig 5, DF, SDF), mirroring the pattern seen in gastric 
Bmal1 (Fig 3).

Despite the absence of stable and continuous TRF-induced changes across TRF conditions, several genes exhib-
ited similar response patterns. In DF males on Day 14, a group of genes encoding major GI hormones, their pre-
cursors or receptors (Ghrl, Pga5, Tph1 and Lepr), or (anti-)inflammatory markers (Gxp2, Il-6, TNFα) or transcription 
factor Pparα were downregulated at the postprandial timepoint, and showed partial overlap in other timepoint-specific 
changes (Fig 5, *p).

Gene encoding gastrin (Gast), a hormone stimulating gastric acid release and gastric mucosal growth [90], showed 
highly variable expression patterns, with inconsistent changes across TRF regimes and sacrifice days. Although Pparα 
has been implicated in Gast regulation [91,92]; we observed no similarities between their gene expression responses to 
TRF.

An unexpected observation was the strong timepoint-specific regulation of Pepck, encoding a rate-limiting enzyme for 
gluconeogenesis. Downregulation of this gene at food intake timepoint was seen in SNF males and females, as well as in 
NF females and DF/SDF males after extended TRF (Fig 5). There is no evidence for gastric gluconeogenesis (it has been 
shown to happen in the small intestine, though [93,94]), however, Pepck has been proposed to play a role also in the 
regulation of the TCA cycle flux [95] and nutrient processing [96]. Its regulation in the stomach may therefore reflect food-
driven adaptation of local metabolic functions beyond gluconeogenesis.

Food delay-induced gene expression changes were uncommon and inconsistent (Fig 5, $p). The lack of clear timepoint- 
or shift-specific regulation in both sexes precluded detection of any sex-specific trends.

Duodenal genes involved in nutrient metabolism respond to food entrainment

The duodenum plays a central role in nutrient digestion and absorption; thus, it is reasonable to expect its gene expres-
sion to be responsive to feeding time and nutrient-related cues. Indeed, genes involved in glucose and amino acid uptake 
and/or metabolism showed clear responsiveness to TRF (Fig 6). As observed in the stomach, daytime feeding led to an 
overall upregulation of gene expression. Similarly, genes encoding GI hormones or their precursors (Cck, Gip, Ccg, Tph1) 
remained largely unresponsive to TRF (Figs 5,6).

Genes encoding large amino acid (B0at1), peptide (Pept1) and glucose (Sglt1) transporters, a sweet taste receptor 
(Tas1r2), an anti-inflammatory marker (Gxp2), a gluconeogenesis regulator (Pepck), and a transcription factor (Pparα) all 
showed similar timepoint-specific changes in expression (Fig 6, *p). Most of these genes were predominantly downreg-
ulated during food intake and/or postprandial timepoint under NF and SNF in both sexes. Interestingly, while daytime feed-
ing (DF) did not always lead to timepoint-specific regulation (especially in females), the shifted DF regime (SDF) elicited 
similar expression patterns as NF, suggesting better alignment to food availability. It is also interesting that besides Bmal1, 
Pepck stood out as the only gene responding to TRF in all tested organs and both sexes. Such robust food-associated 
regulation may reflect a broader role of Pepck in nutrient metabolism, beyond its canonical gluconeogenic function.

day 3 at the food anticipation timepoint and pooled by sex, timepoint, and sacrifice day. The mean value of each experimental group is shown as an 
individual tile (n = 4-5 mice). Non-parametric Kruskal-Wallis test with Dunn’s multiple comparison test used to show timepoint-specific (food anticipation 
vs intake or vs postprandial period) differences in gene expression on each sacrifice day, *p < 0.05, **p < 0.01, ***p < 0.001. The same test was used to 
assess shift-specific differences (non-shifted vs shifted) at each timepoint, $p < 0.05, $$p < 0.01.

https://doi.org/10.1371/journal.pone.0332295.g004

https://doi.org/10.1371/journal.pone.0332295.g004
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Fig 5.  Gene expression changes in the stomach of male and female mice under TRF. Sample collection timepoints shown at the top: A = food 
anticipation, F = food intake, P = postprandial period. Feeding conditions shown on the left: NF = night-fed (ZT12 – ZT20), SNF = shifted night-fed (ZT16 
– ZT24), DF = day-fed (ZT0 – ZT8), SDF = shifted day-fed (ZT4 – ZT12). Relative gene expression values (Log2) were normalized to NF male mice on 
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Sex-specific changes were evident as well. Female mice often maintained or enhanced timepoint-specific gene expres-
sion changes during prolonged NF, while male mice showed stronger and more uniform responses under prolonged DF 
and SDF. Males also appeared to be more sensitive to mealtime delay shifts, especially in the SNF group, around Day 
7 post-shift (Fig 6, $p). Some early changes (e.g., anticipatory upregulation of B0at1, Cck, Gip, Tph1, and Glut2) were 
observed in SDF females, but did not persist over time.

Taken together, our findings demonstrate that food timing significantly influences gene expression in the liver, stomach 
and duodenum, in highly sex- and organ-specific manner. While certain genes can adapt to feeding schedules, there was 
little evidence of synchronized regulation across the tissues, even under prolonged TRF. The stomach remained particu-
larly resistant to adapting its gene expression to TRF, despite its direct exposure to food, while duodenal responses were 
more robust, but still inconsistent across sexes and food intake regimes.

Generally, male mice displayed stronger and more sustained responses and were more sensitive to mealtime shifts. 
In contrast, females often exhibited earlier but less stable adaptation. Our study highlights the complexity of food-driven 
regulation in peripheral tissues and stresses the need for integrative TRF studies examining multiple organs, sexes and 
entrainment durations in parallel.

Discussion

This study describes how food intake time affects weight gain, fasting glucose levels, intestinal permeability, and the 
expression of genes involved in the molecular clock, nutrient metabolism, and inflammatory processes in the digestive 
system of male and female mice. We utilized a TRF model to limit the food consumption to 8 h in a 24 h period, with the 
initial experimental groups starting their feeding period either at ZT12 (NF) or ZT0 (DF). After 14 days of entrainment, food 
intake time was delay shifted by 4 h for half of the mice (Fig 1), creating two new experimental groups: SNF (ZT16 start) 
and SDF (ZT4 start). NF male mice were used as a control group to evaluate the impact of shifting the feeding window 
and to highlight the sex-specific differences.

TRF impact on weight gain, glucose levels, and intestinal permeability

Observed changes in physiological parameters (relative to the NF group) during the full food entrainment period have 
been summarized in Table 2.

Our data reveal the presence of sex-specific responses to TRF, especially regarding weight gain. When mice were fed 
during the lights-on phase (DF, SDF), weight gain slowed in females, but increased in males. Delay shifting the mealtime 
by 4 h, independently of the light-dark phase, led to a further weight gain increase in males (Fig 2A). Struggle for DF and 
SDF females to retain weight was also highlighted by the 16 h fasting period, leading to the lowest weights at the food 
anticipation timepoint (Fig 2B). Weight gain in DF and daytime-snacking male mice has been observed before [48,97,98], 
aligning with our observations; however, we are unaware of studies looking at weight gain in female mice under TRF. 
It has been observed that, under light phase feeding, the majority of physical activity still occurs during the dark phase 
[99–101], therefore, further measurements of locomotion and, ideally, firing rates within the central clock neurons would be 
needed to determine if DF and SDF females stay more active during the dark phase when no food is available to replenish 
the lost calories. TRF-induced sex-specific changes in food intake could also explain the observed differences, measuring 
individual consumption would be necessary to properly interpret the weight gain data reported here.

sacrifice day 3 at the food anticipation timepoint and pooled by sex, timepoint, and sacrifice day. The mean value of each experimental group is shown 
as an individual tile (n = 4-5 mice). Non-parametric Kruskal-Wallis test with Dunn’s multiple comparison test used to show timepoint-specific (food antic-
ipation vs intake or vs postprandial period) differences in gene expression on each sacrifice day, *p < 0.05, **p < 0.01, ***p < 0.001. The same test was 
used to assess shift-specific differences (non-shifted vs shifted) at each timepoint, $p < 0.05, $$p < 0.01, $$$p < 0.001.

https://doi.org/10.1371/journal.pone.0332295.g005

https://doi.org/10.1371/journal.pone.0332295.g005
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Fig 6.   Duodenal gene expression changes in male and female mice under TRF. Sample collection timepoints shown at the top: A = food anticipa-
tion, F = food intake, P = postprandial period. Feeding conditions shown on the left: NF = night-fed (ZT12 – ZT20), SNF = shifted night-fed (ZT16 – ZT24), 
DF = day-fed (ZT0 – ZT8), SDF = shifted day-fed (ZT4 – ZT12). Relative gene expression values (Log2) were normalized to NF male mice on sacrifice 
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Fasting blood glucose levels also showed sex-specific adjustment to TRF. DF in female mice and SNF in male mice led 
to a significant decrease in fasting blood glucose levels, although these differences disappeared under longer entrainment 
(Fig 2C). This data contradicts previous observations of DF inducing higher fasting blood glucose [102], and suggests that 
glucose levels can normalize over long-term food entrainment. However, result interpretation would greatly benefit from 
measuring individual food intake and glucose levels at other timepoints.

Not much is known about TRF-driven changes in intestinal barrier function and epithelial resistance. Studies in this 
area often use disease models and have revealed that dark-phase TRF preserves intestinal integrity in mouse colitis 
model [103]. Our NF male mice also showed a significant increase in TEER over time (Fig 2D), complementing these 
observations. In contrast, circadian misalignment, caused by changes in the LD cycle and ‘wrong-time eating’, has been 
shown to downregulate the expression of tight junction proteins, increasing intestinal permeability [104,105] and contrib-
uting to inflammatory bowel disease (for a review, see [106]). We also observed a significant decrease in TEER under 
prolonged SDF of both sexes and DF of males when food- and light-driven regulation would be misaligned (Fig 2D). Fur-
ther measurements of expression of tight junction proteins and their upstream effectors (such as AMPK [107]), changes in 
microbiota, and TEER during acute fasting-refeeding (although fasting alone seems to have no effect on ileal permeability 
[108]) would aid in explaining how TRF regulates intestinal barrier function.

Hepatic, gastric, and duodenal gene expression in response to TRF

Overall, we observed three distinct gene expression responses to food intake time, summarized in Table 3. For a gene to 
be classified as non-responsive, it had to show only one significant timepoint- or shift-specific expression difference for the 
whole duration of the experiment. Interestingly, although it was possible for genes to simultaneously show both timepoint- 
and shift-specific changes, they seemed to occur independently from each other.

Our data (Figs 3-6) led to three major conclusions: 1) digestive organs show different rates of adaptation to TRF; 2) DF 
leads to an overall gene downregulation in the liver and upregulation in the stomach and duodenum when compared to 
NF; 3) male and female mice can exhibit opposite timepoint-specific gene expression patterns, with males more likely to 
also develop shift-specific responses.

Organ- and tissue-specificity in gene expression has been observed before, with surprisingly little similarity in their 
patterns, even if the tested genes are ubiquitously expressed and exposed to the same conditions and external cues 
[8,30,67,68,109–111]. This is similar to our observations, where the same gene showed timepoint-specific differences in 
one organ, but not in the others (e.g., Pparα), and genes within the same signaling pathway responded differently across 

Table 2.  Cumulative changes in physiological parameters relative to the NF group.

Feeding group Weight gain Fasting blood glucose TEER

Females Males Females Males Females Males

Night-fed (NF) highest lowest No change over time – Increases over time

Shifted night-fed (SNF) – early ↑ , then - – early ↓ , then - – –

Day-fed (DF) early ↓ , then - – – – – ↓

Shifted day-fed (SDF) ↓ ↑ early ↑ , then - – ↓ ↓↓

https://doi.org/10.1371/journal.pone.0332295.t002

day 3 at the food anticipation timepoint and pooled by sex, timepoint, and sacrifice day. The mean value of each experimental group is shown as an 
individual tile (n = 4-5 mice). Non-parametric Kruskal-Wallis test with Dunn’s multiple comparison test used to show timepoint-specific (food anticipation 
vs intake or vs postprandial period) differences in gene expression on each sacrifice day, *p < 0.05, **p < 0.01, ***p < 0.001. The same test was used to 
assess shift-specific differences (non-shifted vs shifted) at each timepoint, $p < 0.05, $$p < 0.01.

https://doi.org/10.1371/journal.pone.0332295.g006

https://doi.org/10.1371/journal.pone.0332295.t002
https://doi.org/10.1371/journal.pone.0332295.g006


PLOS One | https://doi.org/10.1371/journal.pone.0332295  September 10, 2025 19 / 26

tissues (e.g., hepatic Fgf21 vs. its upstream regulator [112] Pparα). In contrast, Pepck (encodes a rate-limiting enzyme in 
gluconeogenesis), showed a consistent timepoint-specific pattern in all organs, especially under SNF (Figs 4–6), suggest-
ing some degree of coordination in food-driven responses. Overall, our findings indicate that TRF alone does not synchro-
nize timepoint-specific gene expression across the digestive system, at least not under the tested conditions.

A major impact of TRF, spanning across two organs and all tested genes in both sexes, was the overall directional 
change in baseline gene expression: an overall upregulation in the stomach and duodenum and downregulation in the 
liver under DF and SDF (Figs 4–6). This observation aligns with another study [111] that observed similarities between 
TRF-specific up- and down-regulation patterns in murine stomach and jejunum, but not in liver. However, as more focus 
is put on phase shifts and rhythm dampening, such responses have been rarely described and discussed in the literature, 
although they have been observed (see gene expression patterns shown in [67])

Some of these effects could stem from fasting, which also alters gene expression in an organ-specific manner [113], 
however, the contribution of food timing per se remains unknown. Further studies under constant conditions, applying 
acute fasting and TRF, would be necessary to distinguish fasting- and TRF-driven responses.

Although sex-specificity in circadian behaviors has been described (reviewed in [114]), sex-specificity in responses 
to feeding time (or any other peripheral Zeitgeber, for that matter) have been understudied. Studies profiling metabolites 
have identified sex-specific differences under TRF and other diets, especially in the liver [67,115,116]; other work has 
shown sex-specific metabolic, weight, energy expenditure, and appetite regulation during fasting and refeeding [117]. 
Our study extends these findings, showing not only overlapping timepoint-specific responses in both sexes but also 
marking sex-specific differences how gene expression profiles adapt over time and in response to specific TRF regimes. 
Long-term TRF studies with shift reversals and repetitions could further characterize the stability and flexibility of these 
sex-specific adaptations and their potential health implications, especially for human populations with irregular food intake 
patterns (e.g., shift workers and frequent overseas or long-distance travellers).

Limitations of the study

Lack of circadian sampling. A substantial limitation of our study is the absence of high-resolution circadian sampling, 
preventing an assessment and characterization of rhythmic parameters such as amplitude and phase. While this design 
choice limits conclusions about endogenous circadian regulation, our goal was to focus on food-driven responses under 
TRF, using three biologically relevant timepoints aligned to key feeding-related states (anticipation, intake, and postpran-
dial period). A strategic alignment of these states across different TRF regimes to shared ZTs allowed us to distinguish 

Table 3.  Summary of gene expression responses to food entrainment. Data pooled from all sacrifice days and TRF regimes.

Organ Non-responsive genes Timepoint-specific Shift-specific

Females Males Females Males

Liver Tas1r2
Pept1, B0at1
Il-17a, Il-6, Crp, Igf-1

Clock, Pepck, Mttp (males only), Srebf1 (males only)

Bmal1,
Glut2, Gys2,
Pparα, Fasn, Cyp7a1, Nampt, Fgf21, 
TNFα

Bmal1,
Glut2, Sglt1, Gys2,
Pparα, Fasn, Cyp7a1,
Gpx1

Stomach Tas1r2, Sglt1, Glut2
Pept1, B0at1
Mttp, Fasn, Cyp7a1
Il-17a

Bmal1, Clock, Pepck, Gast, TNFα

Pparα, Tph1, Lepr, Ghrl Il-6, Gpx2

Sst Il-6, Gpx2 Tph1 Pparα, Sst, Pga5, Ghrl

Duodenum Cyp7a1, Mttp, Fasn
Sst, Ghrl
Il-6, Il-17a

Tas1r2, Pepck

Bmal1, Sglt1, Glut2, Pept1, B0at1, 
Pparα, Gpx2

Gcg

Gcg Clock, Gip, Cck, Tph1, TNFα Glut2 Bmal1, Sglt1, Pept1, B0at1, Pparα, Gip, Cck, Tph1, TNFα

https://doi.org/10.1371/journal.pone.0332295.t003

https://doi.org/10.1371/journal.pone.0332295.t003
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feeding-driven gene expression from light-driven circadian cues, even with limited sampling. While this approach does 
not substitute for full circadian profiling, it was successful in providing novel insights into the adaptation of peripheral gene 
expression to feeding schedules in vivo.

Impact of oestrous cycle. Estrous cycle staging was not performed in this study due to logistical constraints. However, 
previous studies have shown that female mice do not exhibit greater variability than males in physiological, behavioural, or 
molecular traits, suggesting that estrous cycle monitoring may not be necessary for detecting robust sex-specific differ-
ences in these contexts [118–120].

Daily cage transfers. A potential limitation of our study is the daily cage transfer during the TRF, which could have intro-
duced mild handling-related stress, particularly in male mice, due to the re-establishment of social hierarchies. While ele-
vated corticosterone levels and anxiety-like behaviours have been reported with frequent cage changes [121], efforts were 
made to minimize stress by using consistent “food” and “empty” cages throughout the week and by transferring portions 
of nesting material and enrichment objects [122]. We prioritized this approach to reduce variability in food intake mea-
surements caused by spillage, which can be substantial in young mice [123]. Nonetheless, we acknowledge that stress 
responses may have influenced certain physiological outcomes and should be considered when interpreting the results.

Ambient temperature. Mice in this study were housed at standard laboratory conditions (22 ± 1 °C, 55–60% humidity). 
While these temperatures are common in research settings, they are below the thermoneutral zone for mice [124], which 
may influence metabolic homeostasis and the regulation of gene expression rhythms [125] in a sex-specific manner [126]. 
However, thermoneutrality has been reported to vary between the light and dark phases by approximately 4 °C [127], 
implying that achieving consistent thermoneutral conditions throughout the LD cycle would require dynamic temperature 
regulation.

Small group sizes. We used 5 mice per timepoint per sacrifice day per sex. Although the chosen sample size was 
small, post hoc tests (effect size/Cohen’s F) for randomly chosen parameters revealed enough power to detect large 
effects (q > 3.9) and sufficient power to detect moderate effects (3.9 > q > 2). However, to detect small effects (q < 2), our 
chosen statistical tests could have been underpowered, suggesting that our study could have benefited from larger group 
sizes.

Overall, our study demonstrates the complexity of TRF responses, which are sex, organ- and gene-specific, and 
depend on the duration of food entrainment. It also underscores the importance of including female subjects in TRF and 
other peripheral entrainment studies. To further unravel the interplay between food-, fasting- and light-driven contribu-
tions to food-entrainment, future studies under constant conditions with higher sampling frequency and inclusion of ad 
libitum-fed controls would be necessary. These would paint a more complete picture of how food intake timing influences 
peripheral gene expression, even in the absence of circadian rhythmicity assessment.
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