

RESEARCH ARTICLE

The influence of somatostatin analogues on the incidence of pancreatic fistulas and postoperative morbidity in patients undergoing pancreatic resection: A Bayesian network meta-analysis

Zonghao Hou^{1*}, Shengxiang Hou^{1*}, Zhixin Wang^{1,2}, Haijiu Wang^{1,2}, Manjun Deng^{1,3*}, Haining Fan^{1,2*}

1 Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, P. R. China, **2** Qinghai Research Key Laboratory for Echinococcosis, Qinghai, P. R. China, **3** Laboratory of Stem Cell and Regenerative Medicine, Affiliated Hospital of Qinghai University, Qinghai, P. R. China

* Shengxiang Hou and Zonghao Hou have contributed equally to this work.

* surgeon23@163.com (MD); fanhaining@medmail.com.cn (FH)

Abstract

OPEN ACCESS

Citation: Hou Z, Hou S, Wang Z, Wang H, Deng M, Fan H (2025) The influence of somatostatin analogues on the incidence of pancreatic fistulas and postoperative morbidity in patients undergoing pancreatic resection: A Bayesian network meta-analysis. PLoS One 20(9): e0331909. <https://doi.org/10.1371/journal.pone.0331909>

Editor: Kenji Fujiwara, Kimura Hospital, JAPAN

Received: January 29, 2025

Accepted: August 22, 2025

Published: September 19, 2025

Copyright: © 2025 Hou et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data availability statement: All relevant data are within the paper and its [Supporting Information](#) files.

Funding: This work was funded by the National Key Clinical Specialty Project for Hepatobiliary Surgery (Echinococcosis) at the Affiliated

Background

Pancreatic resection is a critical treatment for pancreatic cancer and other pancreatic diseases. Somatostatin analogs are commonly used to prevent complications following pancreatic resection, but their efficacy and safety remain debated.

Methods

Following PRISMA guidelines, a systematic search was conducted across multiple databases, including PubMed, EMBASE, Scopus, Cochrane Library, Ovid, ClinicalTrials.gov, Web of Science, CNKI, and WanFang Data. The search focused on studies comparing the use of somatostatin analogs after pancreatic surgery. Key outcomes included postoperative pancreatic fistula (POPF), clinically relevant POPF (CR-POPF), mortality, and morbidity. Statistical analysis was performed using a consistency model, calculating relative risk ratios (RR) with 95% confidence intervals (CI), and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) tool was used to assess the quality of evidence.

Results

In the absence of stratification based on the surgical procedure, For POPF prevention, pasireotide showed a relative risk (RR) of 0.46 (95% CI: 0.23, 0.87, Low) compared to placebo, and octreotide had an RR of 0.76 (95% CI: 0.66, 0.88, Moderate). Somatostatin and vaptoreotide showed no significant differences. In preventing CR-POPF, pasireotide had an RR of 0.46 (95% CI: 0.23, 0.86, Low), somatostatin

Hospital of Qinghai University (Project Number: Qinghai Health Commission - 125), as well as the 2022 Science and Technology Plan of Qinghai Science and Technology Department (Qinghai Provincial Key Laboratory for Echinococcosis Research). Funding was received by HF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

had an RR of 0.60 (95% CI: 0.36, 0.99, Moderate), and octreotide had an RR of 0.61 (95% CI: 0.39, 0.94, Moderate). Regarding postoperative mortality, varepreotide showed an RR of 0 (95% CI: 0.00, 0.29, Low), while octreotide, somatostatin and pasireotide did not demonstrate significant effects. For reducing morbidity, octreotide had an RR of 0.74 (95% CI: 0.66, 0.82, Moderate), somatostatin had an RR of 0.76 (95% CI: 0.66, 0.87, Moderate), varepreotide and pasireotide showed no significant effect. In Pancreaticoduodenectomy subgroup, somatostatin showed an RR of 0.22 (95% CI: 0.03, 0.84, Moderate) for preventing CR-POPF. For all the other outcomes, neither somatostatin nor octreotide proved effective.

Conclusion

While robust evidence confirms the efficacy of octreotide in preventing POPF, a critical concern regarding its inconsistent efficacy within the PD subgroup persists. This variability indicates that the overall clinical benefit of octreotide may be predominantly attributable to its utility in non-PD pancreatic resections.

Introduction

Pancreatic resection is the standard surgical procedure for treating pancreatic cancer and other pancreatic diseases. However, it is a complex operation that is often accompanied by severe postoperative complications and long-term challenges. Postoperative pancreatic fistula (POPF) is one of the most common and severe complications, with an incidence ranging from 13% to 41%. POPF occurs when pancreatic fluid leaks, leading to potentially severe outcomes such as sepsis and multiple organ failure [1,2]. It can also significantly impact patient prognosis by delaying adjuvant chemotherapy or reducing overall survival [3].

In recent years, somatostatin analogs have gained attention for their potential to prevent postoperative complications, especially POPF, following pancreatic resection. Previous studies have explored the effectiveness of somatostatin analogs in preventing POPF. For example, a phase II clinical trial demonstrated that somatostatin reduced the incidence of clinically relevant postoperative pancreatic fistulas compared to historical controls [4,5]. However, another study found that combining somatostatin analogues with corticosteroids did not significantly reduce the incidence of clinically relevant POPF (CR-POPF) in high-risk patients [6]. Additionally, a systematic review and meta-analysis concluded that while somatostatin analogs helped reduce postoperative morbidity and the incidence of POPF, they had no significant effect on mortality or hospital stay duration [7]. Despite these findings, the clinical application of somatostatin analogs remains controversial, suggesting that their efficacy in preventing complications after pancreatic resection may vary.

Given the variety of somatostatin analogs available for clinical use, robust evidence is needed to guide treatment decisions. A network meta-analysis of existing data can compare the efficacy of different interventions, synthesizing a broader range of evidence to provide deeper insights into their relative advantages and

disadvantages. Therefore, this study aims to systematically review and conduct a network meta-analysis to compare the efficacy of various somatostatin analogs in preventing short-term complications following pancreatic resection, offering valuable information for clinical practice.

Methods

Study design

This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the PRISMA-2020 Statement, as well as the PRISMA-Network Meta-Analysis (NMA) extension statement [8]. The study protocol was registered at PROSPERO (Registration No. CRD42025634241).

Literature search

A three-step search was conducted by three independent researchers to identify all potentially eligible studies published from database inception to November 23, 2024. First, a systematic search was performed across PubMed, Embase, Ovid, Web of Science, and the Cochrane Central Register of Controlled Trials. Predefined search terms included “randomized controlled trial,” “pancreas,” “pancreatic cancer,” “pancreatic surgery,” “somatostatin,” “somatostatin analogues,” “octreotide,” “lanreotide,” “pasireotide,” and “vapreotide” (specific search strategies are detailed in S2 Table in [S1 File](#)). Second, to maximize data availability, we also searched various clinical trial registration websites and professional journals (S3 Table in [S1 File](#)) for ongoing, unpublished, and potential trials. Relevant systematic reviews and guideline references were also considered. Reference management was done using EndNote 21 software, and duplicates were removed. There were no language restrictions, and studies for which full texts could not be obtained were excluded. The search was independently conducted by three researchers, and any disagreements were resolved through consultation with a fourth reviewer.

Data extraction and quality assessment

This study adhered to the PRISMA 2020 flowchart for the literature selection process. Three independent reviewers evaluated the titles, abstracts, and full texts to determine whether the studies met the inclusion and exclusion criteria based on the PICO (Population, Intervention, Comparison, Outcome) principles (S4 Table in [S1 File](#)). A fourth reviewer consolidated the results, and a fifth reviewer resolved any disagreements. Data extraction followed a standardized form based on the Cochrane Handbook for Systematic Reviews of Interventions [9]. This form collected details about the study’s authors, publication year, patient region, interventions, measurement methods, intervention duration, and all recorded clinical outcomes. For the purpose of facilitating image analysis and subsequent result interpretation, the placebo and blank control groups were consolidated. Two independent researchers entered the relevant data into electronic spreadsheets, and a third researcher conducted a final check to ensure accuracy. An expert group, consisting of five liver and biliary surgeons at the associate professor level or higher, was assembled to determine the key outcomes. The expert group agreed that postoperative pancreatic fistula (POPF) (according to the ISGPF definition) and clinically relevant POPF (CR-POPF) should be the primary outcomes, while mortality and morbidity rates were considered secondary outcomes.

Bias analysis and quality assessment

The quality of the included studies was assessed using the Cochrane Risk of Bias Tool (version 2.0) [10], based on five domains: risk of bias in the randomization process, bias from blinding implementation of randomized interventions [11], bias due to missing outcome data, bias in outcome measurement, and bias in the selection of reported results. Studies were classified as low risk if all five domains were rated as low risk, as high risk if at least one domain was

rated as high risk, and as unclear risk for the remaining studies. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) tool was used to assess the quality of evidence based on five factors: limitations, indirectness, inconsistency, imprecision, and publication bias. Evidence quality was rated from high to low: high, moderate, low, and very low. Initial GRADE ratings were high, with adjustments made according to the aforementioned factors. Inconsistency was assessed in terms of both heterogeneity and consistency, with potential downgrades of up to two levels, while other factors could only be downgraded by one level. Detailed information is provided in S5 Table in [S1 File](#). All study outcomes were independently assessed by two reviewers, with discrepancies resolved through consensus.

Statistical analysis

A network diagram was created using Stata 17.0 software to visually represent the relationships between different interventions. The size of the circles indicates the sample size of each intervention, while the width of the lines indicates the number of studies comparing those interventions. In some studies, the control group did not use a placebo, but for consistency in analysis and presentation, these control groups were treated as if they had used a placebo. Direct and indirect comparisons were conducted in a Bayesian framework using the Markov Chain Monte Carlo method. Statistical analysis was performed with R software (version 4.3.1) and JAGS software (version 4.3.1) for modeling. The “gemtc,” “rjags,” “openxlsx,” and “forestplotter” R packages were used for statistical analysis and data output. The model settings included 6 chains, an initial value of 2.5, 50,000 adaptation iterations, 200,000 simulation iterations, and a thinning factor of 10 to calculate estimates of combined sensitivity and specificity with 95% credible intervals (CIs). The final results were presented as risk ratios (RR). The convergence of the model was assessed using the R-hat value, where an R-hat value greater than 1.05 may indicate potential convergence issues. Bayesian network meta-analysis provided overall ranking probabilities for each intervention, allowing rankings from best to worst. Rankings were visualized using the surface under the cumulative ranking curve (SUCRA), where higher SUCRA values indicate a higher likelihood of being ranked better. Since heterogeneity is inevitably present between studies, node-splitting methods were used to assess local consistency by comparing direct and indirect comparisons, with p-values used to assess differences. If p-values in direct and indirect comparisons were greater than 0.05, heterogeneity was considered non-significant. A consistency model was then used for subsequent statistical analyses. Pairwise and network heterogeneity were evaluated using I^2 ; values above 50% indicated significant heterogeneity. Finally, forest plots were used for visualizing the results [12]. Funnel plots were also employed to assess publication bias [13].

Results

Search results

A total of 911 articles were identified through the search strategy. Of these, 539 were duplicates. After screening titles, keywords, and abstracts, 295 studies were excluded, leaving 77 articles for full-text review. Following the full-text review of these 77 articles, 53 were excluded for various reasons, as detailed in S6 Table in [S1 File](#). Ultimately, 24 studies involving 4050 participants were included in the analysis. The PRISMA flowchart of the literature search is shown in [Fig 1](#). These studies included 16 trials on octreotide [14–29], 7 trials on somatostatin [29–35], 1 trial on pasireotide [36], and 1 trial on vapreotide [37]. Within this cohort, the distribution of interventions across the included studies was as follows: 12 trials involved the Pancreaticoduodenectomy (PD) group, 10 trials examined the PD in conjunction with distal pancreatectomy (DP), 1 trial assessed Pancreas Transplantation, and 1 trial incorporated a group receiving both pylorus-preserving pancreaticoduodenectomy (PPPD) alongside PD and DP procedures. The main characteristics of the included studies are summarized in [Table 1](#). In terms of bias risk, 15 trials were classified as unclear risk and 9 trials as high risk according to the Cochrane Risk of Bias Tool, as detailed in S1 Fig in [S1 File](#).

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources

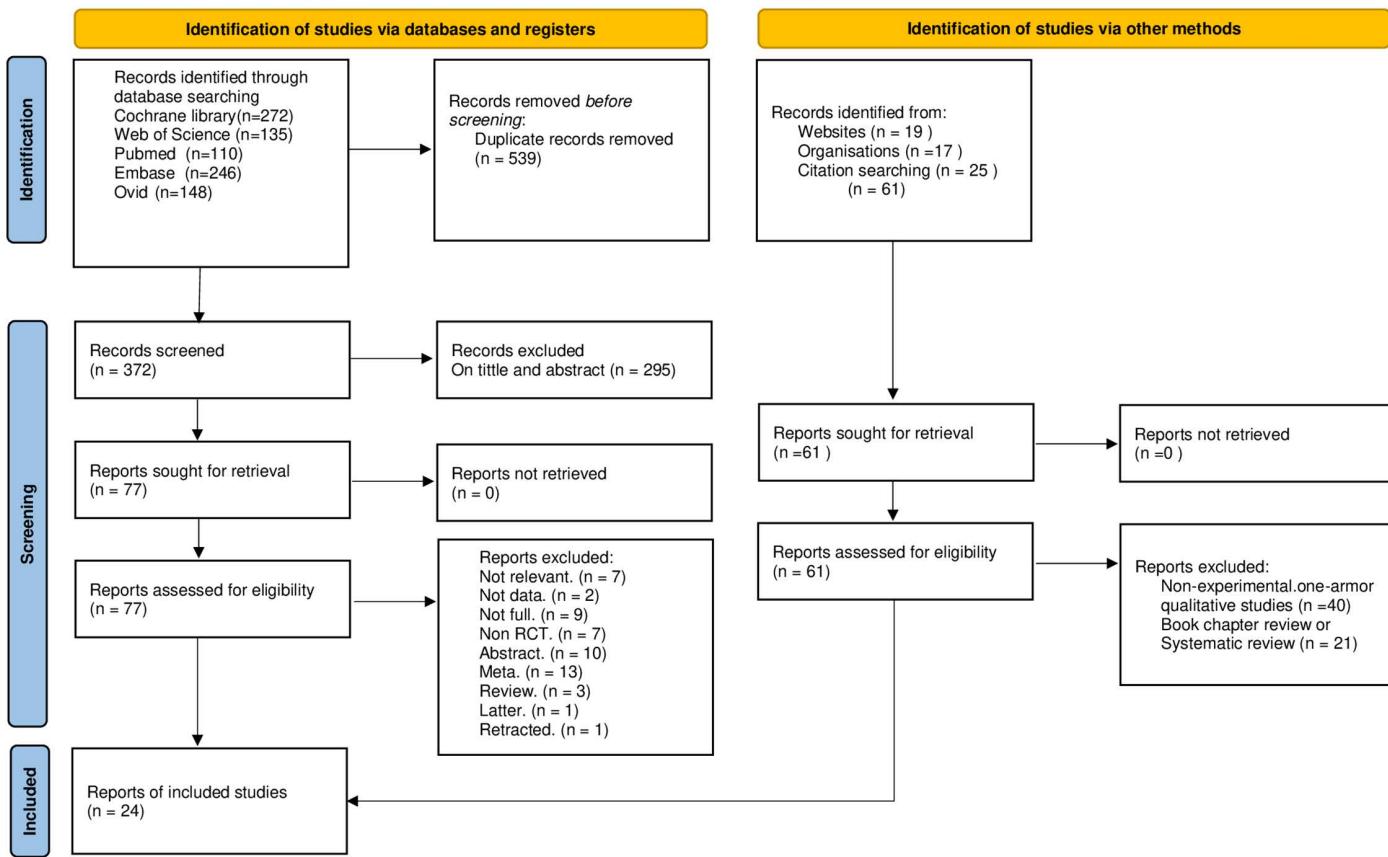


Fig 1. Literature search and selection flowchart.

<https://doi.org/10.1371/journal.pone.0331909.g001>

Network diagram

This study focused on four clinical outcomes. The network diagram (Fig 2) visually represents the relationships between different interventions. In the diagram, the width of the lines is proportional to the number of trials involved in each pairwise treatment comparison, while the size of the circles corresponds to the number of participants (sample size) randomly assigned to each intervention.

Network meta-analysis

Postoperative Pancreatic Fistula (POPF). POPF was reported in 22 studies involving 3,975 patients, with five different interventions included. As shown in Figs 3A, 4A, and 5A, analysis using a fixed-effect model revealed that pasireotide demonstrated a relative risk (RR) of 0.46 (95% CI: 0.23, 0.87) compared to placebo, with a SUCRA value of 0.97. Octreotide showed an RR of 0.76 (95% CI: 0.66, 0.88), with a SUCRA value of 0.73. Within the PD subgroup, octreotide showed an RR of 0.90 (95% CI: 0.73, 1.10), with a SUCRA value of 0.85. Somatostatin had an RR of 1.10 (95% CI: 0.83, 1.40), with a SUCRA value of 0.20. Somatostatin had an RR of 0.85 (95% CI: 0.71, 1.01), with a SUCRA value of 0.47, and vapreotide had an RR of 1.01 (95% CI: 0.67, 1.60), with a SUCRA value of 0.19.

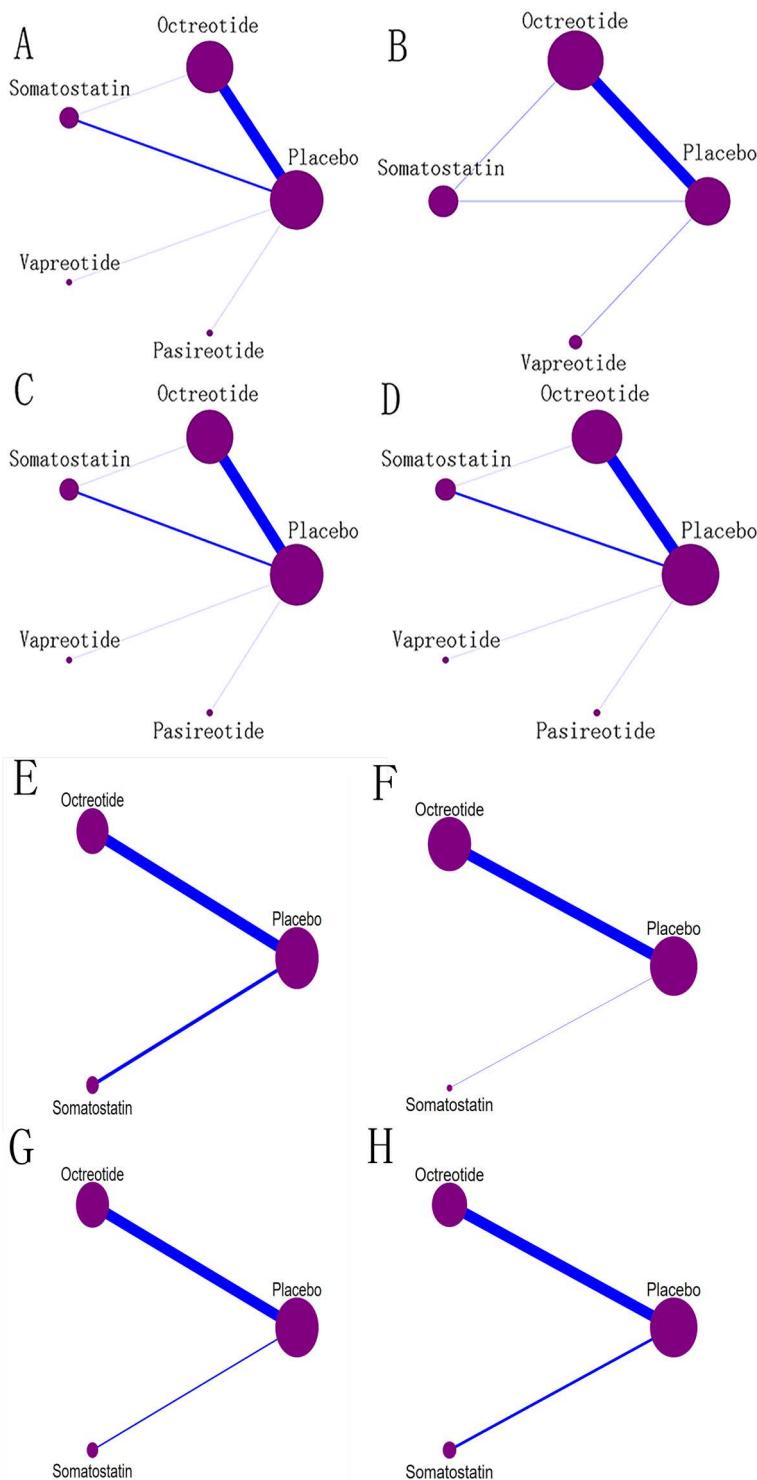
The overall heterogeneity was low ($I^2=34\%$), indicating good consistency among the included studies, which supports the reliability of the network meta-analysis results. Funnel plots did not show significant publication bias (S2 Fig A in S1 File).

Table 1. Characteristics of the included studies.

Study	Year	Drug.a	Drug.b	Somatostatin-analogue	Definition of POPF	Blinding	Surgery	Out-come	Risk of bias
Büchler [14]	1992	octreotide	placebo	Perioperative octreotide 100 µg 3 × day for 7 days	Amylase and lipase >3 times serum concentration, >3 days postop, >10 ml/h	Double	PD + DP	①③④	Unclear
Pederzoli [15]	1994	octreotide	placebo	Perioperative octreotide 100 µg 3 × day for 7 days	>10 ml/day for >4 days after POD 4, amylase >3 times normal	Double	PD + DP	①③④	Unclear
Friess [16]	1995	octreotide	placebo	Perioperative octreotide 100 µg 3 × day for 7 days	Amylase and lipase >3 times serum level, >3 days postop, >10 ml/h	Double	PD + DP	①③④	Unclear
Montorsi [17]	1995	octreotide	placebo	Perioperative octreotide 100 µg 3 × day for 7 days	>10 ml/day fluids exceeding 3 times normal serum amylase after POD 3	Double	PD + DP	①③④	Unclear
Lowy [18]	1997	octreotide	placebo	Perioperative octreotide 100 µg 3 × day for 5 days	drainage of amylase-rich fluid (>2.5 times the upper limit of normal for serum amylase) and clinical signs or the need of reintervention	Na	PD	①②③④	High
Benedetti [19]	1998	octreotide	placebo	Perioperative octreotide 100 µg 3 × day for 5 days	Na	Na	PT	③	Unclear
Yeo [20]	2000	octreotide	placebo	Perioperative octreotide 250 µg 3 × day for 7 days	>50 ml/day fluids exceeding >3 times normal serum value on or after day 10 or radiological signs of POPF	Double	PD	①③④	Unclear
Gouillat [30]	2001	somatosta	placebo	Perioperative somatostatin 250 µg/h for 7 days	>100 ml/day exceeding 5 times normal serum amylase after POD 3, persisting after POD 12 or in association with clinically relevant symptoms requiring surgery, drainage or intensive care	Double	PD	①②③④	Unclear
Shan [34]	2003	somatosta	placebo	Perioperative somatostatin 250 µg/h for 7 days	an elevation of serum amylase from POD 4, with morphologic evidence by CT, or laparotomy	Single	PD	①③④	High
Sarr [37]	2003	vapreotide	placebo	Perioperative vapreotide 600 µg 2 × day for 7 days	>30 ml/day, amylase or lipase >5 times normal	Double	PD + DP	①③④	Unclear
Suc [21]	2004	octreotide	NA	Perioperative octreotide 100 µg 3 × day for 10 days	Fluids exceeding >4 times normal serum level or any radiological signs of POFP	Single	PD + DP	①③④	High
Hesse [22]	2005	octreotide	NA	Perioperative octreotide 100 µg 3 × day for 7 days	>100 ml/day exceeding 5 times normal serum amylase after POD 3, persisting after POD 12 or in association with clinically relevant symptoms requiring surgery, drainage or intensive care	Open	PD + DP	①③④	High
Shan [33]	2005	somatostati	NA	Perioperative somatostatin 250 µg/h for 7 days	>10 ml/day fluids exceeding amylase >3 times serum level for >7 days	Na	PD	①③	Unclear
Kollmar [23]	2008	octreotide	placebo	Perioperative octreotide 100 µg 3 × day for 7 days	ISGPF	Double	PD	①③	Unclear
Kat-sourakis [31]	2010	somatostatin	NA	Perioperative somatostatin 250 µg/h for 7 days	amylase > 3 × plasma amylase after POD 3,	Open	PPPD+ PD + DP	①④	High
Fernández-Cruz [24]	2013	octreotide	placebo	Perioperative octreotide 100 µg 3 × day for 10 days	ISGPF	Na	PD	②③④	High

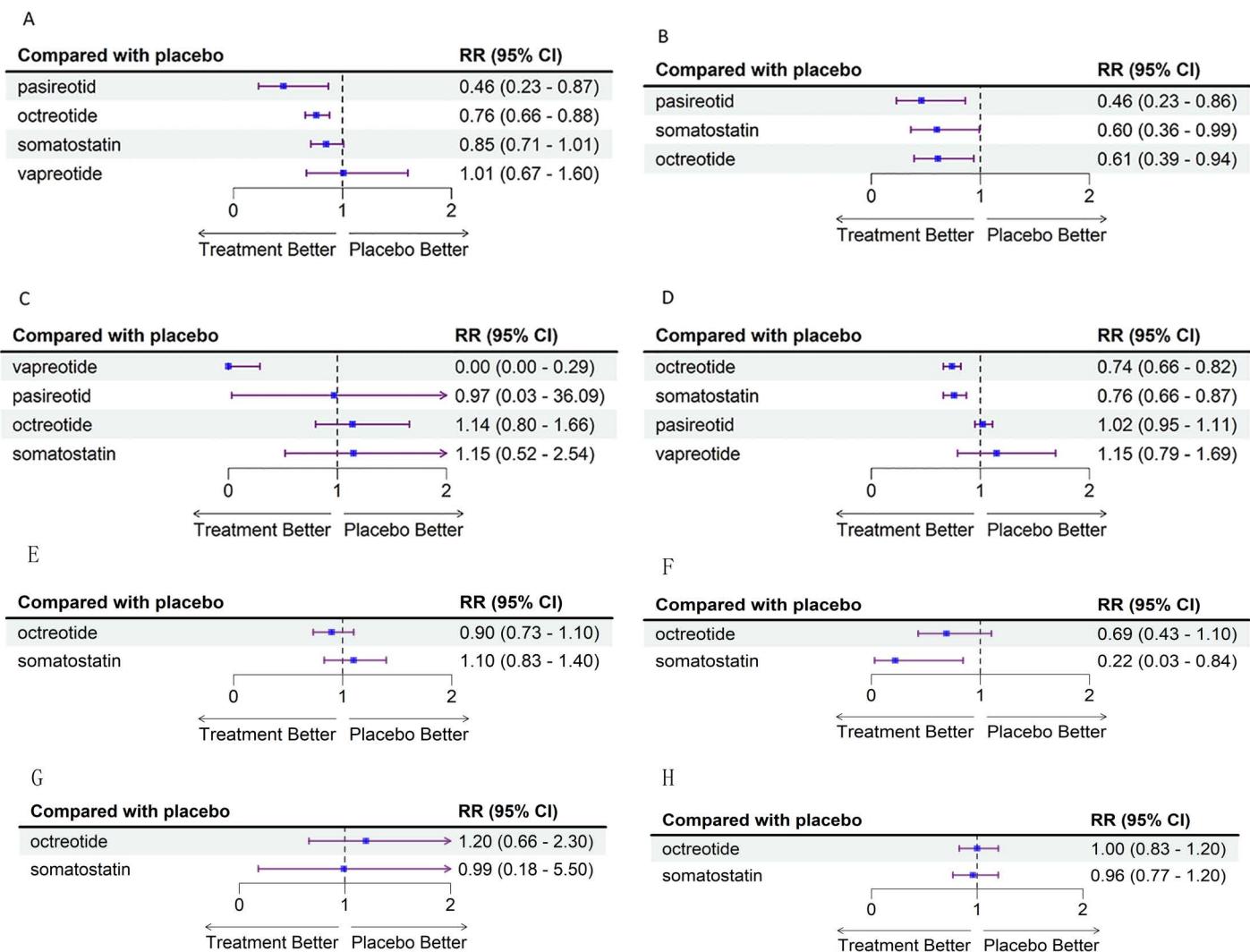
(Continued)

Table 1. (Continued)


Study	Year	Drug.a	Drug.b	Somatostatin-analogue	Definition of POPF	Blinding	Surgery	Out-come	Risk of bias
Kat-sourakis [35]	2013	somatostatin	NA	Perioperative somatostatin 250 µg/h for 6 days	ISGPF	Open	PD + DP	①③④	Unclear
Allen [36]	2014	pasireotide	placebo	Perioperative pasireotide 900 µg 2×day for 7 days	ISGPF	Double	PD + DP	①②③④	Unclear
Kurumbo [25]	2015	octreotide	NA	Perioperative octreotide 100 µg 3×day for 6 days	ISGPF	Open	PD	①②③④	High
Kong [26]	2016	octreotide	placebo	Perioperative octreotide 100 µg 3×day for 10 days	amylase> 3× plasma amylase after POD 3,	NA	PD	①②③④	Unclear
El Nakeeb [27]	2018	octreotide	placebo	Perioperative octreotide 100 µg 3×day until time of resumption of oral fluids intake	ISGPF	Na	PD	①②③④	Unclear
You [28]	2019	octreotide	NA	Perioperative octreotide 100 µg 3×day until time of resumption of oral fluids intake	Na	Single	PD	①②③	High
Cao [32]	2021	somatostatin	NA	Perioperative somatostatin 250 µg/h>120h	ISGPS	Na	PD	①③④	Unclear
Gaujoux [29]	2024	Somatostatin	Oct-reotide	Perioperative octreotide 100 µg 3×day for 10 days,somatostatin 250 µg/h for 6 days	ISGPF	Open	PD + DP	①②③④	High

PD: Pancreaticoduodenectomy; DP: Distal Pancreatectomy; PT:Pancreas Transplantation;PPPD:Pancreaticoduodenectomy. Outcome:①: postoperative pancreatic fistula;②: Clinical Relevant postoperative pancreatic fistula③: Mortality;④: Morbidity.

<https://doi.org/10.1371/journal.pone.0331909.t001>


Clinically Relevant Postoperative Pancreatic Fistula (CR-POPF). CR-POPF was reported in 9 studies involving 1,774 patients, with four interventions included. As shown in [Figs 3B, 4B](#), and [5B](#), analysis using a fixed-effect model revealed that pasireotide showed an RR of 0.46 (95% CI: 0.23, 0.86), with a SUCRA value of 0.84. Somatostatin had an RR of 0.60 (95% CI: 0.36, 0.99), with a SUCRA value of 0.59, and octreotide showed an RR of 0.61 (95% CI: 0.39, 0.94), with a SUCRA value of 0.56. Within the PD subgroup, octreotide showed an RR of 0.69(95% CI: 0.43, 1.10), with a SUCRA value of 0.50. Somatostatin had an RR of 0.22 (95% CI: 0.03, 0.84), with a SUCRA value of 0.96. The overall heterogeneity was low ($I^2=2\%$), indicating high consistency among the included studies, supporting the reliability of the network meta-analysis results. Funnel plots did not indicate significant publication bias ([S2 Fig B in S1 File](#)).

Mortality. Mortality was reported in 23 studies involving 3,987 patients and included five interventions. As shown in [Figs 3C, 4C](#), and [5C](#), analysis using a fixed-effect model revealed that vaptoreotide had an RR of 0 (95% CI: 0.00, 0.29), with a SUCRA value of 0.99. Pasireotide had an RR of 0.97 (95% CI: 0.03, 36.09), with a SUCRA value of 0.40. Somatostatin showed an RR of 1.15 (95% CI: 0.52, 2.54), with a SUCRA value of 0.33, and octreotide had an RR of 1.14 (95% CI: 0.80, 1.66), with a SUCRA value of 0.30. Within the PD subgroup, octreotide showed an RR of 1.20(95% CI: 0.66, 2.30), with a SUCRA value of 0.034. Somatostatin had an RR of 0.99 (95% CI: 0.18, 5.50), with a SUCRA value of

Fig 2. Network plot of outcome indicators. (A) POPF of all studies (B) CR-POPF of all studies (C) Mortality of all studies (D) Morbidity of all studies (E) POPF of PD subgroup (F) CR-POPF of PD subgroup (G) Mortality of PD subgroup (H) Morbidity of PD subgroup.

<https://doi.org/10.1371/journal.pone.0331909.g002>

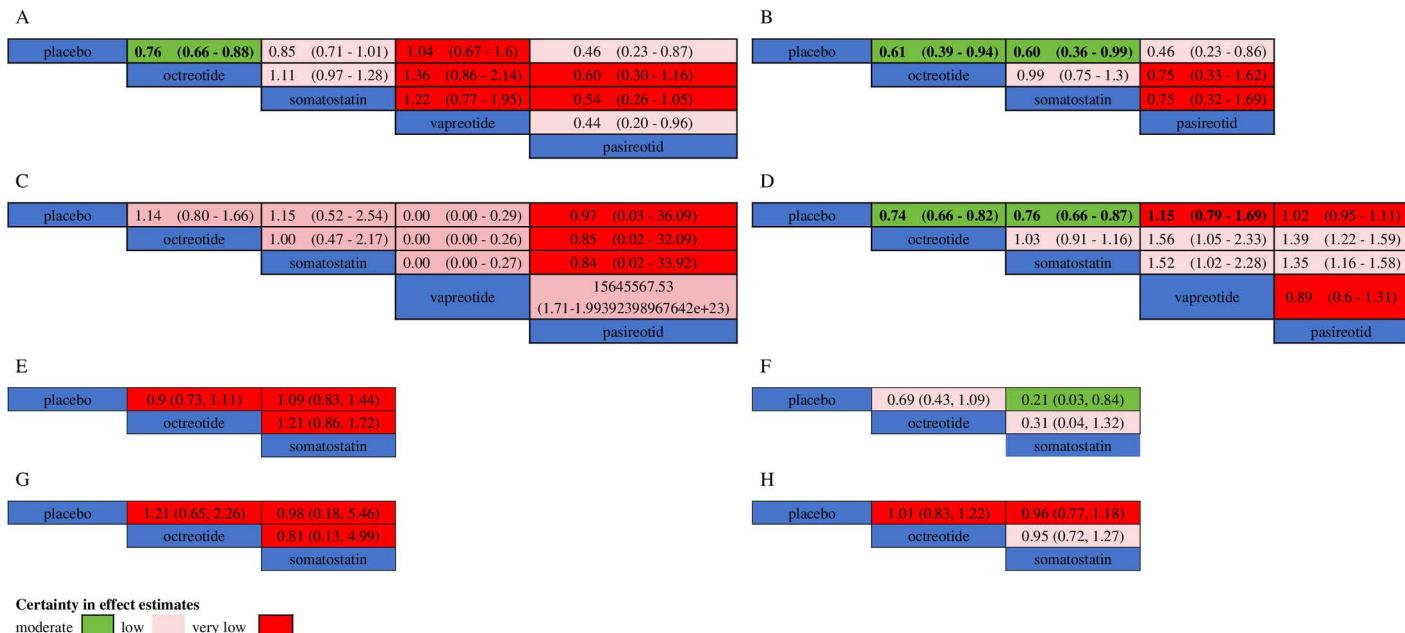


Fig 3. Forest plot of the network meta-analysis. (A) Forest plot of the network meta-analysis for (A) POPF of all studies (B) CR-POPF of all studies (C) Mortality of all studies (D) Morbidity of all studies (E) POPF of PD subgroup (F) CR-POPF of PD subgroup (G) Mortality of PD subgroup (H) Morbidity of PD subgroup in all trials. Somatostatin analogs are compared with placebo, which serves as the reference compound. RR = Risk Ratio. CI = Confidence Interval.

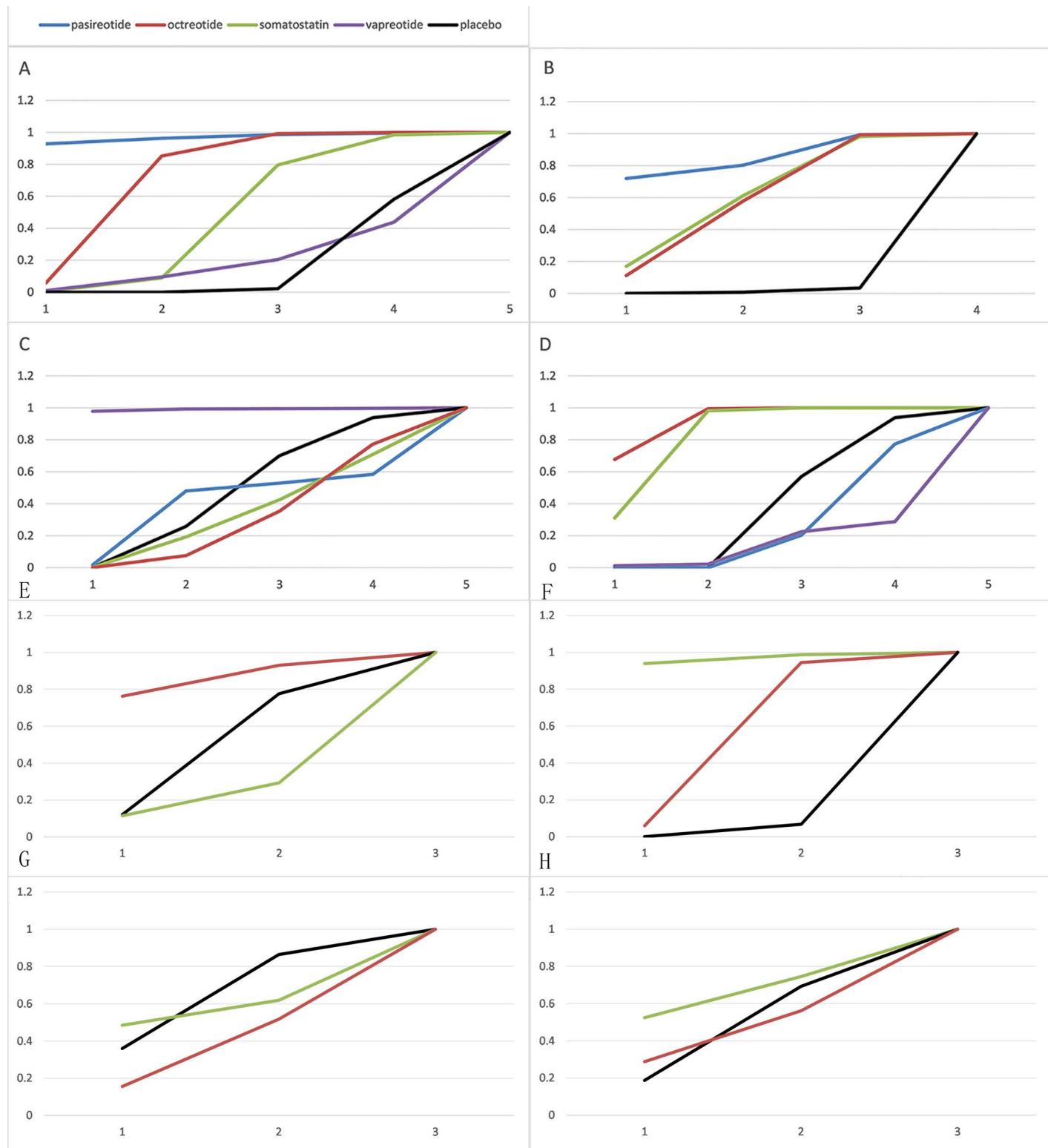
<https://doi.org/10.1371/journal.pone.0331909.g003>

0.55. The overall heterogeneity was low ($I^2=0\%$), indicating high consistency among the studies, supporting the reliability of the network meta-analysis results. Funnel plots did not show significant publication bias (S2 Fig C in [S1 File](#)).

Morbidity. Morbidity was reported in 20 studies involving 3,888 patients and included 20 interventions. As shown in [Figs 3D](#), [4D](#), and [5D](#), analysis using a fixed-effect model revealed that octreotide had an RR of 0.74 (95% CI: 0.66, 0.82), with a SUCRA value of 0.92. Somatostatin had an RR of 0.76 (95% CI: 0.66, 0.87), with a SUCRA value of 0.82. Pasireotide had an RR of 1.02 (95% CI: 0.95, 1.11), with a SUCRA value of 0.24, and vapreotide had an RR of 1.15 (95% CI: 0.79, 1.69), with a SUCRA value of 0.14. Within the PD subgroup, octreotide showed an RR of 1.00 (95% CI: 0.83, 1.20), with a SUCRA value of 0.43. Somatostatin had an RR of 0.96 (95% CI: 0.77, 1.20), with a SUCRA value of 0.63. The overall heterogeneity was low ($I^2=0\%$), indicating high consistency among the studies, supporting the reliability of the network meta-analysis results. Funnel plots did not indicate significant publication bias (S2 Fig D in [S1 File](#)).

Fig 4. Head-to-head comparison of therapy. (B) Head-to-head comparison of (A) POPF of all studies (B) CR-POPF of all studies (C) Mortality of all studies (D) Morbidity of all studies (E) POPF of PD subgroup (F) CR-POPF of PD subgroup (G) Mortality of PD subgroup (H) Morbidity of PD subgroup for various drugs. Data are presented as RR (95% CI) for column-defined treatment compared with row-defined treatment. The quality of evidence (according to GRADE) is incorporated into the figure. RR = Risk Ratio. CI = Confidence Interval. Effect sizes with statistically significant differences are bolded, and the color of each cell represents the certainty of the effect estimate.

<https://doi.org/10.1371/journal.pone.0331909.g004>


Quality of evidence.... We used the GRADE methodology to assess the quality of the effectiveness estimates for each comparison. Effectiveness and certainty estimates are presented in league matrices, with detailed processes outlined in S7 Table in [S1 File](#). As shown in [Fig 4](#), octreotide demonstrated the best statistical effects in reducing POPF, CR-POPF, and morbidity, with evidence quality assessed as moderate confidence. Somatostatin showed better statistical effects in reducing CR-POPF and overall morbidity, with evidence quality rated as low and moderate confidence, respectively. Vapreotide showed the best statistical effect in reducing mortality, but the evidence quality was assessed as low. Pasireotide achieved the highest statistical effect values and SUCRA scores for reducing POPF and CR-POPF, but the evidence quality was rated as low.

Within the PD subgroup, the evidence quality was rated as moderate for somatostatin and low for octreotide concerning the prevention of CR-POPF. For all other outcomes assessed, the quality of evidence for both somatostatin and octreotide was rated as very low. Finally, forest plots visually presented the results of the node-splitting method used to assess consistency testing (S3 Fig in [S1 File](#)). No significant inconsistencies were observed after evaluating direct comparisons, indirect comparisons, and network comparisons.

Sensitivity analysis. In the course of our sensitivity analysis, distinct network analyses were executed for the blank control cohort and the placebo cohort. A subsequent comparison with the pooled cohort revealed no statistically significant discrepancies between the findings of the separate analyses and those of the combined group. (S9 Table in [S1 File](#)).

Discussion

This study is based on 24 randomized controlled trials (RCTs) involving 4,054 patients who were randomly assigned to one of four somatostatin analog groups or a placebo group. It encompasses four somatostatin analogs and provides data for head-to-head comparisons. Compared to previous meta-analyses, this analysis is more comprehensive as it includes

Fig 5. SUCRA ranking of intervention effectiveness Annotation. SUCRA rankings for (A) POPF of all studies (B) CR-POPF of all studies (C) Mortality of all studies (D) Morbidity of all studies (E) POPF of PD subgroup (F) CR-POPF of PD subgroup (G) Mortality of PD subgroup (H) Morbidity of PD subgroup.

<https://doi.org/10.1371/journal.pone.0331909.g005>

not only four active treatment regimens and a placebo but also conducts network comparisons and employs the GRADE method to assess the quality of the conclusions. These findings provide strong support for the development of future related guidelines.

In this meta-analysis, we observed significant differences in the efficacy of several somatostatin analogs in preventing postoperative pancreatic fistula (POPF) compared to placebo. Only pasireotide and octreotide demonstrated superior efficacy. Although pasireotide was rated as having low confidence by GRADE, it showed better results than previously reported in a meta-analysis that suggested it was ineffective in reducing POPF incidence [38]. Additionally, somatostatin and vaptoreotide did not show a significant difference in preventing POPF. For the prevention of clinically relevant POPF (CR-POPF), all somatostatin analogs demonstrated promising efficacy, with only octreotide rated as having moderate confidence by GRADE. In reducing mortality, only vaptoreotide showed superior efficacy with a significant difference. However, due to the inclusion of only one study, there is a risk of bias, leading to a lower GRADE rating. In reducing morbidity, octreotide and somatostatin demonstrated better efficacy, both rated as having moderate confidence by GRADE. The efficacy of somatostatin in reducing postoperative complications is consistent with the findings of Schorn et al.'s meta-analysis [39]. Notably, despite being rated as having very low confidence by GRADE, vaptoreotide increased the risk of postoperative complications following pancreatectomy. Within the subgroup analysis concerning Pancreaticoduodenectomy (PD), both somatostatin and octreotide were subjected to evaluation. The findings indicated that only somatostatin exhibited efficacy specifically in the prevention of postoperative pancreatic fistula with clinical relevance (CR-POPF), evidenced by a Risk Ratio (RR) of 0.22 (95% Confidence Interval: 0.03–0.84). The GRADE assessment assigned a moderate quality rating to this evidence. Conversely, neither somatostatin nor octreotide demonstrated statistically significant efficacy for the prevention of overall Postoperative Pancreatic Fistula (POPF), the reduction of Mortality, or the mitigation of Morbidity.

The variations in efficacy among different somatostatin analogs may be attributed to their distinct pharmacological mechanisms. Somatostatin analogs act on five types of somatostatin receptors (SSTR1–5) [40,41], with varying affinities leading to differences in side effects and efficacy across drugs. By binding to these receptors, somatostatin analogs inhibit adenylate cyclase activity, reducing cyclic AMP levels, and suppressing the secretion of growth hormone, thyroid-stimulating hormone, and various gastrointestinal hormones [40,42]. Octreotide primarily targets SSTR2 and SSTR5 receptors [43], particularly effective in inhibiting growth hormone (GH), thyroid-stimulating hormone (TSH), and gastrointestinal peptides, while also reducing visceral blood flow and gastrointestinal motility [44]. Octreotide's long half-life (72–110 minutes) allows for stable, sustained effects, making it suitable for long-term treatment [45]. It has been widely used in clinical practice, supported by our research for its efficacy in reducing POPF and postoperative complications. Somatostatin acts on all five somatostatin receptors (SSTR1–5) [40,41], with a higher affinity for SSTR2 and some affinity for SSTR3, but lower affinities for SSTR1 and SSTR4 [40]. Its short half-life necessitates frequent dosing, limiting its clinical application in certain cases. Despite this, it shows some efficacy in reducing postoperative complications. Vaptoreotide has high affinities for SSTR2 and SSTR5 and blocks the neurokinin-1 receptor (NK1R), which exerts analgesic effects [46]. Despite promising results in reducing mortality in clinical trials, vaptoreotide's overall efficacy is weak and it is not effective in reducing POPF or postoperative complications [37], making it unsuitable as a first-line treatment. Pasireotide, a second-generation somatostatin receptor ligand (SRL), primarily targets SSTR1, SSTR2, SSTR3, and SSTR5, with strong affinity for SSTR5 [47,48]. This makes it potentially more potent in inhibiting pancreatic secretion than first-generation SRLs. However, its use is associated with higher rates of hyperglycemia and liver function impairment, necessitating cautious application in high-risk patients, such as those with diabetes or impaired liver function [47,49]. Somatostatin analogs, including octreotide, lanreotide, and pasireotide, exhibit a higher cost profile compared to native somatostatin, necessitating meticulous consideration of cost implications in their therapeutic application. Octreotide, for example, is extensively utilized as a somatostatin analog owing to its prolonged duration of action and demonstrated efficacy in the management of conditions such as acromegaly and neuroendocrine tumors. However, this therapeutic

benefit is accompanied by a substantial financial burden. In the context of metastatic gastrointestinal neuroendocrine tumors (GI-NET), octreotide long-acting release (LAR) demonstrates a lower cost profile relative to lanreotide. Comparative analyses indicate payment costs for octreotide LAR at \$74,566, \$180,082, and \$262,344, respectively, whereas lanreotide incurred higher expenditures [50]. Conversely, in Colombia, octreotide was ascertained to be more cost-effective for acromegaly treatment than lanreotide, correlating with reduced total healthcare expenditures and superior disease control efficacy [51]. Nevertheless, in Brazil, the elevated acquisition cost of octreotide LAR vials substantially exacerbated the economic strain on the public health system, implying that increased utilization of lanreotide might facilitate cost reduction [52]. Despite their considerable expense, somatostatin analogs remain indispensable in the management of diverse endocrine and non-endocrine disorders, wherein their therapeutic advantages frequently surpass their financial implications [53,54]. Consequently, the cost-effectiveness of these therapeutic agents represents a pivotal factor, particularly within resource-constrained settings where high acquisition costs may impede their accessibility [51]. Thus, a judicious selection of pharmacotherapies that optimally align with both patients' physiological requirements and economic circumstances is imperative.

The incidence of complications after pancreatectomy is also influenced by various intraoperative management techniques. For instance, a 2022 meta-analysis evaluated the effectiveness of pancreatic duct stent placement in preventing postoperative pancreatic fistulas after pancreaticoduodenectomy. This study found no significant difference in POPF incidence between the stent use group and the non-use group, although further analysis suggested that external stents significantly reduced POPF incidence [55]. Advancements in surgical techniques, such as pancreatic anastomosis and drainage tube placement, have contributed to changes in POPF incidence [56]. These techniques can affect the efficacy of somatostatin analogs, making the combined effect of different treatment modalities important to consider. Despite these advancements, octreotide has shown the most promising efficacy in preventing postoperative complications, and clinicians may consider incorporating it as the preferred somatostatin analog in relevant treatment guidelines.

Our literature search was comprehensive, being the first to compare various somatostatin analogs (including octreotide, somatostatin, pasireotide, and vaptoreotide), providing clinicians with more robust evidence to guide medication choices. Additionally, we employed Bayesian network meta-analysis methods, which allow for more accurate estimation of the relative efficacy between different interventions and address heterogeneity between direct and indirect comparisons. However, some limitations should be considered when interpreting our results. Certain studies included in our analysis have a risk of bias, which could affect the reliability of the findings. For example, we conducted a stratified analysis stratified by the surgical procedure. However, constrained by the available data, our analysis was restricted to the PD subgroup only. We observed a lack of efficacy within the PD subgroup, whereas efficacy was noted in the unclassified dataset. Furthermore, the scarcity of studies related to Pasireotide and Vapreotide in our analysis may have resulted in an inadequate assessment. Subsequently, it is imperative to conduct additional randomized controlled trials (RCTs) focusing on Pasireotide and Vapreotide to comprehensively evaluate their effectiveness in preventing complications following pancreatic resection. We analyzed only average treatment effects and did not delve into individual patient responses or their clinical and demographic influencing factors, such as age, gender, severity of symptoms, or disease duration. Furthermore, due to a lack of relevant data in the original studies, we were unable to quantify long-term outcomes for postoperative patients. During the course of our investigation, it was observed that there is a paucity of research dedicated to assessing the cost-effectiveness of patient hospitalization and postoperative recovery. This is a significant consideration in areas where resources are limited and medical development is not yet advanced, indicating a necessity for further research to address this deficiency. Despite its constraints, the current meta-analysis provides substantial reference value regarding the utilization of somatostatin analogues post-pancreatectomy. Subsequent research is required to delineate the role of somatostatin analogues in the prevention of complications after pancreatectomy and to formulate more comprehensive guidelines for their use.

Conclusion

This study utilized Bayesian network meta-analysis to compare the efficacy of various somatostatin analogs in preventing short-term complications following pancreatectomy. The results indicate that octreotide is the most effective in preventing postoperative pancreatic fistula (POPF), clinically relevant POPF (CR-POPF), and morbidity, with high-quality evidence supporting its use. We hypothesize that this discrepancy may be attributable to the effectiveness of somatostatin analogs demonstrated in other surgical modalities. Although this efficacy could be confounded by the bias stemming from the lack of efficacy observed in the PD subgroup, it appears sufficient to counteract this bias. Nevertheless, this remains speculative, and further randomized controlled trials (RCTs) investigating other pancreatic resection techniques are warranted to validate this hypothesis.

Supporting information

S1 File. **S1 Fig.** Quality assessment of the included studies and risk of bias summary. **S2 Fig.** Funnel Char Of Publication Bias. A:POPF;B:CR-POPF;C:Mortality;D:Morbidity. **S3 Fig.** Forest plot for inconsistency testing.A:POPF;B:CR-POPF; C:Mortality;D:Morbidity. **S1 Table.** PRISMA 2020 checklist. **S2 Table.**Index and keyword terms used in the databases. **S3 Table.**Lists of clinical trial registries and specialized journals. **S4 Table.**Eligibility criteria. **S5 Table.**Specific meaning of certainty in effect estimates. **S6 Table.**List of excluded studies. **S7 Table.**GRADE Quality Assessment Table for Network Analysis Results. **S8 Table** The dataset utilized for the purposes of this investigation. **S9 Table** Sensitivity Analysis. (ZIP)

Author contributions

Conceptualization: Haijiu Wang, Manjun Deng, Fan Haining.

Data curation: Zonghao Hou, Manjun Deng.

Formal analysis: Zonghao Hou, Shengxiang Hou, Zhixin Wang, Manjun Deng.

Funding acquisition: Fan Haining.

Investigation: Zonghao Hou, Shengxiang Hou.

Methodology: Manjun Deng, Fan Haining.

Project administration: Manjun Deng, Fan Haining.

Resources: Zhixin Wang, Haijiu Wang, Fan Haining.

Software: Zhixin Wang, Haijiu Wang, Manjun Deng.

Supervision: Zhixin Wang, Haijiu Wang, Fan Haining.

Validation: Zonghao Hou, Manjun Deng.

Writing – original draft: Shengxiang Hou, Manjun Deng.

Writing – review & editing: Manjun Deng, Fan Haining.

References

1. Bramis K, Vouros D, Kotsaridis V, Fountzas M, Antonakis P, Memos N, et al. Completion Pancreatectomy as a Treatment Option for Complications Following Pancreatoduodenectomy. *Am Surg.* 2023;89(12):6348–50. <https://doi.org/10.1177/00031348231175500> PMID: 37159926
2. Alzelfawi L, Almajed E, AlZabin A, Alruwaili E, Alomar L, Alkhudairy A, et al. Prevention of Postoperative Pancreatic Fistula: Systematic Review and Meta-Analysis. *Surgeries.* 2024;5(3):875–95. <https://doi.org/10.3390/surgeries5030071>
3. Watanabe Y, Nishihara K, Matsumoto S, Okayama T, Abe Y, Nakano T. Effect of postoperative major complications on prognosis after pancreatectomy for pancreatic cancer: a retrospective review. *Surg Today.* 2017;47(5):555–67. <https://doi.org/10.1007/s00595-016-1426-1> PMID: 27704248
4. Pillarisetty VG, Abbasi A, Park JO, Sham JG. A phase II trial of lanreotide for the prevention of postoperative pancreatic fistula. *HPB (Oxford).* 2022;24(11):2029–34. <https://doi.org/10.1016/j.hpb.2022.07.011> PMID: 35953409

5. Abbasi A, Sham J, Park J, Pillarisetty V. Lanreotide for the Prevention of Postoperative Pancreatic Fistula: Phase II Clinical Trial Results. *HPB*. 2022;24:S387. <https://doi.org/10.1016/j.hpb.2022.05.820>
6. Kriger AG, Gorin DS, Kaldarov AR, Galkin GV. Prevention of pancreatic fistula after pancreateoduodenectomy. *Khirurgiia (Mosk)*. 2020;(11):61–5. <https://doi.org/10.17116/hirurgia202011161> PMID: 33210509
7. Gurusamy KS, Koti R, Fusai G, Davidson BR. Somatostatin analogues for pancreatic surgery. *Cochrane Database Syst Rev*. 2013;2013(4):CD008370. <https://doi.org/10.1002/14651858.CD008370.pub3> PMID: 23633353
8. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71. <https://doi.org/10.1136/bmj.n71> PMID: 33782057
9. Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. *Cochrane Database Syst Rev*. 2019;10(10):ED000142. <https://doi.org/10.1002/14651858.ED000142> PMID: 31643080
10. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ*. 2011;343:d5928. <https://doi.org/10.1136/bmj.d5928> PMID: 22008217
11. Probst P, Zaschke S, Heger P, Harnoss JC, Hüttner FJ, Mihaljevic AL, et al. Evidence-based recommendations for blinding in surgical trials. *Langenbecks Arch Surg*. 2019;404(3):273–84. <https://doi.org/10.1007/s00423-019-01761-6> PMID: 30824993
12. van Valkenhoef G, Dias S, Ades AE, Welton NJ. Automated generation of node-splitting models for assessment of inconsistency in network meta-analysis. *Res Synth Methods*. 2016;7(1):80–93. <https://doi.org/10.1002/jrsm.1167> PMID: 26461181
13. Lin L, Chu H. Quantifying publication bias in meta-analysis. *Biometrics*. 2018;74(3):785–94. <https://doi.org/10.1111/biom.12817> PMID: 29141096
14. Büchler M, Friess H, Klempa I, Hermanek P, Sulkowski U, Becker H, et al. Role of octreotide in the prevention of postoperative complications following pancreatic resection. *Am J Surg*. 1992;163(1):125–30; discussion 130–1. [https://doi.org/10.1016/0002-9610\(92\)90264-r](https://doi.org/10.1016/0002-9610(92)90264-r) PMID: 1733360
15. Pederzoli P, Bassi C, Falconi M, Camboni MG. Efficacy of octreotide in the prevention of complications of elective pancreatic surgery. Italian Study Group. *Br J Surg*. 1994;81(2):265–9. <https://doi.org/10.1002/bjs.1800810237> PMID: 8156354
16. Friess H, Beger HG, Sulkowski U, Becker H, Hofbauer B, Dennler HJ, et al. Randomized controlled multicentre study of the prevention of complications by octreotide in patients undergoing surgery for chronic pancreatitis. *Br J Surg*. 1995;82(9):1270–3. <https://doi.org/10.1002/bjs.1800820938> PMID: 7552016
17. Montorsi M, Zago M, Mosca F, Capussotti L, Zotti E, Ribotta G, et al. Efficacy of octreotide in the prevention of pancreatic fistula after elective pancreatic resections: a prospective, controlled, randomized clinical trial. *Surgery*. 1995;117(1):26–31. [https://doi.org/10.1016/s0039-6060\(05\)80225-9](https://doi.org/10.1016/s0039-6060(05)80225-9) PMID: 7809832
18. Lowy AM, Lee JE, Pisters PW, Davidson BS, Fenoglio CJ, Stanford P, et al. Prospective, randomized trial of octreotide to prevent pancreatic fistula after pancreaticoduodenectomy for malignant disease. *Ann Surg*. 1997;226(5):632–41. <https://doi.org/10.1097/00000658-199711000-00008> PMID: 9389397
19. Benedetti E, Coady NT, Asolati M, Dunn T, Stormoen BM, Bartholomew AM, et al. A prospective randomized clinical trial of perioperative treatment with octreotide in pancreas transplantation. *Am J Surg*. 1998;175(1):14–7. [https://doi.org/10.1016/s0002-9610\(97\)00236-5](https://doi.org/10.1016/s0002-9610(97)00236-5) PMID: 9445231
20. Yeo CJ, Cameron JL, Lillemoe KD, Sauter PK, Coleman J, Sohn TA, et al. Does prophylactic octreotide decrease the rates of pancreatic fistula and other complications after pancreaticoduodenectomy? Results of a prospective randomized placebo-controlled trial. *Ann Surg*. 2000;232(3):419–29. <https://doi.org/10.1097/00000658-200009000-00014> PMID: 10973392
21. Suc B, Msika S, Piccinini M, Fourtanié G, Hay J-M, Flamant Y, et al. Octreotide in the prevention of intra-abdominal complications following elective pancreatic resection: a prospective, multicenter randomized controlled trial. *Arch Surg*. 2004;139(3):288–94; discussion 295. <https://doi.org/10.1001/archsurg.139.3.288> PMID: 15006886
22. Hesse UJ, DeDecker C, Houtmeyers P, Demetter P, Ceelen W, Pattyn P, et al. Prospectively randomized trial using perioperative low-dose octreotide to prevent organ-related and general complications after pancreatic surgery and pancreatico-jejunostomy. *World J Surg*. 2005;29(10):1325–8. <https://doi.org/10.1007/s00268-005-7546-1> PMID: 16132406
23. Kollmar O, Moussavian MR, Richter S, de Roi P, Maurer CA, Schilling MK. Prophylactic octreotide and delayed gastric emptying after pancreaticoduodenectomy: results of a prospective randomized double-blinded placebo-controlled trial. *Eur J Surg Oncol*. 2008;34(8):868–75. <https://doi.org/10.1016/j.ejso.2008.01.014> PMID: 18299182
24. Fernández-Cruz L, Jiménez Chavarría E, Taurà P, Closa D, Boado M-AL, Ferrer J. Prospective randomized trial of the effect of octreotide on pancreatic juice output after pancreaticoduodenectomy in relation to histological diagnosis, duct size and leakage. *HPB (Oxford)*. 2013;15(5):392–9. <https://doi.org/10.1111/j.1477-2574.2012.00608.x> PMID: 23557411
25. Kurumboor P, Palaniswami KN, Pramil K, George D, Ponnambathayil S, Varma D, et al. Octreotide Does Not Prevent Pancreatic Fistula Following Pancreatoduodenectomy in Patients with Soft Pancreas and Non-dilated Duct: A Prospective Randomized Controlled Trial. *J Gastrointest Surg*. 2015;19(11):2038–44. <https://doi.org/10.1007/s11605-015-2925-x> PMID: 26302879
26. Kong R, Hu J, Li L, Wang G, Chen H, Bai X, et al. Impact of octreotide on pancreatic fistula after pancreaticoduodenectomy: a prospective study. *Zhonghua Wai Ke Za Zhi*. 2016;54(1):21–4. <https://doi.org/10.3760/cma.j.issn.0529-5815.2016.01.006> PMID: 26792348
27. El Nakeeb A, ElGawalby A, A Ali M, Shehta A, Hamed H, El Refea M, et al. Efficacy of octreotide in the prevention of complications after pancreaticoduodenectomy in patients with soft pancreas and non-dilated pancreatic duct: A prospective randomized trial. *Hepatobiliary Pancreat Dis Int*. 2018;17(1):59–63. <https://doi.org/10.1016/j.hbpd.2018.01.015> PMID: 29428106

28. You DD, Paik KY, Park IY, Yoo YK. Randomized controlled study of the effect of octreotide on pancreatic exocrine secretion and pancreatic fistula after pancreateoduodenectomy. *Asian J Surg.* 2019;42(2):458–63. <https://doi.org/10.1016/j.ajsur.2018.08.006> PMID: 30262436
29. Gaujoux S, Regimbeau J-M, Piessen G, Truant S, Foissac F, Barbier L, et al. Somatostatin Versus Octreotide for Prevention of Postoperative Pancreatic Fistula: The PREFIPS Randomized Clinical Trial: A FRENCH 007-ACHBT Study. *Ann Surg.* 2024;280(2):179–87. <https://doi.org/10.1097/SLA.00000000000006313> PMID: 38662619
30. Gouillat C, Chipponi J, Baulieux J, Partensky C, Saric J, Gayet B. Randomized controlled multicentre trial of somatostatin infusion after pancreatectomy. *Wiley Online Library.* 2001.
31. Katsourakis A, Oikonomou L, Chatzitheoklitos E, Noussios G, Pitiakoudis M, Polychronidis A, et al. The role of somatostatin in 67 consecutive pancreatectomies: a randomized clinical trial. *Clin Exp Gastroenterol.* 2010;3:179–83. <https://doi.org/10.2147/CEG.S13984> PMID: 21694864
32. Cao Z, Qiu J, Guo J, Xiong G, Jiang K, Zheng S, et al. A randomised, multicentre trial of somatostatin to prevent clinically relevant postoperative pancreatic fistula in intermediate-risk patients after pancreaticoduodenectomy. *J Gastroenterol.* 2021;56(10):938–48. <https://doi.org/10.1007/s00535-021-01818-8> PMID: 34453212
33. Shan Y-S, Sy ED, Tsai M-L, Tang L-Y, Li PS, Lin P-W. Effects of somatostatin prophylaxis after pylorus-preserving pancreaticoduodenectomy: increased delayed gastric emptying and reduced plasma motilin. *World J Surg.* 2005;29(10):1319–24. <https://doi.org/10.1007/s00268-005-7943-5> PMID: 16284796
34. Shan Y-S, Sy ED, Lin P-W. Role of somatostatin in the prevention of pancreatic stump-related morbidity following elective pancreaticoduodenectomy in high-risk patients and elimination of surgeon-related factors: prospective, randomized, controlled trial. *World J Surg.* 2003;27(6):709–14. <https://doi.org/10.1007/s00268-003-6693-5> PMID: 12732998
35. Katsourakis A, Zezos P, Noussios G, Kouklakis G, Chatzitheoklitos E, Simopoulos K, et al. Does prophylactic administration of somatostatin decrease the rates of complications after pancreatic resection?: A clinical and electron microscopy study. *Pancreas.* 2013;42(1):37–41. <https://doi.org/10.1097/MPA.0b013e3182557c24> PMID: 22836860
36. Allen PJ, Gönen M, Brennan MF, Bucknor AA, Robinson LM, Pappas MM, et al. Pasireotide for postoperative pancreatic fistula. *N Engl J Med.* 2014;370(21):2014–22. <https://doi.org/10.1056/NEJMoa1313688> PMID: 24849084
37. Sarr MG, Pancreatic Surgery Group. The potent somatostatin analogue vaptoreotide does not decrease pancreas-specific complications after elective pancreatectomy: a prospective, multicenter, double-blinded, randomized, placebo-controlled trial. *J Am Coll Surg.* 2003;196(4):556–64; discussion 564–5; author reply 565. [https://doi.org/10.1016/S1072-7515\(03\)00104-2](https://doi.org/10.1016/S1072-7515(03)00104-2) PMID: 12691930
38. Dalton EC, Johns MS, Rhodes L, Merritt WT 3rd, Petrelli NJ, Tiesi GJ. Meta-Analysis on the Effect of Pasireotide for Prevention of Postoperative Pancreatic Fistula. *Am Surg.* 2020;86(12):1728–35. <https://doi.org/10.1177/0003134820947371> PMID: 32870029
39. Schorn S, Vogel T, Demir IE, Demir E, Safak O, Friess H, et al. Do somatostatin-analogues have the same impact on postoperative morbidity and pancreatic fistula in patients after pancreaticoduodenectomy and distal pancreatectomy? - A systematic review with meta-analysis of randomized-controlled trials. *Pancreatology.* 2020;20(8):1770–8. <https://doi.org/10.1016/j.pan.2020.10.043> PMID: 33121847
40. Viollet C, Prévost G, Maubert E, Faivre-Bauman A, Gardette R, Kordon C, et al. Molecular pharmacology of somatostatin receptors. *Fundam Clin Pharmacol.* 1995;9(2):107–13. <https://doi.org/10.1111/j.1472-8206.1995.tb00269.x> PMID: 7628822
41. Zhao W, Han S, Qiu N, Feng W, Lu M, Zhang W, et al. Structural insights into ligand recognition and selectivity of somatostatin receptors. *Cell Res.* 2022;32(8):761–72. <https://doi.org/10.1038/s41422-022-00679-x> PMID: 35739238
42. Florio T, Schettini G. Multiple intracellular effectors modulate physiological functions of the cloned somatostatin receptors. *J Mol Endocrinol.* 1996;17(2):89–100. <https://doi.org/10.1677/jme.0.0170089> PMID: 8938584
43. Sun L, Coy DH. Somatostatin and its Analogs. *Curr Drug Targets.* 2016;17(5):529–37. <https://doi.org/10.2174/138945011666141205163548> PMID: 26951062
44. Battershill PE, Clissold SP. Octreotide. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in conditions associated with excessive peptide secretion. *Drugs.* 1989;38(5):658–702. <https://doi.org/10.2165/00003495-198938050-00002> PMID: 2689136
45. Katz MD, Erstad BL. Octreotide, a new somatostatin analogue. *Clin Pharm.* 1989;8(4):255–73. PMID: 2653711
46. Spitsin S, Tuluc F, Meshki J, Ping Lai J, Tustin Ili R, Douglas SD. Analog of somatostatin vaptoreotide exhibits biological effects in vitro via interaction with neurokinin-1 receptor. *Neuroimmunomodulation.* 2013;20(5):247–55. <https://doi.org/10.1159/000350468> PMID: 23921645
47. Bolanowski M, Kaluzny M, Witek P, Jawiarczyk-Przybyłowska A. Pasireotide—a novel somatostatin receptor ligand after 20 years of use. *Reviews in Endocrine & Metabolic Disorders.* 2022;23(3):601–20. <https://doi.org/10.1007/s11154-022-09710-3>
48. Gatto F, Arvigo M, Amarù J, Campana C, Cocchiara F, Graziani G, et al. Cell specific interaction of pasireotide: review of preclinical studies in somatotroph and corticotroph pituitary cells. *Pituitary.* 2019;22(1):89–99. <https://doi.org/10.1007/s11102-018-0926-y> PMID: 30483918
49. Sawicka-Gutaj N, Owecki M, Ruchala M. Pasireotide - Mechanism of Action and Clinical Applications. *Curr Drug Metab.* 2018;19(10):876–82. <https://doi.org/10.2174/138920021966180328113801> PMID: 29595102
50. Ayyagari R, Neary M, Li S, Rokito A, Yang H, Xie J, et al. Comparing the Cost of Treatment with Octreotide Long-Acting Release versus Lanreotide in Patients with Metastatic Gastrointestinal Neuroendocrine Tumors. *Am Health Drug Benefits.* 2017;10(8):408–15. PMID: 29263774
51. Orlewska E, Stępień R, Orlewska K. Cost-effectiveness of somatostatin analogues in the treatment of acromegaly. *Expert Rev Pharmacoecon Outcomes Res.* 2019;19(1):15–25. <https://doi.org/10.1080/14737167.2018.1513330> PMID: 30122081

52. Porto Dantas LB, Mendes de Farias FM, de Sousa Alves da Silva TC, Naves LA, Zimmermann IR. PP49 Prescribing Trends And Economic Impact Of Somatostatin Analogues In Acromegaly: A Threat To Brazil's Public Health System Sustainability. *Int J Technol Assess Health Care.* 2024;40(S1):S74–S74. <https://doi.org/10.1017/s0266462324002204>
53. Gomes-Porras M, Cárdenas-Salas J, Álvarez-Escolá C. Somatostatin Analogs in Clinical Practice: a Review. *Int J Mol Sci.* 2020;21(5):1682. <https://doi.org/10.3390/ijms21051682> PMID: 32121432
54. Battershill PE, Clissold SP. Octreotide. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in conditions associated with excessive peptide secretion. *Drugs.* 1989;38(5):658–702. <https://doi.org/10.2165/00003495-198938050-00002> PMID: 2689136
55. Guo C, Xie B, Guo D. Does pancreatic duct stent placement lead to decreased postoperative pancreatic fistula rates after pancreaticoduodenectomy? A meta-analysis. *Int J Surg.* 2022;103:106707. <https://doi.org/10.1016/j.ijsu.2022.106707> PMID: 35697324
56. Fatima M, Ahmed A, Khan MH, Faisal MH, Sehar A, Khan MJ, et al. Comparative Assessment of Outcomes: Abdominal Drain Versus No Abdominal Drain After Left Pancreatectomy-A Systematic Review and Meta-analysis. *Ann Surg.* 2025;281(4):582–90. <https://doi.org/10.1097/SLA.0000000000006564> PMID: 39397664