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Abstract

Gas explosions in coal mines pose a serious threat to miner safety and operational
sustainability, often resulting in significant casualties and production losses. To
address the deficiencies in emergency decision-making and preparedness, this study
proposes a case-based reasoning (CBR) model for emergency response planning,
using a representative gas explosion incident at Mine B as the target case. Historical
accident cases were analyzed to extract and quantify key descriptive and decision-
related attributes. A cloud model-based weighting method was employed to deter-
mine the relative importance of features, followed by improved K-nearest neighbor
(KNN) retrieval for similar case matching. A multi-population genetic algorithm (MEA)
was used to optimize the weights and thresholds of a backpropagation (BP) neural
network for case adaptation and reuse. The cloud model was further introduced to
evaluate the effectiveness of the proposed emergency plans. Simulation results
demonstrate that the model yields reliable and practical emergency responses,

with the evaluated plan rated between “fair” and “good.” Finally, this study outlines
implementation and safeguard measures for emergency plan execution, offering a
scientifically grounded reference for coal mine enterprises to enhance gas explosion
preparedness and response efficiency.

1. Introduction

Harmful gases such as methane and explosive fumes pose significant threats to
miners’ safety and the secure operation of coal mines. Among these, methane control
is crucial for preventing major coal mine disasters [1]. From 2013 to 2023, gas-
related accidents accounted for 51% of all major coal mine incidents in China, while
the combined occurrences and fatalities caused by gas explosions, coal dust explo-
sions, water inrushes, fires, and roof collapses reached 87% and 86%, respectively
[2]. Gas explosions are inherently complex and dynamic, involving multiple hazard-
ous factors [3], often resulting in severe casualties. In some cases, secondary or
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multiple gas explosions exacerbate the disaster, leading to even greater destruction.
Effective emergency response measures are essential to minimizing accident losses
[4] and mitigating the risks of secondary explosions.

In recent years, a growing number of scholars have conducted extensive
research aimed at enhancing coal mine safety, focusing primarily on three domains:
the construction of risk early-warning models [5—-12], the development of safety
monitoring systems [13—19], and the intelligent formulation of emergency response
plans [20-28].

Risk early-warning models are designed to predict the likelihood and severity of
gas explosion accidents. For instance, Niu et al. [5] proposed a behavior-based risk
assessment method by integrating the HFACS-GE classification system with Bayes-
ian networks to evaluate unsafe human actions in gas explosion scenarios. Li et al.
[6] identified key risk factors contributing to gas explosions and developed a causal
reasoning model using Bayesian networks. Additionally, Li et al. [7] introduced a
dynamic multi-source early-warning approach that integrates ARIMA and the Trans-
ferable Belief Model (TBM). Meng et al. [8] further investigated the impact of unsafe
behavior in underground coal mines and established a corresponding risk assess-
ment framework. While these models effectively mine latent patterns from historical
data and improve risk perception, they still face common challenges, including poor
data quality, sample imbalance, and limited generalizability.

At the system and hardware level, researchers have leveraged the Internet of
Things (loT) and smart sensing technologies to enable real-time monitoring of the
coal mine environment. Pudke et al. [17] developed a wireless coal mine moni-
toring system based on ZigBee and GSM technologies, integrated with LabVIEW
and microcontroller platforms. Dey et al. [16] further designed a hazard monitoring
system that combines loT with a CNN-LSTM deep learning architecture, enabling the
extraction of spatiotemporal features from sensor data to predict disaster risks more
effectively. Although these systems enhance the detection of potential hazards, their
operational stability remains limited by network latency, power consumption, and the
harsh underground environment.

Recent studies have incorporated artificial intelligence theories and related tech-
nologies into the formulation of emergency response plans for coal mine gas explo-
sion accidents. By analyzing and processing real-time emergency information, these
approaches predict accident evolution, allowing for the development and evaluation
of corresponding response plans, thereby outperforming traditional emergency
decision-making methods in addressing coal mine gas explosion incidents. Tong et
al. [20] combined Bayesian networks with the Delphi method to dynamically assess
gas explosion accidents, providing a more accurate evaluation framework for emer-
gency decision-making. To support theoretical advancements in coal mine emer-
gency rescue planning, Wu et al. [21] investigated the attenuation characteristics of
blast shock waves and the dispersion of hazardous gases, aiming to reduce unnec-
essary losses caused by uncoordinated rescue efforts. Furthermore, Zhao et al. [22]
addressed the limitations of traditional coal mine emergency plans and
telephone-based dispatch systems by optimizing emergency management
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mechanisms and resource allocation models. They proposed an integrated architecture and functional modules for a coal
mine emergency rescue system, enabling intelligent accident response, rescue operations, and emergency management.
To support evidence-based decision-making in prioritizing key safety improvement factors, Jiskani et al. [23] developed

a mine safety assessment index and proposed an integrated evaluation model based on entropy weighting and grey
clustering, tailored to Pakistan’s current mine safety conditions and future improvements. With advancements in machine
learning and Al, Li et al. [24] proposed an emergency decision support method combining Generalized Regression Neural
Networks (GRNN) and Computational Fluid Dynamics (CFD) modeling, allowing for the estimation of rescue personnel
exposure to explosion risks, thereby improving the quality of rescue decisions.

Among various intelligent methods, case-based reasoning (CBR) has gained increasing attention due to its reliance on
past experience and knowledge, making it particularly suitable for unstructured, experience-driven emergency
decision-making. Liao et al. [29] developed a CBR-based system for generating emergency response plans for environ-
mental pollution accidents. Amailef et al. [30] created an ontology-driven Mobile Emergency Response System (MERS)
that integrates a CBR mechanism to enhance intelligent emergency response capabilities. Zhang et al. [31] through the
analysis of coal mine gas explosion accident reports, identified 28 typical risk factors and 16 coupling factors, and con-
structed an eight-level risk coupling structure using the ISM-NK model. Collectively, these studies demonstrate that CBR
not only enables the reuse of successful past cases, but also supports the adaptation and optimization of emergency
plans for specific scenarios, underscoring its high practical value.

With the rapid advancement of artificial intelligence and information technologies, an increasing number of disciplines
are shifting towards intelligent solutions, including the development of emergency response plans. While existing studies
have laid a solid theoretical and technical foundation, research on emergency planning for specific high-risk scenarios
remains insufficient. Coal mine gas explosions, characterized by high uncertainty and complex evolution, present unique
challenges for emergency response. Although CBR has shown initial promise in generating emergency plans for such
accidents, current approaches still suffer from limitations in case representation, retrieval accuracy, and reuse strategies.
Moreover, there is a notable lack of systematic research on gas explosion scenarios: historical accident data remain
underutilized, key contributing factors and characteristic patterns are rarely explored, and the effectiveness of existing
plans is seldom evaluated. Most prior work focuses on general coal mine emergencies, with little attention paid to the
unique demands of gas explosion incidents. Addressing these gaps, this study proposes a novel CBR-based framework
tailored to the specific attributes of gas explosion accidents. By integrating case representation, retrieval, reuse, and
implementation evaluation into a unified approach, our work not only advances the methodological frontier but also offers
practical value for data-driven, scenario-specific emergency response planning in high-risk industrial environments.

To address the challenges in the emergency response planning for gas explosion incidents in Mine B, this study adopts
a CBR-based approach to identify the most relevant historical emergency plans, which are then adapted and optimized for
reuse. The objective is to minimize the impact of gas explosion accidents, ensure the successful execution of emergency
rescue operations, and provide a practical reference for the rapid and effective development of emergency response plans
in coal mines.

2. Current status and challenges in the emergency response planning for gas explosion accidents in
mine B

2.1 Current status of emergency response planning for gas explosion accidents in mine B

The emergency response system of Mine B primarily consists of an emergency command center, an on-site emergency
rescue command unit, and an emergency rescue team. The formulation of the emergency response plan for gas explo-
sions mainly includes prevention and early warning, emergency response, and information dissemination. The detailed

emergency response procedures for gas explosion incidents are illustrated in Fig 1.
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Fig 1. Emergency response procedure for coal mine B.

https://doi.org/10.1371/journal.pone.0331711.9001

During accident handling, it is essential to determine the location, nature, and severity of the incident, as well as the
surrounding gas conditions. The power supply must be cut off, hazardous gases must be eliminated to prevent further
escalation, and any resulting fires must be extinguished. If the fire cannot be controlled, localized sealing measures
should be implemented. Additionally, support structures should be restored to reestablish a stable production system. The
detailed process is illustrated in Fig 2. The emergency response procedures and on-site handling processes for coal mine
accidents depicted in Figs. 1 and 2 are designed based on the specific geological conditions and gas hazard levels of
Mine B. Therefore, the model framework and related protocols reflect the actual operational environment and emergency
response characteristics of Mine B.
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Fig 2. On-site emergency response process for gas explosion accident at coal mine B.

https://doi.org/10.1371/journal.pone.0331711.9002

2.2 Implementation results of the emergency response plan for gas explosion accidents in mine B

Following the established emergency response procedures, the timeline from the occurrence of the accident to the com-
pletion of the emergency response was analyzed to identify issues in the execution of Mine B’s gas explosion emergency
response plan. On November 18 at 06:00, the high-grade general mining team was divided into two groups: a mecha-
nized mining group and a drilling and blasting group, working at the coal pillar recovery face and the 9102 high-grade
general mining face, respectively. At 13:07, workers in the drilling and blasting group violated operational regulations by
conducting an unauthorized blast, which generated an open flame. This ignited methane that had infiltrated from the goaf
of the 9103 working face into the coal pillar recovery area, triggering a gas explosion. At 13:50, the shift leader reported
the accident to the dispatch center via telephone. At 14:31, the chief engineer informed the mine director by phone, who
then reported the incident to the emergency management department.

Following the gas explosion, Mine B promptly initiated emergency response measures. The specific handling details
are summarized in Table 1.

Investigations revealed that, for over a month prior to the accident, Mine B had been engaging in unauthorized coal
pillar recovery operations. During this period, three safety inspections were conducted, and each shift was overseen by a
mine leader and safety inspectors. However, serious violations and major accident hazards were repeatedly overlooked.

Following the explosion, Mine B delayed reporting the incident for 40 minutes, exceeding the 30-minute regulatory
requirement, classifying it as a late report. Additionally, the on-site emergency response was overly dependent on external
rescue teams, with no immediate reconnaissance efforts initiated. The higher-level rescue teams only received deploy-
ment orders more than two hours after the explosion, resulting in delayed rescue operations.

These critical shortcomings significantly contributed to severe casualties and substantial economic losses.

2.3 Existing issues in the emergency response planning for gas explosion accidents in mine B

Mine B formulated its emergency rescue plan based on legal and regulatory guidelines. However, it lacks tailored pro-
tocols that reflect the mine’s specific operational conditions. The decision-making process remains fragmented, and
the response measures and plan descriptions fail to form a coherent system. The emergency plan is largely formalistic,
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Table 1. On-site emergency response in mine B.

Time Response actions

13:56 At the time of the accident, 105 workers were on duty, with 35 in the affected area. A total of 81 workers self-evacuated, while
24 were trapped. Upon receiving the accident report, the chief engineer notified all mine executives and department personnel
to assemble at the dispatch center, initiated the emergency response plan, and organized rescue efforts, successfully saving
five injured workers.

16:10 The national mine emergency rescue team (Fenxi team) received deployment orders for the accident response.

16:12 The leadership of the National Mine Rescue Center led four squads from the second and fourth rescue teams, dispatching 52
rescuers and nine rescue vehicles to the accident site.

17:29 The mine rescue brigade arrived at the accident site and proceeded to the command center for a situational briefing.

17:52 A detailed rescue plan was formulated, and a team of 19 rescuers was deployed underground to conduct reconnaissance and
rescue trapped personnel.

21:55 Four trapped miners were rescued, and nine deceased workers were recovered. The command center ordered all rescuers to
return to the surface.

22:35 Ateam of nine rescuers, together with the mine rescue squad, re-entered the mine to retrieve the remaining six deceased
workers.

02:30 The final six deceased miners were brought to the surface. All rescuers exited the mine, marking the completion of the rescue

(Next Day) operation.

https://doi.org/10.1371/journal.pone.0331711.t001

misaligned with actual on-site emergency handling, and suffers from delayed response times. Additionally, there are no
reference emergency plans based on similar past incidents.

During on-site emergency handling, decision-makers exhibited overconfidence, evaded responsibility, and took exces-
sive time to make critical decisions. The implemented measures were insufficiently targeted, lacking reference emergency
rescue strategies. Furthermore, inadequate training on emergency plans resulted in poor execution.

Given these shortcomings, CBR technology can be employed to enhance gas explosion emergency planning. By lever-
aging extensive rescue experience, this approach can assist decision-makers, improve response efficiency, and enhance
the overall effectiveness of mine rescue operations.

3. Construction of a case-based reasoning model for gas explosion emergency response planning
3.1 Case-based reasoning work model

This study adopts CBR technology, which consists of five key steps: case representation, retrieval, reuse, adaptation, and
storage. By integrating historical solutions into a case database, decision-makers can access a broader set of references,
improving emergency response planning. The overall workflow is illustrated in Fig 3.

To enhance the effectiveness of emergency response plan implementation in Mine B, a CBR model for gas explosion
emergency response planning is constructed. This model consists of four main components: accident case representa-
tion, retrieval of similar cases, case reuse, and emergency plan evaluation.

3.2 Characteristic attributes and case representation of gas explosion accidents in coal mines

3.2.1 Characteristic attributes of gas explosion accidents in coal mines.
(1) Causal analysis of coal mine gas explosion accidents

Cases serve as concrete manifestations and carriers of knowledge, requiring a comprehensive understanding of
their characteristics and attributes. First, an analysis of accident causation enhances the relevance of emergency
planning [32]. A structured and standardized description of accident cases is achieved by establishing an accident
attribute system based on representative characteristic indicators. To conduct a more comprehensive analysis of
the characteristics of coal mine gas explosion accidents, Python was used to crawl over 300 gas explosion accident
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cases from the China Coal Mine Safety Production website, leveraging third-party libraries such as urllib, xpath,
and openpyxl. All data utilized in this study were sourced from the official China Coal Mine Safety website. Data
collection and analysis were conducted in strict accordance with the website’s terms and conditions, ensuring full
legal compliance without infringing upon any third-party rights. The collected accident case data, supplemented by
relevant literature [33], were analyzed in terms of four key aspects: human factors, machinery and equipment, envi-
ronmental factors, and management factors.

In coal mining operations, improper task allocation poses significant safety risks. For instance, assigning unlicensed
personnel to blasting operations and insufficient safety education and skill training [34] can greatly increase the likelihood
of accidents. Additionally, workers’ mental and physical conditions may impact operational safety, potentially leading to
incidents. Regulatory negligence, such as ineffective supervision, disregard for existing hazards, and a lack of enforce-
ment in personnel monitoring systems, further exacerbates risks [34].

Regarding mechanical factors, equipment failure rates tend to be higher during both early and late operational stages,
and interactions between different machinery components may trigger cascading failures. The random nature of mechani-
cal failures in coal mining operations poses a significant challenge, as certain equipment malfunctions may lead to ignition
sources and excessive gas concentrations.

Environmental factors, including gas concentration, airflow velocity, and power supply stability, also influence accident
risks. Gas concentration levels are affected by spatial distribution, geological conditions, and mining intensity, while airflow
velocity is determined by ventilation systems, air doors, and air windows.

Unlike human, mechanical, and environmental factors, management deficiencies serve as indirect causes of accidents.
Organizational structure, training programs, and assessment mechanisms play a crucial role in accident prevention.
Ultimately, human, mechanical, and environmental risks often stem from underlying management flaws that need to be
addressed for comprehensive safety improvement.
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(2) Extraction of fundamental attributes of accidents

Coal mine gas explosions are typically caused by multiple factors, including human, mechanical, environmental,
and managerial elements [35]. However, organizational and management factors are often underrepresented in
existing analyses [36]. Based on statistical analyses of past coal mine gas explosion accidents, this study exam-
ines four key aspects: fundamental accident information, explosion location, causes of gas explosions, and safety
management practices. To minimize retrieval workload and enhance efficiency, attributes with negligible impact
or difficult accessibility are excluded, resulting in the selection of 18 fundamental attributes. The raw attribute
values are standardized, and the accident severity is considered by assigning a “1 ~4” characteristic value to
each attribute, where higher values indicate a greater probability of severe accidents. The classification criteria
are detailed in Table 2.

(3) Extraction of decision attributes for emergency response plans

Following an accident, an emergency response plan serves as a crucial decision-support tool. In scenarios where inci-
dents are sudden, rapidly evolving, and highly destructive [24], relying solely on decision-makers’ intuition is insufficient.
Instead, emergency response plans provide pre-established frameworks for emergency rescue operations, formulated
through in-depth analysis of accident progression mechanisms. Although these plans cannot fully align with real-time
on-site conditions, they offer structured guidance for rescue efforts.

Table 2. Characteristic values of fundamental accident attributes.

Fundamental Accident Attributes Characteristic Values
1 2 3 4
Fundamental Accident Accident Time 00:00-06:00 06:00-12:00 12:00-18:00 18:00-24:00
Information Nature of Accident Responsible Accident | — — Non-Responsible
Accident
Severity Level Minor Accident Relatively Major Accident | Major Accident | Particularly Severe
Accident
Economic Loss (thousand CNY)| <1000 1000-5000 5000-10000 210000
Number of Trapped Individuals | 0-10 10-30 30-50 >50
Number of Fatalities 0-3 3-10 10-30 >30
Number of Injuries 0-3 3-10 10-30 >30
Number of Missing Individuals | 0-3 3-10 10-30 >30
Gas Explosion Zone Secondary or Multiple Low High Very High Extremely High
Explosions
Fire Impact Scope Small Moderate Large Extremely Large
Explosion Impact Area Small Moderate Large Extremely Large
Explosion Location [37] Coal Mining Face Tunneling Face Goaf Roadway
Causes of Gas Explosion Ventilation System Status Good Moderate Damaged Severely
Damaged
lllegal Operations Few Moderate Many Extremely Many
Electromechanical Equipment | Minor Moderate Major Extremely Major
Factors
Organizational and Manage- Minor Moderate Major Extremely Major
ment Factors
Safety Management Employee Training Status — Moderate Poor Extremely Poor
Safety Management Status Good Moderate Poor Extremely Poor

https://doi.org/10.1371/journal.pone.0331711.t002
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Emergency response plans specify essential organizational and individual roles, necessary resources, equipment guar-
antees, and predefined rescue capabilities. By learning from similar past cases, emergency response plans can be refined
and improved to enhance preparedness.

Through an extensive investigation of emergency response procedures across numerous accident cases, the emer-
gency response process is primarily divided into three key stages: emergency activation, rescue operations, and
post-emergency recovery. The specific methodologies associated with these stages are outlined in Table 3.

The decision-making framework for emergency response plans consists of 17 attributes, each assigned a char-
acteristic value of 1 or 0 (1 indicates the method is incorporated into the emergency plan, while 0 signifies its
absence).

(4) Extraction of evaluation indicators for emergency response plans

Simple casualty counts and economic losses are insufficient to assess the effectiveness of emergency plans. Instead,
evaluation should be conducted by linking implementation outcomes to the formulation of emergency plans. Based on
previous assessment indicators for emergency plans in past incidents, this study further considers emergency response
procedures and historical accident cases. The effectiveness of plan implementation is evaluated from three perspectives:
completeness, operability, and rationality. Each indicator is standardized and classified into five levels, ranging from excel-
lent to poor, with characteristic values presented in Table 4.

3.2.2 Representation of coal mine gas explosion accident cases. By analyzing the attributes of accident
characteristics and addressing practical problem-solving needs, coal mine gas explosion accident cases are represented
in the form of a triplet, which serves as the foundation for constructing a case database. The case database consists of
three components: accident problem description, solution, and implementation effectiveness. Specifically, the accident
problem description captures basic characteristic attributes, the solution represents decision-making attributes, and
the implementation effectiveness serves as an evaluation metric. The problem description facilitates the retrieval of

Table 3. Characteristic values of decision attributes in emergency response plans.

Decision attribute Characteristic values
1 0

Emergency Rescue Command Center Adopted Not Adopte
Comprehensive Coordination Adopted Not Adopte
Establishment of Underground Rescue Base Adopted Not Adopte
On-Site Monitoring Adopted Not Adopte
Disaster Area Reconnaissance Adopted Not Adopte
Ventilation Restoration Adopted Not Adopte
Direct Firefighting Adopted Not Adopte
Sealed Firefighting Adopted Not Adopte
Water Injection Firefighting Adopted Not Adopte
Engineering Emergency Operations Adopted Not Adopte
Transporting Deceased Victims Adopted Not Adopte
Rescue of Trapped Individuals Adopted Not Adopte
On-Site Cleanup Adopted Not Adopte
Medical Treatment Adopted Not Adopte
Public Opinion Guidance Adopted Not Adopte
Logistics Support Adopted Not Adopte
Post-Accident Aftercare Adopted Not Adopte

https://doi.org/10.1371/journal.pone.0331711.t003
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Table 4. Characteristic values of emergency plan evaluation indicators.

Evaluation indicator Characteristic values
90-100 80-90 70-80 60-70 50-60

Hazard Identification Excellent Good Average Poor Very Poor
Responsibilities of Rescue Agencies Excellent Good Average Poor Very Poor
Post-incident Disposal Excellent Good Average Poor Very Poor
On-site Response Excellent Good Average Poor Very Poor
Emergency Tasks Excellent Good Average Poor Very Poor
Disposal Procedures Excellent Good Average Poor Very Poor
Information Dissemination Excellent Good Average Poor Very Poor
Timeliness of Early Warning Excellent Good Average Poor Very Poor
Execution Order Excellent Good Average Poor Very Poor
Safeguard Measures Excellent Good Average Poor Very Poor
Incident Containment Capability Excellent Good Average Poor Very Poor

https://doi.org/10.1371/journal.pone.0331711.t004

similar cases, from which the corresponding solution and implementation effectiveness are extracted based on similarity
calculations. Consequently, a case is represented as:

Case = {Problem, Solution, Result}

where Case denotes an emergency case of a gas explosion accident, and the historical emergency case set is denoted
as C={C, G, Cs, ..., C}, forming the case database. Problem (P) represents the problem description and consists of m
basic characteristic attributes, forming the emergency case problem attribute set P = {P,, P,, P;, ..., Pi}. Solution (S) rep-
resents the emergency response strategy, forming the emergency plan set S = {S;, S,, S;, ..., Sk}. Result (R) represents
the implementation effectiveness, forming the implementation evaluation set R = {R;, R,, R;, ..., Rj}. The target case,
denoted as C,, corresponds to the gas explosion accident at B Coal Mine, with its problem description represented as P,
Here, T, i, j, and k are positive integers.

Accident case representation serves as the foundation and prerequisite for decision-makers to formulate effective
plans, making it well-suited for a combination of frame-based and production rule representations. In this approach, acci-
dent characteristic attributes are embedded within a structured framework, defined as Frame Name =<SIlot P: Problem,
Slot S: Solution, Slot R: Result>. The Problem (P) slot encompasses facets such as P,: Accident Time, P,: Nature of Acci-
dent, ..., P,,: Safety Management Status. The Solution (S) slot includes elements like S,: Emergency Rescue Command
Center, S,: Comprehensive Coordination, ..., S,,: Post-Accident Aftercare. Finally, the Result (R) slot captures key aspects
such as R,: Hazard Identification, R,: Responsibilities of Rescue Agencies, ..., R,,: Incident Containment Capability.

3.3 Similar case retrieval based on the k-nearest neighbors (KNN) algorithm

3.3.1 Determination of basic feature attribute weights. Before conducting CBR retrieval, it is necessary to
determine the weights of basic feature attributes due to their varying importance. A combined subjective-objective
weighting method is employed, which not only considers the decision-maker’s subjective judgment but also reflects
the objective relationships in the data. Since the problem descriptions of accident cases contain both quantitative and
qualitative data, there may be instances of incomplete or uncertain data. To address this, this study integrates the
expert scoring method with the cloud model to ensure the objectivity of attribute weighting using expert knowledge and
experience. The specific weighting process is illustrated in Fig 4. The cloud model, based on probability theory and fuzzy
set theory, serves as a transformation model for handling quantitative and qualitative uncertainty [38]. By constructing an
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uncertainty transformation model, it effectively represents the relationship between qualitative and quantitative attributes,
thus resolving the challenge of weighting qualitative data.

The numerical distribution range of attribute weights, qualitative descriptions, and cloud characteristic values for
the case study are established, as shown in Table 5. The numerical characteristics of the cloud model are repre-
sented by expectation (E)), entropy (E, ), and hyper-entropy (H,). The cloud map of basic attribute weights is pre-

sented in Fig 5.
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Table 5. Numerical distribution range, qualitative descriptions, and cloud characteristic values of case attribute weights.

Weight range [0.8~1.0] [0.6~0.8) [0.4~0.6) [0.2~0.4) [0.0~0.2)
Importance Level Very Important Relatively Important Moderately Important Less Important Not Important
Expectation 0.9 0.7 0.5 0.3 0.1

(E, E,H) (0.9,0.033,0.005) (0.7,0.033,0.005) (0.5,0.033,0.005) (0.3,0.033,0.005) (0.1,0.0.033,0.005)

https://doi.org/10.1371/journal.pone.0331711.t005
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Fig 5. Feature attribute weight cloud map.

https://doi.org/10.1371/journal.pone.0331711.g005

3.3.2 Similar case retrieval. Case retrieval is a crucial step in CBR [39]. To enhance retrieval efficiency and accuracy,
an improved similarity retrieval method based on the commonly used KNN algorithm is proposed. In KNN, a case is
represented as a feature vector V,,, composed of multiple fundamental attribute features. Similarity retrieval is performed
by calculating the similarity between cases through the distance D(Vp,, Vp,), which determines the case similarity sim(Vp,
Vp,). Generally, a smaller distance D(Vp,, V) corresponds to a higher similarity value sim(Vp, Vp,), indicating that the two
cases are more alike. The similarity score is constrained within the range sim(Vp,, Vp,)<[0,1].

Given that different fundamental attributes have varying degrees of influence, a weighted Euclidean distance is
employed to measure similarity, introducing weight coefficients to represent the relative importance of each attribute. The

similarity between a target case and historical cases sim(Pj, p) is calculated using the following formula:

i
SIm(VPi' Veg) = 1- Z wP"D(VF’is' Vros)
s=1

(1)
where the relative distance between the target case and historical cases is given by:
D _ \VPis B VPOs
Ve Veo) ™ maxs — mins (2)

In these equations, Vp, and Vp, represent the s-th fundamental attribute of the historical and target cases, respectively.
The weight coefficient wp, denotes the importance of each fundamental attribute in assessing the case similarity. max_ and
min_ correspond to the maximum and minimum values of the s-th fundamental attribute.
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3.4 Case reuse based on mind evolutionary algorithm (MEA) BP neural network

After retrieving similar cases, they often cannot be directly applied to the target case and require adaptation and modification
to obtain the final solution. Traditionally, case reuse is conducted based on expert opinions and reference to the retrieved
similar cases. However, this method is inherently subjective. To mitigate this, the MEA-BP neural network is introduced.

The MEA simulates the human cognitive evolution process and incorporates the structural design principles of the
Genetic Algorithm (GA). It enriches the concepts of “convergence” and “divergence” and exhibits a strong global search
and optimization capability from a population perspective [40]. By leveraging MEA to optimize the weight and threshold
parameters of the BP neural network, the MEA-BP neural network enhances case reuse. The specific workflow of the
MEA-BP neural network algorithm is illustrated in Fig 6.

3.5 Emergency plan evaluation based on the cloud model

The cloud model is employed to assess the reused emergency plan using evaluation indicators. The evaluation values
from n experts are input into the cloud model, and the inverse cloud generator is utilized to compute the characteristic value
R(E,. E,. H,), where E represents the cloud model evaluation value for each indicator. The evaluation criteria are divided
into five levels (Excellent, Good, Average, Poor, and Very Poor, and Very Poor) corresponding to characteristic values of
95, 85, 75, 65, and 55, respectively. The specific implementation steps of the cloud model evaluation are as follows:

Step 1: Determining indicator weights and defining evaluation standards. For the j-th evaluation indicator, its
weight wg, is determined, and the evaluation standard is defined. The numerical characteristics of the cloud are calculated
as follows, where O, and O__ represent the lower and upper bounds of the interval, and K'is set to 0.005:

Ex == (Omax + Omin) /2 (3)

En = (Omax - Omin) /6 (4)

Determine the topology of the BP
neural network

Set the parameters for the MEA algorithm

|

Generate the initial population, elite
subpopulation, and temporary subpopulation

|

Perform convergence operations on the
subpopulations

Generate training and testing datasets

Obtain the optimized optimal
weights and thresholds l

x

Perform divergence operations on the
subpopulations No

Train the BP neural network

Satisty the
termination
conditions

Conduct simulation testing

Perform error analysis Output the optimal individual

Fig 6. MEA-BP neural network algorithm flowchart.

https://doi.org/10.1371/journal.pone.0331711.9006
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He = K (5)

Step 2: Computing the comprehensive evaluation cloud. Using the inverse cloud generator, the evaluation cloud
R(E,, E,, H,) for the t-th indicator is computed. The comprehensive evaluation cloud N(E , E , H,) of the emergency plan

implementation is then determined as follows:

J
EXZ E ijrEXﬂ
t=1

J
E,= Z ijtEant
J = )

J
He: E ijtHejt
t=1

Step 3: Determining the evaluation level. Finally, MATLAB is used to compare the comprehensive evaluation
cloud with the standard evaluation clouds. By analyzing the resulting cloud maps, the overall effectiveness level of the
emergency plan is preliminarily determined.

4. Simulation and safeguard measures for the emergency response plan of gas explosion in B coal
mine

4.1 Simulation of emergency response plan for gas explosion in B coal mine

This study takes the emergency response plan for gas explosion accidents in B Coal Mine as a case study. A simulation
test is conducted to improve and refine the plan, verifying its feasibility and effectiveness.

4.1.1 Establishing a case database for gas explosion accidents in coal mines. Following the gas explosion
accident in B Coal Mine, the incident was not reported within the required time frame. The complexity of accident
information, along with decision-makers prioritizing economic interests over safety, led to delays in emergency
response measures. The existing emergency plan of B Coal Mine is overly formalized, misaligned with actual
on-site handling procedures, and lacks a thorough analysis of emergency response capabilities. Additionally, no
adjustments were made to the emergency measures, resulting in poor effectiveness in the gas explosion rescue
operation.

A dataset of 50 coal mine gas explosion incidents was curated from publicly available reports on the China Coal Mine
Safety website, covering events since 2000. Only cases with complete records, well-defined attributes, and high compara-
bility were retained following rigorous screening; duplicate entries and pre-2000 incidents were excluded. Although modest
in size, the dataset reflects the scarcity and technical specificity of high-quality incident records, which justifies its use in
this study Given these constraints, we employed a CBR framework in combination with a MEA-BP neural network, both of
which are well-suited to small-sample settings. This approach prioritizes knowledge transfer and inference accuracy over
reliance on large-scale training data. The target case (B Coal Mine gas explosion) and historical cases were systemati-
cally represented and standardized for analysis, as shown in Table 6.

4.1.2 Retrieval of similar cases.
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Table 6. Characteristic values of basic attributes for gas explosion accident cases in coal mines.

Basic Attributes C, C, A C, C, C,
P, 3 1 3 3 3 3
P, 1 1 1 1 1 1
P, 3 2 2 2 2 4
P, 2 2 1 1 1 1
P 4 3 3 3 4 3

https://doi.org/10.1371/journal.pone.0331711.t006

(1)  Weight assignment for basic characteristic attributes

To assign weights to the basic characteristic attribute accident occurrence time (P,), the expert scoring method was used.

A total of eight experts were invited to participate in the evaluation. The first round of expert scores was recorded as:

x; = [0.15, 0.28, 0.45, 0.30, 0.28, 0.31, 0.26, 0.50]
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Fig 7. Time of incident (P1) attribute weights acquisition cloud map.

https://doi.org/10.137 1/journal.pone.0331711.9007
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Using the cloud generator, the expert scores were transformed from qualitative assessments into quantitative representa-
tions, yielding the cloud model characteristic values for accident occurrence time (P,):

Ny (Ex, En, He) = (0.3163, 0.0995, 0.0480)

A forward cloud generator was then employed to generate the expert evaluation value cloud map for accident occurrence
time (P,), as illustrated in Fig 7.

In Fig 7, cloud map 1 displays a highly dispersed cloud with a foggy appearance, indicating significant disagreement
among experts in the first round of scoring. The results were compiled and fed back to the experts for reassessment, and
the process was repeated until a clear aggregation pattern emerged.

Second round of scoring:

Xo = [0.17, 0.26, 0.43, 0.33, 0.26, 0.29, 0.27, 0.49]

Cloud map 2 demonstrated a more clustered pattern compared to the first round, indicating improved consensus.
Third round of scoring:

x3 =[0.17, 0.25, 0.40, 0.34, 0.25, 0.26, 0.30, 0.45]

Cloud map 3 showed further aggregation, signifying increasing agreement among experts.
Fourth round of scoring (final result):

x4 = [0.20, 0.25, 0.39, 0.34, 0.29, 0.26, 0.31, 0.40]

Cloud map 4 displayed a distinct clustering pattern, indicating that expert opinions on the importance of accident occur-
rence time (P,) had reached a consensus.

From the final cloud map, the characteristic values for the fourth round were extracted as: N,(E,, E,, H,)=(0.3050,
0.0689, 0.0088) where E _represents the weight value of accident occurrence time (P,). Qualitatively, accident occurrence
time (P,) was classified as “moderately important”.

Following the scoring method and cloud model approach, the weight values for the basic characteristic attributes were
determined, as summarized in Table 7.

(2) Similarity calculation

Table 7. Weight values of basic characteristic attributes.

Basic attributes | Weight value | The weight values after normalization | Basic attributes | Weight value | The weight values after normalization
P, 0.3050 0.0389 P, 0.5364 0.0683
P, 0.0000 0.0000 P, 0.5426 0.0691
P, 0.6231 0.0794 P, 0.3164 0.0403
P, 0.2551 0.0325 P, 0.5395 0.0687
P, 0.6153 0.0784 P, 0.4126 0.0526
Py 0.6451 0.0822 P 0.5424 0.0691
P, 0.5422 0.0691 P 0.4264 0.0543
P, 0.2152 0.0274 P, 0.3425 0.0436
P, 0.6425 0.0819 P 0.3468 0.0442

https://doi.org/10.137 1/journal.pone.0331711.t007
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Table 8. Computation results of similar cases.

Case ID Accident Case Similarity
10 C, 0.9036
9 C, 0.8476
17 C, 0.8041
7 C, 0.6953
35 C, 0.6602
8 C, 0.6501
14 C, 0.6469
4 C, 0.6264

https://doi.org/10.1371/journal.pone.0331711.t008

Table 9. Emergency response decision attribute values of similar cases.

Decision Attribute C, C, C, C, C, C, C, C. C,
S, TBD 1 1 1 1 1 1 1 1
S, TBD 1 1 1 1 1 1 1 1
S, TBD 0 1 0 0 1 0 0 0
S, TBD 0 1 1 1 1 1 1 0
S, TBD 1 1 1 1 1 1 1 1

https://doi.org/10.1371/journal.pone.0331711.t009

Based on the weight values of the fundamental feature attributes described in the problem statement, the improved KNN
algorithm is employed to compute the similarity between historical cases and the target case. The results are presented in
Table 8.

Cases 10, 9, 17, 7, 35, 8, 14, and 4 rank among the top eight most similar cases to the target case. The emergency
response decision attribute values of these highly similar cases are detailed in Table 9.

4.1.3 Reuse of emergency response plans from similar cases. The retrieved eight similar cases are used as
samples to predict the emergency response plan for the target case using the MEA-improved BP neural network.
Attributes with identical feature values in decision attributes and basic feature attributes, specifically S,, S,, S, S,,, S,,,
S,s S;7» P, and P,, are removed. The prediction is conducted using the remaining 10 decision attributes and 16 basic
feature attributes, where all identical decision attribute values are adopted.

For the BP neural network, the input layer consists of 16 nodes, while the output layer consists of 10 nodes. The num-
ber of hidden layer nodes is determined based on the empirical formula:

I<vm+n+-t (9)

where [ represents the number of hidden layer nodes, m is the number of input layer nodes, n is the number of output
layer nodes, and t is an adjustment parameter typically ranging from 1 to 10. Experimental tests on different hidden layer
sizes indicate that when the number of hidden layer nodes is set to 8, the mean squared error (MSE) of the network is
minimized. The BP neural network training algorithm establishes the relationship between inputs and expected outputs
using the newrff function, while MEA optimizes the initial weights and thresholds of the BP neural network. The parameter
settings for the code are provided in Table 10.

As illustrated in Fig 8, the MEA model undergoes a six-step convergence process. After convergence, all subpopula-
tions reach a mature state. In Fig 8 (1) and (2), elite subpopulations 1, 2, 4, and 5 maintain stable scores without execut-
ing convergence operations, as no superior individuals are detected in their vicinity. Meanwhile, temporary subpopulations
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Table 10. Parameter settings.

Parameter name Value Parameter name Value
Input layer nodes 16 Population size 100
Output layer nodes 10 Elite subpopulation size 5
Hidden layer nodes 8 Temporary subpopulation size 5
Maximum training iterations 100 Subgroup size 10
Learning rate 0.1 Iteration count 300
Expected error 0.01

https://doi.org/10.1371/journal.pone.0331711.t010

with lower scores are discarded, and new subpopulations are generated through re-exploration. In Fig 8 (5) and (6), after
six iterations of convergence, the highest score among temporary subpopulations falls below the lowest score of elite
subpopulations, achieving the global optimal solution. The optimal initial weights and thresholds of the BP neural network
are obtained by decoding the best-performing individual and are subsequently used for training. The MSE curve of the
MEA-BP prediction model is depicted in Fig 9, demonstrating that the MEA-BP neural network achieves the optimal MSE
of 0.16833 within two iterations. Since the final solution does not consist solely of ideal values of 0 or 1, a predefined
value range is used as the adoption criterion [41]. Specifically, values within the range of [-0.3, 0.3] are considered as
“not adopted”, while those within [0.7, 1.3] are regarded as valid feature values for decision-making. If a value falls outside
these ranges, retraining is conducted. The final results are presented in Table 11.

The retrieved similar cases were used to predict the decision values for the target case C, using the MEA-BP neural
network. Additionally, 50 gas explosion accident cases were selected from the China Coal Mine Safety Production data-
base. Cases with similarity scores below 0.7 were adjusted, and based on the similarity ranking and success of past
decisions, an emergency response plan for the target case C, was formulated, as detailed in Table 12.

4.1.4 Emergency plan evaluatio. Eight experts were invited to score the weights of various evaluation indicators. The
scoring method and cloud model were used to determine the weight values of each evaluation indicator in the emergency
plan, as shown in Table 13.

Considering the expert evaluations and the actual performance of the target case C, emergency plan, the evaluation
values from the eight experts are input into the cloud model to obtain the cloud model evaluation values for each indicator,
as shown in Table 14.

The weighted calculation of the indicator weights from Table 13 and the indicator scores from Table 14 results in
the comprehensive evaluation cloud for case C, emergency plan, N(82.78, 7.16, 1.18). This places the evaluation
between “Good” and “Fair”, leaning toward a “Good” grade. A comprehensive evaluation cloud map is generated, as
shown in Fig 10.

Table 11. Decision attribute values for the target case emergency response plan.

Index Predicted value Decision value Index Predicted value Decision value
S, 1 1 S, 0.1133 0

S, 1 1 S, -0.0188 0

S, 0.7179 1 S, 0.9230 1

S, 1.0318 1 S, 1 1

S, 1 1 S, 1 1

S, 0.2190 0 S, 0.8244 1

S, 1.0912 1 S 1 1

S, 0.8171 1 S, 1 1

S, 0.2555 0

https://doi.org/10.137 1/journal.pone.0331711.t011
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(1) Convergence process of superior subpopulations

(2) Temporary subpopulation convergence process
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https://doi.org/10.1371/journal.pone.0331711.9009

The scores for “Rescue Agency Responsibilities” and “On-site Disposal” were lower, at 77.05 and 78.76, respectively.
The remaining scores fall between 80 and 90. The main reasons for the lower scores are the sudden nature of coal mine
gas explosion accidents and the significant impact of human factors. The execution ability still requires improvement, and
full implementation of intelligent monitoring will require additional time.

4.2 Emergency response measures for gas explosion accidents in B coal mine

(1) Transportation support. B Coal Mine must designate specific vehicles for the transportation of essential materials
during an accident to ensure their availability. Emergency rescue material routes within the production area must remain
unobstructed. For complex mountainous roads, maximum efforts should be made to ensure convenient transportation and
effective command. The placement of objects that may obstruct passage in fire lanes is strictly prohibited to prevent traffic
congestion during rescue operations.

(2) Technical support. Advanced technological equipment should be adopted to enhance monitoring and surveillance
systems. In the event of an accident, early warnings should be issued promptly, and accident data should be collected
to predict its progression, ensuring the effective implementation of emergency plans and reducing the risk of escalation.

B Coal Mine must be equipped with experts or engineering technicians in production, equipment, technology, safety,
and instrumentation, enabling them to provide critical technical information and guidance for decision-making during
emergencies.

(3) Medical and rescue support. B Coal Mine’s affiliated hospital should maintain a well-equipped medical team and
ample medical supplies. Depending on the development of the situation, arrangements should be made for additional
support from higher-level hospitals to ensure timely reinforcement of rescue teams and the fulfillment of emergency
medical requirements. The affiliated hospital is responsible for ensuring the availability of emergency rescue medications.

(4) Emergency rescue team support. The internal rescue capabilities of B Coal Mine must be ensured, and relevant
functional departments should be mobilized to participate in emergency response actions. In the event of a production
safety accident, emergency personnel from each functional department must be assembled by their designated team
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Table 12. Emergency response plan for coal mine gas explosion accidents.

Decision attribute

Specific actions

Emergency
Activation

Emergency Rescue Command Headquarters

Comprehensive Coordination

The emergency response plan is immediately activated, and rescue teams promptly
arrive at the scene. A rescue command headquarters is established to coordinate
and direct all emergency operations effectively.

Rescue
Actions

Establishment of a Rescue Base

On-Site Monitoring

Disaster Area Reconnaissance

Direct Fire Suppression

Sealed Fire Suppression

Search and Rescue of Trapped Personnel

After the gas explosion accident occurred, the gas concentration exceeded the

4% limit. The monitoring personnel immediately reported the situation to the
dispatcher, who contacted the underground team by phone to confirm the incident.
The dispatcher then issued an evacuation order. The mine director, safety director,
chief engineer, and deputy production director proceeded to the mine dispatch
center to implement a power shutdown and facilitate evacuation. They then led the
mine’s part-time rescue team underground to initiate the rescue operation. Upon
receiving the alarm, the mine director, deputy township head, and the head of the
safety supervision station arrived at the dispatch center, went to the scene, and
entered the mine to assess the situation. If the safety director and other personnel
determined that the gas levels were too high, entry would be prohibited. Search
operations were conducted along transport tunnels, working faces, and return
airways. Victims and injured personnel were located and brought to the surface.
Following this, additional search efforts were carried out in other underground tun-
nels. The deputy township head, head of the safety supervision station, and on-site
mine personnel ascended to the surface. The mine’s general manager reported the
incident to higher authorities. Rescue teams from county-level and above entered
the mine for reconnaissance and joined in the rescue operations. The rescue team
entered the working face renovation tunnel to search and identify casualties. The
rescue operations concluded once the last victim was recovered from the mine, and
the total number of casualties was reported.

Emergency
Recovery

On-Site Clearance

Medical Treatment

Public Communication and Media Guidance

Logistical Support

Post-Disaster Recovery and Aftercare

Immediately after the accident occurs, efforts are initiated for rescue operations
and post-accident handling. Relevant department heads must promptly arrive at
the site to convey important instructions from higher authorities. They will guide and
organize the rescue operations and post-accident handling, ensuring the smooth
execution of the rescue, recovery, and investigation processes.

Preventive Measures: (1) Implement safety education and practical training activ-
ities for coal mines. (2) Thoroughly learn from previous gas explosion accidents

in coal mines. (3) Conduct comprehensive rectification of mine safety systems

and practices. (4) Launch targeted actions to combat illegal mining operations. (5)
Perform a thorough inspection of intermediary organizations involved in coal mine
operations. (6) Strengthen the management of on-site safety supervision personnel.

https://doi.org/10.1371/journal.pone.0331711.t012

Table 13. Cloud numerical characteristics and weights of each evaluation indicator.

Indicator E E H, Weight Normalized weight
R, 0.6337 0.0423 0.0163 0.6337 0.0962
R, 0.6463 0.0466 0.0192 0.6463 0.0982
R, 0.5238 0.0411 0.0276 0.5238 0.0796
R, 0.6962 0.0466 0.0130 0.6962 0.1057
R, 0.4050 0.0501 0.0161 0.4050 0.0615
R, 0.4488 0.0544 0.0103 0.4488 0.0682
R, 0.4100 0.0282 0.0109 0.4100 0.0623
R, 0.7063 0.0266 0.0078 0.7063 0.1073
R, 0.6938 0.0298 0.0074 0.6938 0.1054
R, 0.7088 0.0270 0.0073 0.7088 0.1077
R, 0.7113 0.0298 0.0136 0.7113 0.1079

https://doi.org/10.1371/journal.pone.0331711.t013
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Table 14. Cloud model evaluation values for each indicator.

Indicator E, E H, C, cloud model evaluation value
R, 85.83 5.55 1.70 85.83
R, 77.05 5.38 1.03 77.05
R, 80.70 6.57 0.81 80.70
R, 78.76 7.13 0.74 78.76
R, 81.62 4.11 1.69 81.62
R, 83.24 6.65 0.70 83.24
R, 86.81 5.21 2.46 86.81
R, 87.36 6.87 0.24 87.36
R, 82.86 9.73 1.70 82.86
Ry, 85.54 8.80 1.66 85.54
R, 81.41 8.35 0.76 81.41
https://doi.org/10.1371/journal.pone.0331711.t014
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Fig 10. Cloud map of evaluation grad and comprehensive assessment.

https://doi.org/10.1371/journal.pone.0331711.9010

leaders to form an emergency response team, which should remain stable. Any personnel vacancies due to work

adjustments must be promptly filled to ensure adequate rescue forces.

(5) Emergency supplies support. Emergency materials and equipment should be adequately prepared, regularly
inspected, and replaced as necessary. Upgrading emergency equipment should be prioritized. Based on the requirements
of the emergency response plan, a comprehensive emergency material supply system should be established, with
production units as the primary suppliers and social rescue resources as supplementary support. A regional coordination
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mechanism for emergency material reserves should be improved to enable resource sharing and dynamic management
of emergency supplies in B Coal Mine.

5. Conclusion

This study addresses the issues in formulating the emergency response plan for gas explosion accidents in B Coal Mine.
By employing field investigation, the MEA-BP network, and cloud models, CBR technology was introduced to develop a
systematic and structured CBR model. This model enhances the formulation of emergency response plans, improving
efficiency, reliability, and effectiveness. The key research findings and conclusions are as follows:

(1) Analysis of the current state and issues in emergency response planning for gas explosion accidents in B Coal Mine.
A comprehensive investigation was conducted to examine the current status and challenges in formulating emergency
response plans. Identified issues include delays in reporting incidents and establishing emergency command centers,
lack of rescue experience, prolonged decision-making times, absence of reference measures, and inability to adjust
emergency plans in a timely manner.

(2) Development of a CBR model for formulating emergency response plans for gas explosion accidents. First, character-
istics of gas explosion accident cases—including problem descriptions, solutions, and implementation effects—were
extracted and standardized. Case representation was conducted using a framework representation method. Based on
cloud model theory, a weight calculation method for fundamental attributes was proposed, and an improved KNN algo-
rithm was used for similar case retrieval. The MEA algorithm was employed to optimize the weights and thresholds of
BP neural networks, facilitating case reuse. Additionally, the cloud model was incorporated for emergency response
plan evaluation and classification.

(3) Simulation of emergency response planning for gas explosion accidents in B Coal Mine. Based on the above
research, simulation tests were conducted to validate the reliability of the model. By using the B Coal Mine gas explo-
sion accident as a target case and referencing historical accident cases, a case database was constructed. The CBR
model was applied to preliminarily formulate an emergency response plan. The evaluation results indicate that the
plan falls between “good” and “average”, leaning towards the “good” category, thereby providing a reference for emer-
gency response planning.

(4) Proposal of implementation and support measures for the emergency response plan. Based on the simulation results,
further analyses were conducted on the selection and reuse of emergency plans. Corresponding implementation and
support measures were proposed to enhance the effectiveness of the emergency response strategy.

6. Outlook

This study integrates Case-Based Reasoning (CBR) into the formulation of emergency response plans for coal mine gas
explosions, proposing a novel, structured framework through refinement of key CBR components. Preliminary results
demonstrate its potential, yet several limitations—primarily stemming from temporal and technical constraints—remain to
be addressed.

(1) While the proposed CBR model provides a systematic foundation for emergency planning, it lacks mechanisms to
model inter-agency coordination. Future work should incorporate dynamic, multi-agent collaboration and real-time
adaptive strategies to enhance operational relevance and decision-making agility.

(2) The current model has not yet been embedded into a fully functional, integrated emergency response system. Devel-
opment of user-centric interfaces and seamless interaction with existing coal mine emergency information platforms is
critical to support intuitive human—machine collaboration and advance automation in crisis management.
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(3) The case dataset employed lacks comprehensive characterization in terms of decision categories, event typologies,
and complexity levels. Moreover, no statistical or visual analysis of attribute distributions is currently provided. Future
research will address these gaps through descriptive analytics, expanded datasets including international cases, and
the identification of potential biases—thereby improving data diversity, representativeness, and robustness.

(4) In light of the inherent uncertainty in real-world scenarios, sensitivity analysis is essential for evaluating model resil-
ience. Although this study focused on model design and initial feasibility, subsequent efforts will quantify how input
perturbations influence case retrieval and response outcomes, enhancing both transparency and reliability.

Collectively, future work will prioritize the enrichment of case data, refinement of model granularity, integration with
operational systems, and comprehensive stability validation. These advances will lay the groundwork for intelligent, adap-
tive emergency planning and contribute to improved safety governance in high-risk mining environments.
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