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Abstract 

Forecasting the future number of confirmed cases in each region is a critical chal-

lenge in controlling the spread of infectious diseases. Accurate predictions enable the 

proactive development of optimal containment strategies. Recently, deep learning-

based models have increasingly leveraged graph structures to capture the spatial 

dynamics of epidemic spread. While intuitive, this approach often increases model 

complexity, and the resulting performance gains may not justify the added burden. In 

some cases, it may even lead to overfitting. Moreover, infectious disease data is typi-

cally noisy, making it difficult to extract infectious disease-specific dynamics from data 

without guidance based on epidemiological domain knowledge. To address these 

issues, we propose a simple yet effective hybrid model for multi-region epidemic fore-

casting, termed Physics-Informed Spatial IDentity neural network (PISID). This model 

integrates a spatio-temporal identity (STID)-based neural network module, which 

encodes spatio-temporal information without relying on graph structures, with an SIR 

module grounded in classical epidemiological dynamics. Regional characteristics are 

incorporated via a spatial embedding matrix, and epidemiological parameters are 

inferred through a fully connected neural network. These parameters are then used 

to govern the dynamics of the SIR model for forecasting purposes. Experiments on 

real-world datasets demonstrate that the proposed PISID model achieves stable and 

superior predictive performance compared to baseline models, with approximately 

27K parameters and an average training time of 0.45 seconds per epoch. Addition-

ally, ablation studies validate the effectiveness of the neural network’s encoding 

architecture, and analysis of the decoded epidemiological parameters highlights the 

model’s interpretability. Overall, PISID contributes to reliable epidemic forecasting by 

integrating data-driven learning with epidemiological domain knowledge.

Introduction

Infectious diseases have long been intertwined with daily human life, with outbreaks 
historically causing significant disruptions to public health, society, and the economy. 
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For instance, the novel coronavirus disease (COVID-19) has triggered a global 
pandemic since 2019, resulting in widespread infections and fatalities, and severely 
impairing social functions [1]. Addressing the threat of such diseases requires accu-
rate epidemic forecasting to enable policymakers to implement timely preventive 
measures and allocate medical resources effectively.

Many mathematical models for epidemic forecasting have been studied and pro-
posed so far. In recent years, deep learning-based approaches have gained attention 
due to their strong representational power and predictive accuracy. In particular, 
because infectious diseases like COVID-19 spread across regions primarily through 
human mobility, spatio-temporal models incorporating graph neural networks (GNNs) 
have been developed to capture the spatial dynamics of epidemics. These models 
extract useful features by modeling dynamic interactions between regions over time, 
thereby enhancing prediction accuracy. However, learning graph structures, which is 
a common component of these models, is inherently challenging [2] and increases 
the model complexity. The increased complexity often leads to reduced compu-
tational efficiency and, in some cases, even diminished predictive performance. 
Moreover, some models rely on auxiliary data such as population mobility [3] or social 
connectivity [4], to learn graph structures. However, such data are often difficult to 
obtain and may introduce unintended biases. In addition to the challenges of learning 
graph structures, the inherent complexity of epidemic dynamics—characterized by 
exponential transmission dynamics and influenced by diverse factors such as public 
awareness, climate, and drug availability—exposes deep learning models to the risk 
of overfitting in exchange for their flexibility in adapting to historical data. On the other 
hand, classical compartmental models such as the SIR model [5] and its variants, 
which describe epidemic processes using differential equations, are often employed 
due to their simplicity and interpretability. These models typically adjust their parame-
ters to best fit historical data. However, this approach cannot adequately account for 
the inherent uncertainties in future epidemic trends.

Recently, several studies [3,6–8] have attempted to incorporate epidemiological 
domain knowledge—specifically, physics-informed compartmental models unique 
to infectious diseases, such as the SIR model—into deep learning frameworks to 
enhance forecasting accuracy. By incorporating deterministic epidemic dynamics into 
model architectures or loss functions, these approaches guide neural networks in 
accordance with the underlying principles of disease transmission—efforts to embed 
physical laws into neural networks have gained attention, including in disciplines such 
as the natural sciences [9]. However, they often require the number of individuals in 
the infectious state at each time point as input, which is typically estimated from the 
number of newly recovered cases. Such data are generally more difficult to track than 
the number of newly confirmed cases and are often unavailable. To address scenarios 
where such detailed data are lacking, we propose a simple and practical physics- 
informed deep learning model for forecasting the future number of confirmed cases, 
relying solely on historical confirmed case data and population data. Our model, 
named the Physics-Informed Spatial IDentity neural network (PISID), integrates the 
SIR model into a deep learning framework based on STID [10], a spatio-temporal 
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identity model that avoids the complexity of graph structure learning. Epidemiological parameters are estimated using sim-
ple Multi-Layer Perceptron (MLP) layers, incorporating spatial characteristics through a spatial embedding matrix. Based 
on these parameters and the number of confirmed cases, the number of infectious individuals required for applying the SIR 
model is inferred. The future number of confirmed cases is then predicted using update equations derived from the infection 
dynamics in the SIR model. This approach enables interpretable forecasting grounded in epidemiological principles—an 
aspect often lacking in conventional deep learning models. In summary, the contributions of our study include the following:

•	 We propose a novel multi-region epidemic forecasting model that leverages epidemiological domain knowledge by com-
bining a classical dynamical system in epidemiology with simple neural networks incorporating region-specific embed-
dings, without relying on graph structure learning.

•	 By estimating and utilizing epidemiological parameters, our model enhances interpretability and can describe epidemio-
logical dynamics without requiring additional data on the number of infectious individuals.

•	 We conduct extensive experiments using real-world COVID-19 data, demonstrating the model’s stable predictive perfor-
mance and interpretability.

The remainder of this paper is organized as follows: the “Related Works” section reviews related works, the “Method-
ology” section details the proposed model structure, the “Experimental Study” section presents the experimental results, 
and finally, the “Conclusion” section summarizes the work and discusses directions for future research.

Related works

Numerous mathematical models have been developed for infectious disease epidemic forecasting, which can broadly be 
categorized into two groups: traditional mathematical models and deep learning models. Among traditional models, clas-
sical compartmental models and their variants are particularly prevalent. In these models, the population is divided into 
homogeneous subgroups representing different states, and the transitions between these states are typically described 
by differential equations. The SIR model [5], which classifies individuals as susceptible, infectious, or recovered, is the 
most fundamental. Variants such as the SEIR model [11], which includes an exposed state, and the SIS model [12], which 
assumes reinfection in possible, have also been widely studied. These models are often used to gain insights into disease 
characteristics and to explore future prevention strategies through simulation and parameter estimation. Batistela et al. 
[13] proposed a compartmental model that accounts for temporary immunity due to infection or vaccination, as well as 
unreported infections, and evaluated the effects of vaccination and social isolation. Fudolig and Howard [14] developed 
an SIR model incorporating multiple virus strains to explore the conditions under which endemic equilibrium can occur. 
Typically, future epidemic dynamics are simulated using parameters either optimized from historical data or manually set. 
However, this approach cannot account for changes in epidemic characteristics during the forecast period, raising con-
cerns about cumulative errors over multiple time steps. Beyond compartmental models, other traditional mathematical 
models have also been employed for epidemic forecasting. Achrekar et al. [15] used an Autoregressive Moving Average 
(ARMA) model to predict future influenza-like illness (ILI) cases based on Twitter message trends. Wang et al. [16] devel-
oped a generalized Vector Autoregressive (VAR) model to forecast COVID-19 cases in the United States. The spread of 
infectious diseases exhibits non-stationary characteristics, influenced by various factors such as changes in viral prop-
erties, shifts in human behavior, and advancements in medical care. Therefore, the data distribution may evolve over 
time. In traditional models such as those mentioned above, which assume strong stationarity, it is particularly important 
to detect the points at which the distributional properties change. While known events such as lockdowns can be used to 
define these change points, there have also been efforts to identify unknown change points using a Bayesian approach 
[17], a genetic algorithm [18], and other techniques [19,20]. In other fields of natural science, a method for handling 
non-stationarity has been proposed using Bayesian compressive sensing [21].
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To address the complex nonlinear relationships that traditional models struggle with, more flexible machine learning 
models have also been explored for prediction. Battineni et al. [22] conducted COVID-19 outbreak forecasting based on 
Fb-Prophet, a time series prediction model developed by Facebook that accounts for seasonality and holidays. Sadig 
et al. [23], on the other hand, employed LightGBM and XGBoost—representative gradient boosting algorithms based 
on decision trees—to predict the number of COVID-19 cases in real-time scenarios. Deep learning-based approaches 
that adaptively learn feature representations have also attracted significant attention. ArunKumar et al. [24] applied 
a Recurrent Neural Network (RNN) to forecast COVID-19 cases, while Lee et al. [25] used a Convolutional Neural 
Network (CNN) for ILI prediction. Transformer-based models such as Autoformer [26] have also been employed to 
capture temporal dependencies in time series data. While these models effectively process sequential data, it is import-
ant to note that infectious diseases inherently spread through spatial interactions. Consequently, graph-based deep 
learning methods have attracted attention for modeling spatial dependencies between regions. By representing each 
region as a node and connecting related regions with edges, Graph Neural Networks (GNNs), such as Graph Convo-
lutional Networks (GCNs) [27], can efficiently capture spatial relationships. Basic graph construction methods often 
rely on prior knowledge, such as geographic distance or adjacency. For example, Panagopoulos et al. [28] constructed 
a graph based on human mobility data and analyzed the correlation between population movement and COVID-19 
spread across countries. However, such predefined graph structures may not accurately reflect true dependencies. To 
address this, graph representation learning methods that adaptively learn graph structures using trainable node embed-
dings have been proposed [29]. ColaGNN [30] extracts inter-regional correlations from temporal latent representations 
using attention mechanisms, while EpiGNN [31] adaptively learns non-bidirectional spatial correlations that consider 
both geographical and temporal dependencies, as well as local and global transmission risks. Dual-Topo-STGCN [8] 
incorporates correlations between geographically distant regions by introducing functional topology that accounts for 
socio-economic interrelationships, in addition to geographical topology. M-Graphormer [32] learns dynamic graph 
representations primarily from human mobility data employing three encoding strategies that focus on centrality, spa-
tial characteristics, and edge features. Recently, spatio-temporal GNN models equipped with graph representation 
learning and incorporating epidemiological domain models such as the SIR model have been proposed [3,6–8]. These 
models enhance predictive performance by grounding predictions in the physical laws governing disease transmission. 
However, they require as input the number of infectious individuals at each time point to accurately model infection 
dynamics. In other words, it is necessary to track not only the number of newly infected individuals who have become 
infectious, but also those who have ceased to be infectious (i.e., recovered cases) at each time point. Compared to 
data on new infections, data on recovered cases are often more difficult to follow up on and may be unavailable, which 
limits the applicability of these models. From a practical standpoint, it is therefore necessary to develop an epidemi-
ologically informed model that can operate solely based on the number of new infections. Furthermore, the inherent 
complexity of the graph representation learning adopted by the aforementioned spatio-temporal GNN models may 
hinder performance improvements commensurate with the complexity of the neural architectures themselves [2]. As 
alternatives that do not rely on graph representation learning, STNorm [33] distinguishes dynamics by normalizing raw 
data separately in the temporal and spatial dimensions through factorization, while STID [10] ensures spatio-temporal 
identifiability by embedding temporal identities shared across similar cycles and spatial identities shared within the 
same region. Despite not utilizing graph representation learning, these models achieve predictive performance compa-
rable to or better than more complex spatio-temporal GNN models. Motivated by these studies, we propose a simple 
yet effective neural network model that integrates the SIR model into STID, enabling it to capture spatial distinctions 
without relying on graph representation while also leveraging the underlying epidemiological dynamics. Furthermore, by 
incorporating a mechanism to infer the number of infectious individuals at each time point based on a simple equation 
rewrite, our model overcomes the limitation of previous epidemiology-based neural models that required this informa-
tion as auxiliary input.



PLOS One | https://doi.org/10.1371/journal.pone.0331611  September 15, 2025 5 / 21

Methodology

In this section, we define the problem setting addressed in this study and present the framework of the proposed model.

Problem setting

In this study, we address the problem of forecasting the numbers of new confirmed cases in multiple regions based on 
historical data. Let XT = [x

1,T, x2,T, …, xM,T] ∈ ℝM denote the number of new confirmed cases in M regions at time step T, 
and let XT-Tin+1:T = [XT-Tin+1

, XT-Tin+2
, …, XT] ∈ ℝM×Tin represent the historical data from time step T going back Tin steps. The 

objective is to forecast the number of new confirmed cases Tout steps into the future, denoted YT+Tout ∈ ℝM, which can be 
formulated using a mapping function F as follows:

	 YT+Tout= F(XT–Tin+1:T)	 (1)

Model structure

The overall structure of the proposed model is illustrated in Fig 1 and consists of two modules: a spatio-temporal neural 
network module and an SIR module. The spatio-temporal neural network module encodes temporal and spatial informa-
tion based on the historical data of each region and predicts parameters that characterize the underlying epidemiological 
dynamics. Subsequently, the SIR module forecasts the future number of new confirmed cases by iteratively executing a 
discrete SIR model using the predicted parameters, leveraging epidemiological domain knowledge.

Spatio-temporal neural network module

We design a neural network to estimate epidemiological feature parameters. To avoid the potential introduction of errone-
ous biases caused by overly complex graph representation learning, we construct our framework based on STID [10], a 
simple yet effective spatio-temporal model. First, the historical input data XT-Tin+1:T ∈ RRM×Tin is embedded into a latent space 
HT ∈ RRM×D from a temporal perspective using a fully connected layer FC(·) as follows:

	 HT = FC(XT–Tin+1:T)	 (2)

Fig 1.  The entire framework of PISID.

https://doi.org/10.1371/journal.pone.0331611.g001

https://doi.org/10.1371/journal.pone.0331611.g001
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where D represents the hidden dimension. Next, spatial information is embedded using spatial identities E ∈ RRM×D, a ran-
domly initialized learnable matrix that captures region-specific features without relying on graph representation learning. 
The concatenated embeddings Z1

T ∈ RRM×2D, which incorporate both spatial and temporal information, are then used as input 
to the encoder:

	 Z1T = HT ∥ E	 (3)

The encoder consists of L layers of basic MLP with residual connections:

	
Zl+1
T = FCl

2

(
ReLU

(
FCl

1

(
ZlT

)))
+ ZlT 	 (4)

where FCl
1
 and FCl

2
 with l ∈ [1, L], denote the first and second fully connected layers of the l-th layer, respectively, and 

ReLU represents the Rectified Linear Unit (ReLU) activation function, applied with dropout. Then, the epidemiological 
parameters β=[β

1
, β2, …, βM] ∈ ℝM and γ=[γ

1
, γ2, …, γM] ∈ ℝM are output through FC layers and passed to the SIR module.

	
β = Sigmoid

(
FCβ

(
ZL+1
T

))
, γ = Sigmoid(FCγ

(
ZL+1
T

)
)
	 (5)

where FCβ and FCγ denote the fully connected layers used to estimate β and γ, respectively, and Sigmoid refers to the 
sigmoid activation function.

SIR module

The SIR module outputs the target forecast values of the number of new confirmed cases in the future, based on the 
dynamics of the SIR model. The SIR model is described by the following system of differential equations:

	

dSi(t)
dt

= –
βi
Ni
Si(t)Ii(t),

	

	

dIi(t)
dt

=
βi
Ni
Si(t)Ii(t) – γiIi(t),

	

	

dRi(t)
dt

= γiIi(t),
	 (6)

where Si, Ii, and Ri represent the number of susceptible, infectious, and recovered individuals in region i, respectively, and 
Ni = Si(t) + Ii(t) + Ri(t) denotes the total population in region i. In Equation (6), the infection rate βᵢ and the recovery rate γᵢ 
are key parameters that govern the dynamics of disease transmission. The index Re(t): = βi/ γi· Si(t)/ Ni can be interpreted 
as the effective reproduction number, which represents the expected number of new infections caused by a single infec-
tious individual in a partially immune population at time step t. This metric is often used as a timely indicator of the extent 
of disease transmission.

We now explain how the aforementioned SIR model is adapted for the current task, which involves forecasting new con-
firmed cases. These cases are typically assumed to be isolated or treated at the time of reporting and are therefore no lon-
ger capable of transmitting the infection. Accordingly, based on the discretized version of Equation (6), the number of new 
confirmed cases xi,t in region i at time step t can be interpreted as the number of new transitions into the recovered state:

	 γiIi(t – 1) = xi,t 	 (7)
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Therefore, our goal is to estimateγi Ii(T + Tout-1). To achieve this, we iteratively update the number of individuals in each 
compartment over the time interval from T to T + Tout based on the dynamics defined by the discretized SIR model. As a 
first step, we need to determine the initial values of these iterations in each compartment using the available historical data 
xi,T-Tin+1, …, xi,T. The number of recovered individuals Ri(t) can be computed by accumulating the number of new confirmed 
cases up to time step t. Regarding the number of susceptible individuals Si(t), there is the relation Si(t) = Ni - Ii(t) - Ri(t). 
Therefore, once Ii(t) is estimated, the number of individuals in each compartment can be determined, allowing the initial 
values for the iterations to be set. The differential equation for Ii(t) in Equation (6) can be reformulated as follows [34]:

	
Ii(t) = Ii(0)e–γi t +

∫ t

0

βi
Ni
Si(u)Ii(u)e–γi(t–u)du

	 (8)

By approximating the integral in the second term with a discrete summation and treating unavailable data points prior to 
time step T - Tin as negligible, we estimate Ii(t) for t ≥ T-1 as follows:

	
Ii(t) ≈

∑t–1

u=T–Tin

βi
Ni
Si(u)Ii(u)e–γi(t–u)

	

	
=

∑t–1

u=T–Tin
∆Ii(u+ 1)e–γi(t–u),

	 (9)

where ΔIi(u + 1) represent the new infections at time step u + 1, βi Si(u)Ii(u)/ Ni. Based on the relationships derived from 
Equations (6) and (7), ΔIi(u + 1) for u ∈ [T-Tin, T-2] can be calculated as (xi,u+2

 – xi,u+1
)/ γi + xi,u+1

. In light of the above findings, 
at each time step t ∈ [T, T + Tout] in region i, we update the states according to the following:

	
Si(t) = Si(t – 1) –

βi
Ni
Si(t – 1)Ii(t – 1),

	

	
Ii(t) =

∑t–1

u=T–Tin
∆Ii(u+ 1)e–γi(t–u),

	

	 Ri(t) = Ri(t – 1) + γiIi(t – 1),	 (10)

where the initial values at time step T-1 in each compartment are given by 
Ii(T – 1) =

∑T–2
u=T–Tin

∆Ii(u+ 1)e–γi(T–1–u), Ri(T – 1) =
∑T–1

u xi,u, Si(T – 1) = Ni – Ii(T – 1) – Ri(T – 1). By applying the esti-
mates of βᵢ andγᵢ obtained from the spatio-temporal neural network module into Equation (10), and iteratively updating 
each state, we obtain the forecasted number of new confirmed cases Ŷi,t ∈ ℝ at time step t ∈ [T + 1, T + Tout] in region i as 
follows:

	 Ŷ i,t = γiIi(t – 1)	 (11)

Algorithm 1 presents the pseudocode illustrating the flow leading to the prediction output.
Algorithm 1. PISID algorithm.Spatio-temporal neural network module:
1. HT ← Fully Connected Embedding (Input : XT–Tin+1:T)
2. E ← Spatial Embedding (Input : region 1, . . . , M)
3. Zl+1

T ← MLP based Encoding (Input : HT, E)
4. β, γ ← Fully Connected Regression (Input : Zl+1

T )

SIR module:
5. 

{
∆Ii(u)

}u=T–Tin+1,...,T–1
i=1,...,M ← Calculate the historical new infections (Input : XT–Tin+1:T, γ)
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6. 
{
Si(T – 1), Ii(T – 1), Ri(T – 1)

}
i=1,...,M ← Calculate the initial states (Input :

{
Ni
}
i=1,...,M ,{

∆Ii(u)
}u=T–Tin+1,...,T–1

i=1,...,M , γ)

7. for each time step t in {T, . . . , T+ Tout} do

8. 
{
Ŷ i,t

}
i=1,...,M

← Calculate the new confirmed cases (Input :
{
Ii(t – 1)

}
i=1,...,M , γ)

9. 
{
∆Ii(t)

}
i=1,...,M ← Calculate the new infections (Input :

{
Si(t – 1), Ii(t – 1), Ni

}
i=1,...,M , β)

10. 
{
Si(t), Ii(t), Ri(t)

}
i=1,...,M ← Update each state (Input :

{
Si(t – 1), Ii(t – 1),Ri(t – 1),Ni

}
i=1,...,M , 

{
∆Ii(u)

}u=T–Tin+1,...,t

i=1,...,M , β, γ)

11. return 
{
Ŷ i,t

}t=T+1,...,T+Tout

i=1,...,M

Objective function

We employ the Mean Absolute Error (MAE) as the loss function and train the model to capture the epidemic dynamics up 
to the target time step T + Tout by minimizing the difference between the forecasted values Ŷi = [Ŷi,T+1, …, Ŷi,T+Tout] ∈ ℝTout and 
the ground truth values Yi = [Yi,T+1,…, Yi,T+Tout] ∈ ℝTout for each region i. The objective function to be minimized is defined as:

	
L(Θ) =

1

M

∑M

i=1
|Ŷi – Yi|	 (12)

where Θ denotes all learnable parameters, which are contained entirely within the spatio-temporal neural network module.

Experimental study

Datasets

To conduct our computational experiments, we use two publicly available COVID-19 datasets from Japan and the US, 
each recording the number of daily new confirmed cases:

•	  Japan: This dataset is collected from the Ministory of Health, Labour and Welfare [35] and contains the number of daily 
new confirmed cases for each of the 47 prefectures from January 16, 2020, to May 8, 2023. Population data for each 
prefecture are obtained from the Japan LIVE Dashboard [36].

•	 US: This dataset is sourced from the Johns Hopkins Coronavirus Resource Center [37] and includes the number of daily 
new confirmed cases for each of the 51 states from January 22, 2020, to March 9, 2023.

Baselines

We compare the proposed PISID model with both traditional mathematical models (SIR, ARMA, GAR) and deep learning 
models (RNN, DCRNN, LSTNet, STGCN, GWNet, ColaGNN, FourierGNN, STID).

•	  SIR: The SIR model [5] is a classical compartmental model based on differential equations, widely used in epidemiol-
ogy. We optimize the model parameters directly using historical data for each region.

•	 ARMA: ARMA is a fundamental statistical model for time series forecasting, which makes linear predictions based on 
past values and stochastic noise.

•	 GAR: GAR is an autoregressive model that incorporates inter-regional influence structures and is commonly used to 
model global economic systems.

•	 RNN: RNN [38] is a basic neural architecture for sequence modeling, which propagates information recursively from one 
time step to the next.

•	 DCRNN: DCRNN [39] is a spatio-temporal deep learning model that captures spatial dependencies via diffusion convo-
lution and temporal dynamics via gated recurrent units.



PLOS One | https://doi.org/10.1371/journal.pone.0331611  September 15, 2025 9 / 21

•	 LSTNet: LSTNet [40] is a multivariate time series forecasting model that captures both short-term and long-term dependen-
cies using a combination of CNN and RNN, and incorporates an autoregressive component to handle input scale variations.

•	 STGCN: STGCN [41] extracts spatial features using graph convolution and temporal features using gated temporal 
convolution.

•	 GWNet: GWNet [29] is a spatio-temporal deep learning model that adaptively learns the graph structure and captures 
spatio-temporal dependencies by combining graph convolution with dilated casual convolution.

•	 ColaGNN: ColaGNN [30] is an epidemic forecasting model that dynamically models spatial influence using a location- 
aware attention mechanism and captures local temporal patterns at multiple granularities using dilated convolution.

•	 FourierGNN: FourierGNN [42] is an architecture for multivariate time series forecasting that models spatio-temporal 
dynamics in a unified framework using matrix multiplication of space-time fully connected graphs with Fourier Graph 
Operators in Fourier space.

•	 STID: STID [10] is a multivariate time series forecasting model that addresses indistinguishability in spatial and temporal 
dimensions by embedding spatial and temporal identities through learnable matrices.

Experimental setting

We evaluated our model under two forecasting scenarios: short-term and long-term. Both the input history length Tin 
and the prediction horizon Tout were set to either 14 or 28. This means the model predicts the number of new confirmed 
cases 14 or 28 days ahead using the past 14 or 28 days of data. The original daily case counts are heavily influenced by 
weekly seasonality, primarily due to the reporting practices of local governments and medical institutions—for example, a 
decrease in reports on weekends when many medical facilities are closed. To remove this seasonality, which is unrelated 
to actual infection trends, we applied a 7-day moving average as a preprocessing step. Additionally, because the dynam-
ics of infection spread vary significantly depending on the dominant virus strain, we divided the dataset into two periods: 
one during which the Delta variant was dominant (Japan: 2020/01/22 ~ 2021/12/31, US: 2020/01/29 ~ 2021/11/30), and 
another during which the Omicron variant was dominant (Japan: 2022/01/01 ~ 2023/05/08, US: 2021/12/01 ~ 2023/03/09). 
Each dataset was split into training, validation, and test sets in a 6:1:3 ratio. Input data were normalized using the mean 
and standard deviation of the training set. The embedding dimension D was set to 32, and the number of MLP layers in 
the encoder L was set to 3. The number of model parameters to be trained was approximately 27K. We used a batch size 
of 32 and trained the model for up to 300 epochs, with early stopping triggered if validation performance does not improve 
for 20 consecutive epochs. Curriculum learning [43] was employed, gradually increasing the prediction horizon from 1 to 
Tout by one time step every two epochs. We used the Adam optimizer with an initial learning rate of 0.001 and a weight 
decay of 1e-8. All experiments were conducted using PyTorch on a server with an NVIDIA A100 GPU. The code for PISID 
is available at https://github.com/satoki-fujita/PISID.

To evaluate predictive performance, we used the following metrics: Mean Absolute Error (MAE), Root Mean Square 
Error (RMSE), Mean Absolute Percentage Error (MAPE), Relative Absolute Error (RAE), Pearson Correlation Coefficient 
(PCC), and Concordance Correlation Coefficient (CCC). Lower values of MAE, RMSE, MAPE, and RAE, and higher val-
ues of PCC and CCC indicate better performance. These metrics are defined as follows:

	
MAE =

1

M

∑M

i=1
|ŷi – yi |,	 (13)

	
RMSE =

√
1

M

∑M

i=1
(ŷi – yi)

2,
	 (14)

https://github.com/satoki-fujita/PISID
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MAPE =

1
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i=1
|
ŷi – yi
yi

|,
	 (15)

	
RAE =

∑M
i=1 |ŷi – yi |∑M
i=1 |y – yi |

,
	 (16)

	

PCC =

∑M
i=1 (ŷi – ŷ)(yi – y)√∑M

i=1

(
ŷi – ŷ

)2
√∑M

i=1

(
yi – y

)2
,

	 (17)

	

CCC =
2ρσŷσy

σ2
ŷ + σ2

y +
(
ŷ – y

)2 ,

	 (18)

where yi denotes the observed value in region i, ŷi is the predicted value in region i, ȳ and ŷ̄ are the means of the observa-
tions and predictions, σᵧ and σᵧ ̂are their standard deviations, and ρ is the correlation coefficient between the observations 
and predictions.

Prediction performance

We evaluated the predictive performance of each model on the test set. Each model was trained five times with differ-
ent random initializations, and we report the mean and standard deviation of the evaluation metrics. The performance 
results for all models on the Japan dataset are presented in Table 1, and those for the US dataset are shown in Table 2. 
Across all datasets, PISID demonstrates consistent and competitive performance. In fact, in every case, it achieves either 
the best or the second-best MAE compared to other baseline models. On the Japan dataset (2020/01/22 ~ 2021/12/31), 
GWNet shows relatively strong performance, while on the Japan dataset (2022/01/01 ~ 2023/05/08), SIR performs com-
paratively well. However, the models do not exhibit notable performance when tested on the opposite time period, sug-
gesting limited generalizability. These findings imply that the effectiveness of the models may be contingent upon the 
characteristics of the dominant epidemic dynamics in the time and place of application. During the Delta variant domi-
nant period in Japan (2020/01/22–2021/12/31), government interventions such as mobility restrictions and limitations on 
restaurant operating hours were implemented periodically, which led to frequent changes in infection dynamics, result-
ing in relatively strong non-stationarity. Under such conditions, the adaptive nature of GWNet, which flexibly captures 
spatiotemporal dependencies, likely contributed to its effective performance. Meanwhile, during the Omicron variant 
dominant period in Japan (2022/01/01–2023/05/08), fewer abrupt interventions aimed at controlling human contact were 
implemented, allowing the epidemic dynamics to more closely follow the inherent epidemiological characteristics of the 
disease. Accordingly, the SIR model, grounded in epidemiological domain knowledge, is considered to have performed 
relatively well. GWNet did not exhibit distinctly superior performance during the period, potentially due to the complexity 
introduced by its graph structure learning mechanism which may have caused the model to overfit to spurious trends. In 
contrast, STID, which utilizes a straightforward neural network architecture devoid of graph-based components, achieved 
more favorable results. PISID, which integrates the STID architecture with the SIR model, have been capable of handling 
both scenarios where complex spatiotemporal patterns predominate and those where epidemiologically specific dynam-
ics are dominant, without experiencing significant performance degradation. Furthermore, PISID consistently maintained 
its performance regardless of the forecast horizon. Other neural network models search a vast representational space 
for epidemic dynamics that best fit the training data without any guidelines based on epidemiological knowledge, which 
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Table 1.  Prediction performance on the Japan dataset.

Dataset Period: 2020/01/22 ~ 2021/12/31

Tin, Tout = 14 Tin, Tout = 28

Model MAE RMSE MAPE RAE PCC CCC MAE RMSE MAPE RAE PCC CCC

SIR 80.311 (-) 312.229 
(-)

5.606 
(-)

0.561 
(-)

0.896 
(-)

0.793 
(-)

296.314 
(-)

1080.897 
(-)

8.344 
(-)

2.006 
(-)

0.591 
(-)

0.312 
(-)

ARMA 58.049 
(1.592)

205.957 
(4.790)

1.236 
(0.033)

0.406 
(0.011)

0.856 
(0.017)

0.762 
(0.011)

89.635 
(2.073)

308.028 
(7.531)

3.139 
(0.051)

0.607 
(0.014)

0.572 
(0.044)

0.411 
(0.024)

GAR 56.818 
(0.380)

186.598 
(0.719)

1.522 
(0.021)

0.397 
(0.003)

0.857 
(0.002)

0.830 
(0.003)

98.372 
(0.295)

315.117 
(1.594)

5.299 
(0.077)

0.666 
(0.002)

0.516 
(0.006)

0.385 
(0.012)

RNN 54.569 
(1.539)

203.979 
(8.230)

1.328 
(0.140)

0.381 
(0.011)

0.848 
(0.006)

0.769 
(0.028)

98.587 
(0.242)

325.258 
(1.141)

4.447 
(0.092)

0.667 
(0.002)

0.517 
(0.003)

0.277 
(0.008)

DCRNN 67.716 
(2.092)

250.461 
(6.405)

1.592 
(0.181)

0.473 
(0.015)

0.804 
(0.013)

0.593 
(0.029)

92.210 
(3.064)

323.985 
(4.748)

3.978 
(0.816)

0.624 
(0.021)

0.583 
(0.048)

0.278 
(0.028)

LSTNet 68.666 
(5.404)

255.767 
(20.163)

1.484 
(0.063)

0.480 
(0.038)

0.808 
(0.051)

0.567 
(0.088)

83.450 
(1.876)

311.655 
(13.161)

1.844 
(0.261)

0.565 
(0.013)

0.788 
(0.024)

0.329 
(0.067)

STGCN 65.534 
(6.341)

274.521 
(28.919)

1.412 
(0.413)

0.458 
(0.044)

0.830 
(0.066)

0.465 
(0.127)

84.273 
(1.566)

319.103 
(4.635)

2.798 
(0.821)

0.571 
(0.011)

0.833 
(0.019)

0.288 
(0.023)

GWNet 54.688 
(4.845)

224.647 
(17.790)

0.894 
(0.178)

0.382 
(0.034)

0.914 
(0.038)

0.672 
(0.060)

74.423 
(2.691)

275.644 
(16.280)

1.245 
(0.156)

0.504 
(0.018)

0.893 
(0.034)

0.491 
(0.069)

Cola-
GNN

67.381 
(5.928)

269.036 
(22.092)

1.069 
(0.106)

0.471 
(0.041)

0.790 
(0.127)

0.516 
(0.080)

79.307 
(7.024)

282.608 
(25.451)

2.210 
(0.409)

0.537 
(0.048)

0.842 
(0.091)

0.465 
(0.120)

Fouri-
erGNN

69.358 
(9.822)

254.482 
(53.841)

1.521 
(0.168)

0.485 
(0.069)

0.837 
(0.012)

0.760 
(0.091)

96.273 
(3.141)

334.089 
(5.624)

3.804 
(0.374)

0.652 
(0.021)

0.467 
(0.017)

0.255 
(0.063)

STID 45.690 
(1.960)

172.350 
(7.326)

1.025 
(0.033)

0.319 
(0.014)

0.923 
(0.013)

0.836 
(0.017)

76.448 
(1.998)

274.194 
(12.139)

2.350 
(0.193)

0.518 
(0.014)

0.801 
(0.020)

0.511 
(0.058)

PISID 41.814 
(1.399)

142.584 
(5.825)

1.201 
(0.081)

0.292 
(0.010)

0.926 
(0.007)

0.904 
(0.012)

69.721 
(3.168)

242.307 
(10.188)

2.109 
(0.306)

0.472 
(0.021)

0.819 
(0.040)

0.653 
(0.036)

Dataset Period: 2022/01/01 ~ 2023/05/08

Tin, Tout = 14 Tin, Tout = 28

Model MAE RMSE MAPE RAE PCC CCC MAE RMSE MAPE RAE PCC CCC

SIR 377.464 
(-)

1074.607 
(-)

0.356 
(-)

0.327 
(-)

0.897 
(-)

0.878 
(-)

594.251 
(-)

1469.205 
(-)

0.733 
(-)

0.588 
(-)

0.854 
(-)

0.781 
(-)

ARMA 372.730 
(2.181)

803.702 
(6.046)

0.412 
(0.006)

0.323 
(0.002)

0.911 
(0.002)

0.903 
(0.001)

553.148 
(2.382)

1056.272 
(7.149)

1.087 
(0.013)

0.547 
(0.002)

0.797 
(0.003)

0.777 
(0.003)

GAR 357.219 
(3.640)

824.248 
(21.105)

0.391 
(0.014)

0.310 
(0.003)

0.906 
(0.005)

0.898 
(0.005)

568.604 
(46.105)

1119.846 
(48.692)

0.944 
(0.266)

0.562 
(0.046)

0.771 
(0.022)

0.743 
(0.045)

RNN 368.593 
(5.979)

857.042 
(43.048)

0.456 
(0.023)

0.320 
(0.005)

0.900 
(0.010)

0.896 
(0.009)

602.137 
(31.846)

1216.052 
(12.487)

1.101 
(0.121)

0.596 
(0.032)

0.719 
(0.006)

0.671 
(0.014)

DCRNN 537.941 
(25.521)

1029.986 
(17.778)

1.044 
(0.129)

0.466 
(0.022)

0.863 
(0.003)

0.813 
(0.011)

659.606 
(39.250)

1279.289 
(16.153)

1.672 
(0.210)

0.653 
(0.039)

0.721 
(0.017)

0.567 
(0.015)

LSTNet 663.108 
(169.656)

1199.806 
(284.719)

1.363 
(0.500)

0.575 
(0.147)

0.771 
(0.113)

0.723 
(0.127)

1356.146 
(172.509)

2234.250 
(394.957)

5.398 
(0.749)

1.342 
(0.171)

0.271 
(0.120)

0.254 
(0.115)

STGCN 537.312 
(45.562)

1159.295 
(158.659)

1.262 
(0.337)

0.466 
(0.040)

0.888 
(0.010)

0.854 
(0.016)

1392.695 
(241.037)

2834.379 
(504.246)

5.650 
(1.439)

1.378 
(0.238)

0.413 
(0.106)

0.338 
(0.102)

GWNet 405.937 
(16.229)

893.528 
(28.986)

0.690 
(0.120)

0.352 
(0.014)

0.911 
(0.005)

0.903 
(0.004)

852.799 
(175.577)

1500.963 
(375.509)

3.886 
(1.474)

0.844 
(0.174)

0.615 
(0.154)

0.574 
(0.153)

Cola-
GNN

509.714 
(55.936)

953.039 
(124.566)

1.448 
(0.359)

0.442 
(0.049)

0.886 
(0.029)

0.841 
(0.062)

944.550 
(234.498)

2136.036 
(917.586)

3.704 
(1.921)

0.934 
(0.232)

0.392 
(0.253)

0.346 
(0.230)

Fouri-
erGNN

377.684 
(26.320)

851.524 
(55.036)

0.553 
(0.149)

0.327 
(0.023)

0.905 
(0.012)

0.894 
(0.007)

614.848 
(37.821)

1218.852 
(38.813)

1.275 
(0.233)

0.608 
(0.037)

0.740 
(0.022)

0.633 
(0.040)

STID 361.919 
(10.562)

807.538 
(38.050)

0.421 
(0.048)

0.314 
(0.009)

0.917 
(0.003)

0.914 
(0.004)

579.034 
(26.859)

1053.597 
(13.914)

1.279 
(0.188)

0.573 
(0.027)

0.802 
(0.006)

0.778 
(0.014)

(Continued)
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increases the risk of overfitting and can lead to a more pronounced performance degradation when transitioning from 
short-term to long-term forecasts. For example, on the US dataset (2021/12/01 ~ 2023/03/09), GWNet performs well for 
14-day-ahead forecasts but suffers a more significant drop in accuracy for 28-day-ahead forecasts compared to PISID. 
Even STID, which demonstrates competitive performance on other datasets, exhibits a similarly significant deterioration. 
Given the sparse and noisy nature of infectious disease data, incorporating epidemiological domain knowledge—as done 
in PISID—contributes to more stable and reliable predictions.

Fig 2 visualizes the 28-day-ahead forecasts produced by PISID and representative baseline models on the test set for 
Tokyo and New York, alongside the actual observed values. The right column of the figure reveals that ColaGNN’s fore-
casts are markedly unstable, with pronounced divergence from the ground truth values, likely caused by overfitting due 
to the attention mechanism used for graph structure learning, which leads to excessive model size. In contrast, PISID 
produces relatively stable forecasts; however, like other models, it struggles to capture the real-time dynamics of infection 
spread. A 28-day forecasting horizon is long enough for the epidemic distribution to change, and it is possible that there 
is a lack of external data capable of capturing such changes. Especially, abrupt outbreaks are likely driven by some kind 
of external intervention, making it challenging to predict their onset accurately based solely on historical confirmed case 
data.

In addition to the predictive performance, we also evaluated the training efficiency of the neural network models.  
Table 3 presents the training time per epoch for each model on each dataset. While PISID requires more training time 
than STID due to the inclusion of the SIR module that performs iterative processing, it is more computationally efficient 
than more complex models that adaptively learn graph structures, such as GWNet and ColaGNN.

To verify the effectiveness of the fully connected neural network-based encoder with a spatial embedding matrix in 
the neural network module, we also compared performance when replacing the encoder with alternative architectures. 
We employed several commonly used models for time-series tasks as encoders, including RNN [38], which uses recur-
rent architectures to process time-series information, TCN [44], which employs convolutional architectures for sequence 
modeling, and Transformer [45], which utilizes an attention mechanism to capture long-range dependencies in sequences. 
In addition, we evaluated GWNet [29], a spatio-temporal model that adaptively learns graph structures, as the encoder, 
and also assessed a variant of our model without the spatial embedding matrix to investigate the contribution of spatial 
embeddings to performance. In all cases, the encoded information was decoded into epidemiological parameters via a 
fully connected layer and passed to the subsequent SIR module. Table 4 presents the MAE and RMSE scores for pre-
dictions made by models using each encoder architecture across the datasets. Among the encoder architectures that do 
not explicitly incorporate spatial information—namely RNN, TCN, Transformer, and MLP w/o SID—MLP w/o SID demon-
strates competitive performance compared to other sequence-specialized encoders, suggesting that MLP-based architec-
tures can effectively capture temporal dependencies. Furthermore, MLP w/ SID, which incorporates a spatial embedding 
matrix, achieves the best performance among all encoder architectures, including GWNet that perform adaptive graph 
structure learning. This underscores the efficacy of handling spatial dependencies using a simple embedding-based 
approach.

Dataset Period: 2020/01/22 ~ 2021/12/31

Tin, Tout = 14 Tin, Tout = 28

Model MAE RMSE MAPE RAE PCC CCC MAE RMSE MAPE RAE PCC CCC

PISID 331.010 
(11.551)

785.949 
(54.061)

0.298 
(0.056)

0.287 
(0.010)

0.927 
(0.003)

0.900 
(0.020)

549.221 
(61.100)

1160.686 
(123.978)

0.750 
(0.237)

0.543 
(0.060)

0.748 
(0.068)

0.709 
(0.076)

The performance values are mean (std). The bold values indicate the best results, the underlined values indicate the second-best results.

https://doi.org/10.1371/journal.pone.0331611.t001

Table 1.  (Continued)

https://doi.org/10.1371/journal.pone.0331611.t001
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Table 2.  Prediction performance on the US dataset.

Dataset Period: 2020/01/29 ~ 2021/11/30

Tin, Tout = 14 Tin, Tout = 28

Model MAE RMSE MAPE RAE PCC CCC MAE RMSE MAPE RAE PCC CCC

SIR 510.437 (-) 1284.009 (-) 0.434 (-) 0.351 (-) 0.920 (-) 0.894 (-) 1145.956 (-) 3250.338 (-) 0.763 (-) 0.772 (-) 0.792 (-) 0.640 (-)

ARMA 514.403 
(67.744)

1066.408 
(168.824)

0.487 
(0.057)

0.354 
(0.047)

0.903 
(0.033)

0.883 
(0.040)

957.729 
(17.773)

2058.915 
(41.378)

0.946 
(0.067)

0.645 
(0.012)

0.606 
(0.029)

0.508 
(0.020)

GAR 423.269 
(9.377)

951.196 
(24.588)

0.374 
(0.007)

0.291 
(0.006)

0.937 
(0.002)

0.907 
(0.006)

905.968 
(97.416)

1974.908 
(174.796)

0.866 
(0.043)

0.610 
(0.066)

0.648 
(0.083)

0.533 
(0.079)

RNN 436.910 
(8.840)

987.069 
(26.241)

0.363 
(0.007)

0.301 
(0.006)

0.932 
(0.005)

0.899 
(0.008)

847.424 
(13.532)

1872.446 
(25.903)

0.888 
(0.024)

0.571 
(0.009)

0.699 
(0.011)

0.570 
(0.018)

DCRNN 533.987 
(23.286)

1152.236 
(65.860)

0.485 
(0.033)

0.368 
(0.016)

0.891 
(0.014)

0.862 
(0.019)

855.196 
(27.689)

1821.558 
(51.977)

1.007 
(0.094)

0.576 
(0.019)

0.697 
(0.020)

0.616 
(0.034)

LSTNet 721.123 
(60.294)

1543.540 
(107.111)

0.671 
(0.068)

0.497 
(0.042)

0.781 
(0.034)

0.761 
(0.025)

1070.836 
(66.232)

2176.730 
(92.266)

1.320 
(0.242)

0.721 
(0.045)

0.531 
(0.039)

0.484 
(0.025)

STGCN 696.698 
(34.219)

1512.967 
(112.930)

0.543 
(0.035)

0.480 
(0.024)

0.804 
(0.029)

0.791 
(0.021)

887.266 
(37.381)

1977.124 
(91.256)

0.797 
(0.085)

0.597 
(0.025)

0.658 
(0.047)

0.583 
(0.012)

GWNet 437.572 
(50.186)

974.651 
(120.673)

0.381 
(0.028)

0.301 
(0.035)

0.922 
(0.019)

0.912 
(0.018)

896.924 
(109.380)

1918.395 
(206.878)

0.858 
(0.055)

0.604 
(0.074)

0.693 
(0.045)

0.652 
(0.043)

Cola-
GNN

614.346 
(120.075)

1413.435 
(314.927)

0.561 
(0.133)

0.423 
(0.083)

0.864 
(0.045)

0.815 
(0.100)

842.428 
(81.433)

1801.807 
(127.591)

0.910 
(0.168)

0.567 
(0.055)

0.740 
(0.058)

0.638 
(0.080)

Fouri-
erGNN

465.345 
(27.814)

1036.614 
(112.079)

0.419 
(0.023)

0.320 
(0.019)

0.930 
(0.013)

0.890 
(0.040)

853.659 
(72.122)

1891.898 
(171.132)

0.982 
(0.181)

0.575 
(0.049)

0.746 
(0.041)

0.547 
(0.105)

STID 388.584 
(15.023)

895.060 
(50.051)

0.337 
(0.010)

0.268 
(0.010)

0.945 
(0.010)

0.919 
(0.009)

661.425 
(10.111)

1458.985 
(46.441)

0.653 
(0.045)

0.445 
(0.007)

0.856 
(0.010)

0.759 
(0.024)

PISID 408.179 
(8.363)

939.972 
(37.409)

0.339 
(0.008)

0.281 
(0.006)

0.940 
(0.003)

0.910 
(0.009)

714.680 
(21.899)

1495.119 
(58.309)

0.577 
(0.010)

0.481 
(0.015)

0.832 
(0.011)

0.767 
(0.026)

Dataset Period: 2021/12/01 ~ 2023/03/09

Tin, Tout = 14 Tin, Tout = 28

Model MAE RMSE MAPE RAE PCC CCC MAE RMSE MAPE RAE PCC CCC

SIR 573.112 (-) 1554.133 (-) 0.891 (-) 0.709 (-) 0.654 (-) 0.592 (-) 827.365 (-) 2786.604 (-) 2.695 (-) 1.010 (-) 0.470 (-) 0.336 (-)

ARMA 764.790 
(476.672)

9303.936 
(11850.750)

3.162 
(0.342)

0.947 
(0.590)

0.291 
(0.227)

0.248 
(0.253)

3350.136 
(3113.137)

83261.520 
(111957.984)

5.654 
(1.820)

4.088 
(3.799)

0.044 
(0.019)

0.006 
(0.006)

GAR 523.325 
(173.168)

3020.446 
(2602.908)

1.982 
(0.293)

0.648 
(0.214)

0.524 
(0.258)

0.454 
(0.305)

564.081 
(56.930)

1594.138 
(644.614)

2.709 
(0.127)

0.688 
(0.069)

0.419 
(0.115)

0.358 
(0.089)

RNN 335.160 
(16.795)

742.980 
(28.331)

1.608 
(0.144)

0.415 
(0.021)

0.845 
(0.007)

0.790 
(0.021)

423.198 
(11.253)

938.667 
(20.483)

2.945 
(0.117)

0.516 
(0.014)

0.763 
(0.004)

0.613 
(0.026)

DCRNN 414.063 
(41.026)

841.853 
(59.833)

2.360 
(0.468)

0.512 
(0.051)

0.790 
(0.027)

0.744 
(0.095)

608.135 
(55.094)

1061.608 
(82.243)

4.302 
(0.735)

0.742 
(0.067)

0.675 
(0.052)

0.496 
(0.190)

LSTNet 468.734 
(66.018)

1284.823 
(641.536)

3.239 
(0.935)

0.580 
(0.082)

0.755 
(0.161)

0.690 
(0.181)

775.788 
(140.892)

2277.587 
(386.156)

5.294 
(0.438)

0.947 
(0.172)

0.588 
(0.130)

0.451 
(0.106)

STGCN 383.939 
(11.253)

818.942 
(25.384)

2.096 
(0.115)

0.475 
(0.014)

0.803 
(0.018)

0.748 
(0.017)

401.808 
(14.354)

866.058 
(30.985)

3.033 
(0.347)

0.490 
(0.018)

0.777 
(0.026)

0.761 
(0.035)

GWNet 298.809 
(8.078)

664.301 
(23.912)

1.120 
(0.152)

0.370 
(0.010)

0.865 
(0.010)

0.861 
(0.009)

428.229 
(17.755)

928.569 
(60.528)

2.926 
(0.514)

0.523 
(0.022)

0.754 
(0.019)

0.732 
(0.037)

Cola-
GNN

330.912 
(21.375)

764.109 
(61.557)

1.201 
(0.203)

0.410 
(0.026)

0.828 
(0.020)

0.819 
(0.026)

489.655 
(57.388)

969.138 
(102.001)

3.310 
(0.270)

0.598 
(0.070)

0.769 
(0.012)

0.739 
(0.037)

Fouri-
erGNN

388.369 
(26.953)

1075.503 
(185.613)

1.433 
(0.331)

0.481 
(0.033)

0.668 
(0.085)

0.639 
(0.070)

552.500 
(56.676)

1468.967 
(589.867)

2.516 
(0.457)

0.674 
(0.069)

0.481 
(0.155)

0.383 
(0.127)

STID 342.879 
(16.679)

836.780 
(44.723)

1.210 
(0.039)

0.424 
(0.021)

0.826 
(0.013)

0.819 
(0.015)

472.337 
(16.097)

1216.151 
(119.765)

3.391 
(0.409)

0.576 
(0.020)

0.612 
(0.093)

0.604 
(0.085)

(Continued)
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Dataset Period: 2020/01/29 ~ 2021/11/30

Tin, Tout = 14 Tin, Tout = 28

Model MAE RMSE MAPE RAE PCC CCC MAE RMSE MAPE RAE PCC CCC

PISID 326.918 
(7.983)

792.550 
(37.998)

1.004 
(0.102)

0.405 
(0.010)

0.828 
(0.012)

0.827 
(0.013)

370.447 
(6.435)

806.841 
(26.431)

2.409 
(0.136)

0.452 
(0.008)

0.811 
(0.013)

0.807 
(0.012)

The performance values are mean (std). The bold values indicate the best results, the underlined values indicate the second-best results.

https://doi.org/10.1371/journal.pone.0331611.t002

Table 2.  (Continued)

Fig 2.  Plot of the predicted confirmed cases 28-day-ahead in Tokyo and New York.

https://doi.org/10.1371/journal.pone.0331611.g002

https://doi.org/10.1371/journal.pone.0331611.t002
https://doi.org/10.1371/journal.pone.0331611.g002
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We also examined the sensitivity of the hidden dimension D, which corresponds to the dimensionality of the temporal 
feature HT and the spatial feature E embedded by the encoder. The dimension values were set to {8, 16, 32, 64, 128}, and 
evaluation results for each dataset are presented in Fig 3. When D is too small, the embedded spatio-temporal represen-
tation becomes limited, resulting in degraded predictive performance. On the other hand, as observed in the results for the 
Delta strain epidemic data (Fig 3, left), an excessively large D may lead to inferior performance due to overfitting. There-
fore, selecting a well-balanced value for D is recommended.

Interpretability

Since the PISID model incorporates an SIR module, its predictions can be made interpretable through the parameters 
that govern the underlying dynamical system. We focus on the effective reproduction number Re(T), defined as β/γ·S(T)/N, 
a widely used indicator of infectious disease transmissibility. To assess the interpretability of the model, we conducted a 
case study using this metric. In Fig 4, we use the PISID model configured for 28-day-ahead forecasting (Tout = 28) and 

Table 3.  Runtime on each dataset (Tin, Tout = 28).

Dataset Japan dataset US dataset

2020/01/22 ~ 2021/12/31 2022/01/01 ~ 2023/05/08 2020/01/29 ~ 2021/11/30 2021/12/01 ~ 2023/03/09

Model Runtime (seconds/epoch)

RNN 0.04376 0.028365 0.057498 0.037098

DCRNN 1.616268 1.11854 1.475727 1.023883

LSTNet 0.060737 0.04237 0.059269 0.040026

STGCN 0.109183 0.075463 0.08844 0.0621

GWNet 5.408724 3.012791 4.06402 2.719374

ColaGNN 2.761671 1.841789 3.720598 1.906458

FourierGNN 0.097965 0.06824 0.077494 0.053875

STID 0.066253 0.037091 0.058131 0.033581

PISID 0.542497 0.37584 0.521152 0.3633

https://doi.org/10.1371/journal.pone.0331611.t003

Table 4.  Prediction performance of models with different backbone encoder architectures across each dataset (Tin, Tout = 28).

backbone 
encoder

Japan dataset US dataset

2020/01/22 ~ 2021/12/31 2022/01/01 ~ 2023/05/08 2020/01/29 ~ 2021/11/30 2021/12/01 ~ 2023/03/09

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

RNN 95.427 
(5.637)

292.646 
(16.486)

758.801 
(533.859)

1862.011 
(1538.003)

784.039 
(38.427)

1724.497 
(99.907)

465.061 
(14.429)

1016.348 
(48.749)

TCN 89.703 
(7.053)

284.813 
(6.780)

775.389 
(584.968)

1885.780 
(1426.976)

773.209 
(20.584)

1655.712 
(39.563)

456.034 
(26.577)

978.103 
(35.039)

Trans-
former

94.871 
(3.890)

295.708 
(1.107)

634.091 
(239.881)

1290.531 
(501.541)

753.142 
(21.311)

1643.688 
(52.059)

439.512 
(19.198)

952.822 
(32.240)

GWNet 74.078 
(4.391)

248.201 
(16.707)

631.808 
(274.681)

1256.503 
(413.829)

840.253 
(30.579)

1784.920 
(58.166)

398.896 
(5.915)

843.079 
(17.294)

MLP w/o 
SID

82.339 
(2.182)

269.679 
(8.83)

620.335 
(251.957)

1373.702 
(435.859)

780.706 
(49.844)

1644.267 
(88.948)

451.672 
(3.463)

958.609 
(13.084)

MLP 
w/ SID 
(Ours)

69.721 
(3.168)

242.307 
(10.188)

549.221 
(61.100)

1160.686 
(123.978)

714.68 
(21.899)

1495.119 
(58.309)

370.447 
(6.435)

806.841 
(26.431)

The performance values are mean (std). The bold values indicate the best results.

https://doi.org/10.1371/journal.pone.0331611.t004

https://doi.org/10.1371/journal.pone.0331611.t003
https://doi.org/10.1371/journal.pone.0331611.t004
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Fig 3.  Sensitivity analysis results of the hidden dimension D across each dataset (Tin, Tout = 28).

https://doi.org/10.1371/journal.pone.0331611.g003

Fig 4.  Plot of the derived effective reproduction number with event labels in Tokyo and New York.

https://doi.org/10.1371/journal.pone.0331611.g004

https://doi.org/10.1371/journal.pone.0331611.g003
https://doi.org/10.1371/journal.pone.0331611.g004
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plot the estimated Re values over time T for specific periods in which significant COVID-19 response measures were 
implemented in the training dataset for Tokyo (Japan) and New York (US). The plot also includes major event labels along 
the timeline and the actual daily confirmed cases. In Tokyo, Re begins to decline sharply after the declarations of a state 
of emergency on 2021/01/08, 2021/04/25, and 2021/07/12. During each of these periods, residents were urged to stay 
home, and customer-facing establishments were requested to shorten operating hours. The behavior of Re appears to 
reflect the reduction in infection risk resulting from these externally enforced measures. Conversely, Re increases again 
around 2021/03/22 and 2021/06/21, when case numbers had declined and restrictions were partially lifted—suggesting a 
potential resurgence of infections following deregulation. Indeed, the number of newly confirmed cases began to increase 
following each of these points in time. In New York, Re drops significantly after 2020/11/13, when new restrictions were 
imposed on restaurants, bars, gyms, and private gatherings, falling below 1—a threshold often interpreted as indicating 
that the epidemic is under control. A decline in the number of newly confirmed cases can also be observed, as if mirroring 
this trend. Re begins to rise again on 2021/01/28, possibly reflecting the gradual easing of restrictions and the lifting of 
most “color zone” regulations. Between 2021/07 ~ 2021/08, just prior to the resurgence driven by the Delta variant, a nota-
ble increase is also observed. This trend may be associated with the full lifting of restrictions on 2021/06/15. These results 
suggest that Re, as estimated by PISID, reflects real-world fluctuations in transmission dynamics in a relatively timely and 
interpretable manner. It can thus serve as a meaningful indicator for assessing the epidemic situation based on the mod-
el’s internal epidemiological reasoning.

Discussion

We proposed PISID, a simple infectious disease forecasting model that combines a fully connected neural network with 
an SIR module, and evaluated its performance using real-world COVID-19 case data from Japan and the US. Although 
PISID’s predictions are grounded in the deterministic dynamics of the SIR model, it demonstrates competitive predictive 
performance compared to well-established neural network baselines. This highlights the importance of incorporating 
domain knowledge in infectious disease modeling. While neural networks can flexibly approximate complex functions 
through a large number of parameters, relying solely on noisy data—such as epidemic time series—can lead to overfit-
ting and poor generalization. Embedding prior knowledge of epidemic dynamics into the model architecture, especially in 
scenarios where large-scale training data or external features are limited, can enhance generalization and robustness. 
The SIR module in PISID, though a simplified dynamical system representing average epidemic behavior in a popula-
tion, maintains strong empirical performance without compromising the validity of its underlying principles. Moreover, 
it contributes to addressing the interpretability challenges often associated with neural networks. The parameters esti-
mated by the SIR module can be interpreted as indicators of future transmissibility, offering practical value for outbreak 
risk management. For instance, an increase in the parameter value can serve as an early warning signal, enabling timely 
interventions such as contact tracing or resource allocation. Conversely, a decrease in the parameter may indicate a 
suitable time to relax restrictions. This level of interpretability is particularly important in the context of infectious dis-
eases, which can have far-reaching societal, economic, and healthcare impacts, thereby enhancing the model’s practical 
utility.

It is also noteworthy that the neural network component of PISID primarily consists of basic fully connected layers, with-
out relying on graph structure learning. While recurrent or convolutional architectures are commonly used for sequence 
modeling due to their memory capabilities, our experimental results show that MLP-based structures are equally effective 
in capturing temporal dynamics. In fact, recent studies have reported that simple linear layers can outperform more com-
plex architectures like Transformers [46], which also serves as the foundational architecture for large language models 
(LLMs), suggesting that simplicity should not be underestimated. The lightweight nature of MLP also enables efficient 
training without excessive computational overhead. Spatial dependencies are captured using a spatial embedding matrix, 
avoiding the complexity of graph structure learning employed in many spatio-temporal models. Overall, the architecture 
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of PISID is straightforward and interpretable, yet it effectively encodes both spatial and temporal information, achieving 
performance comparable to more complex models.

There are, however, several limitations and directions for future work. First, this study focuses on forecasting future 
confirmed cases using only past case data as input. Since epidemic dynamics are influenced by various external factors—
such as cluster outbreaks, viral mutations, new treatments or vaccines, and government interventions—incorporating 
additional external data could improve predictive accuracy.

Second, since the proposed method generates forecasts based on the SIR equations, it performs well in predicting 
stationary epidemic patterns but struggles to respond sensitively to sudden trend shifts. In infectious diseases such as 
COVID-19, distribution characteristics can change abruptly due to mutations in virus strains or shifts in human behavior. 
In situations where such non-stationarity is pronounced, predictive performance becomes limited. In our experiments, 
the dataset was pre-divided based on a known major change point—specifically, the shift from the Delta to the Omicron 
variant—allowing the method to be evaluated under relatively stationary conditions. Addressing prediction under broader, 
potentially more non-stationary scenarios remains an important future challenge. It is necessary either to attempt pre-
dictions within each stationary pattern interval, in conjunction with detecting change points where the distribution shifts, 
or to develop a model that incorporates new mechanisms capable of responding sensitively to non-stationary epidemic 
patterns. In addition, the use of the aforementioned external data associated with the dynamics of non-stationary epidemic 
patterns, is expected to be essential for detecting such patterns.

Third, our experiments are limited to COVID-19 data. Further research is needed to assess the model’s applicability 
to other infectious diseases, such as influenza. Depending on the disease, alternative compartmental models (e.g., SIS) 
may better represent the transmission process. Extending PISID to support such model variants could further enhance 
its generalizability. Additionally, for infectious diseases with strong periodicity, it may be necessary to develop models that 
account for periodic patterns, such as C-GRU [47].

Conclusion

In this paper, we proposed PISID, a novel model for epidemic forecasting across multiple regions. PISID combines an 
SIR module—based on an infectious disease-specific dynamical system—with a simple neural network module com-
posed of fully connected layers. The model requires only historical confirmed case data as input, making it broadly appli-
cable. While complex models that incorporate graph structure learning can sometimes suffer from overfitting and limited 
interpretability, PISID is designed to follow an exponential trajectory grounded in epidemiological domain knowledge. 
This design contributes to both the interpretability and stability of its predictions. The effectiveness of the model was 
validated through experiments on real-world COVID-19 datasets, where it demonstrated competitive predictive perfor-
mance compared to established benchmark models for multivariate time series forecasting. Although not always the top 
performer, PISID consistently ranked among the top two models across all forecasting scenarios—despite variations 
in regional scope, prevalent strains, and forecast horizons—demonstrating stable and reliable forecasting capabilities. 
We also conducted a comparative analysis of different encoder architectures and confirmed that information related to 
future epidemic dynamics can be effectively captured by modeling temporal dependencies using fully connected layers 
with residual connections, and spatial dependencies using a spatial embedding matrix. This architecture achieved an 
average improvement of 7.4% in MAE and 5.8% in RMSE compared to the best-performing baseline encoders, highlight-
ing its effectiveness in epidemic forecasting. Furthermore, we demonstrated the interpretability of the model through a 
case study, highlighting how the explicit trajectory representation of the SIR module can provide meaningful insights into 
epidemic dynamics. In future work, we plan to incorporate external data related to epidemics—such as mobility patterns, 
distribution of viral strains, and vaccination rates—to more effectively capture shifts in epidemic dynamics in a timely man-
ner. Regarding graph structure learning, this study raised concerns about performance degradation due to its complexity, 
but we believe that pursuing this direction remains valuable, given the spatial nature of infectious disease spread. To gain 
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a deeper understanding of the underlying trends in epidemic propagation, we aim to incorporate external data with richer 
spatio-temporal correlations and apply dynamic graph structure learning to explore transmission routes and delay pat-
terns. We also plan to extend the SIR module to its variant forms by incorporating external data and introducing  
finer-grained compartments capable of disentangling and explaining individual contributing factors. This will enable a 
deeper integration of epidemiological knowledge into the neural network framework, ultimately supporting the develop-
ment of public health and medical strategies.
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