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Abstract
In this paper we propose the Hatching-Box, a novel in situ imaging and analysis sys-
tem to automatically monitor and quantify the developmental behavior of Drosophila
melanogaster in standard rearing vials and during regular rearing routines, reducing the
need for explicit experiments.This is achieved by combining custom tailored imaging
hardware with dedicated detection and tracking algorithms, enabling the quantification of
larvae, filled/empty pupae and flies over multiple days. Given the affordable and repro-
ducible design of the Hatching-Box in combination with our generic client/server-based
software, the system can easily be scaled to monitor an arbitrary amount of rearing vials
simultaneously. We evaluated our system on a curated image dataset comprising nearly
416,000 annotated objects and performed several studies on real world experiments. We
successfully reproduced results from well-established circadian experiments by compar-
ing the eclosion periods of wild type flies to the clock mutants pershort, perlong and per0

without involvement of any manual labor. Furthermore we show, that the Hatching-Box is
able to extract additional information about group behavior as well as population devel-
opment and activity. These results not only demonstrate the applicability of our system
for long-term experiments but also indicate its benefits for automated monitoring in the
general cultivation process.

Introduction
Themodel organism D. melanogaster has been used to study different aspects of biology,
such as genetics, neuroscience or cell biology, and in recent years even for translational stud-
ies for human diseases [1,2]. The whole life cycle of D. melanogaster comprises 4 different
stages: egg, larvae, pupae and adults, and often it is of interest to know when and how many
animals enter a specific developmental stage and how long they do remain in this stage. One
commonly studied transition is the adult emergence or eclosion of D. melanogaster. In 1971,
Konopka and Benzer found that this is time of day dependent and that mutations in a single
gene named period affected this process [3]. The mutants they used do not only show a change
on the timing of eclosion, but also show diverging pace in their development as a whole [4].

PLOS One https://doi.org/10.1371/journal.pone.0331556 September 29, 2025 1/ 19

https://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0331556&domain=pdf&date_stamp=2025-09-29
https://doi.org/10.1371/journal.pone.0331556
https://doi.org/10.1371/journal.pone.0331556
https://doi.org/10.1371/journal.pone.0331556
https://doi.org/10.1371/journal.pone.0331556
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0003-3032-5121
https://orcid.org/0000-0002-4777-8317
https://orcid.org/0000-0001-5691-4029
mailto:m.ogueta@uni-muenster.de
mailto:b.risse@uni-muenster.de
https://doi.org/10.1371/journal.pone.0331556


ID: pone.0331556 — 2025/9/25 — page 2 — #2

PLOS One Hatching-Box

The study of eclosion is still a common procedure to study the circadian rhythms of the
flies [5], as well as the measurement of the timing of pupation as an indicator for the devel-
opment [6]. This type of experiments are time-consuming and often involve the constant
personal monitoring of the rearing vials. Despite the growing necessity in various research
domains, circadian experiments continue to be a challenging and time-consuming task to this
day since the tools available either require fluorescent dyes to visually mark interesting brain
regions [7] or extracting individual animals from their rearing vials and monitoring them
in a distinctive system. An example of such a system is the commonly used Trikinetics Eclo-
sion Monitor for which D. melanogaster pupae are glued to a disc and emerging adult flies
fall down and are counted as they cross an infrared barrier [8]. Other, camera-based systems,
record videos of the animals which can then be annotated semi-automatically by the exper-
imenter with an imaging software such as Fiji [9–11]. For more detailed studies, automated
tracking systems have been developed which automatically extract the behavior of individ-
ual flies or larvae over time and were surveyed by Panadeiro et al. [12]. For example anTrax,
Ctrax and Idtracker.ai are commonly used tracking applications that allow tracking of mul-
tiple D. melanogaster over a period of hours [13–15]. Providing a fine-tuned combination of
a custom made imaging system and tracking software, Risse et al. proposed FIMTrack [16].
The proposed imaging hardware consists of an arena made from an acrylic glass plate which
is illuminated by infrared LEDs using frustrated total internal reflection (FTIR) and recorded
with an infrared sensitive camera. This system was extended to be used for D. melanogaster
larvae crawling in FTIR-illuminated rearing vials, yielding fine-grained 3-dimensional tra-
jectories of the animals’ movement [17]. Similarly for the domain of ethology Geissmann
et al. designed an open source ethoscope system which can track adult flies [18] and ana-
lyze their behavior. Apart from methods focused on D. melanogaster there is also DeepLab-
Cut which is often used for mice [19] but is also applicable for other animals including
flies.

https://doi.org/10.17879/53998663190 and the
source code can be found https:
//zivgitlab.uni-muenster.de/j_bigg01/Hatch.
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The aforementioned systems share considerable limitations and are often not directly
applicable for long term experiments and lifelong monitoring as needed in circadian
rhythm and other experiments. For example, anTrax, Ctrax, IdTracker.ai and DeepLab-
Cut do not include specific imaging hardware which can cause difficulties in applying these
software to custom imaging conditions and experimental setups. Moreover, identifying a
suitable combination of cameras and recording software can have a significant influence
on the performance of the tracking algorithms. Methods such as FIMTrack or the etho-
scope combine software and adapted imaging hardware but still rely on explicitly prepared
and implemented experiments. The same also holds for the commercially available mon-
itoring systems from Trikinetics, which only yields very basic activity information of the
animals.

Another substantial constraint of these methods with regards to long-term behavior
experiments is their inability to discriminate between different developmental stages of D.
melanogaster which is a prerequisite to study the life cycle of flies. Since 2023, flyGear [20]
offers a commercially available system that can be used to classify D. melanogaster larvae and
pupae, counts them and provides automatic data analysis and visualization.

To enable high-throughput, long-term behavior experiments as well as automatic moni-
toring of D. melanogaster development during breeding, we propose an open-source system
called Hatching-Box, intended to provide an optimal trade-off between hardware complexity,
usability and result quality. Our system provides numerous advantages compared to current
state-of-the-art:
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Fig 1. System overview showing stackable Hatching-Boxes. Standardized rearing vials used to house D. melanogaster can
be placed in the Hatching-Box, which then automatically tracks the population’s behavior and provides images and behavior
analysis to a central computer.

https://doi.org/10.1371/journal.pone.0331556.g001

1. Life-time monitoring of D. melanogaster is facilitated in off-the-shelf rearing vials dur-
ing the conventional rearing routine. As a consequence, our system does not require the
manual collection of animals and no preparation of the tracking system is necessary,
enabling behavioral quantifications without any labor overhead.

2. Each system houses up to three rearing vials (41.5mm diameter), can be placed in incu-
bators or cultivation rooms and comprises primarily off-the-shelf hardware compo-
nents with some 3D printed and manufactured parts from easily obtainable materials so
that an arbitrary amount of stackable monitoring systems can run in parallel (see Fig 1).

3. The self-contained hardware design renders the internal imaging modalities indepen-
dent from external influences. Hence, the hardware, firmware and software are precisely
aligned to fit this setup to yield accurate and reproducible results.

4. A machine learning-based object detection algorithm based on the YOLO object detec-
tor is adapted and trained on nearly 416.000 manually labeled objects. Our system is
capable of accurately detecting all developmental stages of D. melanogaster even in
very cluttered conditions, yielding an accuracy of up to 91% while providing real-time
processing capabilities.

5. An array of built-in sensors is integrated to monitor the temperature and humidity
within each box. In addition, dedicated light stimulation has been integrated, which can
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either automatically adapt the inner lightning conditions to the external brightness or
can be programmed to provide individual illumination schemes for each box.

6. We implemented an easy-to-use GUI that can be used for controlling the camera, start
or stop a recording and automatically analyze the data.

7. All components (i.e. hardware, firmware, software) have been tested and a rigorous
evaluation of our system was conducted by reproducing the results of Konopka and
Benzer in a well-established circadian experiment by using the three D. melanogaster
clock mutants pershort, perlong and per0 and comparing their activity cycles with the wild
type.

8. The full source code, collected dataset, a conclusive bill of materials and required files
for the 3D printed and manufactured parts will be made available under an open-source
license.

Results
Hardware
The hardware of our system is designed to be easily integrated into established daily labora-
tory routines to provide long-term monitoring capabilities without the need for additional
manual labor. This requires the use of rearing vials for animal housing and a small overall
footprint of the system to fit into most incubators. While we use rearing vials with a 41.5mm
diameter, our system can be easily adapted to other vials as well by editing one of the provided
parametric manufacturing files (see S1 File). Additional sensors and light sources provide
supervision and control over the breeding conditions in each box. We use a standard small-
sized plastic electrical box for the main compartment, housing our central computing device,
a Raspberry Pi 4, a camera and additional necessary technical components and up to three
standard rearing vials (see Fig 2). The form factor of these boxes enable arbitrary stacking of
multiple setups for high-throughput experiments and each box is individually connected via
Ethernet to operate several systems in parallel. The built in camera captures frames using a
user-specified frame rate allowing for continuous recordings or time-lapse sequences. For illu-
mination an acrylic based light guide panel is positioned behind the rearing vials which is
equipped with several near infrared and white light-emitting diodes (LEDs). In order to visu-
ally detect small and semi-translucent objects (e.g. empty pupae, larvae, etc.) we optimized the
transmitted light configuration by deriving a custom diffusion pattern, providing homoge-
neous diffuse illumination across the light guide panel (see S1 Appendix). The infrared (IR)
LEDs are used for image capturing only given this wavelength is reported to be invisible for
flies [21]. An additional IR shield in the middle of the compartment prevents light emitted by
the computing hardware to have an influence on the specimens or produce reflections on the
rearing vials. We synchronized the IR LED activation with the camera so that IR light is only
present during image acquisition while being turned off otherwise to prevent heat buildup
and to keep a low energy profile . Temperature and humidity sensors inside each box record
temporally synchronized measures of the breeding conditions. The white LEDs provide a
visual stimuli and can either be freely programmed for each box individually or can be syn-
chronized with the outside brightness using an externally mounted brightness sensor (e.g. to
mimic the lightning conditions of the surrounding incubator). The combination of the high
resolution camera and the optimized backlight panel yield detailed images of all developmen-
tal stages of D. melanogaster (see Fig 2c) which are subsequently used for data collection and
in our classification and tracking pipeline.
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Fig 2. Overview of the proposed hardware architecture. (a) A single Hatching-Box consists of a RaspberryPi 4 with the HQ camera
module, an LED controller device (Arduino Uno + custom shield), an Arduino Sense BLE 33 sensor board, as well as a light guide panel,
outfitted with IR and white LEDs. (b) Picture of a Hatching-Box with cover removed. (c) Image as taken by our Hatching-Box with
different objects highlighted: third instar larva (cyan), adult fly (blue), empty pupa (red), out-of-focus (yellow) and full pupa (green).

https://doi.org/10.1371/journal.pone.0331556.g002
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Dataset
For training our YOLOv7 object detector we curated a dataset containing D. melanogaster
in various developmental stages, i.e. larva, pupa, empty pupa, adult fly. For the larva class,
only wandering third instar larvae were labelled as L1 and L2 larvae stay in the food at the
bottom of the vial and are only occasionally visible in our recordings. In addition we marked
out-of-focus objects on the backside of the vials since these blurred objects can be the cause of
misdetections and misclassifications. In total we annotated 415,709 objects (bounding boxes
and class labels) in 1348 images recorded in different Hatching-Box systems. The first 200
images were labelled thoroughly by domain experts. We utilized these first images to train an
initial YOLOv7-E6E model which was subsequently used to provide suggestions to the anno-
tators to speed up the labeling process. Importantly, all suggestions proposed by our model
were manually checked by domain experts. Table 1b shows the class distribution across our
dataset. The dataset can be accessed at https://doi.org/10.17879/53998663190.

Software
Detection and classification ofD. melanogaster using YOLOv7. Detection and clas-

sification (distinguishing different developmental stages of D. melanogaster) in the images
captured by our system is performed by the YOLOv7 machine learning model [22]. YOLOv7
provides various versions, i.e. the base model, -tiny, -X, -E6, -W6 and -E6E, comprising dif-
ferent depth of scaling pyramids helping to detect smaller objects in exchange for higher
parameter count and compute overhead. We trained these models on our curated dataset
with the same train-validation split (80:20) for 300 epochs and compared their performance

Table 1. Performance analysis of the trained YOLOv7 models. 1a Comparison of average precision (AP), average
recall (AR) and mean average precision (mAP) of the YOLOv7 models trained on our Hatching-Box dataset (out-
of-focus objects excluded). 1b Overview of the class distribution of our curated dataset. 1c Average inference and
tracking time comparison in ms/frame on a CPU (AMD Ryzen 7 3700X 8-Core) and GPU (NVIDIA GeForce RTX
3060 Ti).
Model APval ARval mAPval

50 mAPval
50∶95 Class Count Share

YOLOv7-tiny 91.93% 90.01% 93.28% 73.03% Empty Pupa 133,022 32.00 %
YOLOv7-X 91.29% 89.84% 92.91% 75.39% Out-of-

focus
127,511 30.67 %

YOLOv7 91.65% 90.27% 93.23% 74.87% Full Pupa 91,617 22.04 %
YOLOv7-E6 91.69% 90.06% 93.62% 77.16% Adult Fly 41,445 9.97 %
YOLOv7-W6 91.23% 89.62% 94.01% 77.38% Larva 22,114 5.32 %
YOLOv7-E6E 90.55% 90.05% 93.27% 76.35% Total 415,709
(a) (b)

Model Inference Tracking Overall

C
PU

YOLOv7-tiny 438.69 (±21.94) 132.79 (±19.27) 611.31 (±27.63)
YOLOv7-X 5240.78 (±90.83) 112.28 (±15.03) 5393.07 (±91.19)
YOLOv7 3162.86 (±70.04) 120.23 (±16.02) 3323.05 (±69.99)
YOLOv7-E6 3639.89 (±79.95) 132.93 (±19.61) 3812.84 (±80.40)
YOLOv7-W6 2328.11 (±59.51) 129.02 (±18.09) 2497.16 (±58.69)
YOLOv7-E6E 5718.86 (±104.26) 136.52 (±21.87) 5895.45 (±104.78)

G
PU

YOLOv7-tiny 133.12 (±4.62) 160.87 (±17.33) 335.72 (±16.86)
YOLOv7-X 336.64 (±6.19) 135.90 (±12.56) 514.65 (±12.47)
YOLOv7 243.77 (±4.76) 144.87 (±13.09) 430.83 (±13.24)
YOLOv7-E6 271.81 (±6.20) 162.68 (±17.25) 476.60 (±16.76)
YOLOv7-W6 211.72 (±4.02) 157.63 (±15.41) 411.47 (±15.47)
YOLOv7-E6E 370.27 (±6.13) 165.77 (±20.87) 578.25 (±19.98)

(c)

https://doi.org/10.1371/journal.pone.0331556.t001
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Fig 3. Class confusion evaluation for the trained YOLOv7-tiny model. (a), (b) Crop of an image as taken with our system before and after object detection by
YOLOv7. The detected objects are third instar larvae (cyan), adult flies (blue), empty pupae (red), full pupae (green) and out-of-focus (yellow). (c) Class confusion
matrix of the used YOLOv7-tiny model. (For full comparison see S1 Fig).

https://doi.org/10.1371/journal.pone.0331556.g003

on the validation dataset. In our experiments we found that for the task of detection and
classification of D. melanogaster in our Hatching-Box images, the different model vari-
ants show comparable performance with regards to their classification accuracy. The best
performing model shows 4.35% better mean average precision (mAP) on 50% to 95% inter-
section over union (IoU) compared to our YOLOv7-tiny baseline, while it only shows a sur-
plus of 0.73% in mAP on 50% IoU (see Fig 1). However, deep scaling pyramids as supplied
by the larger YOLOv7 models (E6, W6, E6E) are not shown to be beneficial for overall clas-
sification performance. Additionally, we can observe a small decrease in average precision
(AP) compared to the other models which we trace back to slight overfitting on our training
data.

We also evaluated class confusion for our model to evaluate its ability in recognizing dif-
ferent D. melanogaster developmental stages (Fig 3). Specifically, full and empty pupae are
detected with a 95% and 97% accuracy and are only occasionally confused with each other.
Adult D. melanogaster are correctly detected in 86% of the cases, in 12% of the cases the fly
is detected incorrectly as an out-of-focus object which can be explained by their ability to
freely move in the vial compared to larvae and pupae, escaping the focal plane of the cam-
era. Similarly, detection of larvae shows a 84% accuracy, most commonly confused with full
pupae (8%), since these two classes have a similar appearance in single channel grayscale IR
images. As can be seen in the confusion matrix our models successfully differentiates between
D. melanogaster and environmental clutter: only 1% of adult flies and (full/empty) pupae and
only 3% of larvae are misclassified as background (background false negatives). Conversely, in
the case a background object is detected as a foreground object (background false positives),
it is discarded as the out-of-focus class in 63% of the time. Over the course of the performed
experiments, our detection algorithm identified up to 500 unique specimens per image. As a
direct result of our high-throughput system, single misdetections on a frame-by-frame basis
can statistically be compensated over the course of the whole experiment. We achieve addi-
tional robustness for the detections by implementing a temporal association mechanism
which takes multiple previous reference time points into account to produce a most probable
identity matching over a whole image sequence.
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Identity preserving tracking. As mentioned above, YOLOv7 provides detections
(bounding boxes) surrounding the foreground objects and associated class labels, namely
adult fly, filled pupae, empty pupae, larvae and out-of-focus object. The former four object
types are subsequently used in an identity preserving tracking algorithm to compute con-
tinuous trajectories for all individuals over time . By jointly considering the bounding box
location and area as well as the object class, temporal association of a box at time t and t–1
requires an IoU of more than 60% and the same or adjacent developmental stages between
two consecutive frames. In addition, temporal smoothing is used by integrating multiple
past frames which also enables the preservation of identities in case of occasionally missed
detections (e.g. due to object occlusions). For our scenario a time window of three additional
frames at t–2, t–3 and t–4 yielded good results.

During our circadian experiment we have captured with a framerate of one frame each 10
minutes. This approach effectively reduces the amount of accumulated data while still allow-
ing us to monitor group behavior and spatial distribution (see S3 Fig). At the same time, this
temporal resolution is sufficient to detect pupation and eclosion events in the lifecycle of D.
melanogaster used as indicator for their circadian rhythm, as the specimens stay immobile
during the pupal stage and therefore do not move inbetween frames. Since the behavioral and
morphological changes associated with pupation are more gradual and often rely on indi-
rect proxies (such as periods of immobility), automatically determining the precise timing of
pupation events is inherently less accurate than for binary eclosion events (see S4 Fig).

Additionally, as a proof-of-concept, we demonstrated that our system is capable of track-
ing larval locomotion by recording at the current maximum framerate of 1 fps (see Fig 4).
This preliminary test illustrates the system’s potential applicability for behavioural analysis
of wandering L3 larvae, even though the framerate is presently limited. To address the lim-
itation that larvae may move out of the focal plane and become difficult to track in single-
camera systems, our detection model is trained to recognize out-of-focus larvae as a separate
class. This enables us to maintain accurate population counts by tracking both in-focus and
out-of-focus objects, while avoiding explicit classification into pupae or larvae when image
quality is insufficient. In contrast, tracking of fast moving adult flies would require a signif-
icantly higher framerate which was not tested during the course of the experiment, albeit
technically supported.

Life-long monitoring and complex experimental settings require recordings over multi-
ple weeks resulting in thousands of trajectories. However, these also include trajectories that
only cover a small number of frames, usually occurring for adult D. melanogaster that can
move particularly fast when flying and hence cannot be tracked using the aforementioned
frame rate. Given our focus on the transitions in developmental stages we discarded small
trajectories below 30 consecutive detections.

To assess the performance of our tracking pipeline we measured the average computation
required for tracking a random sequence of 100 consecutive frames of a video of ten runs with
each of the previously introduced YOLOv7 models as a detector (see Fig 1). We compare the
time the YOLOv7 model needs for inference and the time required for temporal association
as introduced in this section on an AMD Ryzen 7 3700X 8-Core CPU and a NVIDIA GeForce
RTX 3060 Ti GPU. On average, each frame of the selected random sequence has around 500
detected objects (out-of-focus objects excluded) that have to be associated between consecu-
tive frames. Nevertheless, when run on the CPU, the average overhead of our tracking algo-
rithm compared with only inference of the YOLOv7 models was between 112.28 and 136.52
ms. For the basic, less resource intensive YOLOv7-tiny, the temporal association algorithm
on average constitutes 24.7% of the overall runtime per frame. When used with the most
complex YOLOv7 model, YOLOv7-E6E, the share of total runtime decreases to only 2.3%.
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Fig 4. Performance analysis for identity preserving tracking. (a) Positions of eclosion (wildtype D. melanogaster) over the course of our 14 days
circadian experiment. (b) Larva locomotion (wildtype D. melanogaster) over 100 second captured with our system with 1 fps.

https://doi.org/10.1371/journal.pone.0331556.g004

A similar distribution can be observed when our pipeline is employed on a system with a
GPU, even though the average processing time of the temporal association is a bit higher
between 134.54 and 154.11 ms. This amounts to an 48.0% share of runtime when used with
YOLOv7-tiny compared to 28.7% when used with YOLOv7-E6E.
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In a second step of our postprocessing routine we apply a centered median filter of size five
to the associated developmental stage at each point in time for each individual specimen. This
way, our tracker filters out single misclassifications that can appear on a frame-by-frame basis
due to different factors, e.g. another object covers up the specimen or during the process of
a larva pupating. Subsequently, after postprocessing, the determined positions and develop-
mental stages over the time of the experiment for each specimen is saved in an output file in
HDF5 that can directly be converted to be used for analysis in other established frameworks
such as rhetomics [23] or custom analysis scripts.

Performance evaluation. To assess the performance of the Hatching-Box, we performed
experiments with four different genotypes, a wild type line iso31 [24] and the three well-
known mutants for the period of emergence of adult flies [3]: pershort, perlong, per0. While
wild type flies have a period of eclosion of about 24 hours in constant darkness, this behavior
can be affected by mutations of the period gene. pershort flies show an eclosion period of 19h,
perlong change it to 26h and per0 fail to form a rhythmic pattern.

The experiments were performed in a temperature controlled incubator (CLF, Plant Cli-
matics) set at 25°C, in constant darkness to be able to study the inner rhythm of the flies
without effect of the light. We monitored three vials of each genotype per Hatching-Box
with a image capturing interval of 10 minutes and configured the tracker to only track full
and empty pupae. With this configuration we monitored the different genotypes for 14 days
each and computed the quantitative results as described before in the former Subsection. To
find the time points of eclosion/pupation based on this output we processed the sequence
of detected developmental stages for each separate specimen with a sliding window of size 𝜏
(with 𝜏 = 7 for our framerate). We mark a time point t as time of eclosion/pupation if a major-
ity of time points [t,… , t + 𝜏 – 1] are associated with the class of empty/full pupa. For the
performed circadian experiments we used this approach to extract the eclosion time points
only.

In Fig 5 we can observe in the diagrams that at the beginning there is no eclosion, as
expected, since most of the animals are in the stage of larvae. At about day 4-5 we start
observing an increasing number of events. The iso31 flies show a rhythm of 24 hours as
expected, that is also detected in the periodogram, while in the per0 there is no clear rhythm.
The perlong flies show a rhythm of 28.3 h, and interestingly, the beginning of the eclosion is
delayed compared to the other genotypes, reflecting the importance of the circadian clock
in regulating development [4]. Lastly, even though the periodogram of pershort flies does not
show any significant rhythm, it can be recognized in the in Fig 5a a short rhythm that is also
detectable in the periodogram of about 19h, that would represent the published data.

Materials and methods
Hardware

Hardware Design. As the main compartment for our system we used an off-the-shelf
electrical box measuring 355.0mm ×248.0mm ×110.7mm (length ×width ×height), provid-
ing enough room for the necessary electrical components as well as three rearing vials with
a diameter of 41.5mm (see S5 Fig). For our system we employed an adapted set of imaging
components, backlight illumination and additional sensors as specified below.

Imaging components. Image recording is performed with the Raspberry Pi High Qual-
ity Camera module connected to the Raspberry Pi 4 (8 GB). The camera module uses the 12.3
megapixel Sony IMX477 sensor and is equipped with a C/CS mount which provides compat-
ibility with a large number of camera lenses. When the camera is used with its full resolution
of 4056 ×3040 pixels, our system can achieve a frame rate of up to 1 frame per second. For our
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Fig 5. Comparison of periodicity of selected clock mutants.We used per0, pershort, perlong and wildtype iso31 flies. For the statistical methods the R
package rhetomics was used. (a) Eclosion events aggregated into 2 hour slices for the different genotypes over time. (b) Lomb-Scargle periodogram of
observed mutants [25].

https://doi.org/10.1371/journal.pone.0331556.g005
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experiments we used the C125-0818-5M Basler lens with 8mm focal length due to its minimal
working distance (MOD) of 100mm. We outfitted the lens with a MIDOPT LP818-46 low-
pass IR filter with a useful range of 825nm - 1100nm.The builtin IR block filter of the camera
module was removed.

Backlight illumination. Since the lighting conditions of an image have a significant influ-
ence on its characteristics and in turn on the performance of object detection algorithms we
also propose a custom light guide panel design for the Hatching-Box. Our light guide panel is
made of acrylic glass with punctures on the surface, distributing the incoming light homoge-
neously across its area.

The Hatching-Box uses two separate light sources. The first one consists of two LED strips
emitting white light (250nm - 800nm) and can be used as a stimulus for the monitored D.
melanogaster. A second LED strip consisting of IR LEDs with a wavelength of 890nm has
been placed at the bottom edge of the light guide panel behind the rearing vial holder to pro-
vide a homogeneous illumination across its entire area. As a driver for the LEDs in our sys-
tem, we use a standard Arduino Uno in combination with a custom-made shield that is con-
nected to the Arduino’s GPIO pins [26]. In their publication, Ogueta et al. used LED strips
with four color channels red, green, blue and white (RGBW) which are connected to the
shield. In our implementation we use three of these four channels for controlling the two
white LED strips and the IR LED strip independently.

Sensors. Environmental conditions play a significant role for breeding and experimental
designs. We therefore equipped the Hatching-Box with sensors for temperature and humid-
ity (HS3003), light intensity (APDS9960) and barometric pressure (LPS22HB), all provided
by the Arduino Sense BLE 33 sensor board. As an external digital light sensor to measure
brightness outside of the Hatching-Box we use a BH1750. We implemented a custom-made
firmware to query the Arduino Sense via serial connection which automatically provides all
current measurements every time an image is taken and saved in the experiment’s output
HDF5 file.

Software
Overview. Our software architecture consists of two main components, namely the head-

less Hatching-Box client application (HB-client) executed on the Raspberry Pi on each box
independently and the Hatching-Box server application (HB-server), designed to be used on
a central computer (see Fig 6). The HB-client controls the camera and lights of the Hatching-
Box and provides access to the previously discussed integrated sensor board. On the other
hand, the HB-server is executed on a computer connected to one or many Hatching-Box sys-
tems and provides an easy-to-use graphical user interface to control the capture modalities
of each box. Moreover, the HB-server provides tools for long-term tracking and behavioral
analysis of individual D. melanogaster specimen. For the purpose of communication, each
Hatching-Box must be connected to the same network used by the server. Transmission of
controls, images and other data is performed by a TCP/IP-based application protocol. By
building our distributed architecture upon standard network protocols, our system can easily
be extended or integrated into existing infrastructure.

Client architecture: HB-client. In our proposed architecture, the term “client” corre-
sponds to an individual Hatching-Box . The soft- and hardware of each Hatching-Box is con-
trolled by a Raspberry Pi 4. The Raspberry Pi is connected to a Raspberry Pi HQ camera
module and, via USB, to an Arduino Sense BLE 33 sensor board which are used for capturing
images and sensor data respectively. As a driver for the camera, the HB-client uses the lib-
camera software stack [27]. Libcamera enables control of the camera’s recording parameters,
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Fig 6. Overview of data and command flow in our proposed system’s architecture.

https://doi.org/10.1371/journal.pone.0331556.g006

e.g. exposure time and analog/digital gain, and construction of an image processing pipeline
that uses firmware-based image processing in combination with custom-made processing
routines. This processing includes routines for isolating a region of interest (ROI) from the
captured image as well as detecting the boundaries of each monitored vial to support exper-
imental designs which require observing different classes such as varying phenotypes. The
parameters of the processing steps can be controlled in the HB-server application . Images
are recorded using the BGR888 pixel format, encoded and compressed in PNG format and
subsequently sent to the server. The LED controller, also connected via USB, is specifically
designed for circadian experiments and operates the backlight panel. The connected LED
strips with different wavelengths (here: white and IR LEDs) can be controlled separately. The
HB-client is launched automatically upon startup of the Raspberry Pi and first initializes the
serial communication channels to the sensor board, the LED controller and the libcamera
software-stack. After initialization, the HB-client connects to the configured IP address and
port of the HB-server. Afterwards, the Hatching-Box maintains the connection to the server,
reconnects if necessary, and idles until the user issues a snapshot/recording task, changes
camera settings or until the next scheduled video frame has to be captured and transmit-
ted. By transferring the recorded images directly to the server, we are able to fully omit write
operations to the Raspberry Pi’s micro SD card, preventing data corruption.

Server architecture: HB-server. Following our architecture’s naming scheme, the “server”
is represented by a single, off-the-shelf computer, preferably with a GPU, which executes the
HB-server application. The HB-server consists of three main components:

1. a TCP server,
2. a graphical user interface (GUI) and
3. an object tracker (see Fig 6).

For TCP communication the HB-server builds on the ZeroMQ library [28] to maintain
reliable, scalable and concurrent network connections to each Hatching-Box simultaneously
while minimizing the overhead.

The HB-server uses the Qt5 framework to provide a graphical user interface (GUI) to
supervise and coordinate experiments. All online Hatching-Boxes in the same network are
enumerated by its time of connection and accessible in the GUI. By selecting an individual
Hatching-Box, users can control recording parameters and define a region of interest to select
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specific vials to be monitored by the system. Previously recorded images and sensor read-
ings (temperature, humidity, air pressure, light intensity and color) of the individual box
can be reviewed. Multiple Hatching-Boxes and their adjusted settings can be organized in a
workspace, which can be saved and than reused at a later time.

Tracking. To analyse the images recorded by the HB-client we implemented an adapted
tracking algorithm, which is accessible in the HB-server. This algorithm firstly separates the
image into individual rearing vial crops using a one-time calibration step, which automatically
generates a mask for each vial (see S2 Appendix). The subsequent tracker pipeline consists of
two main steps:

1. detection and classification of objects in the crops over time and
2. association of the detected objects over time to compute consistent identities.

Detection and classification is done by the YOLOv7 framework, which has been used
successfully on a wide range of domains including tiny insect detection [29] and med-
ical imaging [30] and requires only moderate computing capabilities. For our experi-
ments we used the baseline YOLOv7 model pretrained on the COCO dataset [31] and
finetuned it on our custom Hatching-Box dataset . Loading and inference of our model
is performed using the ONNX [32] framework to make use of platform-dependent accel-
eration methods. This decreases the inference time and provides an interface which
makes it possible to also load other models to use in HB-server if desired. To further
speed up the inference and the tracking process off-the-shelf GPU computing hardware is
recommended.

The second step of our tracker is concerned with the temporal association and identity
conservation in time. Assuming slow/non-moving objects (larvae or pupae) or an appropri-
ate frame rate, the intersection-over-union (IoU) of bounding boxes of consecutive frames
can be used as a metric for temporal association. The IoU is of two bounding boxes bi and bj
is defined by

J(bi, bj) =
|bi ∩ bj|
|bi ∪ bj|

. (1)

Based on the pairwise IoU values of all bounding boxes in frame t, bti (i = 1,… ,m),
and bounding boxes bt+1j (j = 1,… ,n) in the subsequent frame, we construct It,t+1 ∈ℝm×n

such that

It,t+1(i, j) = J(bti , bt+1j ). (2)

We use the hungarian algorithm [33] to find a bijective mapping between the bounding
boxes in frame t and frame t + 1 that maximizes

m
∑
i=1

n
∑
j=1

It,t+1(i, j). (3)

To also allow detections that have no correspondence across both frames, additional n
rows andm columns of dummy entries are added to It,t+1 to allow addition/deletion of objects
over time. This approach is for example used for graph matching applications [34]. The result-
ing matrix It,t+1 has shape n+m ×m+n:
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It,t+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

J(bt1, bt+11 ) J(bt1, bt+12 ) … J(bt1, btn) 1 … 1
J(bt2, bt+11 ) J(bt2, bt+12 ) … J(bt2, btn) 1 … 1

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
J(btm, bt+11 ) J(btm, bt+12 ) … J(btm, btn) 1 … 1

1 1 … 1 0 … 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
1 1 … 1 0 … 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4)

Matching dummy objects with each other is prevented by setting It,t+1(i, j) = 0 form < i≤
m+n and n < j≤ n+m. Detected objects can be shown as an overlay on top of the captured
images in the HB-server GUI.

Circadian experiment
About 30 males and 30 females were crossed and their eggs collected in three vials (41.5 mm
diameter) with standard yeast-containing fly food and kept at 25 C in a 12 h : 12 h light-dark
cycles. The same parental flies were flipped twice, each time after 2 days of egglaying. The
tubes without the parents were then directly put in the experimental setup for further stud-
ies. We excluded the recording of the early stages of larvae (L1 and L2) that stay mainly in the
food–therefore only visible occasionally to our system–and studied only the wandering third
instar larvae, which crawl out of the food looking for a place to pupate. The 4 genotypes used
here (iso31, pershort, perlong and per0) have been described previously [3,24]. A set of three vials
of the same genotype were tested simultaneously in the Hatching-Box. The experiment was
performed at 25C in a temperature controlled incubator (CLF, Plant Climatics) in constant
darkness.

Discussion
Extracting large quantities of developmental and behavioral data is essential for a variety of
biological experiments. However, the acquisition of this type of data involves tedious and
time-consuming labor, aggravating the reproducibility and limiting the throughput. This
predicament builds momentum for the emergence of automated hard- and software solu-
tions to aid researchers gain new insights, e.g., in the field of neurosciences [35] and genet-
ics [36]. However, the shift towards higher automatization also imposes new challenges and
limitations which restrict the number of specimens that can be monitored and the length
of the supported observation period. Most available systems focus on high temporal and
spatial resolution when tracking behavioral features of animals such as their movement
which renders them inappropriate for the analysis of long-term experiments or population
development.

In this paper we have introduced an alternative tracking approach for long-term experi-
ments. Our hardware and software combinations offers fully automatic developmental and
behavioral quantifications, which are integrated into the regular rearing process, hence do not
require any additional labor. The machine learning-based object detection and tracking algo-
rithm enable the quantification of short larval trajectories, pupation and eclosion including
their rhythmicity and temporal development as well as rudimentary activity monitoring. By
making the exhaustive tracking data available as an HDF5 file, we additionally encourage
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further analysis of the collected data with tools and frameworks already established by
the user. The cost-effective and easy to build hardware, as well as the client-server-based
software allow for arbitrary extensions yielding highly parallelized and high-throughput
screenings.

The software is developed with a particular focus on throughput to detect, classify and
track specimens in the captured images over the whole course of the experiment without
manual intervention. The combination of these different components result in high qual-
ity tracking results for experiments with hundreds of animals spanning multiple weeks that
are not straightforward to acquire with software-only tracking solutions (e.g. [15,19]) which
require the experimenter to establish an appropriate imaging setup. The presence of user-
controllable lights within each Hatching-Box facilitates multiple experiments with different
light cycles in the same incubator. Additionally, by utilizing our sensor array, the environ-
mental conditions during the experiment can be closely monitored and easily correlated with
the obtained developmental data. Being able to track D. melanogaster in their rearing vials
takes the burden off of experimenters to individualize their specimen and simultaneously
makes the Hatching-Box also applicable for monitoring of their general development and
gathering behavioral and fitness features on-the-fly.

Given our approach favors high throughput over fine-grain behavioral feature extrac-
tion, this introduces new challenges regarding identification of objects inside the rear-
ing vials. On the one hand, off-the-shelf rearing vials are usually made of plastic, e.g.,
polypropylene, that is not as transparent as acrylic glass or certain other plastics depend-
ing on material quality which can complicate detection of animals. On the other hand,
achieving a focal plane depth adequate for distinguishing animals in the cylindrical hous-
ing is not a trivial task. We mitigated this issue by choosing the focal depth in a way that
objects in the camera-facing front of the rearing vial appear sharp and any other objects
blurred so that foreground and background objects can be readily differentiated. Still, both
the aforementioned factors can contribute to erroneous detections and classifications sug-
gested by the YOLOv7 model. Nevertheless, our experimental results show that we are able
to mitigate this issue by usage of our postprocessing routines which ultimately produce
continuous trajectories even if detections are missing or inaccurate on a frame-by-frame
basis.

In the future, we will integrate a vibration-free rotation mechanism for the rearing vials to
further increase the total number of observable objects.

Due to framerate limitations of up to 1 frame per second (fps) when using the full 12
megapixel resolution of the camera module, our current implementation does not achieve
a sufficient temporal resolution to track flying adult flies. We aim on further increasing
the framerate to ultimately also allow behavioural analysis of fast moving specimen. This
may pose further challenges, e.g., additional heat builtup and throughput limitations of
the local network, which may involve modification of the current software architecture.
Notably, at higher framerates, the storage of acquired images becomes impractical due to
the substantial volume of generated data. To address this challenge, our system enables
real-time processing of captured images, such that only the extracted behavioural metrics
are retained for storage. However, given our focus on pupation and eclosion, we did not
include this, as it falls outside the scope of the present study and will be investigated in future
work.

PLOS One https://doi.org/10.1371/journal.pone.0331556 September 29, 2025 16/ 19

https://doi.org/10.1371/journal.pone.0331556


ID: pone.0331556 — 2025/9/25 — page 17 — #17

PLOS One Hatching-Box

Supporting information
S1 Fig. YOLOv7 evaluation.
(PDF)

S2 Fig. Double plotted actogram ofD. melanogaster clock mutants and wildtype.
(PDF)

S3 Fig. Spatial distribution of wildtypeD. melanogaster in larval and adult stage.
(PNG)

S4 Fig. Illustration of an exemplary pupation event as captured by our system.
(PDF)

S5 Fig. Technical drawings.
(PDF)

S6 Fig. Screenshot a the Hatching-Box server application (HB-server).
(PNG)

S1 Table. Bill of Material.
(PDF)

S1 File. Archive containing manufacturing files.
(ZIP)

S1 Appendix. Light guide panel design.
(PDF)

S2 Appendix. Automatic detection of vials.
(PDF)

Acknowledgments
We thank Ralf Stanewsky for providing the flies and for sharing laboratory space and equip-
ment for our studies.

Author contributions
Conceptualization: Julian Bigge, Benjamin Risse.

Data curation: Julian Bigge, Maite Ogueta, Luis Garcia.

Formal analysis: Julian Bigge, Maite Ogueta.

Investigation: Julian Bigge, Luis Garcia.

Methodology: Julian Bigge, Luis Garcia, Benjamin Risse.

Project administration: Benjamin Risse.

Resources: Benjamin Risse.

Software: Julian Bigge.

Supervision:Maite Ogueta, Benjamin Risse.

Validation: Julian Bigge, Maite Ogueta, Luis Garcia, Benjamin Risse.

Visualization: Julian Bigge.

PLOS One https://doi.org/10.1371/journal.pone.0331556 September 29, 2025 17/ 19

https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331556.s001
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331556.s002
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331556.s003
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331556.s004
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331556.s005
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331556.s006
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331556.s007
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331556.s008
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331556.s009
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331556.s0010
https://doi.org/10.1371/journal.pone.0331556


ID: pone.0331556 — 2025/9/25 — page 18 — #18

PLOS One Hatching-Box

Writing – original draft: Julian Bigge, Benjamin Risse.

Writing – review & editing: Julian Bigge, Maite Ogueta, Luis Garcia, Benjamin Risse.

References
1. Tanaka T, Chung H-L. Exploiting fly models to investigate rare human neurological disorders.

Neural Regen Res. 2025;20(1):21–8. https://doi.org/10.4103/NRR.NRR-D-23-01847 PMID:
38767473

2. Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, McKellar CE, et al. Neuronal wiring
diagram of an adult brain. Nature. 634(8032):124–38.

3. Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A.
1971;68(9):2112–6. https://doi.org/10.1073/pnas.68.9.2112 PMID: 5002428

4. Kyriacou CP, Oldroyd M, Wood J, Sharp M, Hill M. Clock mutations alter developmental timing in
Drosophila. Heredity (Edinb). 1990;64 ( Pt 3):395–401. https://doi.org/10.1038/hdy.1990.50 PMID:
2113515

5. Wegener C, Amini E, Cavieres-Lepe J, Ewer J. Neuronal and endocrine mechanisms underlying the
circadian gating of eclosion: insights from Drosophila. Curr Opin Insect Sci. 2024;66:101286.
https://doi.org/10.1016/j.cois.2024.101286 PMID: 39461671

6. Juarez-Carreño S, Vallejo DM, Carranza-Valencia J, Palomino-Schätzlein M, Ramon-Cañellas P,
Santoro R, et al. Body-fat sensor triggers ribosome maturation in the steroidogenic gland to initiate
sexual maturation in Drosophila. Cell Rep. 2021;37(2):109830.
https://doi.org/10.1016/j.celrep.2021.109830 PMID: 34644570

7. Vallejo DM, Juarez-Carreño S, Bolivar J, Morante J, Dominguez M. A brain circuit that synchronizes
growth and maturation revealed through Dilp8 binding to Lgr3. Science. 2015;350(6262):aac6767.
https://doi.org/10.1126/science.aac6767 PMID: 26429885

8. Tataroglu O, Emery P. Studying circadian rhythms in Drosophila melanogaster. Methods.
2014;68(1):140–50. https://doi.org/10.1016/j.ymeth.2014.01.001 PMID: 24412370

9. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an
open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.
https://doi.org/10.1038/nmeth.2019 PMID: 22743772

10. Seong K-H, Matsumura T, Shimada-Niwa Y, Niwa R, Kang S. The Drosophila Individual Activity
Monitoring and Detection System (DIAMonDS). Elife. 2020;9:e58630.
https://doi.org/10.7554/eLife.58630 PMID: 33168136

11. Ruf F, Fraunholz M, Öchsner K, Kaderschabek J, Wegener C. WEclMon - a simple and robust
camera-based system to monitor Drosophila eclosion under optogenetic manipulation and natural
conditions. PLoS One. 2017;12(6):e0180238. https://doi.org/10.1371/journal.pone.0180238 PMID:
28658318

12. Panadeiro V, Rodriguez A, Henry J, Wlodkowic D, Andersson M. A review of 28 free animal-tracking
software applications: current features and limitations. Lab Anim (NY). 2021;50(9):246–54.
https://doi.org/10.1038/s41684-021-00811-1 PMID: 34326537

13. Gal A, Saragosti J, Kronauer DJ. anTraX, a software package for high-throughput video tracking of
color-tagged insects. Elife. 2020;9:e58145. https://doi.org/10.7554/eLife.58145 PMID: 33211008

14. Branson K, Robie AA, Bender J, Perona P, Dickinson MH. High-throughput ethomics in large
groups of Drosophila. Nat Methods. 2009;6(6):451–7. https://doi.org/10.1038/nmeth.1328 PMID:
19412169

15. Romero-Ferrero F, Bergomi MG, Hinz RC, Heras FJH, de Polavieja GG. idtracker.ai: tracking all
individuals in small or large collectives of unmarked animals. Nat Methods. 2019;16(2):179–82.
https://doi.org/10.1038/s41592-018-0295-5 PMID: 30643215

16. Risse B, Thomas S, Otto N, Löpmeier T, Valkov D, Jiang X, et al. FIM, a novel FTIR-based imaging
method for high throughput locomotion analysis. PLoS One. 2013;8(1):e53963.
https://doi.org/10.1371/journal.pone.0053963 PMID: 23349775

17. Berh D, Risse B, Michels T, Otto N, Xiaoyi Jiang, Klambt C. An FIM-based long-term in-vial
monitoring system for Drosophila larvae. IEEE Trans Biomed Eng. 2017;64(8):1862–74.
https://doi.org/10.1109/TBME.2016.2628203 PMID: 28113288

18. Geissmann Q, Garcia Rodriguez L, Beckwith EJ, French AS, Jamasb AR, Gilestro GF. Ethoscopes:
an open platform for high-throughput ethomics. PLoS Biol. 2017;15(10):e2003026.
https://doi.org/10.1371/journal.pbio.2003026 PMID: 29049280

19. Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, et al. DeepLabCut: markerless
pose estimation of user-defined body parts with deep learning. Nat Neurosci. 2018;21(9):1281–9.
https://doi.org/10.1038/s41593-018-0209-y PMID: 30127430

PLOS One https://doi.org/10.1371/journal.pone.0331556 September 29, 2025 18/ 19

https://doi.org/10.4103/NRR.NRR-D-23-01847
http://www.ncbi.nlm.nih.gov/pubmed/38767473
https://doi.org/10.1073/pnas.68.9.2112
http://www.ncbi.nlm.nih.gov/pubmed/5002428
https://doi.org/10.1038/hdy.1990.50
http://www.ncbi.nlm.nih.gov/pubmed/2113515
https://doi.org/10.1016/j.cois.2024.101286
http://www.ncbi.nlm.nih.gov/pubmed/39461671
https://doi.org/10.1016/j.celrep.2021.109830
http://www.ncbi.nlm.nih.gov/pubmed/34644570
https://doi.org/10.1126/science.aac6767
http://www.ncbi.nlm.nih.gov/pubmed/26429885
https://doi.org/10.1016/j.ymeth.2014.01.001
http://www.ncbi.nlm.nih.gov/pubmed/24412370
https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.7554/eLife.58630
http://www.ncbi.nlm.nih.gov/pubmed/33168136
https://doi.org/10.1371/journal.pone.0180238
http://www.ncbi.nlm.nih.gov/pubmed/28658318
https://doi.org/10.1038/s41684-021-00811-1
http://www.ncbi.nlm.nih.gov/pubmed/34326537
https://doi.org/10.7554/eLife.58145
http://www.ncbi.nlm.nih.gov/pubmed/33211008
https://doi.org/10.1038/nmeth.1328
http://www.ncbi.nlm.nih.gov/pubmed/19412169
https://doi.org/10.1038/s41592-018-0295-5
http://www.ncbi.nlm.nih.gov/pubmed/30643215
https://doi.org/10.1371/journal.pone.0053963
http://www.ncbi.nlm.nih.gov/pubmed/23349775
https://doi.org/10.1109/TBME.2016.2628203
http://www.ncbi.nlm.nih.gov/pubmed/28113288
https://doi.org/10.1371/journal.pbio.2003026
http://www.ncbi.nlm.nih.gov/pubmed/29049280
https://doi.org/10.1038/s41593-018-0209-y
http://www.ncbi.nlm.nih.gov/pubmed/30127430
https://doi.org/10.1371/journal.pone.0331556


ID: pone.0331556 — 2025/9/25 — page 19 — #19

PLOS One Hatching-Box

20. Dominguez M, Santoro R, Rodriguez V, Matic A, Greco S. FlyGear: automated developmental time
tracking system. https://flygear.info/.

21. Kyriacou C, Burnet B. Genetic analysis of phototaxis near the upper limit of the visual spectrum of
Drosophila melanogaster. Behavior Genetics. 1979;9(2):123–8.

22. Wang C-Y, Bochkovskiy A, Liao H-YM. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art
for real-time object detectors. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR., 2023. p. 7464–75. https://doi.org/10.1109/cvpr52729.2023.00721

23. Geissmann Q, Garcia Rodriguez L, Beckwith EJ, Gilestro GF. Rethomics: an R framework to
analyse high-throughput behavioural data. PLoS One. 2019;14(1):e0209331.
https://doi.org/10.1371/journal.pone.0209331 PMID: 30650089

24. Ryder E, Blows F, Ashburner M, Bautista-Llacer R, Coulson D, Drummond J, et al. The DrosDel
collection: a set of P-element insertions for generating custom chromosomal aberrations in
Drosophila melanogaster. Genetics. 2004;167(2):797–813.
https://doi.org/10.1534/genetics.104.026658 PMID: 15238529

25. Scargle JD. Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of
unevenly spaced data. Astrophysical Journal, Part 1. 1982;263:835–53.

26. Ogueta M, Garcia Rodriguez L. Open source LED controller for circadian experiments. bioRxiv.
2017;:201087.

27. libcamera authors. Libcamera: A complex camera support library for Linux, Android, and
ChromeOS. https://libcamera.org/.

28. Z. ZeroMQ: An open-source universal messaging library. https://zeromq.org/.
29. Stark T, Ştefan V, Wurm M, Spanier R, Taubenböck H, Knight TM. YOLO object detection models

can locate and classify broad groups of flower-visiting arthropods in images. Sci Rep.
2023;13(1):16364. https://doi.org/10.1038/s41598-023-43482-3 PMID: 37773202

30. Ragab MG, Abdulkader SJ, Muneer A, Alqushaibi A, Sumiea EH, Qureshi R. A comprehensive
systematic review of YOLO for medical object detection (2018 to 2023). IEEE Access. 2024.

31. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D. Microsoft coco: common objects in
context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13, 2014. p. 740–55.

32. O R Developers. ONNX Runtime. https://onnxruntime.ai/.
33. Kuhn HW. The Hungarian method for the assignment problem. Naval Research Logistics.

1955;2(1–2):83–97. https://doi.org/10.1002/nav.3800020109
34. Riesen K, Bunke H. Approximate graph edit distance computation by means of bipartite graph

matching. Image and Vision Computing. 2009;27(7):950–9.
https://doi.org/10.1016/j.imavis.2008.04.004

35. Pereira TD, Shaevitz JW, Murthy M. Quantifying behavior to understand the brain. Nat Neurosci.
2020;23(12):1537–49. https://doi.org/10.1038/s41593-020-00734-z PMID: 33169033

36. Reiser M. The ethomics era?. Nat Methods. 2009;6(6):413–4.
https://doi.org/10.1038/nmeth0609-413 PMID: 19478800

PLOS One https://doi.org/10.1371/journal.pone.0331556 September 29, 2025 19/ 19

https://flygear.info/
https://doi.org/10.1109/cvpr52729.2023.00721
https://doi.org/10.1371/journal.pone.0209331
http://www.ncbi.nlm.nih.gov/pubmed/30650089
https://doi.org/10.1534/genetics.104.026658
http://www.ncbi.nlm.nih.gov/pubmed/15238529
https://libcamera.org/
https://zeromq.org/
https://doi.org/10.1038/s41598-023-43482-3
http://www.ncbi.nlm.nih.gov/pubmed/37773202
https://onnxruntime.ai/
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1038/s41593-020-00734-z
http://www.ncbi.nlm.nih.gov/pubmed/33169033
https://doi.org/10.1038/nmeth0609-413
http://www.ncbi.nlm.nih.gov/pubmed/19478800
https://doi.org/10.1371/journal.pone.0331556

	Hatching-Box: Automated in situ monitoring of Drosophila melanogaster development in standard rearing vials
	References


