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Abstract
Modeling and learning representations for road networks and vehicle trajectories are
crucial in enabling intelligent transportation systems, with applications ranging from traf-
fic forecasting to many other downstream inference tasks. However, learning effective
representations that generalize well across tasks remains challenging due to the het-
erogeneous nature of spatio-temporal data and limited supervision. In this paper, we
propose a unified multi-objective pretraining framework called MRRT, Multi-objective
Representation Learning for Road Network and Trajectories, that combines masked
trajectory modeling (MTM) with multiple contrastive learning objectives across trajec-
tories, road segments, and spatial contexts. Our model integrates graph attention net-
works (GAT), spatial CNNs, and transformers with temporal and positional encoding,
allowing us to capture structural and contextual dependencies in urban mobility. By lever-
aging grid-structured and graph-structured data, along with spatiotemporal dynamics,
our model effectively captures diverse road and trajectory characteristics. To enhance
robustness, we design trajectory-specific data augmentations and contrastive heads for
trajectory-to-trajectory, trajectory-to-node, and node-to-node alignment. Additionally, we
design an adaptive negative sampling strategy to further enhance the contrastive learn-
ing. We evaluate our approach in various downstream tasks based on trajectory and
road, including travel time estimation, speed inference, and similarity search. Extensive
experiments demonstrate that our method consistently outperforms prior baselines and
ablated variants, validating the effectiveness of our multiobjective design.

Introduction
With the rapid proliferation of GPS-enabled devices and the increasing availability of large-
scale mobility data, representation learning for road networks and vehicle trajectories has
become a cornerstone of intelligent transportation systems (ITS). These representations serve
as compact, expressive encodings of complex spatio-temporal patterns and are widely adopted
in a range of downstream tasks, such as travel time estimation [1], traffic speed inference
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[2], route recommendation [3], and trajectory similarity retrieval [2]. Effective represen-
tation learning can reduce the dependence on task-specific feature engineering and enable
generalization across diverse cities and applications [4,5].

A road network is typically modeled as a graph, where nodes represent road segments and
edges encode their topological relationships. Conversely, a trajectory represents a tempo-
rally ordered sequence of traversed segments, capturing dynamic mobility semantics across
both space and time. While the road network provides a static structural view of the urban
infrastructure, trajectories reflect time-varying behavioral patterns influenced by user pref-
erences, traffic dynamics, and regional contexts. Capturing the interaction between these two
complementary modalities is essential for learning holistic spatiotemporal representations.

Early approaches to representation learning in this domain focused on a single modal-
ity. For instance, Node2vec [6] employs biased random walks and skip-gram models to learn
node embeddings, ignoring the real-world sequential movements observed through trajec-
tories. T2vec [7] focuses on learning trajectory representations through a spatial-proximity
aware encoder-decoder mechanism, but does not consider the underlying topological struc-
ture as well as the node features of the road network. These models fall short in modeling
inter-modal dependencies, leading to incomplete representations. More recent efforts [8]
adopt two-stage pipelines, where representations from one modality (e.g., road network) are
first learned and then injected into the other (e.g., trajectory) through sequential transfer.
Although this improves semantic enrichment, it introduces three key limitations: (1) Error
propagation between stages can undermine representation quality, (2) Insufficient cross-scale
interaction modeling fails to unify local (road) and global (trajectory) semantics effectively,
and (3) Temporal dynamics—including periodicity, burstiness, and congestion effects - are
oversimplified or ignored.

In contrast, end-to-end joint learning frameworks like JCLRNT [2] demonstrate that
simultaneous optimization of both road and trajectory representations via contrastive objec-
tives leads to improved downstream performance. These methods exploit the mutual depen-
dencies between road-level and trajectory-level data to enhance representation fidelity. In
addition to employing contrastive objectives, TCRTRL [9] incorporates a hard negative sam-
pling module for generating harder synthetic negatives and thus enhancing the discrimina-
tive capability. However, these methods still rely solely on discriminative contrastive objec-
tives and do not incorporate generative signals such as masked modeling, which can enhance
contextual understanding. RED [4] integrates masked trajectory modeling and next-segment
prediction but remains restricted to single-modality (trajectory-only) learning and lacks
graph-level spatial awareness. Moreover, other recent methods like GREEN [10] leverage
dual-modal trajectory encoding (road vs. grid), but the fusion occurs post-encoding, limit-
ing fine-grained interaction. Temporal modeling is often limited to static or hand-engineered
encoding, as in DyToast [5], which uses fixed trigonometric functions to represent time.

To address these limitations, we propose a unified, multi-modal representation learning
framework that learns robust, general-purpose embeddings for both road networks and tra-
jectories using Masked Trajectory Modeling and Contrastive Learning. Masked modeling,
being a generative style objective, requires the encoder to reason over contextual dependen-
cies, while contrastive learning, being a discriminative objective, enforces semantic consis-
tency. Combining both in a unified training pipeline allows our model to learn richly con-
textualized and transferable representations. This joint optimization not only mitigates error
propagation but also enables the model to leverage both local structure and global dynam-
ics effectively. This joint formulation has proven effective in other domains such as NLP and
vision, where models like BERT [11] and SimCLR [12] demonstrate that generative style pre-
training enhances understanding of the fine-grained context, while contrastive objectives
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improve representation discrimination and robustness. Together, they act as complementary
forces, one promoting semantic abstraction, the other improving relational alignment, leading
to more versatile and generalizable embeddings.

Our contributions are as follows.

• We design a hybrid architecture that jointly encodes road network topology using Graph
Attention Networks (GANs) [13] and dynamic trajectories using transformer-based [14]
sequence encoders, enabling multiscale spatiotemporal representation learning.

• We introduce a spatial fusion module that injects grid-based convolutional features into
both node- and trajectory-level embeddings via attention-based interaction, enhancing
spatial context awareness beyond pure topological structure.

• We adopt a multi-objective training strategy that combines masked trajectory modeling
with contrastive learning across road-road, trajectory-trajectory, and road-trajectory pairs,
incorporating an adaptive negative sampling strategy, thereby learning both semantic struc-
ture and inter-modal alignment.

Extensive experiments on multiple real-world datasets validate the superiority of our
model in four downstream tasks, including road classification, traffic speed regression, trajec-
tory similarity search, and travel-time estimation. The results demonstrate that our model sig-
nificantly outperforms state-of-the-art methods, affirming the effectiveness of joint modeling,
spatial fusion, and multi-objective learning.

Related works
Representation learning in road networks and trajectories has attracted substantial attention
in recent years due to its importance in various traffic-related applications. Existing research
can be broadly categorized into road network representation learning, trajectory representa-
tion learning, and joint approaches that integrate both types of data.

Road network representation learning
The study of road network representation learning typically aims to capture road seg-
ments’ structural and functional properties. Traditional graph embedding methods, such as
Node2Vec [6], employ biased random walks and skip-gram models to learn node embed-
dings, making them general-purpose but often insufficient for road-specific tasks. Similarly,
DGI (Deep Graph Infomax) [15] uses unsupervised learning to maximize mutual informa-
tion between local and global graph representations, but lacks explicit road and traffic-specific
adaptations. More specialized methods have been developed to address these limitations.
For example, RFN (Relational Fusion Networks) [3] introduces a more targeted approach,
modeling interactions among nodes and edges through relational views and message pass-
ing. IRN2Vec [16] focuses on capturing relationships between pairs of road segments using
samples from the shortest routes, improving the embedding process by incorporating task-
related information through multi-objective learning. HRNR (Hierarchical Road Network
Representation) [17] advances these efforts by employing a hierarchical GNN [18] architec-
ture to embed functional and structural properties at multiple levels: from road segments to
larger structural regions. Despite these advancements, many of these methods either neglect
trajectory data or only utilize it in isolated post-processing steps, missing out on potentially
mutually beneficial learning between road segments and traffic movement.
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Trajectory representation learning
Trajectory representation learning methods primarily focus on modeling sequential move-
ment data for downstream tasks such as travel time prediction and similar trajectory search.
T2Vec [7] takes an approach employing an encoder-decoder structure with LSTM [19] units
to handle noisy trajectory sequences and reconstruct trajectories to enhance representa-
tion learning. Advanced methods such as Toast [20] go further by integrating road network
context with trajectory data, applying a Transformer-based module to incorporate auxil-
iary traffic information. This multi-step approach has demonstrated success in improving
trajectory-based task performance. Similarly, GTS (Graph Trajectory Similarity) [21] com-
bines POI embeddings and GNN-LSTM networks to represent trajectories by learning both
point-wise and sequence-level dependencies. Although these approaches address trajec-
tory representation to varying degrees, they often do so without a unified approach that fully
integrates road network data, which can lead to suboptimal performance in downstream
applications.

Road and trajectory representation learning
There have recently been efforts to create integrated models that leverage road and trajectory
data to embed interconnected elements simultaneously. Joint Contrastive Learning of Road
Network and Trajectories (JCLRNT) [2] explores joint contrastive learning of road networks
and trajectories by aligning their embedding spaces. However, it primarily focuses on con-
trastive alignment without effectively modeling the spatio-temporal dependencies within the
trajectories. START [8] also proposes a framework for utilizing the road network and trajec-
tories simultaneously, including temporal embeddings with a minutes index and a day-of-
week index. However, it focuses only on trajectory representation learning. LightPath [22]
presents a lightweight, path-based representation learning approach to reduce the computa-
tional cost of trajectory modeling. Although it achieves state-of-the-art efficiency, its perfor-
mance is heavily dependent on heuristic-based feature extraction, which limits its ability to
learn complex mobility patterns in data-driven environments.

The above discussed state-of-the-art studies highlight the importance of integrating road
network and trajectory learning, but they exhibit several limitations: (1) Insufficient mod-
eling of fine-grained spatio-temporal interactions between road segments and trajectories;
(2) Most models either use contrastive learning or masked modeling in isolation, rather than
integrating both to leverage complementary strengths; and (3) Reliance on static or random
negative sampling strategies for contrastive learning, which can hinder learning by including
semantically trivial negatives.

Our proposed model addresses these limitations through a unified transformer-based
framework that performs multi-level fusion of road and trajectory information using posi-
tional encodings, temporal embeddings, and cross-attention-based spatial fusion. Beyond
conventional contrastive objectives, we introduce an adaptive negative sampling strategy
that enhances representation discrimination by dynamically retrieving hard negatives using
Approximate Nearest Neighbor (ANN) [23] search. This approach is further strengthened
through curriculum-aware difficulty scheduling and negative mixing, inspired by MOCHI
[24], which progressively challenges the model throughout training. The combination of
structural modeling, temporal awareness, and adaptive contrastive sampling allows our
method to achieve a stronger generalization across multiple downstream tasks, includ-
ing road classification, speed inference, travel time estimation, and trajectory similarity
search.
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Notations and definitions
In this section, we introduce the notation and preliminaries, followed by the formal definition
of the problem. Scalars are represented in italics (e.g., n), vectors in lowercase boldface (e.g.,
h), matrices in uppercase boldface (e.g., A), and sets in script capitals (e.g., G).

Road network: A road network is modeled as a directed graph G = ⟨S,As⟩, where S is the
set of vertices representing road segments, with |S| as the number of segments. The adjacency
matrix As ∈ℝ|S|×|S| has entries As[si, sj] that are binary, indicating whether there is a common
intersection between the end of segment si and the start of segment sj.

Trajectory: A trajectory T is a time-ordered sequence of pairs of consecutive road seg-
ments and timestamps, represented as T = [⟨si, ti⟩]mi=1, where si ∈ S denotes the i-th road seg-
ment in the trajectory, and ti is the visit timestamp for si. Trajectories capture the movement
of an object within the road network G.

Representation learning for road networks and trajectories: Given a road network G =
⟨S,As⟩ and a set of historical trajectoriesD, the objective is to learn a representation matrix
Hs ∈ℝ|S|×d, where the i-th row, hsi , represents the embedding for road segment si. Addition-
ally, for each trajectory T ∈D, we aim to learn a representation vector hT ∈ℝd.

The frequently used symbols in the article are listed in Table 1.

Methodology
This section describes our proposed unified trajectory and road network representation learn-
ing framework. The goal is to jointly encode spatial, temporal, and structural information
from trajectories and road segments to produce generalizable embeddings for downstream
mobility tasks.

Overall framework
Our model takes as input a road network G = ⟨S,As⟩ and a trajectory datasetD = {Ti}, where
each trajectory Ti = [⟨s1, t1⟩,… , ⟨sm, tm⟩] is a sequence of road segments with timestamps. The
model learns representations for:

• Road segments: capturing both topological structure and contextual semantics;
• Trajectories: encoding sequential spatio-temporal patterns across road segments;

The learned embeddings are optimized using a combination of masked modeling and con-
trastive learning objectives. The high-level model flow is illustrated in Fig 1.

The architecture consists of several modular components - a Graph Attention Network
(GAT) encodes road segment connectivity, while a CNN-Spatial Transformer pipeline

Table 1. Frequently used symbols.
Symbol Description
G An input road network graph
S The set of road segments in G
T A time-ordered sequence of pairs of consecutive road segments and timestamps, T = [⟨si, ti⟩]
D The set of all trajectories T . All T ∈D.
As The adjacency matrix of G
si The i-th road segment, where si ∈ S
Hs A representation matrix for the road network G, with the i-th row, hsi , representing the

embedding of the i-th road segment in S.

https://doi.org/10.1371/journal.pone.0331473.t001
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Fig 1. Proposed MRRT model.

https://doi.org/10.1371/journal.pone.0331473.g001

extracts and models spatial context from a grid-based map partitioning. These representa-
tions are fused through residual pooling. Trajectory encoding is performed using a Trans-
former encoder over temporally enriched node sequences, with a cross-attention mechanism
to integrate spatial context. The framework further incorporates two self-supervised losses
- Masked Trajectory Modeling and Contrastive Loss- and an adaptive negative sampling
strategy that leverages dual FAISS indexes for hard negative selection throughout training.

Road and spatial representation module
We represent the road network as a graph and use a GAT-based encoder to extract structural
representations. Each road segment si is either embedded from raw node features xi ∈ℝdin or
from a learnable node embedding ∈ℝd.

Hs =GAT(X,As), Hs ∈ℝ|S|×d (1)

We introduce a CNN-based [25] grid encoder over the spatial map to capture regional
semantics. The spatial grid is constructed by partitioning the city map into a fixed-resolution
grid. We extract spatial features using a CNN followed by a spatial transformer encoder:

Hspatial = Transformer(Flatten(CNN(Grid))) (2)

These representations are fused via residual addition with context pooling:

H′
s =Hs + LayerNorm(Dropout(MeanPool(Hspatial))) (3)
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Graph Attention Networks (GATs) are well-suited for modeling relational dependencies
between road segments based on network topology, capturing connectivity and local struc-
ture. However, GATs alone may struggle to capture broader spatial context—such as regional
semantics, urban morphology, or neighborhood-level traffic patterns—which are often
reflected in the physical layout of the environment. We introduce the CNN-based encoder
over rasterized spatial grids to address this, which excels at learning localized spatial tex-
tures and regional patterns due to its inductive bias toward translational invariance. By fus-
ing GAT-derived relational features with CNN-extracted spatial context via residual addition,
our model benefits from both structured graph information and dense spatial priors, enabling
more context-aware representations. This design is empirically validated in our ablation stud-
ies, where the full model (GAT + CNN) consistently outperforms configurations using only
GAT, supporting the claim of complementary behavior.

Trajectory representation module
Given a trajectory T = [⟨s1, t1⟩,… , ⟨sm, tm⟩], we obtain the representation hsi for each road
segment si by indexing into the fused graph embeddings:

hsi =H
′
s[si] (4)

We enrich each token with temporal signals using temporal encodings and time-aware
embeddings:

h′si = hsi + TemporalEnc(ti) +HourEmb(ti) +WeekdayEmb(ti) (5)

These enriched embeddings are then passed through positional encoding and a trans-
former encoder to obtain contextualized trajectory representations:

HT = Transformer(PosEnc([h′s1 ,… ,h′sm])) (6)

To enhance spatial reasoning, we apply cross-attention between trajectory tokens HT and
the spatial grid Hspatial using a trajectory-aware attention mask Mspatial:

H′
T =HT +CrossAttn(HT ,Hspatial,Hspatial,Mspatial) (7)

Here Mspatial ∈ {0, 1}B×HW is a binary mask that activates only grid cells spatially rele-
vant to the trajectory path. The final trajectory embedding hT is pooled via attention-masked
average pooling over the encoded tokens in H′

T .

Self-supervised learning objectives
We apply multi-objective self-supervised learning to optimize representations of road seg-
ments and trajectories. Four key objectives are used in training:

(1) Masked Trajectory Modeling (MTM): A subset of trajectory positions is masked
using a learned token. The model is trained to reconstruct the masked road segments using a
softmax classification head:

LMTM =CrossEntropy(W ⋅ hmasked, ytrue) (8)
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Before moving on to the contrastive objectives, we define a unified notation to distin-
guish between trajectory-level and road-level representations used in our contrastive and
reconstruction-based learning framework.

Let H′
s denote the final matrix of road segment embeddings and H′

T the encoded matrix of
trajectory token embeddings. We define

• er: the embedding of road segment sr from H′
s

• e+r : an augmented view of er
• zT = Pool(H′

T ): the pooled trajectory embedding (e.g., attention-masked mean pooling)
• zi, z+i : anchor and positive trajectory embeddings for contrastive learning

(2) Trajectory-Trajectory Contrastive Learning (TT): We apply multiple augmentations
to a trajectory Ti to form anchor-positive pairs (zi, z+i ). The augmentations include:

• Point Masking: randomly replaces 15% of segments with a [MASK] token
• Shifting: rotates trajectory positions to simulate different starting points
• Truncation: removes a portion of the end to simulate partial observations

These augmentations introduce diversity and allow the model to focus on core structural
patterns. The TT loss is computed using InfoNCE [26]:

LTT = – log
exp(sim(zi, z+i )/𝜏)

exp(sim(zi, z+i )/𝜏) +∑j∈Ni
exp(sim(zi, z–j )/𝜏)

(9)

(3) Road-Road Contrastive Learning (RR): We generate positive pairs (er, e+r ) using:

• Node Dropping: randomly zeroes a subset of road embeddings

These perturbations simulate occlusion and promote robustness to missing or noisy map data:

LRR = – log
exp(sim(er, e+r )/𝜏)

exp(sim(er, e+r )/𝜏) +∑k∈Nr
exp(sim(er, e–k)/𝜏)

(10)

(4) Trajectory-Road Contrastive Learning (TR): We align pooled trajectory embeddings
zT with semantically related road embeddings emix

r generated by:

• Mixed View Fusion: interpolating road and trajectory embeddings

The loss promotes alignment between moving behavior and spatial context:

LTR = – log
exp(sim(zT , emix

r )/𝜏)
exp(sim(zT , emix

r )/𝜏) +∑n∈NT exp(sim(zT , e–n)/𝜏)
(11)

Masked modeling compels the encoder to reconstruct missing or perturbed input compo-
nents, encouraging fine-grained understanding of local structure and semantics. Contrastive
learning, in contrast, emphasizes global discriminability by separating similar and dissim-
ilar samples in representation space. When combined, these objectives complement each
other: masked modeling guides the model to capture detailed spatial-temporal context, while
contrastive learning ensures those details contribute to a representation space that preserves
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semantic relationships. This synergy is especially beneficial in distinguishing hard negatives—
cases that are structurally or geographically close but semantically different—by forcing the
model to consider both fine details (via reconstruction) and broader context (via contrast).

Adaptive negative sampling with dual FAISS indexing
To enhance contrastive learning, we introduce an adaptive negative sampling strategy based
on FAISS Approximate Nearest Neighbor (ANN) retrieval. Instead of relying solely on mini-
batch negatives, we maintain two separate FAISS indices—one for trajectory embeddings and
one for road segment embeddings. These indices enable efficient retrieval of semantically hard
negatives specific to each contrastive task.

The indices are rebuilt periodically during training and used to sample negatives close to
the embedding space, but do not overlap semantically with the anchor. This improves the
quality of supervision and prevents collapse into trivial solutions. In early epochs, before
sufficient representations are learned, the model falls back to standard batch-based negatives.

The dual FAISS-based adaptive sampling mechanism is designed to enhance representa-
tion learning by selecting semantically harder negatives from separate trajectory and road
embedding spaces. Unlike random negatives, these adaptively selected samples are closer to
the anchor in the embedding space, forcing the model to learn finer-grained distinctions and
capture subtle spatial-temporal differences. This improves the clustering quality and separa-
tion in the representation space.

Index construction and update. Let Ztraj = {zi} and Eroad = {ej} be the current trajectory
and road segment embeddings. Every E epoch, we rebuild the indexes:

Trajectory FAISS Index← FAISS(Ztraj), Road FAISS Index← FAISS(Eroad) (12)

These are used to retrieve semantically hard negatives efficiently using L2 similarity.
Cold start and warm-up phase. Before the first index is constructed (epoch < t0), con-

trastive losses fall back to minibatch-based negatives:

Lwarmup
TT = – log exp(sim(zi, z+i )/𝜏)

∑B
j=1 exp(sim(zi, z–j )/𝜏)

(13)

This bootstraps the representations for meaningful initial ANN sampling.
ANN-based sampling per objective. Once the indices are active, negative samples for

each task are queried as follows:

• TT (Trajectory-Trajectory): The anchor trajectory zi queries the Trajectory FAISS Index to
get hard negative z–j ∉ augmentations of zi.

• RR (Road-Road): Road embedding er queries the Road FAISS Index to find road nodes that
are not neighbors or augmentations.

• TR (Trajectory-Road): Trajectory embedding zT queries the Road FAISS Index to retrieve
road segments not included in its path.

To avoid overfitting on nearest negatives, we apply MOCHI-style mixing:

emix = 𝛼 ⋅ e–n + (1 – 𝛼) ⋅ e+p , 𝛼 ∼ U(0.5, 1.0) (14)
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Then the loss over each objective becomes

Ladaptive
CL = – log exp(sim(zi, z+i )/𝜏)

exp(sim(zi, z+i )/𝜏) +∑n∈Ni
exp(sim(zi, e–n,mix)/𝜏)

(15)

Final objective function. The full training objective combines all the components:

Ltotal = 𝜆1LMTM + 𝜆2LTT + 𝜆3LRR + 𝜆4LTR (16)

Experiments
Dataset
The data sets used in this study are provided by the GAIA project in collaboration with Didi
and consist of two months of data on car rides from the cities of Xi’an and Chengdu, China.
A summary of these datasets can be found in Table 2. Each dataset includes GPS records for
individual trips. Road network data for both cities was gathered from OpenStreetMap, and
a map-matching algorithm was employed to align the GPS coordinates to specific road seg-
ments. Through this process, trajectories were converted into sequences of road segments.
To ensure quality, we filtered out trajectories that included fewer than three road segments
or had a duration shorter than one minute. We truncated or padded the trajectories to fixed
lengths to ensure uniform input size for model training. Additionally, spatial grids were con-
structed by aggregating geo-referenced road coordinates into fixed-size tensors, which serve
as input to the CNN-based spatial feature extractor in our model.

Evaluation metrics
The evaluation metrics used in all our experiments are summarized as follows:

Micro-F1 (Mi-F1) and Macro-F1 (Ma-F1). Micro-F1 (Mi-F1) and Macro-F1 (Ma-F1)
are widely used metrics in classification tasks. Macro-F1 calculates the F1 score for each class
individually and then averages these scores, giving equal weight to each class. On the other
hand, Micro-F1 takes into account the collective contributions of all classes to compute an
overall average F1 score.

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE) are metrics commonly used for
evaluating regression models. They are calculated as follows:

MAE = ∑ |yi – ̂yi|
n

(17)

RMSE =
√

∑(yi – ̂yi)2
n

(18)

Table 2. Summary of datasets.
Metric Xian Chengdu
No. of Road Segments 6,161 6,632
No. of Edges 15,779 17,038
Avg. Trajectory Length (m) 5,880 5,732
Avg. Road Segments per Trip 31.11 30.87

https://doi.org/10.1371/journal.pone.0331473.t002
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where yi represents the true value, ̂yi represents the predicted value for the ith sample, and n is
the total number of samples.

Mean Rank (MR) and Hit Ratio@K (HR@K). Mean Rank (MR) and Hit Ratio@K
(HR@K) are widely used metrics for evaluating ranking and recommendation systems. MR
calculates the average of all individual ranks and can range from 1 to infinity. HR@K mea-
sures the proportion of correct answers that appear within the top K entries of the ranking
list, with values ranging from 0 to 1. In this experiment, K is set to 10.

Downstream tasks and benchmarks
We conduct four downstream traffic tasks, with two road segment-based tasks and the other
two being trajectory-based tasks. We compare our method to several state-of-the-art road and
trajectory representation learning methods, as well as graph representation learning meth-
ods. Methods designed solely for specific tasks are excluded from the comparison, as we aim
to learn robust representations for various tasks. Task-specific methods often include tailored
representations and components, resulting in an inconsistent and unfair comparison.

Road segment-based tasks. To assess the representation of road networks, we focus on
two main tasks: (1) road label classification and (2) traffic speed prediction.

Road label classification: This task is analogous to node classification in graphs. Road-
type labels, such as motorways and living streets, are collected from OpenStreetMap. The five
most common label types are selected as prediction targets. A classifier composed of a fully
connected layer followed by a softmax layer is applied to the road segment representations.
The performance is evaluated using Micro-F1 (Mi-F1) and Macro-F1 (Ma-F1) scores.

Traffic speed prediction: This is a regression task where the objective is to predict the
average speed on each road segment, calculated from trajectory data. A linear regression
model is trained using the road representations, and the evaluation is conducted using Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE).

Benchmarks for trajectory representation. We compare our approach to the following
road and graph representation methods: Node2vec [6], RFN [? ], HRNR [17], JCLRNT [2]
and TCRTRL [9].

Trajectory-based tasks. To evaluate trajectory representations, we focus on two main
tasks: (1) trajectory similarity search and (2) travel time prediction.

Trajectory similarity search: The objective is to identify the most similar trajectory to
a given query trajectory from a database. Trajectory representations are used to calculate
similarity scores and rank the results in descending order. Performance metrics include Hit
Ratio@10 (HR@10) and Mean Rank (MR).

Travel time prediction: This task involves predicting the travel time for a given trajectory.
The performance is evaluated using Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE).

Benchmarks for trajectory representation. The following methods are used as bench-
marks for trajectory representation: Para2vec [27], T2Vec [7], JCLRNT [2] and TCRTRL
[9].

Experimental settings
The training dataset comprises 500,000 trajectories, and we train the model with a batch size
of 64 over 20 epochs with a learning rate of 0.001. The model’s architecture is configured
with a unified embedding dimension of 128, a GAT hidden dimension of 64 with 4 atten-
tion heads, and 2 layers each for the spatial and trajectory transformer encoders. The loss
function is weighted with 𝜆1 = 0.3, 𝜆2 = 0.1, 𝜆3 = 0.1, and 𝜆4 = 0.5. Additionally, the ANN
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index is updated every 3 epochs. Representation vectors for road segments and trajectories
are extracted, all standardized to a dimension of 128, and used in various downstream tasks.
The trajectory data set is split into training and evaluation sets based on the date, ensuring
that there is no overlap. Training was performed on a machine with a single NVIDIA A4000
GPU (16 GB) and 128 GB RAM. Training took approximately 12 hours per model variant.

Results and analysis
The simulation results for the four tasks are presented in Tables 3 and 4, with the best results
highlighted in bold. Higher values of Mi-F1, Ma-F1, and HR@10 indicate better performance
(↑), while lower values of MAE, RMSE, and MR indicate better performance (↓). Our model
outperforms other baselines in all tasks and metrics. It effectively captures both the structural
topology of road networks through incorporating graph and grid representations, which most
other models misses. Masked trajectory modeling helps inject the dynamic movement seman-
tics of trajectories into representations, whereas contrastive learning complements it by learn-
ing a more discriminative embedding space. The adaptive negative sampling module further
helps to enhance the quality of representations.

In comparison to baseline models, we also evaluated the computational costs of MRRT rel-
ative to node2vec and JCLRNT on an NVIDIA A4000 GPU. Node2vec, as a lightweight base-
line, has a small model size of approximately 780,800 parameters and achieves inference times
under 1 ms for a single trajectory, but it lacks the expressiveness needed for complex spatio-
temporal trajectory modeling. JCLRNT serves as a stronger baseline with its hybrid GAT and
Transformer architecture, containing about 1.08 million parameters and enabling efficient
inference within 2–5 ms. Our proposed MRRT framework employs a larger model (around
1.45 million parameters), integrating CNN-based spatial fusion and cross-attention mecha-
nisms to learn richer node representations from raw features. This results in improved accu-
racy on challenging tasks at a moderate increase in inference time of 5–10 ms. Importantly,
MRRT scales effectively with larger networks and longer trajectories by leveraging batched

Table 3. Performance comparison for road label classification and traffic speed inference.
Task Road Label Classification Traffic Speed Inference

Chengdu Xian Chengdu Xian
Mi-F1 ↑ Ma-F1 ↑ Mi-F1 ↑ Ma-F1 ↑ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

Node2Vec 0.527 0.498 0.583 0.557 7.123 8.998 6.407 8.219
RFN 0.514 0.486 0.574 0.566 6.888 8.772 6.568 8.428
HRNR 0.539 0.526 0.629 0.612 7.031 8.816 6.522 8.447
JCLRNT 0.635 0.628 0.727 0.702 4.687 6.848 5.021 7.083
TCRTRL 0.648 0.637 0.740 0.710 4.575 6.777 4.958 7.007
Proposed MRRT 0.752 0.737 0.783 0.769 2.304 3.183 2.412 3.284

https://doi.org/10.1371/journal.pone.0331473.t003

Table 4. Performance comparison for similar trajectory search and travel time estimation.
Task Similar Trajectory Search Travel Time Estimation

Chengdu Xian Chengdu Xian
MR ↓ HR@10 ↑ MR ↓ HR@10 ↑ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

Para2vec 218 0.257 280 0.209 222.7 307.4 247.3 351.8
T2Vec 46.5 0.789 38.3 0.809 167.5 245.5 208.2 314.7
JCLRNT 8.90 0.922 9.59 0.909 124.1 184.8 166.3 244.7
TCRTRL 8.67 0.926 9.18 0.911 122.2 180.5 164.2 243.8
Proposed MRRT 7.70 0.935 8.64 0.918 120.2 178.5 162.2 241.8

https://doi.org/10.1371/journal.pone.0331473.t004
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inference and ANN-based adaptive negative sampling, providing a practical balance between
computational cost and model performance.

Ablation study
To evaluate the contribution of each proposed component to our architecture, we conducted
an ablation study (shown in Fig 3) on four downstream tasks: road classification, traffic speed
inference, travel time estimation, and search for trajectory similarity. We consider four vari-
ants of the model in increasing order of complexity.

• Base (MTM): The core sequence modeling architecture trained with the masked trajectory
modeling (MTM) objective only.

• + Spatial Fusion: Introduces trajectory-aware spatial encoding to capture local and global
road structure.

• + Contrastive Learning: Adds a contrastive objective to learn more discriminative repre-
sentations by enforcing consistency between similar trajectories.

• + Adaptive Negative Sampling: Enhances contrastive loss by dynamically selecting harder
negative examples during training.

Fig 2 presents ablation results in both the Chengdu and Xian datasets for each task. In gen-
eral, we observe that all components provide consistent improvements in all evaluation met-
rics. Spatial fusion helps to achieve early gains by integrating the topological context. Con-
trastive learning significantly enhances representational quality, and adaptive sampling fur-
ther sharpens decision boundaries. The whole model achieves the best performance across all
tasks and metrics, demonstrating the complementary nature of each component.

Parameter sensitivity analysis
We fixed 𝜆2 and 𝜆3 to 0.1 based on their relatively smaller but consistent contribution to
performance. This leaves 𝜆1 +𝜆4 = 0.8, which we varied to assess the trade-off between the
masked trajectory modeling (MTM) and road-trajectory contrastive learning. We found that
allocating a larger portion (𝜆4 = 0.5) to the road-trajectory contrastive loss leads to stronger
alignment between trajectory and road embeddings, which benefits both similarity search
and road classification tasks. In contrast, setting 𝜆1 too high (e.g., 𝜆1 = 0.5, 𝜆4 = 0.3) resulted
in degraded performance, suggesting that excessive emphasis on MTM encourages overfit-
ting to trajectory continuity while under-utilizing structural alignment. The chosen setting
(𝜆1 = 0.3, 𝜆4 = 0.5) offered the best trade-off across all tasks by preserving trajectory seman-
tics while maximizing cross-view consistency. About mask ratio, higher masking increases the
challenge and may encourage the model to learn more robust representations, but too high a
ratio can obscure essential context, degrading performance. In our experiments, a moderate
ratio (around 30–40%) yielded the best results. Regarding index update frequency for FAISS-
based adaptive sampling, frequent updates improve negative sampling quality but add over-
head. Empirically, updating every few epochs (e.g., 3-5) provides a good trade-off between
computational cost and retrieval accuracy.

Visualization
To visually assess the quality and separability of the learned embeddings, we project the road
segment representations from Node2Vec, JCLRNT, and our proposed MRRT model using
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Fig 2. Ablation study results across the downstream tasks.

https://doi.org/10.1371/journal.pone.0331473.g002
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t-SNE [28]. As shown in Fig 3, the visualization reveals significant differences in the learned
representations. The embeddings from the traditional Node2Vec approach appear heavily
clustered with poor separation between different road types, suggesting a less discrimina-
tive representation. In contrast, both JCLRNT and our MRRT model produce embeddings
with clearer, more distinct cluster boundaries, indicating that these joint learning frameworks
are more effective at capturing the semantic differences between road segments. Notably, the
embeddings from our MRRT model are more uniformly distributed and exhibit slightly more
compact and better-separated clusters compared to JCLRNT. This improved feature separa-
tion demonstrates that our multi-objective, self-supervised framework learns more robust and
discriminative representations, which contributes to its superior performance on a variety of
downstream tasks.

Applications of MRRT
MRRT produces unified embeddings for road segments and trajectories that capture struc-
tural, spatial, and temporal semantics, and we have already validated their utility in four
diverse downstream tasks: road classification, traffic speed inference, travel time estimation,
and trajectory similarity search. These tasks reflect real-world needs: for example, trajectory
similarity can power abnormal driving detection or route recommendation; travel-time esti-
mation is crucial for logistics and trip planning; and road classification aids in infrastructure
monitoring. Technically, the learned embeddings can be directly fed into lightweight task-
specific layers, such as a regression head for speed prediction or a contrastive similarity mod-
ule for retrieval, demonstrating plug-and-play flexibility. In practice, routing algorithms can
embed the MRRT road features in learned cost functions, allowing a shallow neural layer to
estimate edge weights that represent travel efficiency or congestion likelihood. Clustering the
embeddings can highlight traffic hotspots or high-incident zones, which supports adaptive
signal control and congestion mitigation. MRRT’s trajectory embeddings can also feed into
reinforcement learning agents (e.g., for eco-routing or signal scheduling), replacing hand-
crafted state features with compact, generalizable representations. Furthermore, embeddings
can be plugged into simulation environments like SUMO or MATSim to enhance behavioral
modeling. These examples illustrate how MRRT’s architecture is not only effective for bench-
mark tasks but also readily transferable to operational decision-making in transportation

Fig 3. Embeddings of the road segment representations learned by (a) Node2Vec, (b) JCLRNT and (c) the proposed MRRT method.

https://doi.org/10.1371/journal.pone.0331473.g003
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systems. In addition to these, MRRT can serve as a plug-and-play representation layer for a
wide range of domain-specific engineering objectives. Since MRRT learns semantically rich
embeddings of road segments and trajectories, these can be easily integrated into specialized
downstream models by attaching lightweight task-specific heads. For instance, in traffic pre-
diction, road-level embeddings fromMRRT can be combined with historical incident labels
and fed into a classification layer for supervised training. This could help reduce time in traf-
fic prediction. Similarly, in maintenance prioritization, the embeddings of the trajectories
could be clustered to identify the underused or overburdened segments, guiding the targeted
maintenance strategies.

Discussion
On cross-city generalization
Our current evaluation focused on assessing the model’s generalization across diverse tasks
within the same city, which was the primary goal of this study. We believe that our model,
as a pre-training framework, is theoretically well-suited to provide a general representation
for road networks and trajectories, which contributes to its strong performance across vari-
ous downstream tasks. While we acknowledge that applying the model to a new city requires
updating the road and trajectory graphs and potentially fine-tuning some higher-level lay-
ers, this is a standard challenge in transfer learning. We believe the cost of this adaptation
would be relatively low, and we consider cross-city transfer to be a promising and important
future direction for validating our model’s universal structural modeling and generalization
ability.

Robustness to data imperfections and imbalance
In real-world deployment, GPS trajectories often suffer from low sampling rates, signal drift,
or positioning errors, leading to imperfections in map-matched sequences. Furthermore,
datasets can be highly imbalanced, with some movement patterns occurring far more fre-
quently than others. MRRT addresses these challenges through several design properties.
First, a transformer-based sequence model with learnable temporal embeddings enables the
model to infer contextual signals even when segments are noisy or incomplete. This is rein-
forced during training through augmentations such as segment masking, truncation, and
shifting, which simulate common real-world distortions and implicitly regularize the model
to tolerate partial and imprecise inputs. Second, our contrastive learning losses and hard neg-
ative sampling strategies encourage the model to learn invariant features that capture underly-
ing movement behavior and road semantics, rather than overfitting to exact, potentially noisy
sequences. This approach is particularly effective for handling data imbalance by dynamically
selecting diverse training pairs. Although we did not perform a dedicated sensitivity anal-
ysis to extreme noise or imbalance, we acknowledge that these are critical considerations.
Future work could explore more advanced noise-aware training strategies, integrate confi-
dence scores from the map-matching stage, or adopt curriculum learning to handle such cases
more effectively.

Impact of training data size
Our experiments demonstrate that training MRRT with more trajectories consistently
improves performance, especially in the early stages. The model initially benefits significantly
from increasing data, indicating that it effectively learns from diverse patterns and reduces
bias. However, the performance gain gradually degrades beyond a certain point, reflecting a
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saturation in representational improvement. In our setting, approximately 500,000 trajectories
provided an optimal trade-off between accuracy and training cost. This suggests that MRRT
can still be trained effectively in mid-sized or data-scarce cities, though some performance
degradation may occur with fewer trajectories.

Conclusion
This paper proposes a unified framework for jointly learning representations of road net-
works and trajectories through self-supervised multi-objective learning. By integrating graph-
based and grid-based representations for road network representations along with employ-
ing temporal encodings in sequential trajectory representations, our MRRT model effectively
captures both the structural topology of road networks and the dynamic movement seman-
tics of trajectories. A key contribution of our method lies in the use of contrastive learning
objectives across multiple views: trajectory-trajectory, road-road, and trajectory-road rela-
tions, supported by a novel adaptive negative sampling strategy. This design ensures that the
model is progressively challenged with semantically hard negatives throughout training, sig-
nificantly improving the quality of the learned representations. Future directions include
incorporating more modalities of data (images and textual descriptions), modeling cross-city
transferability, etc., and testing the performance of MRRT on highly imbalanced or heavily
corrupted data. Although we rely on reasonably accurate map-matched data, we acknowl-
edge that extreme noise or imbalance could impact performance. In such cases, strategies like
gradually training on cleaner to noisier data (curriculum learning) can be explored in future
work.
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