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Abstract
Time-series momentum (TSMOM) trading strategies manage positions based on the per-
sistence of return trends. Although long short-term memory (LSTM) deep neural archi-
tectures can enhance TSMOM, their performance often deteriorates during abrupt mar-
ket trend changes. This study aims to improve TSMOM performance, particularly at criti-
cal moments marked by significant shifts in long- and short-term trends. To achieve this,
we combine short- and long-term signals into a comprehensive market-state represen-
tation, employing supervised learning to incorporate these market dynamics into the
proposed model. In our experiments, we generate market-state features, referred to as
MTDP scores, by numerically capturing changes in market trends via an extreme gradi-
ent boosting (XGBoost) process. These MTDP scores are then applied within an LSTM-
based trading strategy. A backtest on 99 continuous futures (1995–2021) demonstrates
that incorporating MTDP scores enhances the Sharpe ratio, indicating the effectiveness
of embedding market-state information in TSMOM. Notably, an 8-week fast momentum
look-back window performed best over stable periods (1995–2019). However, during
extreme market downturns, such as the COVID-19 crisis, a 20-week fast momentum win-
dow not only outperformed shorter windows (4- and 8-week signals) but also recovered
more rapidly. These findings suggest that TSMOM strategies can benefit from dynami-
cally adjusting fast momentum windows, consistently generating profitable opportunities
even amid turbulent conditions.

1 Introduction
Momentum strategies are a critical approach to asset management and investment strategy
in financial markets, based on the premise that recent trends in the performance of finan-
cial assets often persist. This view contrasts with the traditional efficient market hypothesis
[1], which posits that asset prices quickly reflect all available information. Challenging this
hypothesis, the study in [2] demonstrated that strategies exploiting past winners (assets with
historically high returns) and avoiding past losers (assets with historically low returns) can
generate abnormal profits, thereby questioning the efficient market hypothesis and laying the
foundation for further momentum-based strategies in the financial sector.

Momentum strategies are typically categorized by how asset portfolios are selected and
constructed. One approach, known as cross-sectional momentum, ranks assets by their recent
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(TSMOM) bases investment decisions on each asset’s own historical performance, a method
studied in [5–10].

In [5], extensive backtesting over a 25-year span across equities, currencies, commodities,
and bonds revealed strong TSMOM effects, especially concerning persistent return directions
and mean reversion over periods exceeding one year. Further, [11] confirmed the persistence
of the TSMOM factor and highlighted its cross-market applicability. Meanwhile, [12] under-
scored the value of volatility scaling for TSMOM strategies, showing outperformance rela-
tive to standard buy-and-hold approaches. However, they cautioned that TSMOM in futures
markets could suffer when asset-class correlations rise, as evident from a performance dip
between 2009 and 2013 following the global financial crisis. These studies demonstrate the
potential of TSMOM strategies and the need for continued research and refinement.

In trading, [13] employed a hybrid CNN-LSTMmodel to predict turning points (TPs)
in stock prices, relabeling actions (e.g., buy, sell, hold) via TPs and ordinary points (OPs—
moments without a significant trend change), offering a fine-grained approach to market
trend analysis. Similarly, in TSMOM contexts, momentum TPs or changepoints have been
integrated to enhance strategy design. Building on the deep momentum network (DMN) in
[7], the work of [14] incorporated Gaussian process-based changepoints as input features,
addressing performance degradation during market shocks and achieving improved Sharpe
ratios.

Other studies have linked momentum signals to the detection of market cycles. For
instance, [10] developed a dynamic TSMOM strategy that categorizes the market into four
phases (bull, correction, bear, rebound) according to the agreement or disagreement between
slow (12 months) and fast (one month) momentum signals. By adapting strategy rules to
these market cycles, [10] reported Sharpe ratio gains. The study also found that following
monthly trends could underperform in correction and rebound phases, aligning with [12]’s
observation of post-2008 TSMOM underperformance. Moreover, [10] indicated that periods
when slow and fast signals diverge yield predictive insights into future returns, adding a new
perspective on TPs.

This paper aims to further improve TSMOM performance by incorporating momentum
TPs into a deep neural network framework. Through this integration, the model jointly learns
trend estimation and position sizing, generating asset-specific signals for optimal Sharpe
ratios. As a benchmark, we adopt the LSTM-based DMN [7], which showed strong results
among previously proposed deep neural architectures. Our approach injects predictive return
information to extend the existing DMN, enabling trading signals that more closely align
with changing market trends. We introduce the concept of momentum TPs similar to [14],
applying them as numerical input features that reflect market state transitions.

The principal contributions of this study are as follows. First, building on the TPs
described in [10]—focusing on correction and rebound phases—we extend them to eight
distinct market trend dynamic points, enhancing the precision of transition detection. This
approach offers more granular frequency control of TPs, which in [10] comprised about 35%
of the total signals. Second, we refine the numerical representation of these market trend
dynamics in DMNs, using an XGBoost-based probability feature engineering pipeline instead
of solely relying on simple statistical methods. Third, we compare multiple models using dif-
ferent fast momentum look-back windows. By running five sets of experiments and averaging
outcomes, we assess how market trend dynamics affect strategy performance across various
market conditions. Furthermore, results from the COVID-19 period are juxtaposed with typ-
ical market contexts to highlight the importance of adapting fast momentum signals to match
current environments.
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This paper is organized as follows. Sect 2 reviews the benchmark model [7] and momen-
tum TPs. Sect 3 details the proposed model and methodology, while Sect 4 describes the
experimental setup, including the dataset, baseline comparisons, and backtesting process.
Sect 5 presents and critically discusses the full suite of empirical results including backtest
performance, ablation studies, and interpretability analyses. Sect 6 distills the main insights
and outlines directions for future research.

2 Background
2.1 Time-series momentum strategies
The basic TSMOM strategy, as presented by [5], calculates the realized return rTSMOM

t,t+1 from
time t to t + 1 as follows:

rTSMOM
t,t+1 = 1

Nt

Nt

∑
i=1

X(i)t
𝜎tgt
𝜎(i)t

r(i)t,t+1, (1)

where

X(i)t = sign(r
(i)
t–252,t) and 𝜎tgt = 40%.

In Eq (1), Nt represents the number of assets in the portfolio at time t, X(i)t indicates the posi-
tion size of the trading signal for each asset i, r(i)t,t+1 denotes the return of asset i from time t to
t+ 1, 𝜎tgt is the annualized target volatility, and 𝜎(i)t is the ex-ante annualized volatility estima-
tor for asset i, calculated using a 60-day exponentially weighted moving standard deviation.

The TSMOM strategy tracks market trends using historical returns. Under this scheme,
if the asset’s past 12-month return is positive, the strategy goes long; otherwise, it goes short,
and each position is volatility-scaled. Although [5] used 40% as the annual target volatility, we
set 𝜎tgt to 15% in this study to align with [7].

2.2 Time-series momentum strategies with transaction costs
The TSMOM strategy requires periodic portfolio rebalancing to adjust trading signals based
on asset volatility or price trend reversals. Although the strategy in Sect 2.1 does not con-
sider transaction costs, these costs must be considered in real-world scenarios, especially in
futures-based strategies, where rollover costs can be significant.

Frequent transactions, a characteristic of algorithmic trading strategies, can adversely
affect performance due to their associated costs. Therefore, following the approach by [15], we
define the daily turnover O(i)t of the trading signal X(i)t as follows:

O(i)t = 𝜎tgt
RRRRRRRRRRR

X(i)t
𝜎(i)t

–
X(i)t–1
𝜎(i)t–1

RRRRRRRRRRR
. (2)

This turnover is proportional to the daily difference in X(i)t /𝜎(i)t . The cost-adjusted return
formula proposed by [7] is applied to assess the influence of transaction costs on performance:

̃rTSMOM
t,t+1 =

𝜎tgt
Nt

Nt

∑
i=1

⎛
⎝
X(i)t
𝜎(i)t

r(i)t,t+1 – C
RRRRRRRRRRR

X(i)t
𝜎(i)t

–
X(i)t–1
𝜎(i)t–1

RRRRRRRRRRR

⎞
⎠
, (3)

where C denotes the transaction cost. Sect 5 explores how different cost levels affect strategy
performance during backtesting.

PLOS One https://doi.org/10.1371/journal.pone.0331391 September 2, 2025 3/ 21

https://doi.org/10.1371/journal.pone.0331391


ID: pone.0331391 — 2025/8/29 — page 4 — #4

PLOS One Deep momentum networks with market trend dynamics

2.3 Momentum turning point
In [10], momentum TPs for TSMOM signals were defined using slow (12-month average
returns) and fast (monthly returns) components. Building on prior work that highlights the
importance of short-horizon signals at weekly and monthly frequencies [8,16], we adopt a
weekly cadence for the fast signal to better capture granular market movements. Concretely,
we pair a 52-week slow momentum signal with five fast momentum signals—2, 4, 8, 16, and
20 weeks. These intervals follow an approximately exponential spacing to span a range of trad-
ing speeds while keeping the specification parsimonious. This fast–slow signal decomposition
is consistent with prior work [16], which documents the relevance of weekly TPs in commod-
ity futures captured by short-horizon momentum signals. Throughout our experiments, we
set the risk-free rate to zero for practical convenience, thereby simplifying the computation of
excess returns.

Weekly momentum signals are expressed as follows:

SLOW(i)w =
1

k(i)SLOW

w–k(i)SLOW
∑

w′=w–1

r(i)w′ , (4)

FAST(i)w =
1

k(i)FAST

w–k(i)FAST
∑

w′=w–1

r(i)w′ , (5)

where k(i)SLOW = 52 and k(i)FAST = 2, 4, 8, 16, 20 are the respective look-back windows for
the slow and fast signals, respectively, and r(i)w denotes the weekly excess returns of
asset i.

As noted in [8,10,16], TPs arise when the slow and fast signals diverge, revealing poten-
tial shifts in market trends. This divergence may mark a transition from a downtrend to an
uptrend, or vice versa. Over-reliance on slower signals risks missing early trend reversals
while depending solely on fast signals might interpret short-lived fluctuations as genuine
trend changes. Hence, accurately identifying these momentum TPs is crucial for timely and
effective trading decisions.

2.4 Market state
Following [10], we define four daily market states (bull, bear, correction, rebound) based on
the sign of weekly slow/fast signals in Eqs (4) and (5). Specifically, the daily market state S(i)t
at time t is determined as follows:

S(i)t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bull if SLOW(i)w ≥ 0 and FAST(i)w ≥ 0,
Bear if SLOW(i)w < 0 and FAST(i)w < 0,
Correction if SLOW(i)w ≥ 0 and FAST(i)w < 0,
Rebound if SLOW(i)w < 0 and FAST(i)w ≥ 0.

(6)

Recalling Eqs (4)–(6), the slow and fast signals are computed over different look-back
windows, (k(i)SLOW) and (k

(i)
FAST), respectively. A bull state arises when both signals are

positive, while a bear state arises when both are negative. Correction and rebound states
occur when the slow and fast signals are misaligned, indicating potential TPs in the market
trend.

PLOS One https://doi.org/10.1371/journal.pone.0331391 September 2, 2025 4/ 21

https://doi.org/10.1371/journal.pone.0331391


ID: pone.0331391 — 2025/8/29 — page 5 — #5

PLOS One Deep momentum networks with market trend dynamics

3 Method
3.1 Market trend dynamics
Effectively capturing changes in market states and integrating them into the trading strat-
egy is crucial for improving the performance of the TSMOM strategy. As discussed in Sect 2,
TSMOM heavily depends on the momentum TPs and market states. Therefore, we con-
structed five models with varying fast momentum signals (2, 4, 8, 16, and 20 weeks) and a
52-week slow momentum signal. By varying the fast signal’s look-back window, each model
captures distinct durations of bull, bear, correction, and rebound phases. Through these sce-
narios, we aim to pinpoint critical trend shifts and feed this information into our neural net-
work.

To illustrate how fast signal length impacts state identification, we examine the Henry Hub
natural gas (NG) futures on the Chicago Mercantile Exchange during the COVID-19 pan-
demic (2020-01-02 to 2020-12-31). NG is a highly liquid commodity with significant trad-
ing volumes and greater volatility than many other asset classes (e.g., equities, bonds). As
shown in Fig 1, shorter fast signals (e.g., 2 weeks) closely track short-term swings, capturing
the March downturn, the April rally, and subsequent uptrend fluctuations. By contrast, a 20-
week fast signal aligns more with longer-term trends and is less sensitive to short-lived price
movements.

Although shorter look-back windows may appear suitable for high-frequency environ-
ments, they do not necessarily guarantee superior performance. We discuss the performance
trade-offs of different fast signals in Sect 5.

To further refine our analysis, we introduce the concept of market trend dynamic points
(MTDPs), which mark pivotal changes in the market states. Fig 2 shows a scatterplot of
the 52-week average return (SLOWw) against the 2-week average return (FASTw). Each
axis divides the data into four quadrants (bull, rebound, bear, and correction), and red
“x” markers highlight abrupt shifts near or across these quadrant boundaries. Although
MTDPs often cluster near the axes, they can also appear farther out in cases of sudden price
shocks.

For brevity, we do not display all comparative charts for the 4-, 8-, 16-, and 20-week cases.
Instead, Table 1 summarizes the count of MTDPs and OPs under each configuration. As the
fast signal’s look-back window increases, fewer MTDPs are identified, mainly because a longer
fast window tends to converge with the slow signal. Hence, the choice of fast signal length
significantly influences the resolution of detected trend changes.

3.2 Feature engineering for MTDP scores
In this subsection, we describe how to encode MTDPs as numeric features for the neural
network. We first divide market trends into eight distinct transition categories and one OP
category for stable conditions. Table 2 provides the details: for instance, “BuToRe” indicates
a transition from bull to rebound, while “BeToCo” indicates a shift from bear to correction.
We exclude direct transitions (e.g., bull-to-bear) because they involve simultaneous changes
in both slow and fast momentum signals and are rarely observed.

Next, we use XGBoost [17], a high-performing machine learning technique for multiclass
classification, to predict the probability of each MTDP class. In other words, XGBoost outputs
a 9-dimensional probability vector, one for each category (OP to ReToBu). We refer to this
probability vector as the “MTDP score.” These scores then serve as input features to the neural
network model.
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Fig 1. Market states of Henry Hub natural gas futures during the COVID-19 pandemic. All panels use a common
slow look-back window of kSLOW = 52 weeks; the fast window kFAST varies across panels: 2 weeks (upper), 8 weeks
(middle), and 20 weeks (lower). Yellow, purple, green, and blue denote bull, rebound, bear, and correction markets.

https://doi.org/10.1371/journal.pone.0331391.g001

The dataset for each asset is split into training (90%), validation (5%), and test (5%) sets.
We perform a grid search over key hyperparameters (max depth, gamma, subsample) to min-
imize the log-loss on the validation set. Early stopping is not used. Furthermore, no random
seed was manually fixed, as performance variation across different seeds was negligible. The
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Fig 2. Scatterplot of the 52-week average return (SLOWw) and 2-week average return (FASTw) for NG during
COVID-19. Four quadrants represent bull (Q1), rebound (Q2), bear (Q3), and correction (Q4) states. The “x”
markers (MTDPs) indicate significant trend shifts.

https://doi.org/10.1371/journal.pone.0331391.g002

Table 1. Count of market trend dynamic points (MTDPs) and ordinary points (OPs) for each model of the natu-
ral gas futures during the COVID-19 period. Each row reports the number of MTDPs and OPs obtained under
the indicated fast–slow momentum look-back windows.
Look-back window Event counts
Fast Slow MTDPs OPs
2 weeks 52 weeks 29 224
4 weeks 52 weeks 23 230
8 weeks 52 weeks 19 234
16 weeks 52 weeks 11 242
20 weeks 52 weeks 9 244

https://doi.org/10.1371/journal.pone.0331391.t001

Table 2. Classification of Market Trend Dynamic Points (MTDPs). Each label represents a specific regime
transition and is used to classify MTDPs.
Abbreviation Market Regime Transition
OP Ordinary point (non-transition)
BuToRe Bull→ Rebound
ReToBe Rebound→ Bear
BeToCo Bear→ Correction
CoToBu Correction→ Bull
BuToCo Bull→ Correction
CoToBe Correction→ Bear
BeToRe Bear→ Rebound
ReToBu Rebound→ Bull

https://doi.org/10.1371/journal.pone.0331391.t002
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hyperparameter search space is summarized in Table 3, with asset-wise optimal values listed
in S1 Table.

Once training is complete, the XGBoost classifier produces nine probabilities for each data
point, indicating how likely it is to belong to each MTDP class. Fig 3 illustrates the entire fea-
ture engineering workflow, from labeling the MTDPs to generating the probability-based
input features for the neural network.

3.3 Deep momentum networks
According to the method proposed by [7], we replace the baseline TSMOM signal X(i)t in
Eq (1) with a direct output from a DMN.This approach integrates position sizing and trend
estimation into a single framework. Specifically, we define:

rTSMOM
t,t+1 = 1

Nt

Nt

∑
i=1

X(i)t
𝜎tgt
𝜎(i)t

r(i)t,t+1, (7)

Table 3. Extreme Gradient Boosting (XGBoost) hyper-parameter specification. Predefined settings were fixed,
while the remaining three parameters were tuned via grid search on the training set.
Category Parameter Value/Range
Predefined Settings Booster type gbtree

Objective softprob

Estimators 200
Classes 9
Learning rate 0.02

Search Range Max depth {3, 6, 9}
Gamma {0.5, 1.0, 1.5}
Subsample {0.6, 0.8, 1.0}

https://doi.org/10.1371/journal.pone.0331391.t003

Fig 3. Overview of the feature engineering process using XGBoost.The numbers in parentheses next to each feature
category denote the count of components or variations used.

https://doi.org/10.1371/journal.pone.0331391.g003

PLOS One https://doi.org/10.1371/journal.pone.0331391 September 2, 2025 8/ 21

https://doi.org/10.1371/journal.pone.0331391.t003
https://doi.org/10.1371/journal.pone.0331391.g003
https://doi.org/10.1371/journal.pone.0331391


ID: pone.0331391 — 2025/8/29 — page 9 — #9

PLOS One Deep momentum networks with market trend dynamics

X(i)t = f(u
(i)
t ;ϴ) and 𝜎tgt = 15%. (8)

Here, X(i)t is the trading signal at time t generated by the DMN f, u(i)t denotes the input
feature vector, ϴ represents network parameters, and 𝜎tgt annualized target volatility.

In line with [7], we employ a long short-term memory (LSTM) network [18] for its abil-
ity to handle long-range dependencies. As depicted in Fig 4, the model processes 63 sequen-
tial input features (Input Featuret–62 to Input Featuret) using a single-layer LSTM.The LSTM
outputs then pass through a time-distributed dense layer with a tanh(⋅) activation, yielding
final signals X(i)t in (–1,1). Each time step’s output corresponds to a specific trading position
(Positiont–61,… , Positiont+1), thus unifying position sizing with trend learning.

4 Experiment
The LSTM architecture includes input, forget, and output gates, along with a cell state,
enabling the network to selectively retain or discard information. LetW and V be weight
matrices, b be biases, and 𝜎(⋅) and tanh(⋅) the sigmoid and hyperbolic tangent activations,
respectively. Then:

G(i)input(t) = 𝜎(Wiu
(i)
t +Vih

(i)
t–1 + bi), (9)

G(i)forget(t) = 𝜎(Wfu
(i)
t +Vfh

(i)
t–1 + bf), (10)

G(i)output(t) = 𝜎(Wou
(i)
t +Voh

(i)
t–1 + bo), (11)

Fig 4. Flow of deep momentum networks. Each time step in the LSTM produces a position output (X(i)t ), integrating
position sizing with trend estimation.

https://doi.org/10.1371/journal.pone.0331391.g004
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̃ct(i) = tanh(Wcu
(i)
t +Vch

(i)
t–1 + bc), (12)

c(i)t =G
(i)
forget(t)⊙ c(i)t–1 +G

(i)
input(t)⊙ ̃ct(i), (13)

h(i)t =G
(i)
output(t)⊙ tanh(c(i)t ), (14)

X(i)t = tanh(Wxh
(i)
t + bx). (15)

Here, c(i)t is the cell state, h(i)t is the hidden state, and⊙ denotes elementwise multiplica-
tion.

To optimize the DMN toward higher cumulative returns, we follow [7] and adopt the
Sharpe ratio as the loss function. The Sharpe ratio measures the excess return per unit of
volatility, thus balancing expected returns against risk (volatility). However, for simplicity, we
set the risk-free rate to zero in this study. Formally, the loss function with zero risk-free rate is
defined as:

LSharpe(Ω;ϴ) = –

√
252EΩ[X(i)t

𝜎tgt

𝜎(i)t
r(i)t,t+1]

√
VarΩ[X

(i)
t

𝜎tgt

𝜎(i)t
r(i)t,t+1]

, (16)

whereΩ represents the set of assets at time t. By maximizing this Sharpe ratio objective, the
DMN learns to generate trading signals that balance return and risk on an ongoing basis.

This section presents the data collection, preprocessing, feature configuration, and back-
testing procedures used to evaluate our TSMOM strategy. We first outline the sources of the
dataset and preprocessing methods, then describe the feature construction for the DMN.
Finally, we explain our structured backtesting scenarios and the hyperparameter tuning
approach.

4.1 Overview of the dataset
Our experiments use the CHRIS Wiki Continuous Futures dataset covering January 1989
to June 2021 (due to data availability constraints). Sourced from the Nasdaq Data Link, this
dataset provides 99 ratio-adjusted continuous futures contracts across four major asset classes
(commodities, equity indices, fixed income, and currencies) traded on major global exchanges
such as the Chicago Mercantile Exchange, the Intercontinental Exchange, the London Inter-
national Financial Futures and Options Exchange, and Eurex Exchange. A complete list of
these futures, along with their identifiers and brief descriptions, is provided in S2 Table.

Unlike standard short-duration futures, continuous futures overcome contract expiration
by rolling over positions, thus creating extended price histories suitable for long-term trend
analysis. This characteristic is critical to our study, as it ensures a consistent price series on
which to evaluate momentum strategies. We mitigate outliers in daily returns by capping any
value that exceeds five times the exponentially weighted moving standard deviation (with a
252-day half-life). After this preprocessing step, our final dataset spans January 1990 to June
2021, providing a comprehensive basis for backtesting the TSMOM strategy.

4.2 Feature construction for DMN inputs
We assemble features that combine traditional momentum indicators with the MTDP score,
enabling our network to learn the TSMOM strategy better. Building upon the benchmark
model of [7] and the methods described in Sect 3.2, we categorize the feature set into three
main components:
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Normalized returns: We compute returns over various periods (daily, monthly, quar-
terly, semiannual, annual) and normalize each by its corresponding volatility at scale s∈
{1, 20, 63, 126, 252}. This helps ensure a consistent trend representation across different time
horizons. Specifically,

r(i)t–s,t/(𝜎(i)s
√
s),

where r(i)t–s,t is the return from t–s to t, and 𝜎(i)s is the standard deviation of returns at scale s.
Moving Average Convergence/Divergence (MACD) Indicators: Following [19], we con-

struct MACD-based signalsM(i)t (Sk,Lk) using short time windows Sk ∈ {8, 16, 32} and long
time windows Lk ∈ {24, 48, 96}. Specifically, we configured MACD indicatorsM(i)t (8, 24),
M(i)t (16, 48), andM(i)t (32, 96). The MACD is defined by

M(i)t (Sk,Lk) =
q(i)t

std(q(i)t–252,t)
, (17)

q(i)t =
MACD(i, t, Sk,Lk)

std(p(i)t–63,t)
, (18)

MACD(i, t, Sk,Lk) =m(i)t (Sk) –m
(i)
t (Lk), (19)

wherem(i)t (S) denotes the exponentially weighted moving average (EWMA) of the asset’s
price at time t with a time scale S corresponding to a half-life of HL = log 0.5/log(1 – 1

S).
Moreover, std(p(i)t–63,t) represents the 63-day rolling standard deviation of the price, and q(i)t–252,t
is the 252-day rolling average of q(i)t . These MACD-based indicators capture medium-range
momentum behavior.

MTDP score: We define nine classes for market-state transitions and compute the prob-
ability of each class using XGBoost (see Sect 3.2). These probabilities form the MTDP score,
offering a dynamic view of short- and long-term momentum interplay. For each model vari-
ant, we set the fast look-back window to 2, 4, 8, 16, or 20 weeks, paired with a 52-week slow
look-back window. The resulting probability vectors serve as additional input features to the
deep learning model.

By integrating these normalized returns, MACD indicators, and MTDP scores, our feature
set captures both traditional momentum signals and the nuanced dynamics of market-state
transitions.

4.3 Backtesting setups
We evaluate our strategy against a conventional TSMOM baseline under three backtesting
setups (Setup 1–3), summarized below and visualized in Fig 5.

Setup 1: Long-horizon (1995–2019). The initial model is trained on 1990–1994, vali-
dated on the final 10% of that span, and tested on 1995–1999. The origin then rolls forward
by one year; the procedure repeats 20 times, following the guidelines of [20] for mitigating
over-fitting in financial backtests (see Fig 5, upper panel).

Setup 2: COVID-19 stress test (2020). To isolate the turbulent COVID-19 period, we
train/validate on 2015–2019 and evaluate exclusively on calendar year 2020 (Fig 5, middle
panel). This setup probes the strategy’s behavior amid the rapid regime shifts of the COVID-
19 period, which was characterized by frequent market reversals due to misaligned fast and
slow momentum signals.
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Fig 5. Backtesting Setups 1–3. Setup 1 (upper panel) applies a rolling-origin expanding-window split from 1995 to 2019.
Setup 2 (middle panel) is a single hold-out stress test on calendar-year 2020, capturing COVID-19 turbulence. Setup 3
(lower panel) extends Setup 1 through 30 June 2021 while retaining the same expanding-window protocol.

https://doi.org/10.1371/journal.pone.0331391.g005

Setup 3: Long-horizon + pandemic (1995–2021-06). Setup 1 is extended through 30
June 2021, thereby combining a multi-decade perspective with the pandemic aftermath (Fig 5,
lower panel). The same rolling-origin expanding-window protocol with a fixed 5-year test
horizon is retained.

Fig 5 visualizes the rolling-origin expanding-window protocol used in Setup 1 and 3:

• Fixed test window: the out-of-sample horizon is typically five years (salmon blocks).
• Expanding in-sample window: the in-sample span grows by one year at each iteration.
• Train/Validation split: within the in-sample data we reserve the chronologically last 10%
for validation and use the preceding 90% for training; no shuffling is applied.

• Independent retraining: for every iteration (and for each setup), model weights are
re-initialized and a fresh hyper-parameter search is conducted using only the current
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train/validation slice. Hence neither tuned values nor random seeds carry over between
runs, precluding information leakage.

Together, the three setups span calm, crisis, and post-crisis conditions, offering a balanced
assessment of long-term robustness and short-term adaptability.

4.4 Training details
Within each iteration of a setup, the chronologically ordered in-sample data are split 90 :
10 into training and validation subsets (no shuffling). The subsequent five-year block forms
the test set, exactly as depicted in Fig 5. Models are trained for up to 300 epochs with early
stopping after 25 epochs of no improvement in validation loss.

We optimize the Sharpe-ratio loss defined in Eq (16) using the Adam optimizer [21]. Over-
fitting is mitigated by dropout [22], whose rate is treated as a searchable hyperparameter. A
random search of 100 trials explores dropout rate, hidden-layer width, mini-batch size, learn-
ing rate, and maximum gradient norm. The search is conducted on the train + validation sub-
set only (time-ordered hold-out), thereby preserving the strict chronology enforced by the
rolling-origin protocol. The explored ranges are summarized in Table 4.

5 Results and discussion
5.1 Metrics
To evaluate the effectiveness of the trading strategy, we adopt the performance metrics intro-
duced in [7], to analyze portfolio outcomes from 1995 to 2021. These metrics focus on three
key aspects:

• Profitability:Measured using expected returns and the percentage of positive returns.
These indicators capture the average gain and the consistency of profitable outcomes,
respectively.

• Risk: Evaluated using annualized volatility, downside deviation, and maximum drawdown.
Downside deviation measures volatility considering only negative returns, thus indicating
downside risk. Maximum drawdown represents the largest loss observed from a peak to a
trough in portfolio value.

• Performance ratios: Includes the Sharpe, Sortino, and Calmar ratios, as well as the average
profit-over-loss ratio. The Sharpe ratio captures excess return per unit of total risk (volatil-
ity). The Sortino ratio emphasizes downside risk by considering only negative deviations.
The Calmar ratio relates expected return to the maximum drawdown. The average profit-
over-loss ratio evaluates the magnitude of gains relative to losses, providing an additional
dimension of performance robustness.

Table 4. Hyper-parameter search ranges for the deep momentum network. Values were explored by a 100-trial
random search on the time-ordered train/validation split (90:10); the five-year test window remained unseen
during tuning.
Hyperparameter Range
Dropout rate {0.1, 0.2, 0.3, 0.4, 0.5}
Hidden layer size {5, 10, 20, 40, 80, 160}
Minibatch size {64, 128, 256}
Learning rate {10–4, 10–3, 10–2, 10–1}
Max gradient norm {10–2, 100, 102}

https://doi.org/10.1371/journal.pone.0331391.t004
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This analysis covers the period from 1995 to 2021. The portfolio performance of each
model, adjusted to a target annualized volatility of 15%, is provided in Table 5. In addition, the
evolution of the annual Sharpe ratio for each model is listed, allowing a direct comparison of
annual performance in Fig 6. Fig 7 explores and visualizes the influence of transaction costs
on the overall strategy performance.

Table 5 summarizes the portfolio performance for each model across different scenarios,
with a target annualized volatility of 15%. By contrast, Figs 6 and 7, which appear later in this
section, will illustrate the annual Sharpe ratio trends and examine the effect of transaction
costs, respectively.

5.2 Performance evaluation
The proposed model predicts the trading signal X(i)t of each asset in Eq (8), incorporating the
MTDP score (Sects 3.2 and 4.2) into the DMN input. In this subsection, we present the back-
testing results for the three setups (Sect 4.3), comparing our model (using MTDP scores) to
the benchmark model established by [7]. We consider five model variants, each defined by a
different fast look-back window (2, 4, 8, 16, and 20 weeks) and a fixed 52-week slow signal.
For simplicity, the benchmark model is denoted “LSTM” and each model is identified by its
window length, for example, “the 2-week model.”

To verify that the proposed models significantly outperform the benchmark, we conduct
one-sided stationary-bootstrap tests [24] with B = 50,000 resamples. For each asset, the auto-
matic plug-in rule of [23] selects block probabilities clustering around p≈ 0.50 (≈ 2-week
mean block), consistent with the weak autocorrelation in weekly returns. Asterisks in Table 5

Table 5. Mean performance metrics over five independent runs and one-sided stationary-bootstrap significance by Backtesting Setup.
Model Expected

Return
Volatility Downside

Deviation
Maximum
Drawdown

Sharpe
Ratio

Sortino
Ratio

Calmar
Ratio

Positive
Return (%)

Avg. Profit
Avg. Loss

Panel A: Setup 1 (1995–2019)
LSTM 2.47% 1.83% 1.26% 2.55% 1.351 2.053 1.260 52.5% 1.090
2-week 2.45% 1.64%* 1.10%* 2.30% 1.489 2.280 1.355 51.7% 1.107
4-week 2.65% 1.84% 1.29%* 2.70% 1.526* 2.319* 1.422* 52.0% 1.090
8-week 2.71% 1.74%* 1.17%* 2.27% 1.528* 2.348 1.493* 50.7% 1.112
16-week 2.47% 1.83% 1.31% 2.75% 1.337 2.029 1.250 51.7% 1.072
20-week 2.05% 1.74%* 1.25% 2.75% 1.314 1.945 1.205 51.8% 1.048
Panel B: Setup 2 (2020 COVID-19)
LSTM 1.18% 3.28% 2.64% 5.15% 0.169 0.247 0.174 57.5% 0.755
2-week 1.10% 3.79% 3.09% 6.16% 0.245 0.298 0.135 57.8% 0.772
4-week 1.98% 4.20% 3.40% 6.56% 0.501 0.625 0.336 59.5% 0.755
8-week 1.26% 4.18% 3.45% 7.14% 0.338 0.426 0.202 59.3% 0.735
16-week 1.79% 4.20% 3.43% 6.77% 0.436 0.541 0.275 60.5% 0.713
20-week 2.94% 3.71% 2.99% 5.71% 0.696* 0.868 0.454 59.6% 0.781
Panel C: Setup 3 (1995–2021-06)
LSTM 2.44% 1.86% 1.30% 3.00% 1.306 1.977 1.195 54.0% 1.069
2-week 2.47% 1.78%* 1.22%* 2.83% 1.389* 2.140 1.302 54.1% 1.079
4-week 2.43% 1.79%* 1.25%* 2.95% 1.411** 2.181* 1.351* 54.1% 1.082
8-week 2.52% 1.83%* 1.28% 2.87%* 1.377* 2.107 1.305 54.1% 1.076
16-week 2.47% 1.83%* 1.26%* 2.88% 1.374* 2.104 1.338 54.3% 1.065
20-week 2.32% 1.79%* 1.25% 2.94% 1.370 2.100 1.307 54.2% 1.068
Note. Values are means of five independent runs. * and ** denote one-sided stationary-bootstrap p-values < 0.05 and < 0.01, respectively (B = 50 000 resamples; block
probability p selected by the automatic plug-in rule of [23]).

https://doi.org/10.1371/journal.pone.0331391.t005
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Fig 6. Comparison of Sharpe ratios between the LSTM benchmark and the proposed models in Setup 3.The
proposed approach generally achieves higher Sharpe ratios than the LSTM baseline.

https://doi.org/10.1371/journal.pone.0331391.g006

Fig 7. Impact of transaction costs on the Sharpe ratio. As transaction costs increase, Sharpe ratios decline for all
models; the proposed 4- and 8-week models nonetheless retain a marked edge over the LSTM benchmark.

https://doi.org/10.1371/journal.pone.0331391.g007

mark improvements that are significant at the 5% (*) or 1% (**) levels, indicating that the
gains are unlikely to be due to random variation.

Setup 1 (1995–2019). Using the expanding-window protocol, the model is trained and
validated on 1990–1994 data, then tested on the following five-year block; the origin rolls
forward 20 times, covering 1995–2019. Panel A of Table 5 reports the mean results over five
independent runs.

The 8-week model consistently achieves the best risk-adjusted performance, leading in
Sharpe, Sortino, and Calmar ratios. It also records the lowest maximum drawdown and high-
est expected return. Its Sharpe and Calmar improvements are statistically significant at the
5% level (one-sided stationary bootstrap, 50 000 resamples). The 4-week model also performs
well, with significant gains in Sharpe, Sortino, Calmar, and downside deviation. By contrast,
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the 2-week model shows slightly lower returns than the benchmark and exhibits the highest
volatility. Models with relatively longer fast signals (16 or 20 weeks) yield performances sim-
ilar to, or marginally below, the benchmark LSTM.This suggests that 4- to 8-week windows
capture the market’s intermediate trends effectively, balancing short-term noise and long-term
drift.

Setup 2 (2020 COVID-19). We now focus on the volatile COVID-19 period (2020),
using 2015–2019 data for training and validation. As shown in Panel B of Table 5, the 4-week
model again surpasses the benchmark in overall performance metrics, similar to the results in
Setup 1. Interestingly, 20-week model achieves the highest overall scores and is the only vari-
ant whose Sharpe-ratio gain over the LSTM benchmark is statistically significant. No other
risk or return metric reaches significance, suggesting that the evidence of outperformance is
weaker than in the long-horizon tests. The result nevertheless indicates that during extreme
market swings, a longer fast signal (20 weeks) may mitigate whipsaws and preserve capital
more effectively.

By contrast, the 2-week model, although reactive, can amplify short-term noise, leading to
frequent turning points (MTDPs) and potentially higher turnover or drawdowns. This aligns
with the intuition that extremely short windows risk overfitting daily volatility spikes, whereas
a mid- or long-term window better withstands abrupt fluctuations.

Setup 3 (1995–2021-06). To gauge post-COVID performance in a long-horizon setting,
we extend Setup 1’s backtesting window 30 June 2021. Panel C of Table 5 indicates that the 4-
week model dominates in most risk-adjusted performance measures. Its Sharpe, Sortino, Cal-
mar, downside deviation, and volatility improvements are all statistically significant. Sharpe-
ratio gains are also significant for the 2-, 8-, and 16-week models, yet the 4-week model is
the only one that attains simultaneous significance in both the Sortino and Calmar ratios,
underlining its ability to enhance return while controlling downside risk.

Overall, these findings suggest that no single fast signal length is optimal across all con-
ditions. While the 4-week window often provides a strong balance between responsiveness
and stability, the 20-week model may offer greater resilience in highly volatile environments,
indicating that adapting or combining signals could further enhance the strategy’s robustness.

Sharpe ratios and transaction costs in setup 3. Fig 6 plots the average annualized Sharpe
ratios for the benchmark and all MTDP models in Setup 3 (1995–2021): the LSTM bench-
mark appears as a blue solid line, while the best-performing 4- and 8-week MTDP variants are
shown as green and red solid lines, respectively. The MTDP-enhanced 4- and 8-week mod-
els deliver the most stable risk-adjusted returns: they suffer milder draw-downs after the 2008
crisis and exhibit reduced volatility after 2015. The 16- and 20-week models catch up rapidly
during the 2020–2021 recovery, underscoring the value of slower momentum in stress peri-
ods. Notably, the bulk of the gain originates in the commodity space: although commodities
represent roughly 50% of the investable universe, they contribute more than that proportion
to the aggregate Sharpe ratio (see the Sharpe 0 basis points (bps) column of Table 6). Detailed
plots of the average annualized Sharpe ratios for all models in Setup 3 are provided separately
in S1 Fig.

Having established the cost-free baseline, we now examine how sensitive this out-
performance is once realistic trading frictions are imposed. All models are trained and val-
idated under the zero-cost assumption. Once the trading paths are fixed, we apply Eq (3) ex
post to the realized daily rebalancings on the test set, deducting round-trip costs of 2, 5, 10,
and 25 bps. This post-hoc adjustment leaves the position trajectories, and thus the turnover
figures reported for each asset class, exactly as in the 0 bps backtest and measures only the
resulting Sharpe loss. The chosen cost grid spans the range typically observed in futures mar-
kets, with 25 bps marking the extreme.
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Fig 7 illustrates the resulting erosion of performance: Sharpe ratios remain positive up to
2 bps but decline steeply beyond 5 bps, falling below –8 at 25 bps. Table 6 reports the same
numbers alongside annual turnover. Turnover is uniformly high (≈ 79–85) because the strate-
gies reallocate full notional weights each day. Fixed Income shows the lowest turnover (≈ 79),
while Foreign Exchange reaches the highest (≈ 85), hinting that FX faces the strongest cost
drag.

Cost sensitivity differs markedly across asset classes. The MTDP models at 2 bps—
especially the 4- and 8-week models—retain a clear edge over the LSTM benchmark. Once
costs rise to 5 bps, the 2- and 16-week models start to lag, whereas the 4- and 8-week mod-
els still preserve some advantage. At 10 bps and above, every strategy suffers, but the sharpest
declines occur in Fixed Income and Foreign Exchange (see the Sharpe 5–25 bps columns
of Table 6), confirming that these two sectors are the most vulnerable to transaction-cost
erosion. Under the extreme 25 bps scenario the Sharpe ratio of every model turns strongly
negative, rendering the strategies economically infeasible.

5.3 Feature importance and ablation study on MTDP scores
Building on the performance analysis in Sect 5.2, we investigate which elements of the nine-
dimensional MTDP score vector contribute most to the observed performance gains. Specif-
ically, we compute Integrated Gradients (IG) for each score component across Setups 1–3
and retrain a simplified version of the 4-week model in Setup 3 that feeds the model only the
Bull and Bear scores,testing whether coarse market state information alone is sufficient for
effective position sizing while holding all other settings constant.

Fig 8 reports the average IG-based feature importance for the nine MTDP scores in the 4-
week models of Setups 1–3. The IG values are computed by sign-preserving, L1-normalizing,
and then averaging them over all runs and rolling windows. The detailed derivation of IG
values and full plots for all MTDP models appear in S2 Appendix.

Table 6. Cost-adjusted Sharpe ratios (0–25 bps) and annualized turnover by asset class.
Asset Class Ann. Turnover Sharpe 0 bps Sharpe 2 bps Sharpe 5 bps Sharpe 10 bps Sharpe 25

bps
Panel A: LSTM
ALL 83.3 1.306 0.310 –1.183 –3.649 –10.628
Commodities 83.1 1.346 0.886 0.195 –0.954 –4.377
Equities 84.1 0.458 0.071 –0.508 –1.469 –4.287
Fixed Income 82.4 0.366 –0.723 –2.318 –4.287 –10.189
Foreign Exchange 84.3 0.251 –0.533 –1.707 –3.648 –9.193
Panel B: 4-week
ALL 79.9 1.411 0.425 –1.052 –3.495 –10.444
Commodities 79.8 1.457 0.992 0.294 –0.868 –4.330
Equities 80.6 0.529 0.145 –0.431 –1.387 –4.188
Fixed Income 78.9 0.406 –0.650 –2.201 –4.596 –10.021
Foreign Exchange 80.9 0.220 –0.573 –1.760 –3.723 –9.321
Panel C: 8-week
ALL 83.8 1.377 0.381 –1.110 –3.577 –10.586
Commodities 83.8 1.435 0.960 0.247 –0.940 –4.372
Equities 83.4 0.527 0.141 –0.437 –1.398 –4.212
Fixed Income 82.3 0.387 –0.660 –2.195 –4.564 –9.973
Foreign Exchange 85.3 0.190 –0.616 –1.823 –3.816 –9.492

https://doi.org/10.1371/journal.pone.0331391.t006
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Fig 8. Average IG-based importance of each of the nine MTDP score components for the 4-week model across Setups 1–3.

https://doi.org/10.1371/journal.pone.0331391.g008

The results in S2 Appendix reveal two key observations:

• In Setups 1 and 3, transitions between Correction and Bull, such as BuToCo (Bull→ Cor-
rection) and CoToBu (Correction→ Bull), tend to be ranked highest. This suggests that
probability flows between the Correction and Bull states may offer some of the most influ-
ential signals for position sizing.

• In Setup 2, CoToBu scores appear somewhat higher on average, yet no component seems to
show consistently dominant importance.

In short, the analysis of long-term data (Setups 1 and 3) suggests that probability flows
between the Correction and Bull states are the primary performance drivers. In con-
trast, it was difficult to identify such distinct patterns in the short-term crisis period
(Setup 2).

Next, to gauge what is lost when the model utilizes only simplified Bull–Bear information,
we retrain the best-performing configuration (Setup 3 with a 4-week model) after merging the
intermediate states (Correction into Bear, Rebound into Bull). This yields a three-state MTDP
score whose input channels are:

OP ← {OP, BeToCo, BuToRe, CoToBe, ReToBu},
BeToBu ← {BeToRe, CoToBu},
BuToBe ← {BuToCo, ReToBe}.

The model is then retrained with these three channels while keeping the architecture, opti-
mizer, and evaluation protocol identical to the full nine-state MTDP baseline. As shown
in Table 7, the Ablated (three-state) model yields slightly higher raw returns than the
Full (nine-state) model. However, the Full model achieves higher risk-adjusted perfor-
mance (Sharpe, Sortino, Calmar)—as well as in downside risk measures including volatil-
ity and maximum drawdown. While the Ablated model slightly improves raw returns, the
Full model consistently outperforms in both risk-adjusted performance and downside
stability.

PLOS One https://doi.org/10.1371/journal.pone.0331391 September 2, 2025 18/ 21

https://doi.org/10.1371/journal.pone.0331391.g008
https://doi.org/10.1371/journal.pone.0331391


ID: pone.0331391 — 2025/8/29 — page 19 — #19

PLOS One Deep momentum networks with market trend dynamics

Table 7. Performance comparison between the MTDP score (Full) and the ablated model using only Bull and Bear transitions (Ablated), evaluated under
Setup 3.
Model Expected

Return
Volatility Downside

Deviation
Maximum
Drawdown

Sharpe
Ratio

Sortino
Ratio

Calmar
Ratio

Positive
Return (%)

Avg. Profit
Avg. Loss

Setup 3 (1995–2021-06)
Full 2.32% 1.45% 0.99% 2.12% 1.589 2.479 1.538 54.6% 1.087
Ablated 2.33% 1.49% 0.99% 2.15% 1.555 2.425 1.487 54.4% 1.092
Note. “Full” uses the complete MTDP score with all nine states; “Ablated” merges Correction into Bear and Rebound into Bull, resulting in a three-state score. The
experiments reported in Table 5 were run in 2023 on Tensorflow 2.4 and Keras-tuner 1.0.3, whereas the results above were re-implemented in July 2025 on Tensor-
flow 2.19.0 and Keras-tuner 1.4.7. Although the same data and random seeds were used, improvements in the software stack lifted the absolute performance levels.
The present comparison therefore focuses on each model’s relative advantage within the same computational environment.

https://doi.org/10.1371/journal.pone.0331391.t007

Taken together with the IG patterns in Fig 8, these results indicate that intermediate-state
channels, particularly BuToCo and CoToBu, provide distinctive signals that cannot be faith-
fully reproduced after collapsing the state space to Bull and Bear. Therefore, the full nine-
component MTDP score provides information that is empirically irreplaceable for robust
position sizing decisions.

6 Conclusion
We refine TPs into a nine–state MTDP framework to capture precise transitions between mar-
ket states, integrating these MTDP scores as numerical features within a DMN. Our back-
tests on 99 continuous futures show that this approach is highly effective. Feature importance
calculated with IG across all three backtest setups reveals that transitions involving interme-
diate states are the most influential for position sizing. Furthermore, a Bull–Bear simplifi-
cation ablation demonstrates that the granular information from the full nine-component
MTDP score is not recoverable once the state space is collapsed. Together, the IG evidence
and ablation results establish the superiority of the full MTDP specification.

We evaluate five fast look–back windows (2, 4, 8, 16, and 20 weeks) against a fixed 52–week
slow window under three backtesting setups. The 4–week model delivers the most consis-
tent performance by balancing responsiveness and noise control. The 2–week model does not
guarantee improvement because overly short signals amplify noise, while the 16– and 20–
week models yield no uniform gains in ordinary periods. However, the 20–week signal shows
resilience during severe drawdowns such as the COVID–19 crisis. These findings indicate
that there is no universally optimal fast window and motivate adaptive designs that align the
look–back window with prevailing market states.

Because no single window is uniformly optimal, a natural next step is to develop state-
conditioned adaptive schemes that re-weight or switch among window-specific experts.
Future training should also incorporate cost-aware regularization to target after-cost per-
formance, and practical deployment must enforce regulatory limits such as leverage caps
and short-selling restrictions. Promising architectural extensions include Transformer-based
models for capturing long-range dependencies and supervised CNNs for more refined trend-
change classification, particularly in volatile post-crisis environments.

Finally, while our framework effectively learns dynamics at the individual asset level, it
does not account for cross-sectional structures. This limitation may cause it to miss opportu-
nities from synchronized TPs across assets. To address this, a distinct cross-sectional exten-
sion could leverage factor models to incorporate common market shocks and co-movements,
providing a path toward a more globally aware allocation strategy.
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