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Abstract

This study investigates the interaction between circadian rhythms and lipid metab-
olism disruptions in the context of obesity. Obesity is known to interfere with daily
rhythmicity, a crucial process for maintaining brain homeostasis. To better understand
this relationship, we analyzed transcriptional data from mice fed with normal or high-
fat diet, focusing on the mechanisms linking genes involved with those regulating cir-
cadian rhythms. We performed biological enrichment analysis and Boolean network
modeling to identify direct interactions between these genes. The resulting mathe-
matical model provided a comprehensive system of gene interactions, primarily high-
lighting lipid metabolism. Our findings revealed key insights into the effects of obesity
on circadian rhythm genes, particularly the under-expression of core genes such as
Bmal1 and Clock. Crucially, we identified a reciprocal interaction between obesity and
circadian genes, where disruptions on one exacerbated the dysfunction in the other.
This mechanism suggests that the disruption of circadian rhythms plays a pivotal

role in worsening the metabolic disturbances associated with obesity, providing new
perspectives for targeting circadian pathways in obesity-related metabolic disorders.

1. Introduction

Obesity is a modern disease primarily associated with lifestyle factors. Sedentary
work activities, combined with diets rich in ultra-processed foods that are often
consumed in larger quantities due to their competitive cost and palatability, have
contributed to metabolic balances, leading to excess weight accumulation. This
surplus body mass, which is disproportionately high relative to an individual’'s weight,
is reflected in components of the human body that have increased in size to maintain
functionality [1].

Obesity typically leads to low-grade chronic inflammation in the body, which can
contribute to the development of various comorbidities. This type of inflammation is
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characterized by the secretion of proinflammatory cytokines, such as interleukin-6
(IL-6) and tumor necrosis factor-alpha (TNF-a), which have systemic effects through-
out the body [2]. One of the major consequences of this inflammation is the emer-
gence of metabolic disorders, particularly metabolic syndrome [3,4]. This condition

is diagnosed when at least three of the following markers are present: abdominal
obesity, high blood pressure, elevated fasting blood glucose, high triglycerides, and
low HDL cholesterol [5]. Metabolic syndrome is a key indicator of the increased risk
for serious chronic diseases, including those related to blood sugar dysregulation and
cardiovascular health [6]. These include type 2 diabetes and insulin resistance, as
well as atherosclerosis. At the brain level, this persistent inflammation activates the
brain’s immune system, particularly glial cells, which produce proinflammatory cyto-
kines such as TNF- q, IL-1, and IL-6 [7—9]. This chronic inflammation can accelerate
brain aging by up to 10 years compared to healthy individuals [10], which can lead to
critical structural changes such as reduced cortical thickness [11-15]. These changes
in the cortex can result in cognitive and functional impairments, including deficits in
sensory perception, motor control, memory, language, communication, and emotional
regulation [16].

Circadian rhythms, which regulate metabolic, physiological and behavioral coor-
dination activities in 24-hour cycles, have a bidirectional relationship with obesity
[17,18]. Obesity can disrupt these rhythms, for instance, by altering hormone produc-
tion necessary for food metabolism, which may lead to insulin resistance, or by frag-
menting and reducing sleep quality, impairing the coordination of energy expenditure
with appetite [19]. Additionally, eating at irregular times promotes a metabolic state
oriented toward caloric storage, contributing to weight gain and, ultimately, obesity
[20]. This complex interplay between circadian rhythms further worsens the metabolic
imbalance, as disrupted circadian rhythms become an intrinsic factor that perpetu-
ates obesity [21]. Moreover, obesity can be influenced by external factors that disrupt
circadian rhythms, such as eating late at night, exposure to artificial light, night-shift
work, or even epigenetic modifications that transmit these altered rhythms [22,23].

Despite substantial progress in characterizing obesity’s pathophysiology, how it
perturbs the body’s internal clock remains poorly understood [24]. To address this
gap, we employ Boolean network modeling to capture- and predict- the dynamic
interactions between circadian regulators and metabolic genes under both normal
and high-fat diet conditions. In a Boolean framework, each gene or protein is repre-
sented as either “on” or “off”, and its state at each time step is determined by simple
logical rules that helps identify conditions under which different evolutionary paths
may emerge [25]. This abstraction helps us to simulate complex system behav-
ior and identify critical points at which a high-fat diet can drive the network toward
dysregulated metabolic states. Furthermore, we focus our analysis on the cerebral
cortex, given evidence that obesity disrupts cortical metabolism and redox balance,
with downstream effects on neurobehavioral function and glial-neuronal signalling
[26—-35]. Although Boolean networks have proven useful in isolated studies of meta-
bolic regulation, no prior work has integrated these approaches to map how obesity
reshapes circadian-metabolic crosstalk. By constructing and simulating a Boolean
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model of cortex-derived transcriptomic data, we aim to reveal the system-level mechanisms by which obesity disturbs
both clock genes and lipid metabolism pathways, thereby uncovering potential intervention points for restoring metabolic
homeostasis.

2. Materials and methods
2.1. Murine brain datasets

We utilized a publicly available transcriptome dataset from the National Center for Biotechnology Information (2024) with
accession number GSE179711. This dataset was previously analyzed to investigate the roles of non-coding RNAs in
regulating cell proliferation and differentiation, neurotransmission, and neuronal excitability in the context of obesity [36].
The dataset captures genetic alterations in four male mice exposed to a high-fat diet (HFD) for 8 weeks, compared to four
control mice on a normal diet (ND). Transcriptomes were collected from the brain cortex of 16-week-old mice, allowing for
a direct comparison of diet-induced genetic changes.

2.2. Data preparation

Transcriptomes were assembled using the align function from the DESeq2 package [37] in the R programming language
[38]. To ensure comparability, transcriptomes were normalized to account for variations due to sequencing depth, batch
effects, and differences in cellular compositions [39]. This essential step allowed us for reliable comparisons across sam-
ples under similar conditions, as well as between groups exposed to different conditions. Next, differentially expressed
genes (DEGs) were then identified using the limma package [40], with a significant threshold set at a p-value of 0.05.
These DEGs were visualized using heatmaps, generated by the hmReady function from the ggdendroplot package [41],
and volcano plots created with the EnhancedVolcano function from the EnhancedVolcano package [42].

2.2.1. Enrichment analysis. A DAVID-based enrichment analysis [43] was conducted separately for up- and down-
regulated genes, focusing on gene ontology (GO) terms: biological processes (BP), cellular components (CC), and
molecular functions (MF). From the top functional annotations, we identified DEGs that were common to BP, CC, and
MF categories, indicating potential functional similarities [44]. To further explore gene interactions, we analyzed these
up- and down-regulated DEGs through interaction networks (PPIs) to identify clusters with more cohesive structures
using the Metascape tool [45]. Metascape applies the molecular complex detection (MCODE) algorithm to pinpoint
densely connected within PPIs, with region representing a functional cluster. PPls were sourced from multiple databases:
STRING, which compiles known and predicted interactions and scores them to form reliable networks [46]; BioGrid, which
emphasizes biological interactions like PPIs and genetic links [47]; and OmniPath, which includes diverse interactions
such as PPIs and miRNA-mRNA [48]. These networks enabled comprehensive comparative and pathways enrichment
analyses.

2.2.2. Boolean networks. The initial analysis generated undirected gene networks, meaning relationships between
gene pairs were ambiguous, and causality — if present- was undefined. To address this limitation, we applied the GENIE3
algorithm [49] specifically to a network of genes associated with circadian rhythms. GENIE3 enables the construction of
Boolean networks, where nodes are governed by Boolean functions that establish directed, causal relationships among
genes. Since this type of network represents genes as either “on” (active) or “off” (inactive) at any given time, the Boolean
functions define simple logical rules that indicate states of the genes with which they interact. This structure allowed us
to simulate the network’s evolution, predicting the activation and inactivation of nodes based on initial conditions [50].
While Boolean networks provide a simplified view by treating nodes as either fully activated or inactivated, real biological
interactions often involve partial activation states. More complex models, such as probabilistic networks or those based on
differential equations [51,52], may capture this nuance more effectively. However, Boolean networks offer an interpretable
approximation of potential system states, making them valuable for preliminary insights. The GENIE3 algorithm employs

PLOS One | https://doi.org/10.1371/journal.pone.0331218 September 9, 2025 3/16




PLO\Sﬁ\\.- One

random forests [53] to simulate gene knockouts, estimating the strengths of previously undirected relationships. By
setting appropriate thresholds on these estimates, the algorithm determines directed connections between genes. Since
its development, GENIE3 has been widely applied to gene network inference [54—56]. Finally, to understand the genetic
impacts of recurrent high-fat food consumption’, we simulated the resulting Boolean network using the getAttractors
function from the BoolNet package [57]. We implemented a synchronous network model, allowing multiple nodes to
change states simultaneously at each step, accounting for all possible combinations of Boolean values that nodes may
assume [58]. This approach facilitated the identification of stable network states, providing insights into how circadian
rhythm genes respond to high-fat diets.

3. Results

The transcriptome data were processed to construct a Boolean network. S1 Fig illustrates key elements of the normaliza-
tion process and some of its outcomes. In S1A Fig, the normalization effect is displayed, demonstrating comparable read
counts across samples, particularly in median Q2 and upper quartile (Q3) statistics. S1B Fig presents the relationship
between the observed means and standard deviations of analyzed genes. By fitting nonparametric models to describe the
median trend within this scatter plot, we can assess the statistical significance of the analyzed genes.

Following the identification of differentially expressed genes (DEGs), Fig 1A highlights the 20 most statistically signifi-
cant genes, categorized by their up- and down-regulated states in response to the dietary shift between normal diet (ND)
and high-fat diet (HFD). This heatmap shows gene expression patterns for ND samples (left) and HFD samples (right).
Although expression levels vary within these groups, overall trends emerge. For example, Gm14295 exhibits reduced
expression in response to HFD, while GM2164 shows increased expression. Fig 1B displays a scatter plot of the DEGs,
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Fig 1. Features of detected DEGs. (A) Variation in gene expression levels between the samples subjected to normal diet (ND) or high-fat diet (HFD).
(B) Distribution of genes based on log fold change and log p-value.

https://doi.org/10.1371/journal.pone.0331218.9001
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with the log transformations of fold change and p-value. Only genes with p-values less than 0.05 were included. Vertical
reference lines are shown at log fold change of —=1.5 and 1.5. In this plot, genes marked in red are considered significant,
meeting the criteria of a p-value below 0.05 and a log fold change outside +1.5. Genes with a negative log fold change are
classified as down-regulated, while those with a positive log fold change are classified as up-regulated.

3.1. Gene enrichment analysis

The enrichment analysis identified the ten most significant functional annotations within the gene ontology categories
BP, CC and MF. These are presented in Fig 2 for up-regulated DEGs and Fig 3 for down-regulated DEGs. Notably, for

up-regulated DEGFs, the most significant functional annotations are nervous system development in BP and glutamater-
gic synapse in CC. These are distinguished by their markedly low p-values compared to other GO annotations within the
same type of category, indicating strong enrichment. Interestingly, such distinctive functional annotations are absent when
analyzing MF for up-regulated DEGs, as well as PB, CC and MF for down-regulated DEGs, suggesting unique functional
shifts associated primarily with up-regulated DEGs in response to dietary change.
Further genes were incorporated into the analysis using the Metascape tool, which generated a network of functional
annotations related to circadian rhythms, shown in Fig 4 with up-regulated DEGs included. Detailed descriptions and types
of nodes within this network are detailed in Table 1. No relevant clusters were identified among the down-regulated DEGs in
terms of circadian rhythms, except for the functional annotation WP544, which is associated with circadian rhythms by phys-

ical exercise. This network includes annotations not only from BP, CC and MF, but also pathways such as mmu04710 and

mmu04935. Each node represents a functional annotation, with node size indicating the number of genes within that anno-
tation. Notably, GO:0048511 contains the highest number of genes among all annotations, followed closely by GO:0007626.
The former is related to rhythmic behavior, and the latter to rhythmic process. Edges, which represent interactions between
genes in different functional annotations, are weighted according to the scores by Metascape, and are visually reflected by
edge thickness — the thicker the edge, the stronger the relationship. For instance, the connection between GO:0007622 and
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Fig 2. Top 10 significant functional annotations of up-regulated DEGs. (A) Biological processes, (B) cellular components, and (C) molecular func-
tions, ranked by adjusted p-values. Functional annotations are ordered by decreasing significance, with color indicating significance according to the

legend’s color scale, the ratio of genes on the horizontal axis, and DEG count represented by circle size.

https://doi.org/10.1371/journal.pone.0331218.9g002
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Fig 3. Top 10 significant functional annotations of down-regulated DEGs. (A) Biological processes, (B) cellular components, and (C) molecular
functions, ranked by adjusted p-values. Functional annotations are ordered by decreasing significance, with color indicating significance level based on
the legend’s color scale, the ratio of genes on the horizontal axis, and DEG count represented by circle size.

https://doi.org/10.1371/journal.pone.0331218.9003
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Fig 4. Network of functional annotations related to circadian rhythms for upregulated DEGs. Nodes represent functional annotations, with
node size indicating the number of genes within each Edges represent relationships between nodes, with edge thickness reflecting the strength of the
association.

https://doi.org/10.1371/journal.pone.0331218.9004

G0:0048512 is the strongest on this network. It is important to note that mmu04935 and GO:0007626 are not directly related
to circadian rhythms but were included because they bridge the network shown in Fig 4 with other networks.

3.2. Building a Boolean network

The network shown in Fig 4 combined with genes present in WP544 and mmu04710 resulted in a set of 87 genes.
Using the GENIES3 algorithm, we derived a direct network under ND conditions (Fig 5), which comprises 23 genes. In
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Table 1. Description of functional annotations related to circadian rhythms when considering up-
regulated DEGs.

Functional annotation Type Description

G0:0048511 GO Rhythmic process

G0:0007626 GO Rhythmic behavior

G0:0032922 GO Circadian regulation of gene expression

G0:0045475 GO Locomotor rhythm

mmu04710 KEGG pathway Circadian rhythm — Mus musculus (house mouse)

mmu04935 KEGG pathway Growth hormone synthesis, secretion and action —
Mus musculus (house mouse)

G0:0007623 GO Circadian rhythm

G0:0042752 GO Regulation of circadian rhythm

G0:0007626 GO Locomotory behavior

G0:0048512 GO Circadian behavior

https://doi.org/10.137 1/journal.pone.0331218.t001

Fig 5. Boolean network of circadian rhythms and their interplay with metabolism-related genes under normal diet conditions. Nodes represent
individual genes, with node size corresponding to the log-average of normalized transcriptome counts for each gene. Arrows indicate regulatory interac-
tions, with their thickness representing the strength of influence from one gene to another.

https://doi.org/10.1371/journal.pone.0331218.9005

this network, node sizes represent the log average of normalized transcriptome counts under ND conditions, while edge
weights — calculated through the GENIE3 algorithm — and graphically represented by the thickness of the edge indicate
the strength of regulatory interactions. This Boolean network model represents complex biological interactions as events
‘on/off’ for gene activity, allowing us to simulate how HFD disrupts metabolic pathways. This network integrates various
pathways that interact to regulate key biological processes. One prominent is circadian regulation, primarily driven by
genes such as Bmal1, Clock and Npas2, which orchestrate metabolic processes in 24-hour cycles to maintain energy
homeostasis [59,60]. Within this network, energy metabolism is a key pathway led by Ppargc1a, a gene crucial for mito-
chondrial biogenesis, oxidative metabolism, energy expenditure and adaptation to conditions like physical exercise,
fasting or high-fat diets [61]. Another major pathway is lipid metabolism, represented by Fads?, which plays a role in the
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biosynthesis of polyunsaturated fatty acids, thereby affecting cell membrane fluidity and influencing signaling in metabo-
lism and inflammation pathways [62,63].

In addition to these metabolic pathways, the network includes genes involved in signal transduction such as Adcy? and
Adcy8, which support cellular communication and responses to external factors like hormones, nutrients, and environ-
mental changes [64]. It also features genes central to transcriptional regulation, including Ep300 and NcoaZ2, which adjust
gene expression in response to internal and environmental changes [65,66]. Finally, genes such as Pten are involved in
cell growth and survival, as they regulate the PI3K/Akt signaling pathway to maintain cellular homeostasis [67].

Table 2 presents key properties of the resulting network, calculated using functions from the igraph package [68]. The
“hub” metric reflects a node’s influence within the network, measured by its degree — i.e., the number of connections a
node has. Accordingly, the genes Npas2, Per1 and Pten appear to exert strong influence over other genes in the net-
work. Edge density indicates the proportion of existing edges compared to the maximum possible number of edges in the
network. Its observed value is low (0.026), indicating that the network is sparse, as expected in biological systems where
not all genes interact directly. Closeness measures how close a node is to all other nodes, capturing how information can
travel from this node across the network. Its moderate value (0.301) suggests that the hubs can effectively influence the
broader network. Betweenness quantifies the number of shortest paths that go through a node, highlighting nodes that
serve as key connectors. Its high value (0.826) indicates that the hubs may function as critical connectors or bottlenecks
for information flow within the network. Lastly, entropy evaluates the distribution of degrees in the network, where a value
greater than 1 suggests a high level of disorder, indicating that some genes are significantly more influential than others.
This parameter reflects that the analyzed biological regulatory network is organized yet complex.

3.3. Simulation of the Boolean network

The Boolean network constructed in the previous subsection was simulated to explore its potential evolutionary states.
This evolution involves generating random Boolean networks, where the nodes switch between active and inactive states.
Each time a node switches its Boolean value, the network state changes, and the system evolves towards attractors —
stable states that are not expected to change over time. The simulated Boolean network will eventually converge to one
or more attractors, each with a certain probability of being reached. This process allowed us to track the convergence of a
set of interacting genes under complex regulatory schemes [69].

Fig 6A displays the attractors achieved by the developed Boolean network under ND conditions. This figure reveals
that the network can converge to 40 distinct attractors, depending on the initial Boolean values of the genes. Notably, the
last four attractors demonstrate two possible evolutionary paths, leading to Hopf bifurcations. These bifurcations result in
oscillatory behaviors, where the network alternates between at least two states [70]. In our cases, these cycles involve
two distinct states.

As an example, the attractor 40 whose limit state oscillates between two different states, forms an attractor with two
states. In these states, all genes maintain the same Boolean values except for Dbp, Fbxw11, Nrg1, and Prg. S2 Fig
illustrates the behavior of these exceptions. The figure shows iterations of all these genes together, regardless of their
initial Boolean values. For instance, these genes are initially set to Active, Inactive, Active, and Active, respectively. After
one iteration, the network reaches the expected states. It is noteworthy that each expected state follows directly from the

Table 2. Network properties of the Boolean network achieved.

Genes identified as hubs Degree* Edge density Closeness* Betweenness* Entropy
Npas2, Per1, Pten 1.130 0.026 0.301 0.826 1.280

(*) Mean of the parameter.

https://doi.org/10.1371/journal.pone.0331218.t002
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Fig 6. Simulation of the Boolean network on circadian rhythms under (A) normal diet and (B) high fat diet conditions. Genes are shown on the
vertical axis, with their states of evolution on the horizontal axis. The final states represent the attractors reached.

https://doi.org/10.1371/journal.pone.0331218.9006

previous one, without the need for further iterations. This oscillation between states generates an attractor that is gov-
erned by a Hopf bifurcation.

Next, we perturbed the developed Boolean network to reflect HFD-related conditions. For this, we consider the up-
regulated and down-regulated DEGs. As shown in Fig 6A, all genes except Per1 are either up- or down-regulated. For
the up-regulated genes, we set their initial condition to 1 to simulate over-expression, while for down-regulated genes,
we set their initial condition to 0 to simulate knockout. However, some genes do not need to be pre-set due to the net-
work’s intrinsic dynamics. In fact, the network’s structure and behavior allow certain expected results to emerge naturally,
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without requiring prior adjustment. After conducting preliminary simulations, it was determined that only the following
genes needed to be fixed: Tef, Adcy8, Atp1a3, Prkn, Nr1d2, Fbxw11, Nrg1, Pgr, Sumo1, Bmal1, Pten, Npas2, Cul1 and
Clock. Fig 6B shows the evolution and convergence of the perturbed network. This time, the network converged to a
single attractor, achieved through a unique state. In this attractor, Per1 is downregulated. This result suggests a possible
scenario for how part of the circadian rhythm genetic system may behave under a HFD, once the system stabilizes into
an obesity-related gene activity pattern. Such a dynamic model could provide valuable insights for future research and
potential therapeutic strategies.

4. Discussion

In this study, we constructed a biological representation of circadian rhythms using Boolean networks, offering a novel
integrative approach to understanding their complex biological functions. Through this mathematical modelling framework,
we were able to elucidate key interactions between circadian rhythms and various metabolic processes, specifically in the
context of obesity. Importantly, the model highlights the bidirectional interaction between circadian rhythms and obesity,
revealing how this metabolic dysfunction can perpetuate a cycle of regulatory imbalances.

Lipid metabolism is a crucial area of interest when addressing the implications of obesity. Notably, the Boolean network
developed in this study highlights genes directly involved in lipid metabolism, revealing a strong connection between circa-
dian rhythms and lipid homeostasis. For instance, Ppargc1a plays a key role in pathways related to lipid metabolism, includ-
ing fatty acid oxidation and mitochondrial biogenesis [71]. Fads1 is involved in the biosynthesis of unsaturated fatty acids and
the regulation of cell membrane fluidity [72], while Adcy1 and Adcy8 participate in cAMP signaling pathways that influence
lipid metabolism by modulating fatty acid synthesis in response to AMP/ATP ratios [73]. Additionally, Ncoa2 mediates the
co-activation of genes involved in lipid metabolism (Rollins et al., 2015). These metabolic processes occur in the context of
key circadian rhythms genes such as Clock, Bmal1, Dbp, Per1, Npas2, and Nr1d2, highlighting the critical role of circadian
rhythms in regulating lipid metabolism. Specifically, Clock and Bmal1 form a heterodimer that enhances the expression of
Ppargc1a, promoting fatty acid oxidation and mitochondrial biogenesis in response to increased energy demands during
activities like fasting or physical exercise, which mainly correspond to active phase of the body during the day [74].

Our findings show that other circadian genes, such as Dbp, Per1, Npas2 and Nr1d2, have more specific roles. Dbp
increases its levels at the start of the active phase to activate Ppargc1a, responding to energy demand spikes [75]. Per1
down-regulates the Clock-Bmal1 complex at specific times during the active phase, when its activity is less needed [76].
Npas2 interacts with Ppargc1a in a positive feedback loop, enhancing lipid metabolism to meet energy demands [77]. In
contrast, Nr1d2 represses Ppargc1a when energy demand decreases [78]. Fads1 is regulated similarly to Ppargc1a by
circadian genes, specifically for fatty acid desaturation. Adcy? and Adcy8 regulate cAMP levels during the active phase,
which promotes lipolysis and fatty acid oxidation. Finally, NcoaZ2 activates genes that modulate the Clock-Bmal1 complex,
including the periodic genes (Per1, Per2 and Per3), cryptochrome genes (Cry7 and Cry2), Dbp gene, Rev-erb genes
(Nr1d1 and Nr1d2), ROR genes (Rora, Rorb and Rorg) and metabolic genes (Ppara, Nampt and Gys2).

4.1. New pathways related to metabolism

The Boolean network suggests additional gene interactions, such as the pathway Tef --> Fbxw11 --> Dbp --> Pgr -->
Ppargc1a, which is not previously reported in the literature. This pathway implies that Ppargc7a is influenced not only by
circadian genes, but also by genes like Tef, Fbxw11 and Pgr. Tef, which regulates transcription via the TATA-box element,
may modulate Fbxw11, a gene responsible for targeting proteins for degradation [79]. This interaction could influence
Dbp, potentially modulating its expression. Studies suggest that Dbp could affect Pgr expression, acting as a signal
transducer [80]. Moreover, Pgr is susceptible to daily regulation, particularly through Dbp, and is involved in interventions
like hormonal therapies [81] and physiological regulation [82]. Finally, Pgr could modulate Ppargc1a expression, as similar
hormonal effects, such as insulin or Hif1a in hypoxia, have been documented [83,84].
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Another potential undocumented pathway is Ppargc1a --> Ep300 --> Ncoa2. While the direct influence of
Ppargc1a on Ep300 has not been previously reported, the relationship from Ep300 to Ppargc1a is well-documented,
where Ep300 acts as a co-activator, particularly in obesity and thermogenesis [83]. Notably, studies have shown
that Ppargc1a can function as a co-activator [85], suggesting that, in this context, Ppargc1a may promote Ep300
activity. Regarding Ep300’s activation of Ncoa2, this is supported by Ep300’s histone acetyltransferase (HAT) activ-
ity, which modifies chromatin structure, making it more accessible and facilitating the transcription of target genes
through nuclear receptors. This mechanism is particularly relevant for the p160 co-activator family, to which Ncoa2
belongs [86].

4.2. Obesity effects

Our Boolean model also revealed that obesity leads to down-regulation of key circadian genes, Bmal1 and Clock, which
may impact several metabolic processes, including glucose homeostasis and insulin response [87,88]. Interestingly,
Bmal1 influences Fads1, which in turn affects Clock, and together, Bmal1 and Clock regulate lipid metabolism through
E-transcriptional activation [87]. This suggests bidirectional interactions between lipid metabolism and circadian rhythms
under normal conditions. In obesity, the downregulation of both Bmal1 and Fads1 leads to impaired coordination between
Bmal1 and Clock, further compromising lipid metabolism regulation [89]. Additionally, this disruption may worsen over
time, as evidenced by recent findings linking circadian dysfunction in omental fat with obesity [90] and the presence of
single nucleotide polymorphisms in the Clock gene has been associated with morbid obesity [91]. This circular pathway
appears to be previously undocumented.

4.3. Limitations of this study

The main limitation of this study is the use of the Boolean model, which simplifies by reducing it to two states, failing to
capture the full complexity of gene interactions. As previously mentioned, this approach offers a tractable framework for
modeling gene-level interactions, its binary “on/off” cannot capture the graded or temporal nuances of gene regulation.
Despite this limitation, the model used provides valuable insights that could be expanded upon with more detailed models,
such as probabilistic or differential-equation models.

Our analysis was also constrained by the limited gene set — primarily lipid metabolism- derived from a single cortical
transcriptome dataset. This small size and cortex-only focus may limit the generalizability of our findings. Cross-validating
our results using larger, independent obesity-related datasets (e.g., hypothalamus, liver, adipose tissue etc) will expand
the network to include additional genes impacted by these analyses.

Finally, the GENIE3 algorithm infers directed edges from expression data alone and may miss well-documented inter-
actions (e.g., the Clock-Bmal1 feedback loop) when statistical support is weak. Future studies should integrate curated
interaction databases and literature-derived edges to reinforce and refine network topology.

5. Conclusions

Our study on circadian rhythms and obesity has revealed significant interactions, suggesting that disruptions in these
rhythms worsen metabolic dysfunctions. This finding highlights the importance of maintaining regular circadian rhythms to
mitigate the health risks associated with obesity.

The analysis of DEGs linked to circadian rhythms provided valuable insight into the functional mechanism underlying
obesity. Enrichment analysis identified key DEGs that help explain how obesity alters circadian functions, contributing to
conditions like metabolic syndrome and its comorbidities. Our Boolean model effectively captured this complex interaction;
however, given the complexity of these interactions, further studies are needed to better understand the causal relation-
ships between circadian rhythms disturbances and obesity.

PLOS One | https://doi.org/10.1371/journal.pone.0331218 September 9, 2025 11/16




PLO\Sﬁ\\.- One

Supporting information

S1 Fig. Preparation of the transcriptomes: (A) normalization and (B) representation based on the mean-standard
deviation model.
(DOCX)

S2 Fig. Iterations of the genes Dbp, Fbxw11, Nrg1 and Pgr to produce the two states of attractor 40.
(DOCX)

Author contributions

Conceptualization: George E. Barreto.

Data curation: Meitner Cadena, George E. Barreto.

Formal analysis: Meitner Cadena, George E. Barreto.
Funding acquisition: George E. Barreto.

Investigation: Meitner Cadena, George E. Barreto.
Methodology: Meitner Cadena, George E. Barreto.

Project administration: George E. Barreto.

Resources: Meitner Cadena, George E. Barreto.

Software: Meitner Cadena, George E. Barreto.

Supervision: George E. Barreto.

Visualization: Meitner Cadena.

Writing — original draft: Meitner Cadena, George E. Barreto.
Writing — review & editing: Meitner Cadena, George E. Barreto.

References

1. Koliaki C, Dalamaga M, Liatis S. Update on the Obesity Epidemic: After the Sudden Rise, Is the Upward Trajectory Beginning to Flatten?. Curr Obes
Rep. 2023;12(4):514-27. https://doi.org/10.1007/s13679-023-00527-y PMID: 37779155

2. Popko K, Gorska E, Stelmaszczyk-Emmel A, Plywaczewski R, Stoklosa A, Gorecka D, et al. Proinflammatory cytokines 1I-6 and TNF-a and the
development of inflammation in obese subjects. Eur J Med Res. 2010;15 Suppl 2(Suppl 2):120-2. https://doi.org/10.1186/2047-783x-15-s2-120
PMID: 21147638

3. Martin KA, Mani MV, Mani A. New targets to treat obesity and the metabolic syndrome. Eur J Pharmacol. 2015;763(Pt A):64—74. https://doi.
org/10.1016/j.ejphar.2015.03.093 PMID: 26001373

4. Hidalgo-Lanussa O, Baez-Jurado E, Echeverria V, Ashraf GM, Sahebkar A, Garcia-Segura LM, et al. Lipotoxicity, neuroinflammation, glial cells and
oestrogenic compounds. J Neuroendocrinol. 2020;32(1):e12776. https://doi.org/10.1111/jne.12776 PMID: 31334878

5. Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K. Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection,
Management, and Risk Stratification in the West Virginian Population. Int J Med Sci. 2016;13(1):25-38. https://doi.org/10.7150/ijms.13800 PMID:
26816492

6. RuckL, Wiegand S, Kiihnen P. Relevance and consequence of chronic inflammation for obesity development. Mol Cell Pediatr. 2023;10(1):16.
https://doi.org/10.1186/s40348-023-00170-6 PMID: 37957462

7. Salas-Venegas V, Flores-Torres RP, Rodriguez-Cortés YM, Rodriguez-Retana D, Ramirez-Carreto RJ, Concepcién-Carrillo LE, et al. The Obese
Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front Integr Neurosci. 2022;16:798995.
https://doi.org/10.3389/fnint.2022.798995 PMID: 35422689

8. \Vesga-Jiménez DJ, Martin C, Barreto GE, Aristizabal-Pachon AF, Pinzén A, Gonzalez J. Fatty Acids: An Insight into the Pathogenesis of Neurode-
generative Diseases and Therapeutic Potential. Int J Mol Sci. 2022;23(5):2577. https://doi.org/10.3390/ijms23052577 PMID: 35269720

9. Martin-Jiménez CA, Garcia-Vega A, Cabezas R, Aliev G, Echeverria V, Gonzélez J, et al. Astrocytes and endoplasmic reticulum stress: A bridge
between obesity and neurodegenerative diseases. Prog Neurobiol. 2017;158:45-68. https://doi.org/10.1016/j.pneurobio.2017.08.001 PMID:
28802884

PLOS One | https://doi.org/10.137 1/journal.pone.0331218 September 9, 2025 12/16



http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331218.s001
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331218.s002
https://doi.org/10.1007/s13679-023-00527-y
http://www.ncbi.nlm.nih.gov/pubmed/37779155
https://doi.org/10.1186/2047-783x-15-s2-120
http://www.ncbi.nlm.nih.gov/pubmed/21147638
https://doi.org/10.1016/j.ejphar.2015.03.093
https://doi.org/10.1016/j.ejphar.2015.03.093
http://www.ncbi.nlm.nih.gov/pubmed/26001373
https://doi.org/10.1111/jne.12776
http://www.ncbi.nlm.nih.gov/pubmed/31334878
https://doi.org/10.7150/ijms.13800
http://www.ncbi.nlm.nih.gov/pubmed/26816492
https://doi.org/10.1186/s40348-023-00170-6
http://www.ncbi.nlm.nih.gov/pubmed/37957462
https://doi.org/10.3389/fnint.2022.798995
http://www.ncbi.nlm.nih.gov/pubmed/35422689
https://doi.org/10.3390/ijms23052577
http://www.ncbi.nlm.nih.gov/pubmed/35269720
https://doi.org/10.1016/j.pneurobio.2017.08.001
http://www.ncbi.nlm.nih.gov/pubmed/28802884

PLO\Sﬁ\\.- One

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023;8(1):267.
https://doi.org/10.1038/s41392-023-01486-5 PMID: 37433768

Chen J, Pan S, Tan Y, Wu Y, Huang T, Huang B, et al. Genetic Associations between Obesity and Brain Cortical Thickness: Combined Genetic Cor-
relation, Multi-Trait Meta-Analysis, and Mendelian Randomization. Neuroendocrinology. 2025;115(3-4):308—-14. https://doi.org/10.1159/000543574
PMID: 39832494

Westwater ML, Vilar-Lopez R, Ziauddeen H, Verdejo-Garcia A, Fletcher PC. Combined effects of age and BMI are related to altered cortical thick-
ness in adolescence and adulthood. Dev Cogn Neurosci. 2019;40:100728. https://doi.org/10.1016/j.dcn.2019.100728 PMID: 31751856

Rosch KS, Thapaliya G, Plotkin M, Mostofsky SH, Carnell S. Shared and distinct alterations in brain morphology in children with ADHD and
obesity: Reduced cortical surface area in ADHD and thickness in overweight/obesity. J Psychiatr Res. 2024;180:103—12. https://doi.org/10.1016/].
jpsychires.2024.10.002 PMID: 39388790

Schwarz NF, Nordstrom LK, Pagen LHG, Palombo DJ, Salat DH, Milberg WP, et al. Differential associations of metabolic risk factors on cortical
thickness in metabolic syndrome. Neuroimage Clin. 2017;17:98-108. https://doi.org/10.1016/j.nicl.2017.09.022 PMID: 29062686

Shaw ME, Sachdev PS, Abhayaratna W, Anstey KJ, Cherbuin N. Body mass index is associated with cortical thinning with different patterns in mid-
and late-life. Int J Obes (Lond). 2018;42(3):455—61. https://doi.org/10.1038/ij0.2017.254 PMID: 28993708

McKlveen JM, Myers B, Flak JN, Bundzikova J, Solomon MB, Seroogy KB, et al. Role of prefrontal cortex glucocorticoid receptors in stress and
emotion. Biol Psychiatry. 2013;74(9):672-9. https://doi.org/10.1016/j.biopsych.2013.03.024 PMID: 23683655

Noh J. The Effect of Circadian and Sleep Disruptions on Obesity Risk. J Obes Metab Syndr. 2018;27(2):78-83. https://doi.org/10.7570/
jomes.2018.27.2.78 PMID: 31089546

Garaulet M, Madrid JA. Chronobiological aspects of nutrition, metabolic syndrome and obesity. Adv Drug Deliv Rev. 2010;62(9—10):967—78. https://
doi.org/10.1016/j.addr.2010.05.005 PMID: 20580916

Shi S, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH. Circadian disruption leads to insulin resistance and obesity. Curr Biol.
2013;23(5):372-81. https://doi.org/10.1016/j.cub.2013.01.048 PMID: 23434278

Davis R, Rogers M, Coates AM, Leung GKW, Bonham MP. The Impact of Meal Timing on Risk of Weight Gain and Development of Obesity: a
Review of the Current Evidence and Opportunities for Dietary Intervention. Curr Diab Rep. 2022;22(4):147-55. https://doi.org/10.1007/s11892-022-
01457-0 PMID: 35403984

Summa KC, Turek FW. Chronobiology and obesity: Interactions between circadian rhythms and energy regulation. Adv Nutr. 2014;5(3):312S-9S.
https://doi.org/10.3945/an.113.005132 PMID: 24829483

Pacheco-Bernal |, Becerril-Pérez F, Aguilar-Arnal L. Circadian rhythms in the three-dimensional genome: implications of chromatin interactions for
cyclic transcription. Clin Epigenetics. 2019;11(1):79. https://doi.org/10.1186/s13148-019-0677-2 PMID: 31092281

Froy O. Metabolism and circadian rhythms--implications for obesity. Endocr Rev. 2010;31(1):1-24. https://doi.org/10.1210/er.2009-0014 PMID:
19854863

Chaput J-P, McHill AW, Cox RC, Broussard JL, Dutil C, da Costa BGG, et al. The role of insufficient sleep and circadian misalignment in obesity.
Nat Rev Endocrinol. 2023;19(2):82—97. https://doi.org/10.1038/s41574-022-00747-7 PMID: 36280789

Dobri¢ V, MiloSevi¢ P, Rakicevi¢ A, Petrovi¢ B, Poledica A. Interpolative boolean networks. Complexity. 2017;2017:2647164.

Lowe CJ, Reichelt AC, Hall PA. The Prefrontal Cortex and Obesity: A Health Neuroscience Perspective. Trends Cogn Sci. 2019;23(4):349-61.
https://doi.org/10.1016/j.tics.2019.01.005 PMID: 30824229

Zhou H, Hu Y, Li G, Zhang W, Ji W, Feng Y, et al. Obesity is associated with progressive brain structural changes. Obesity (Silver Spring).
2025;33(4):709-19. https://doi.org/10.1002/oby.24251 PMID: 40025869

Silva DGM, de Santana JH, Bernardo EM, de Sousa Fernandes MS, Yagin FH, Al-Hashem F, et al. The REDOX balance in the prefrontal cortex
is positively modulated by aerobic exercise and altered by overfeeding. Sci Rep. 2025;15(1):13787. https://doi.org/10.1038/s41598-025-99303-2
PMID: 40259099

Liang C, Lu H, Wang X, Su J, Qi F, Shang Y, et al. Neuron stress-related genes serve as new biomarkers in hypothalamic tissue following high fat
diet. Front Endocrinol (Lausanne). 2024;15:1443880. https://doi.org/10.3389/fendo.2024.1443880 PMID: 39717104

Hidalgo-Lanussa O, Gonzalez Santos J, Barreto GE. Sex-specific vulnerabilities in human astrocytes underpin the differential impact of palmitic
acid. Neurobiol Dis. 2024;195:106489. https://doi.org/10.1016/j.nbd.2024.106489 PMID: 38552721

Rojas-Cruz AF, Martin-Jiménez CA, Gonzalez J, Gonzalez-Giraldo Y, Pinzon AM, Barreto GE, et al. Palmitic Acid Upregulates Type | Interferon-
Mediated Antiviral Response and Cholesterol Biosynthesis in Human Astrocytes. Mol Neurobiol. 2023;60(8):4842-54. https://doi.org/10.1007/
$12035-023-03366-z PMID: 37184765

Castellanos DB, Martin-Jiménez CA, Pinzén A, Barreto GE, Padilla-Gonzalez GF, Aristizabal A, et al. Metabolomic Analysis of Human Astrocytes
in Lipotoxic Condition: Potential Biomarker Identification by Machine Learning Modeling. Biomolecules. 2022;12(7):986. https://doi.org/10.3390/
biom12070986 PMID: 35883542

Vesga-Jiménez DJ, Martin-Jiménez CA, Grismaldo Rodriguez A, Aristizabal-Pachén AF, Pinzon A, Barreto GE, et al. Tibolone Pre-Treatment Ame-
liorates the Dysregulation of Protein Translation and Transport Generated by Palmitic Acid-Induced Lipotoxicity in Human Astrocytes: A Label-Free
MS-Based Proteomics and Network Analysis. Int J Mol Sci. 2022;23(12):6454. https://doi.org/10.3390/ijms23126454 PMID: 35742897

PLOS One | https://doi.org/10.1371/journal.pone.0331218 September 9, 2025 13/16



https://doi.org/10.1038/s41392-023-01486-5
http://www.ncbi.nlm.nih.gov/pubmed/37433768
https://doi.org/10.1159/000543574
http://www.ncbi.nlm.nih.gov/pubmed/39832494
https://doi.org/10.1016/j.dcn.2019.100728
http://www.ncbi.nlm.nih.gov/pubmed/31751856
https://doi.org/10.1016/j.jpsychires.2024.10.002
https://doi.org/10.1016/j.jpsychires.2024.10.002
http://www.ncbi.nlm.nih.gov/pubmed/39388790
https://doi.org/10.1016/j.nicl.2017.09.022
http://www.ncbi.nlm.nih.gov/pubmed/29062686
https://doi.org/10.1038/ijo.2017.254
http://www.ncbi.nlm.nih.gov/pubmed/28993708
https://doi.org/10.1016/j.biopsych.2013.03.024
http://www.ncbi.nlm.nih.gov/pubmed/23683655
https://doi.org/10.7570/jomes.2018.27.2.78
https://doi.org/10.7570/jomes.2018.27.2.78
http://www.ncbi.nlm.nih.gov/pubmed/31089546
https://doi.org/10.1016/j.addr.2010.05.005
https://doi.org/10.1016/j.addr.2010.05.005
http://www.ncbi.nlm.nih.gov/pubmed/20580916
https://doi.org/10.1016/j.cub.2013.01.048
http://www.ncbi.nlm.nih.gov/pubmed/23434278
https://doi.org/10.1007/s11892-022-01457-0
https://doi.org/10.1007/s11892-022-01457-0
http://www.ncbi.nlm.nih.gov/pubmed/35403984
https://doi.org/10.3945/an.113.005132
http://www.ncbi.nlm.nih.gov/pubmed/24829483
https://doi.org/10.1186/s13148-019-0677-2
http://www.ncbi.nlm.nih.gov/pubmed/31092281
https://doi.org/10.1210/er.2009-0014
http://www.ncbi.nlm.nih.gov/pubmed/19854863
https://doi.org/10.1038/s41574-022-00747-7
http://www.ncbi.nlm.nih.gov/pubmed/36280789
https://doi.org/10.1016/j.tics.2019.01.005
http://www.ncbi.nlm.nih.gov/pubmed/30824229
https://doi.org/10.1002/oby.24251
http://www.ncbi.nlm.nih.gov/pubmed/40025869
https://doi.org/10.1038/s41598-025-99303-2
http://www.ncbi.nlm.nih.gov/pubmed/40259099
https://doi.org/10.3389/fendo.2024.1443880
http://www.ncbi.nlm.nih.gov/pubmed/39717104
https://doi.org/10.1016/j.nbd.2024.106489
http://www.ncbi.nlm.nih.gov/pubmed/38552721
https://doi.org/10.1007/s12035-023-03366-z
https://doi.org/10.1007/s12035-023-03366-z
http://www.ncbi.nlm.nih.gov/pubmed/37184765
https://doi.org/10.3390/biom12070986
https://doi.org/10.3390/biom12070986
http://www.ncbi.nlm.nih.gov/pubmed/35883542
https://doi.org/10.3390/ijms23126454
http://www.ncbi.nlm.nih.gov/pubmed/35742897

PLO\S\% One

34.

35.

36.

37.

38.
39.

40.

41.
42.
43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

Yanguas-Casas N, Torres C, Crespo-Castrillo A, Diaz-Pacheco S, Healy K, Stanton C, et al. High-fat diet alters stress behavior, inflamma-
tory parameters and gut microbiota in Tg APP mice in a sex-specific manner. Neurobiol Dis. 2021;159:105495. https://doi.org/10.1016/j.
nbd.2021.105495 PMID: 34478848

Silva SC de A, de Lemos MDT, Dos Santos Junior OH, Rodrigues TO, Silva TL, da Silva Al, et al. Overweight during development dysregulates
cellular metabolism and critical genes that control food intake in the prefrontal cortex. Physiol Behav. 2024;276:114453. https://doi.org/10.1016/].
physbeh.2023.114453 PMID: 38159589

Yoon G, Cho KA, Song J, Kim Y-K. Transcriptomic Analysis of High Fat Diet Fed Mouse Brain Cortex. Front Genet. 2019;10:83. https://doi.
org/10.3389/fgene.2019.00083 PMID: 30838024

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
https://doi.org/10.1186/s13059-014-0550-8 PMID: 25516281

Team RC. R: A language and environment for statistical computing. 2024. [cited 30 September 2024]. https://www.R-project.org/

Evans C, Hardin J, Stoebel DM. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Brief Bioin-
form. 2018;19(5):776-92. https://doi.org/10.1093/bib/bbx008 PMID: 28334202

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007 PMID: 25605792

Huber N. ggdendro: Create dendrograms and tree diagrams using ‘ggplot2’. 2022.

Blighe K, Rana S, Lewis M. Enhanced volcano: publication-ready volcano plots with enhanced colouring and labeling. 2024.

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc.
2009;4(1):44-57. https://doi.org/10.1038/nprot.2008.211 PMID: 19131956

Zhang S-B, Lai J-H. Exploring information from the topology beneath the Gene Ontology terms to improve semantic similarity measures. Gene.
2016;586(1):148-57. https://doi.org/10.1016/j.gene.2016.04.024 PMID: 27080954

Zhou'Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of
systems-level datasets. Nat Commun. 2019;10(1):1523. https://doi.org/10.1038/s41467-019-09234-6 PMID: 30944313

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks
and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638—46. https://doi.org/10.1093/nar/
gkac1000 PMID: 36370105

Oughtred R, Stark C, Breitkreutz B-J, Rust J, Boucher L, Chang C, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res.
2019;47(D1):D529—-41. https://doi.org/10.1093/nar/gky1079 PMID: 30476227

Tdrei D, Valdeolivas A, Gul L, Palacio-Escat N, Klein M, lvanova O, et al. Integrated intra- and intercellular signaling knowledge for multicellular
omics analysis. Mol Syst Biol. 2021;17(3):€9923. https://doi.org/10.15252/msb.20209923 PMID: 33749993

Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One.
2010;5(9):e12776. https://doi.org/10.1371/journal.pone.0012776 PMID: 20927193

Schwab JD, Kihlwein SD, lkonomi N, Kihl M, Kestler HA. Concepts in Boolean network modeling: What do they all mean?. Comput Struct Bio-
technol J. 2020;18:571-82. https://doi.org/10.1016/j.csbj.2020.03.001 PMID: 32257043

Fumia HF, Martins ML. Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes. PLoS One.
2013;8(7):e69008. https://doi.org/10.1371/journal.pone.0069008 PMID: 23922675

Tercan B, Aguilar B, Huang S, Dougherty ER, Shmulevich . Probabilistic boolean networks predict transcription factor targets to induce transdiffer-
entiation. iScience. 2022;25(9):104951. https://doi.org/10.1016/j.isci.2022.104951 PMID: 36093045

Breiman L. Random Forests. Mach Learn. 2001;45:5-32.

Klauschen F, Dippel J, Keyl P, Jurmeister P, Bockmayr M, Mock A, et al. Toward Explainable Atrtificial Intelligence for Precision Pathology. Annu Rev
Pathol. 2024;19:541-70. https://doi.org/10.1146/annurev-pathmechdis-051222-113147 PMID: 37871132

Melenhorst JJ, Chen GM, Wang M, Porter DL, Chen C, Collins MA, et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T
cells. Nature. 2022;602(7897):503-9. https://doi.org/10.1038/s41586-021-04390-6 PMID: 35110735

Kang Y, Thieffry D, Cantini L. Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms. Front Genet.
2021;12:617282. https://doi.org/10.3389/fgene.2021.617282 PMID: 33828580

Mussel C, Hopfensitz M, Kestler HA. BoolNet--an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics.
2010;26(10):1378-80. https://doi.org/10.1093/bioinformatics/btq124 PMID: 20378558

Ruiz-Silva A, Gilardi-Velazquez HE, Campos E. Emergence of synchronous behavior in a network with chaotic multistable systems. Chaos, Soli-
tons & Fractals. 2021;151:111263. https://doi.org/10.1016/j.chaos.2021.111263

Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Di Cesare Mannelli L, et al. Molecular regulations of circadian rhythm and implications
for physiology and diseases. Signal Transduct Target Ther. 2022;7(1):41. https://doi.org/10.1038/s41392-022-00899-y PMID: 35136018

Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science.
2001;293(5529):510—4. https://doi.org/10.1126/science.1060698 PMID: 11441146

PLOS One | https://doi.org/10.1371/journal.pone.0331218  September 9, 2025 14/16



https://doi.org/10.1016/j.nbd.2021.105495
https://doi.org/10.1016/j.nbd.2021.105495
http://www.ncbi.nlm.nih.gov/pubmed/34478848
https://doi.org/10.1016/j.physbeh.2023.114453
https://doi.org/10.1016/j.physbeh.2023.114453
http://www.ncbi.nlm.nih.gov/pubmed/38159589
https://doi.org/10.3389/fgene.2019.00083
https://doi.org/10.3389/fgene.2019.00083
http://www.ncbi.nlm.nih.gov/pubmed/30838024
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://www.R-project.org/
https://doi.org/10.1093/bib/bbx008
http://www.ncbi.nlm.nih.gov/pubmed/28334202
https://doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.1038/nprot.2008.211
http://www.ncbi.nlm.nih.gov/pubmed/19131956
https://doi.org/10.1016/j.gene.2016.04.024
http://www.ncbi.nlm.nih.gov/pubmed/27080954
https://doi.org/10.1038/s41467-019-09234-6
http://www.ncbi.nlm.nih.gov/pubmed/30944313
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1093/nar/gkac1000
http://www.ncbi.nlm.nih.gov/pubmed/36370105
https://doi.org/10.1093/nar/gky1079
http://www.ncbi.nlm.nih.gov/pubmed/30476227
https://doi.org/10.15252/msb.20209923
http://www.ncbi.nlm.nih.gov/pubmed/33749993
https://doi.org/10.1371/journal.pone.0012776
http://www.ncbi.nlm.nih.gov/pubmed/20927193
https://doi.org/10.1016/j.csbj.2020.03.001
http://www.ncbi.nlm.nih.gov/pubmed/32257043
https://doi.org/10.1371/journal.pone.0069008
http://www.ncbi.nlm.nih.gov/pubmed/23922675
https://doi.org/10.1016/j.isci.2022.104951
http://www.ncbi.nlm.nih.gov/pubmed/36093045
https://doi.org/10.1146/annurev-pathmechdis-051222-113147
http://www.ncbi.nlm.nih.gov/pubmed/37871132
https://doi.org/10.1038/s41586-021-04390-6
http://www.ncbi.nlm.nih.gov/pubmed/35110735
https://doi.org/10.3389/fgene.2021.617282
http://www.ncbi.nlm.nih.gov/pubmed/33828580
https://doi.org/10.1093/bioinformatics/btq124
http://www.ncbi.nlm.nih.gov/pubmed/20378558
https://doi.org/10.1016/j.chaos.2021.111263
https://doi.org/10.1038/s41392-022-00899-y
http://www.ncbi.nlm.nih.gov/pubmed/35136018
https://doi.org/10.1126/science.1060698
http://www.ncbi.nlm.nih.gov/pubmed/11441146

PLO\S\% One

61.

62.

63.

64.

65.

66.

67.

68.
69.

70.
7.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Halling JF, Pilegaard H. PGC-1a-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab.
2020;45(9):927-36. https://doi.org/10.1139/apnm-2020-0005 PMID: 32516539

Calder PC. Long-chain fatty acids and inflammation. Proc Nutr Soc. 2012;71(2):284-9. https://doi.org/10.1017/S0029665112000067 PMID:
22369781

Ciesielska A, Kwiatkowska K. Modification of pro-inflammatory signaling by dietary components: The plasma membrane as a target. Bioessays.
2015;37(7):789-801. https://doi.org/10.1002/bies.201500017 PMID: 25966354

Devasani K, Yao Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers CNS. 2022;19(1):23. https://doi.org/10.1186/s12987-
022-00322-2 PMID: 35307032

QuL,YinY, Yin T, Zhang X, Zhou X, Sun L. NCOA2-induced secretion of leptin leads to fetal growth restriction via the NF-«kB signaling pathway.
Ann Transl Med. 2023;11(4):166. https://doi.org/10.21037/atm-22-6444 PMID: 36923094

Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal
Transduct Target Ther. 2023;8(1):427. https://doi.org/10.1038/s41392-023-01651-w PMID: 37953273

Haddadi N, Lin Y, Travis G, Simpson AM, Nassif NT, McGowan EM. PTEN/PTENP1: “Regulating the regulator of RTK-dependent PI3K/Akt signal-
ling”, new targets for cancer therapy. Mol Cancer. 2018;17(1):37. https://doi.org/10.1186/s12943-018-0803-3 PMID: 29455665

Csardi G, Nepusz T (2006) The Igraph Software Package for Complex Network Research. InterJournal, Complex Systems 1695:1-9.

Mori T, Akutsu T. Attractor detection and enumeration algorithms for Boolean networks. Comput Struct Biotechnol J. 2022;20:2512—20. https://doi.
org/10.1016/j.csbj.2022.05.027 PMID: 35685366

Agarwal RP, Bohner M, Crace SR, O’Regan D. Discrete Oscillation Theory. New York: Hindawi Publishing Corporation. 2005.

Cheng C-F, Ku H-C, Lin H. PGC-1a as a Pivotal Factor in Lipid and Metabolic Regulation. Int J Mol Sci. 2018;19(11):3447. https://doi.org/10.3390/
ijims19113447 PMID: 30400212

Reynolds LM, Dutta R, Seeds MC, Lake KN, Hallmark B, Mathias RA, et al. FADS genetic and metabolomic analyses identify the A5 desaturase
(FADS1) step as a critical control point in the formation of biologically important lipids. Sci Rep. 2020;10(1):15873. https://doi.org/10.1038/s41598-
020-71948-1 PMID: 32985521

Zhang M, Wang H. Ca2+-stimulated ADCY1 and ADCY8 regulate distinct aspects of synaptic and cognitive flexibility. Front Cell Neurosci.
2023;17:1215255. https://doi.org/10.3389/fncel.2023.1215255 PMID: 37465213

Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell. 2012;47(2):158-67. https://doi.org/10.1016/j.molcel.2012.06.026 PMID:
22841001

Yamaguchi S, Mitsui S, Yan L, Yagita K, Miyake S, Okamura H. Role of DBP in the circadian oscillatory mechanism. Mol Cell Biol.
2000;20(13):4773-81. https://doi.org/10.1128/MCB.20.13.4773-4781.2000 PMID: 10848603

Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164—79. htips://doi.org/10.1038/
nrg.2016.150 PMID: 27990019

O’Neil D, Mendez-Figueroa H, Mistretta T-A, Su C, Lane RH, Aagaard KM. Dysregulation of Npas2 leads to altered metabolic pathways in a murine
knockout model. Mol Genet Metab. 2013;110(3):378-87. https://doi.org/10.1016/j.ymgme.2013.08.015 PMID: 24067359

Yu M, Li W, Wang Q, Wang Y, Lu F. Circadian regulator NR1D2 regulates glioblastoma cell proliferation and motility. Oncogene. 2018;37(35):4838—
53. https://doi.org/10.1038/s41388-018-0319-8 PMID: 29773903

Holt RJ, Young RM, Crespo B, Ceroni F, Curry CJ, Bellacchio E, et al. De Novo Missense Variants in FBXW11 Cause Diverse Developmental
Phenotypes Including Brain, Eye, and Digit Anomalies. Am J Hum Genet. 2019;105(3):640-57. https://doi.org/10.1016/j.ajhg.2019.07.005 PMID:
31402090

Castell6 MJ, Carrasco JL, Vera P. DNA-binding protein phosphatase AtDBP1 mediates susceptibility to two potyviruses in Arabidopsis. Plant
Physiol. 2010;153(4):1521-5. https://doi.org/10.1104/pp.110.158923 PMID: 20508138

Rahman SA, Grant LK, Gooley JJ, Rajaratnam SMW, Czeisler CA, Lockley SW. Endogenous Circadian Regulation of Female Reproductive Hor-
mones. J Clin Endocrinol Metab. 2019;104(12):6049-59. https://doi.org/10.1210/jc.2019-00803 PMID: 31415086

Shao S, Zhao H, Lu Z, Lei X, Zhang Y. Circadian Rhythms Within the Female HPG Axis: From Physiology to Etiology. Endocrinology.
2021;162(8):bgqab117. https://doi.org/10.1210/endocr/bgab117 PMID: 34125877

Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, et al. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physi-
ological and pathophysiological process and diseases. Signal Transduct Target Ther. 2024;9(1):50. https://doi.org/10.1038/s41392-024-01756-w
PMID: 38424050

Soyal SM, Bonova P, Kwik M, Zara G, Auer S, Scharler C, et al. The Expression of CNS-Specific PPARGC1A Transcripts Is Regulated by Hypoxia
and a Variable GT Repeat Polymorphism. Mol Neurobiol. 2020;57(2):752—64. https://doi.org/10.1007/s12035-019-01731-5 PMID: 31471878

Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116(3):615-22.
https://doi.org/10.1172/JCI27794 PMID: 16511594

Rollins DA, Coppo M, Rogatsky |. Minireview: nuclear receptor coregulators of the p160 family: insights into inflammation and metabolism. Mol
Endocrinol. 2015;29(4):502—-17. https://doi.org/10.1210/me.2015-1005 PMID: 25647480

PLOS One | https://doi.org/10.1371/journal.pone.0331218 September 9, 2025 15/16



https://doi.org/10.1139/apnm-2020-0005
http://www.ncbi.nlm.nih.gov/pubmed/32516539
https://doi.org/10.1017/S0029665112000067
http://www.ncbi.nlm.nih.gov/pubmed/22369781
https://doi.org/10.1002/bies.201500017
http://www.ncbi.nlm.nih.gov/pubmed/25966354
https://doi.org/10.1186/s12987-022-00322-2
https://doi.org/10.1186/s12987-022-00322-2
http://www.ncbi.nlm.nih.gov/pubmed/35307032
https://doi.org/10.21037/atm-22-6444
http://www.ncbi.nlm.nih.gov/pubmed/36923094
https://doi.org/10.1038/s41392-023-01651-w
http://www.ncbi.nlm.nih.gov/pubmed/37953273
https://doi.org/10.1186/s12943-018-0803-3
http://www.ncbi.nlm.nih.gov/pubmed/29455665
https://doi.org/10.1016/j.csbj.2022.05.027
https://doi.org/10.1016/j.csbj.2022.05.027
http://www.ncbi.nlm.nih.gov/pubmed/35685366
https://doi.org/10.3390/ijms19113447
https://doi.org/10.3390/ijms19113447
http://www.ncbi.nlm.nih.gov/pubmed/30400212
https://doi.org/10.1038/s41598-020-71948-1
https://doi.org/10.1038/s41598-020-71948-1
http://www.ncbi.nlm.nih.gov/pubmed/32985521
https://doi.org/10.3389/fncel.2023.1215255
http://www.ncbi.nlm.nih.gov/pubmed/37465213
https://doi.org/10.1016/j.molcel.2012.06.026
http://www.ncbi.nlm.nih.gov/pubmed/22841001
https://doi.org/10.1128/MCB.20.13.4773-4781.2000
http://www.ncbi.nlm.nih.gov/pubmed/10848603
https://doi.org/10.1038/nrg.2016.150
https://doi.org/10.1038/nrg.2016.150
http://www.ncbi.nlm.nih.gov/pubmed/27990019
https://doi.org/10.1016/j.ymgme.2013.08.015
http://www.ncbi.nlm.nih.gov/pubmed/24067359
https://doi.org/10.1038/s41388-018-0319-8
http://www.ncbi.nlm.nih.gov/pubmed/29773903
https://doi.org/10.1016/j.ajhg.2019.07.005
http://www.ncbi.nlm.nih.gov/pubmed/31402090
https://doi.org/10.1104/pp.110.158923
http://www.ncbi.nlm.nih.gov/pubmed/20508138
https://doi.org/10.1210/jc.2019-00803
http://www.ncbi.nlm.nih.gov/pubmed/31415086
https://doi.org/10.1210/endocr/bqab117
http://www.ncbi.nlm.nih.gov/pubmed/34125877
https://doi.org/10.1038/s41392-024-01756-w
http://www.ncbi.nlm.nih.gov/pubmed/38424050
https://doi.org/10.1007/s12035-019-01731-5
http://www.ncbi.nlm.nih.gov/pubmed/31471878
https://doi.org/10.1172/JCI27794
http://www.ncbi.nlm.nih.gov/pubmed/16511594
https://doi.org/10.1210/me.2015-1005
http://www.ncbi.nlm.nih.gov/pubmed/25647480

PLO\S\%- One

87.

88.

89.

90.

91.

Rudic RD, McNamara P, Curtis A-M, Boston RC, Panda S, Hogenesch JB, et al. BMAL1 and CLOCK, two essential components of the circadian
clock, are involved in glucose homeostasis. PLoS Biol. 2004;2(11):e377. https://doi.org/10.1371/journal.pbio.0020377 PMID: 15523558

Wondmkun YT. Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes Metab Syndr Obes.
2020;13:3611-6. https://doi.org/10.2147/DMS0.S5275898 PMID: 33116712

Gooley JJ. Circadian regulation of lipid metabolism. Proc Nutr Soc. 2016;75(4):440-50. https://doi.org/10.1017/S0029665116000288 PMID:
27225642

Maury E, Navez B, Brichard SM. Circadian clock dysfunction in human omental fat links obesity to metabolic inflammation. Nat Commun.
2021;12(1):2388. https://doi.org/10.1038/s41467-021-22571-9 PMID: 33888702

Torrego-Ellacuria M, Barabash A, Matia-Martin P, Sdnchez-Pernaute A, Torres AJ, Calle-Pascual AL, et al. Influence of CLOCK Gene Variants on
Weight Response after Bariatric Surgery. Nutrients. 2022;14(17):3472. https://doi.org/10.3390/nu14173472 PMID: 36079729

PLOS One | https://doi.org/10.1371/journal.pone.0331218  September 9, 2025 16/16



https://doi.org/10.1371/journal.pbio.0020377
http://www.ncbi.nlm.nih.gov/pubmed/15523558
https://doi.org/10.2147/DMSO.S275898
http://www.ncbi.nlm.nih.gov/pubmed/33116712
https://doi.org/10.1017/S0029665116000288
http://www.ncbi.nlm.nih.gov/pubmed/27225642
https://doi.org/10.1038/s41467-021-22571-9
http://www.ncbi.nlm.nih.gov/pubmed/33888702
https://doi.org/10.3390/nu14173472
http://www.ncbi.nlm.nih.gov/pubmed/36079729

