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Abstract

The release of pharmaceuticals into the environment is a major concern. These
compounds enter waterways through the effluent of wastewater treatment plants
(WWTPs). However, most WWTPs using mechanical-biological processes based on
activated sludge (CAS) are unable to effectively remove pharmaceuticals. Conse-
quently, pharmaceuticals end up in surface water, seawater and groundwater. While
some pharmaceuticals break down or degrade, most remain unchanged and even-
tually become persistent in the environment, retaining their biological activity even
at extremely low concentrations. This study aimed to investigate the occurrence,
removal efficiency, environmental discharge and ecological risks of selected phar-
maceuticals in municipal WWTPs. Samples were collected from six WWTPs serving
over 200,000 people. Concentrations of pharmaceuticals were analysed using the
LC-MS/MS method. Removal efficiency was assessed using mass balance calcula-
tions for pharmaceuticals in the influent, effluent and sludge. The potential ecologi-
cal risk posed by individual pharmaceuticals was then evaluated based on the risk
quotient (RQ). Concentrations of pharmaceuticals ranged from 7 ng/L to 1,019ng/L in
the influent, from 9ng/L to 2,266 ng/L in the effluent and from 8.5 ug/kg to 406 ug/kg
dw in the sewage sludge. All six WWTPs released pharmaceuticals into the environ-
ment. Naproxen, salicylic acid and ketoprofen were the only compounds effectively
removed during treatment. Fluoxetine and loratadine posed the greatest risk to
aquatic organisms. These findings will lay the groundwork for further research into
the inactivation of pharmaceutical active substances and their metabolites in sewage
and sludge.
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Introduction

In recent years, there has been increasing awareness of the presence of excessive
amounts of chemicals used in both industry and households in the environment
These natural or man-made substances are known as ‘emerging contaminants’ (ECs)
and are recognised as posing potential or actual threats to human health, aquatic life,
and the environment. Many of them are not yet subject to comprehensive regulations
or established health standards. Examples of ECs include pharmaceuticals, personal
care products, industrial chemicals, pesticides and microplastics [1-3] These con-
taminants can enter the environment in various ways, including through industrial
discharges, agricultural runoff, wastewater treatment plant effluent, and everyday
consumer products. According to Archer at al., emerging contaminants represent

a growing concern due to the potential risks associated with them and the limited
knowledge we have about their behaviour and impact [3]. Continued research, moni-
toring, and the development of effective mitigation strategies are crucial to addressing
this challenge [1—4]. A significant proportion of ECs consists of pharmaceutical prod-
ucts applied in medicine, veterinary medicine, animal husbandry and fish farming The
consumption of pharmaceuticals has increased exponentially, with the current ton-
nage measured in hundreds. This increase can be attributed directly to the ongoing
development of medicine and veterinary science, which has resulted in the release of
these substances into the environment [5-8]. According to Puckowski at al, phar-
maceuticals are designed to have specific biological effects at low concentrations.
Their levels in the environment range from ng/L to pg/L. Their continued release

into the environment can lead to long-term exposure and biomagnification, as tox-
icity can be enhanced by passing through trophic levels in the food chain. Although
some pharmaceuticals break down or degrade upon consumption or release into the
environment, most of them remain unchanged and eventually become persistent in
the environment [4]. Gworek at al state that many of these chemicals remain bio-
active even at extremely low concentrations. excretion from the body or disposal to
landfills. When mixed together, they can have unpredictable biochemical interactions.
They also tend to accumulate in the food chain, which can have a negative impact on
the aquatic organisms and the human health [9] The volume of data supporting the
presence of pharmaceutical residues in the environment (mainly in water, soil and
sediment) is growing all the time [1,4,10-14]

According to Sim at al., the main sources of pharmaceuticals in the environment
are wastewater from municipal treatment plants, livestock farms, hospitals and
pharmaceutical manufacturers. The degradation rate of these substances is being
exceeded by their release. The A significant concern pertains to the uncontrolled
release of pharmaceuticals into the environment, predominantly via municipal and
industrial wastewater from wastewater treatment plants (WWTPs) [8]. Research indi-
cates that the highest concentrations of pharmaceuticals can be found in raw waste-
The existing literature indicates that most wastewater treatment plants using
mechanical-biological processes based on conventional activated sludge (CAS)
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municipal wastewater usually involves mechanical and biological methods. Pharmaceutical removal efficiency depends on
the substance and its interaction with suspensions, and is typically low. Higher efficiencies are achieved at the biological
stage, where activated sludge is employed. Reductions in pharmaceutical compounds are achieved through adsorption on
sludge flocs and biodegradation [24]. The removal efficiencies of pharmaceuticals from the aqueous phase are calculated
based on the difference between the concentration of pharmaceuticals in the influent and effluent and are expressed as a
percentage. In many studies, the rate of removal efficiency adopts negative values [21,22,26—28].

Numerous studies have investigated the removal efficiency, emissions, and risk assessment of pharmaceuticals in
wastewater in various countries worldwide. Research conducted in a number of countries, including Canada [29], Korea
[27], China [6,16,30], Algiers [18], and several European countries, Ireland [31], Italy [32] Spain [5], has indicated the
occurrence of pharmaceuticals in both effluent and influent. In certain instances, negative values of removal efficiency
have also been documented. Loos at al asses the occurrence of as many as possible polar organic chemical contam-
inants included pharmaceuticals in WWTP effluents of 90 Western European availableEU Member States [33]. The
samples came from Austria (number of samples: 6), Belgium (18), Czech Republic (7), Cyprus (2), Finland (6), France
(5), Germany (2), Greece (2), Hungary (2), Ireland (2), ltaly (2), Lithuania (3), Netherlands (11), Portugal (2), Slovenia
(1), Spain (3), Sweden (11), and Switzerland (5). The findings of the study indicate an elevated frequency of detection for
pharmaceuticals, ranging from 50% to 90%. However, research focusing on the presence of pharmaceuticals in waste-
water in Central and Eastern Europe is scarce. This issue therefore needs to be addressed. Furthermore, the presence
of pharmaceuticals in the wider environment is a subject that is largely unmonitored in Central and Western Europe.

For example, as shown in the case of Poland, there is little existing literature on pharmaceuticals in wastewater The
majority of these studies are conducted at the local level and/or for individual WWTPs [7,24—-26,34—36]. According to the
Statistical Yearbook of the Republic of Poland, the average annual figure for pharmaceutical sales in Poland was PLN
14,568 million, equivalent to 25,784 tonnes of pharmaceutical products [37] Poland is distinguished by its comparatively
limited water resources and substantial population. Gworek et al estimated that over 82% of the water utilised by the
Polish economy is sourced from surface water, with a further 16% derived from groundwater and a minimal percentage,
amounting to approximately 1%, discharged from mines. Surface water resources are the primary source of drinking
water. The economic utilisation of water and the function of rivers, streams, and lakes as recipients of wastewater have
a substantial impact on water quality and quantity [4,9]. Consequently, it is imperative to undertake a comprehensive
investigation into the occurrence, removal efficiency, emission, and risk assessment of the most prevalent pharmaceu-
ticals in Polish conventional WWTPs. Furthermore, there is an urgent necessity for research to be conducted into the
presence of pharmaceuticals in wastewater and sewage sludge, with a particular emphasis on wastewater treatment
processes that demonstrate analogous characteristics. Giebutowicz et al. estimated that the majority of wastewater
treatment plants (WWTPs) in Poland use the conventional activated sludge (CAS) system [24].The primary objective

of the present study was to estimate the removal efficiency and emission of pharmaceuticals to the environment. This
was achieved by calculating the daily mass load of pharmaceuticals during the mechanical-biological process of waste-
water treatment in municipal wastewater treatment plants using conventional activated sludge (CAS). The results of the
concentration of pharmaceuticals in the treated effluent were then used to estimate the potential risk they could pose to
aquatic organisms. Samples were collected from six wastewater treatment plants (WWTPs) located in Poland’s six larg-
est agglomerations, with a population equivalent (PE) of over 200,000.The removal efficiency assessment was based
on mass balance calculations of pharmaceuticals in the influent, effluent and sludge. The underlying research hypoth-
esis was that in the context of large urban agglomerations, conventional municipal wastewater treatment plants would
demonstrate an ineffective capacity to remove the pharmaceuticals under investigation from the treated effluent. This
was predicated on the assumption that the concentrations of pharmaceuticals in the effluent could potentially pose a risk
to the aquatic environment.
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The present study has focused on the most frequently detected pharmaceuticals in wastewater and surface water, as

B-blockers, antidepressants, non-steroidal anti-inflammatory drugs (NSAIDs), antibiotics and antihistamines. The sub-
stances have been selected based on their chemical stability and low degradation rates.

Materials and methods

Sampling area and sample collection

Poland is located within the catchment areas of the Baltic (99% of the territory), Black and North Seas. The main rivers
are the Vistula and the Oder, which drain 54% and 28% of the Polish territory respectively. Six wastewater treatment
plants (WWTPs) with mechanical-biological treatment technology using conventional activated sludge (CAS) were
selected for the study. The selection of WWTPs was based on their location within major urban agglomerations in Poland
(Fig 1) with a service population of over 200,000. Notably, all selected WWTPs are situated on the borders of the catch-
ment areas of the two largest rivers in Poland, the Vistula and the Oder. The hydrological network in Poland is illustrated
in Fig 1, while the characteristics of the individual WWTPs are presented in Table 1. Fig 2 presents a schematic diagram

of the wastewater treatment process at six WWTPs.

Samples were collected weekly in July for three years using automated samplers. The sampling period lasted 72 hours,
with samples taken hourly. This process covered both the influent and effluent streams. The samples were taken in pro-
portion to the flow rates of the influent and effluent, and the results were then averaged. Influent samples were collected
from the inlet chamber, while effluent samples were gathered from the collection channels. Sludge samples were collected
once a week after dewatering. Samples were collected in plastic containers and transported immediately to the laboratory.
Samples were stored at —20°C, protected from light and air, until further analysis. The characteristics of the effluent are

presented in Tables Aand B in S1 File.
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Fig 1. The locations of six WWTPs. (Reprinted from USGS National Map Viewer -public domain, https://apps.nationalmap.gov/viewer/).
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Table 1. Characteristics of the WWTPs.

WWTPs | Latitude and | Inhabitants Daily average | Daily Daily average sewage | Type of Industrial Wastewater
number | longitude number served | flow rate maximum | sludge production wastewater | wastewater receiver
by WWTPs Qd” m¥d flow rate P, Kg/d dw contribution %
Qm’
m?/d
WWTP1 | 52°35'10.0"N | 2,100,000 435,300 515,000 94,707 Urban 27% Vistula
20°96’00.2"E Stormwater
WWTP2 | 51°72'92.9°N | 1,026,260 180,000 332,000 45,107 Industrial | 129, Ner, the catchment
19°34'50.8’E of Odra
WWTP3 | 52°43'10.3"N | 350,000 50,000 85,400 8,107 29% Warta, catchment
16°96'02.4’E of Odra
WWTP4 | 50°81°80.5"N | 313,385 40,136 88,000 6,984 1% Warta, catchment
19°16'44.3'E of Odra
WWTP5 | 50°26'48.4"N | 200,000 40,000 40,000 6,493 3% Rawa, catchment
19°07'14.8’E of Vistula
WWTP6 | 50°03'14.0"N | 780,000 165,000 328,000 41,823 4% Drwina, catchment
20°01'76.9'E of Vistula

“Qd, Qm, Pd, are average values from the years in which the research was conducted.

https://doi.org/10.1371/journal.pone.0331211.t001
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Fig 2. Schematic diagram of the treatment processes in the six WWTPs.

https://doi.org/10.1371/journal.pone.0331211.9002

The following types of active pharmaceutical ingredients were selected for the study: antibiotics: Sulfamethoxazole (SUL),
non-steroidal anti-inflammatory drugs: Ibuprofen (IBU), Naproxen (NAP), Diclofenac (DIC), Ketoprofen (KET), antihyperten-
sive drugs: Atenolol (ATE), Propranolol (PRO), Matoprolol (MET), Furosemide (FUR) and neuroactive drugs: Carbamazepine
(CAR), Mianserin (MIA), Kluoxetine (FLU). Additionally antihistamines drug Loratadine (LOR) and salicylic acid (SAL) were
tested. The physicochemical characteristics of the individual pharmaceuticals are shown in the Table C in S1 File.

Analytical methods

The Oasis HLB and Oasis MCX columns were first conditioned with methanol and water mixture (1:1, v/v). Then, 100 mL
of collected wastewater samples were passed through Oasis HLB and Oasis MCX in succession The deposits from
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the columns were then desiccated under vacuum conditions.The analytes were then extracted using 6 mL of methanol,
followed by a mixture of methanol and 0.1% formic acid. The extracts were concentrated under a nitrogen stream. After
concentration, the enriched extracts were diluted to a final volume of 1 mL with a methanol-water mixture containing 0.1%
formic acid. Finally, the solution was filtered through a syringe filter and analyzed using liquid chromatography-mass spec-
trometry (LC-MS).

The 0.59 of collected sludge samples were lyophilised, and placed in Falcon tubes, followed by the addition of acetoni-
trile: ethyl acetate (1:1, v/v) with 10% acetic acid and shaken vigorously for 1 min. The samples were then extracted at 50
°C for 10 min using ultrasound and centrifuged at 5000 rpm. The solutions of the sediments obtained were decanted. The
procedure was repeated twice with a fresh portion of the extraction mixture. The decanted extracts were concentrated in
a nitrogen stream. The residues were dissolved in 1 ml of a mixture of MeOH: H,0 (1:1, v/v) with 0.1% formic acid. The
filtered extracts were subjected to chromatographic analysis using the LC-MS method.

Chromatographic analysis was performed on a Shimadzu LC-MS/MS 8050 chromatograph. The chromatographic
conditions are presented in Tables D and E in S1 File. Quantitative analysis was performed using the calibration curve
method. The R2 coefficient for the calibration curves was between 0.997 and 0.999. The LOD and LOQ are presented in
Table F in S1 File.

Analyses were performed in triplicate. The method was validated using fortified samples. The recoveries ranged from
68% to 94% for wastewater and 40% to 70% for sewage sludge. The RSD ranged from 1% to 8% for wastewater and
10% to 25% for sewage sludge. The results of the analysis are calculated in terms of recovery. The RSD and recovery
data are presented in Table F in S1 File.

Data calculations. The analysis results of individual pharmaceuticals in wastewater and sewage sludge were
normalized based on the average daily wastewater flow, the daily amount of sewage sludge produced, and the number of
inhabitants served by the studied wastewater treatment plants. The following equations were used.

o Ci X Qd
l 108 (1)

M, = Zo x Qo
10 ()

Mgs = Cssixspd
10 (3)

RE% = w « 100
M; @)
o Myx 1000

Mioad/ 1000 inhabitants = N x 10 )
Emis/1000 inhabitants = (Me + MF\ISR <1000 e ©)

Where Ci and Ce (ng/L) are the concentrations of individual PPCPs in the influent and effluent, respectively, Css (ug/
kg) is the content of individual PPCPs in the sludge. Qd (m®/d) is the average daily flow and Pd (kg/d) is the daily sludge
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production in STPs (Table 1). Mi, Me and Mss (g/d) are the daily mass fluxes of PPCPs in influent, effluent and sludge,
respectively. RE (%) is the removal efficiency of individual PPCPs during the treatment process in the WWTP. Mload/1000
p.e. (mg/d/1000 p.e.) is the daily load of individual PPCPs in the influent per 1000 p.e. Emis/1000 p.e. (mg/d/1000 p.e.)

is the daily emission of individual PPCPs per 1000 p.e. Ni is the number of inhabitants served by the WWTP (Table 1)
[10,16,21,39].

Results and discussion
Presence of pharmaceuticals in WWTPs

The mean concentrations of the pharmaceuticals under study in the influent, effluent, and sewage sludge collected from
sixsewage treatment plants (WWTPs) are presented in Table 2. The results of the pharmaceutical content for each treat-
ment plant, together with the calculated data according to Equations 1-6, can be found in Table G in S1 File. Atenolol,
propranolol, and mianserin were not detected in any effluent samples from the examined plants, and atenolol was not
detected in the sludge samples. In the influent, the concentrations of pharmaceuticals ranged from 7 ng/L to 1019ng/L,
with the highest concentrations recorded for the following compounds: ketoprofen (ranging from 249 ng/L to 1019ng/L),
sulfamethoxazole (ranging from 89ng/L to 693 ng/L), and carbamazepine (ranging from 22 ng/L to 624 ng/L). The concen-
trations of the other pharmaceuticals investigated did not exceed 229 ng/L. Salicylic acid was present only in WWTP2.

In the effluent, the concentrations of pharmaceuticals ranged from 9ng/L to 2266 ng/L, with the highest concentrations
detected for the following compounds: fluoxetine (204—2266 ng/L), carbamazepine (303—1555ng/L), sulfamethoxazole
(96-974 ng/L), diclofenac (100-851ng/L) and ibuprofen (89—645ng/L). Concentrations of other drugs did not exceed
417 ng/L. Loratadine was detected only in the samples from WWTP3. In sewage sludge, the levels of pharmaceuticals

Table 2. The min-max, mean concentration, frequency of detection and removal efficiency of pharmaceuticals in influent, effluent and sewage
sludge from 6 WWTPs.

Name of influent effluent sewage sludge RE
substance range
min-max %
mean range freq % |mean range freq % | mean(n=6) range freq %
(n=6) ng/L | min-max (n=6) ng/L | min-max Hg/Kg dw min-max pg/
ng/L ng/L Kg dw
IBU 23 18-74 50 208 18-654 67 nd - - N-100
NAP 54 17-229 50 nd - - nd - - 91-100
DIC 7 3-14 33 292 100-851 100 nd - - N
KET 668 249-1019 100 55 2-171 83 nd - - 66-100
SUL 279 89-693 100 324 2.4-974 83 0.9 1-1.76 17 N-100
ATE nd - - nd - - nd - - -
PRO nd - - nd - - 16 4-92 17 N
MET 103 2-191 83 199 2-417 83 20 8.5-28 100 N
FUR 87 2.1-180 83 108 2-495 80 nd - - N-100
CAR 265 22-624 100 792 303-1555 100 46 13-119 83 N
MIA nd - - nd - - 27 4-161 17 N
FLU 68 4-212 67 787 204-2266 100 301 164-406 83 N
LOR nd - - 40 2-223 17 nd - - N
SAL 34 2.1-190 17 nd - - nd - - 98-100

Freq — Frequency of detection, RE — removal efficiency, N — negative value, nd — not detected.

https://doi.org/10.1371/journal.pone.0331211.t002
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ranged from 1.76 ug/kg dw to 406 pg/kg dw, with the highest levels detected for the compounds: fluoxetine (164—406 ug
kg™ dw), carbamazepine (13—-119 ug/kg dw) and metoprolol (8.5-28 ug/kg dw). Mianserin was detected only in WWTP6
(161 pg/kg dw), while propranolol was detected in WWTP4 (92 ug/kg dw) and sulfamethoxazole in WWTP5 (1.76 ug/kg
dw). The presence of the other pharmaceuticals was not detected in the sewage sludge.

The findings revealed that the concentration of pharmaceuticals in the influent, effluent, and sludge did not depend on
the number of people served by the investigated WWTPs. This observation contradicts the results obtained in other stud-
ies [21,40]. As shown in Table 2, the maximum concentrations of pharmaceuticals in the influent and effluent of WWTPs in
Poland did not exceed the maximum levels found in other global studies, and in many cases, the mean results were com-
parable (see Table 3). For instance, the mean concentrations of ibuprofen, naproxen, diclofenac, ketoprofen, sulfamethox-
azole and salicylic acid in influent and effluent samples collected from WWTPs in Ireland, Spain, Canada and Algiers were
higher than the maximum values obtained in this study. However, the mean concentrations of the studied pharmaceuticals
90 WWTPs [33], which examined the mean concentration of select pharmaceuticals (see Table 3), the values obtained in
this study were much higher for ibuprofen and diclofenac, while the concentration of ketoprofen was similar (see Table 2).
The mean concentrations of sulfamethoxazole and carbamazepine were similar to those detected in the Polish WWTPs,
while the mean concentration of fluoxetine was much higher. The concentration of pharmaceuticals in the previous study
in Poland (Table 3) did not deviate from the concentration presented in this study (Table 2).

The results presented in this paper on pharmaceutical concentrations in effluent were compared with data from 90
European WWTPs [33]. According to Loss et al., the compounds most frequently detected in the examined effluents were
carbamazepine, diclofenac and sulfamethoxazole, with detection frequencies of 90%, 89% and 83%, respectively. In tests
carried out in Poland, carbamazepine and diclofenac were detected in all cases, and sulfamethoxazole in 83% of cases.
Carbamazepine and sulfamethoxazole were also detected in sewage sludge, with detection frequencies of 83% and 17%,
respectively. Loss et al. found naproxen, ibuprofen and ketoprofen with frequencies of detection of 66%, 57% and 48%,

Table 3. The min-max, mean concentrations of pharmaceuticals in influent, effluent and sewage sludge, as reported in the literature.

Name of substance influent effluent influent effluent sewage sludge
range in range in effluent mean content in 90 European WWTPs® worldwide worldwide | worldwide
Poland 2 Poland? range °© range °© range ¢
ng/L ng/L ng/L ng/L Hg/kg dw

IBU 280-34508 | 19.5-110 80.5 300-14600 44-2129 0.5-90

NAP 240-22247 | 28-70 26.7 9.2-9584.8 0.71-958

DIC 460-4477 120-5630 |49.5 49-2318.5 14-2710.7 |0.8-14

KET 79.4-2336 | 87.4-257 |86.0 4.5-668 1.4-1653 70-100

SUL 280 25-2500 9.1-1000 0.1-2.9

ATE 0.3-111

PRO 1.2-75 2-310 0.05-29.6

MET 59-1700 184-4340 | 0.01-226

FUR 450-6450 14-2280

CAR 832 3.9-550 6.4-4609 1.80-57

MIA 1-62.3

FLU 21 5-21.5 50-100

LOR

SAL 40.3-1400 | 12.1-470 12800-38100

https://doi.org/10.1371/journal.pone.0331211.t003
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respectively. The detection frequency of mianserin in effluent was no more than 28%, while the detection frequency of flu-
oxetine was 22%. In contrast to the findings of this study, naproxen was not detected in the effluent of any of the WWTPs
examined. Ibuprofen and ketoprofen, however, were present in 67% and 83% of the samples, respectively. Mianserin was
not detected in the effluent of any of the WWTPs included in this study, whereas fluoxetine was detected in all effluent
samples.

The removal efficiency of pharmaceuticals in WWTPs

The mass loads of the pharmaceuticals under investigation were calculated according to Equations 1-3. The removal effi-
ciencies of the pharmaceuticals were calculated using Equation 4. The removal efficiencies of individual pharmaceuticals
in the WWTPs under study are presented in Table 2.

In the context of wastewater treatment processes, the presence of naproxen and salicylic acid was observed to be
completely eliminated in all the WWTPs that were the subject of this study. A similar trend was noted with ketoprofen,
which was also effectively removed, with removal efficiencies ranging from 66% (WWTP6) to 100% (WWTPS5). Ibupro-
fen, on the other hand, exhibited a removal efficiency of up to 86% in WWTP5, while in the other investigated WWTPs,
this compound was found to exhibit negative removal rates. The removal efficiency of sulfamethoxazole was 100% in
WWTP3; however, in WWTP5 and WWTPG, it was only 0.5% and 1%, respectively, and in most cases, the sulfamethox-
azole removal efficiency displayed negative values. The removal efficiency of furosemide was 98% in WWTP3 and 96%
in WWTPS. In contrast, the removal efficiency of furosemide was 30% in WWTP1, while in the other WWTPs investigated,
the removal efficiency showed a negative value. Diclofenac, carbamazepine, and fluoxetine were not effectively removed
in any of the investigated wastewater treatment plants, resulting in negative removal values. Metoprolol was not effectively
removed, demonstrating negative removal efficiency in all the wastewater treatment plants (WWTPs) studied. Mianserin,
loratadine, and propranolol also exhibited negative removal efficiencies, with mianserin and propranolol being detected
solely in sewage sludge.

The removal efficiency of the studied pharmaceuticals varied significantly, ranging from complete removal to none,
depending on the specific compound and the wastewater treatment plant [1,22,33]. For example, the diclofenac com-
pound is reported to be generally poorly removable during wastewater treatment, with removal values often reported
as negative [4,18,22,26,39]. Many studies have shown that wastewater treatment systems based on the conventional
activated sludge (CAS) method do not effectively remove compounds such as diclofenac, carbamazepine or sulfamethox-

efficiencies for this compound [22]. The reported removal efficiencies of fluoxetine and furosemide range from 20% to
100% [22]. The available literature on loratadine indicates that its removal rates do not exceed 40% [22]. Loratadine is an
antihistamine that is typically found in wastewater, mostly during the spring and early summer [34]. This seasonal occur-
rence may explain why loratadine was detected in only one of the wastewater treatment plants (WWTPs) examined in this
study. The presence of this compound in one or two investigated sites has also been reported in other studies [40].

The negative removal efficiency indicates that the concentration of pharmaceuticals in the effluent was higher than in
the influent. Most pharmaceuticals enter wastewater through faeces and urine, existing as a mixture of parent compounds
and glucuronic acid conjugates. During the biological wastewater treatment process, these conjugates may revert to
their parent compounds, potentially increasing the concentration of pharmaceuticals in the wastewater [33]. It has been
reported that the occurrence of diclofenac and its glucuronide in influent samples results in the deconjugation of diclofenac
acyl glucuronides back to diclofenac during the biological wastewater treatment process, thereby increasing the con-
centration of diclofenac in the effluent [33,41]. Furthermore, pharmaceuticals have been observed to become entrapped
within faecal particles in wastewater, with a subsequent gradual release during the wastewater treatment process. This
phenomenon can lead to an enhancement in the concentrations of pharmaceuticals in the effluent [33].
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All the WWTPs examined in the study employed the same type of wastewater treatment process. However, their effi-
ciency in removing the same pharmaceuticals varied. Similar patterns have been observed in wastewater treatment plants
around the world, where the removal efficiency of individual pharmaceuticals differs across various WWTPs, even when
the same treatment parameters are applied [18,39]. The effectiveness of biological treatment for organic compounds in
wastewater relies on several factors, including oxygen levels, temperature, and the type and quantity of bacteria present.
This explains the significant variations in treatment efficiency observed in different WWTPs that use the activated sludge
method (CAS). Hydraulic retention time (HRT) and solids retention time (SRT) in conventional activated sludge (CAS)
systems has been a subject of considerable research [1]. The prevailing HRT values in the examined WWTPs were
found to be approximately one day, with a typical range of 20—40 hours. The variation in HRT values among the WWTPs
was minimal, totalling less than 12 hours, suggesting that this variation does not have a significant impact on removal
efficiency. The estimated SRT ranged from 10 to 20 days. However, WWTPs serving populations of over 200,000 do not
typically operate under steady conditions due to daily fluctuations in the influent load to the bioreactors, thus hindering the
assessment of the effect of SRT on removal efficiency.

Emission of pharmaceuticals to the environment

To normalise the results and enable comparison between treatment plants of different sizes, the results are divided by
the population served by the plant in question. The mass load typically equates to 1,000 inhabitants and were calculated
using equations 5 and 6, with the results displayed in Fig 3. WWTP2, WWTP5 and WWTP6 exhibited the highest values
(337-397 mg/d/1000 inhabitants) of the mass load per 1000 inhabitants. Furthermore, WWTP1 and WWTP6 exhibited
the highest discharges of pharmaceuticals to the environment (785 mg/d/1000 inhabitants and 778 mg/d/1000 inhabi-
tants, respectively). For the remaining WWTPs, the mass load of pharmaceuticals ranged from 153 mg/d/1000 inhabitants
(WWTP1) to 279 mg/d/1000 inhabitants (WWTPS). The range of emissions to the environment was from 231 mg/d/1000
inhabitants (WWTP5) to 552 mg/d/1000 inhabitants (WWTP4). It was found that the daily emission of pharmaceutical com-
pounds to the environment exceeded the daily mass load in all WWTPs investigated.

The average daily discharge of pharmaceuticals from 6 WWTPs was 524 mg/d/1000 inhabitants. This corresponds to
191 g of pharmaceuticals per 1000 inhabitants per year. Given that each of the agglomerations under study has a mini-
mum population of 200,000 inhabitants, the annual emission of pharmaceuticals into rivers is a minimum of 40 mg.

1000

1

Mload Emis Mload Emis Mload Emis Mload Emis Mload Emis Mload Emis
WWTP1 WWTP2 WWTP3 WWTP4 WWTP5 WWTP6

=]

[y
=]

mg/d/1000 inhbitants

Fig 3. Daily mass load (Mload) and daily emission (Emis) of sum pharmaceuticals per 1000 inhabitants.

https://doi.org/10.1371/journal.pone.0331211.9003
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The percentages of individual pharmaceuticals in the daily mass load and emissions are shown in Fig 4. In each of the
investigated WWTPs, ketoprofen accounted for the highest rate of the daily mass load/1000 inhabitants (29-55%), fol-
lowed by sulfamethoxazole (7—30%), carbamazepine (3—37%) and fluoxetine (1-27%). In WWTP1, WWTP3 and WWTP6,
the compound furosemide was also present in significant proportions (9—13%). The above mentioned compounds are
listed as the most commonly occurring compounds in the influent [22]. The percentage of individual compounds in the
total amount of pharmaceuticals discharged to the environment was not always proportional to the number of pharma-
ceuticals entering the wastewater treatment plant. The percentage of pharmaceuticals discharged to the environment
also varied considerably between WWTPs. In WWTP1, fluoxetine and ibuprofen accounted for the highest percentage of
pharmaceuticals discharged to the environment (61% and 17%, respectively), in WWTP2: carbamazepine (34%), sulfa-
methoxazole (32%) and fluoxetine (21%), in WWTP3: carbamazepine (29%), diclofenac (28%) and metoprolol (14%), in
WWTP4: carbamazepine (32%), sulfamethoxazole (21%) and diclofenac (12%), in WWTP5: carbamazepine (24%) and
metoprolol (12%): carbamazepine (32%), sulfamethoxazole (21%) and diclofenac (12%), in WWTP5: carbamazepine
(24%) and sulfamethoxazole (22%), and in WWTP6: carbamazepine (43%), fluoxetine (15%) and furosemide (14%).
Except for fluoxetine and furosemide (insufficient data available), all compounds are listed as the most frequently emitted
to the environment [1,18,20,22,39].

Risk assessment of pharmaceuticals in aquatic species

The potential ecological risk of individual pharmaceuticals was assessed based on the risk quotient (RQ), which was cal-
culated as the ratio between the maximum measured concentration (MEC) of a given pharmaceutical in wastewater (ng/L)
and the predicted no-effect concentration (PNEC) (ng/L) [23,36,41,42]. The PNECs used for the risk assessment are
shown in Table 3 and represent the lowest ecotoxicological PNECs reported in the literature for three groups of aquatic
organisms: algae, daphnia and fish. The risk ranking criteria employed in this study were as follows: RQ<0.1 — minimal
risk, 0.1 <RQ<1 — moderate risk, RQ 21 — high risk [23,31,40,43]. The maximal RQ values for the pharmaceuticals stud-
ied are shown in Table 4. The RQ values for each WWTPs are shown in the Table H in S1 File.

As demonstrated in Table 4, the findings of this study indicate that fluoxetine and loratadine pose a moderate to high
risk to all three groups of aquatic organisms. The PNEC values for loratadine were derived through the calculation of pre-
dicted (Q)SARs, which necessitate careful consideration due to their potential endocrine-disrupting effects. These effects
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Fig 4. Percentage of individual pharmaceuticals in daily load (Mload) and daily emission (Emis) per 1000 inhabitants.

https://doi.org/10.1371/journal.pone.0331211.9004
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Table 4. Environmental risk assessment (RQ) of the maximum concentration of pharmaceuticals in effluent.

Name of substances Algae Daphnia Fish PNEC

ug/L

IBU 0.161 0.072 0.129 Algae 4.00 a0
Daphnids 9.02 2°
Fish 5.00 a0

NAP nd* nd* nd* Algae 22.0 ab
Daphnids 15.0 2°
Fish 34.0 a°

DIC 0.059 0.039 0.002 Algae 14.5 2>
Daphnids 22.0 a°
Fish 532 a,b

KET 1.425 0.007 0.000 Algae 164 2>
Daphnids 248 2
Fish 32.0 2

SUL 0.012 0.012 0.001 Algae 0.120 2
Daphnids 25.2 2°
Fish 562 2°

ATE nd* nd* nd* Algae 78.0 @
Daphnids 83.0 2
Fish 1500 2

PRO nd* nd* nd* Algae 5.50 @
Daphnids 2.30 2
Fish 30.0 @

MET 0.003 0.007 0.001 Algae 7.9 °
Daphnids 63.9 ®
Fish 944 °

FUR 0.003 0.008 0.001 Algae 142 ¢
Daphnids 60.62
d

Fish 497 ©

CAR 0.018 0.020 0.044 Algae 85.0 a0
Daphnids 76.3 2°
Fish 35.4 ab

MIA - - - nd ¢

FLU 2.833 4.443 1.333 Algae 0.800 2°
Daphnids 0.510

ab
Fish 1.70 a0

LOR 4.551 1.570 10.619 Algae 0.049f
Daphnids 0.142f
Fish 0.021f

SAL - - - nd ¢
PNEC predicted no-effect concentration, * nd — not detected.
a[42] b [44], ¢ [43], ¢ [45], ¢ No data (no toxicity data was found), f Indicates predicted (Q)SAR values [40].

https://doi.org/10.1371/journal.pone.0331211.t004

are not incorporated into (Q)SAR calculations and consequently, the potential risk may differ considerably from the esti-
mated risk [40]. Fluoxetine and ibuprofen have been frequently reported in the literature as posing a high risk to aquatic
organisms [22,42,46], however, in this study, ibuprofen barely showed a moderate risk (Table 3). Diclofenac and naproxen
have also been identified as posing a high risk [15,43,46,47]. However, these pharmaceuticals exhibited a low risk in the
present study. Ketoprofen was found to pose a moderate to high risk to algae and a low risk to daphnia and fish. While
ketoprofen is generally classified as low risk in the literature [22,43], studies conducted in wastewater and rivers have
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indicated a high risk [3]. The remaining pharmaceuticals tested exhibited minimal risk to aquatic organisms.The presence
of pharmaceutical active substances in treated wastewater has been identified as posing the greatest risk to the aquatic
environment. This is due to their chemical stability and slow degradation process. Furthermore, the presence of retained
pharmaceutical active substances in sewage sludge may pose a risk if they are incorporated into the food chain during
natural utilisation. The findings of this study will lay the groundwork for research into the inactivation of pharmaceutical
active substances and their metabolites in sewage and sewage sludge.

Conclusions

The study’s findings demonstrated that municipal wastewater treatment facilities are a source of pharmaceuticals being
released into the environment. Conventional mechanical-biological treatment processes (CAS), have been found to be
ineffective at removing these pharmaceuticals from wastewater. Discharging pharmaceuticals into the aquatic environ-
ment via wastewater poses a significant threat to aquatic organisms. The investigation found that influent samples had
the highest concentrations of sulfamethoxazole, ketoprofen and carbamazepine.The effluent samples showed the highest
levels of fluoxetine, carbamazepine and sulfamethoxazole..The highest concentrations of carbamazepine, fluoxetine and
metoprolol were found in sewage sludge.

During the wastewater treatment processes, naproxen and salicylic acid were the only compounds effectively removed.
The removal efficiencies of ketoprofen ranged from 66 to 99%, while the removal efficiencies of ibuprofen, sulfamethox-
azole and furosemide ranged from negative values to 99%. During the CAS wastewater treatment process, diclofenac,
metoprolol, propranolol, carbamazepine, fluoxetine, loratadine and mianserin were not removed from the influent (nega-
tive removal efficiency).

Daily emissions of pharmaceuticals to the environment exceeded the daily mass load. The annual emissions of
pharmaceuticals to rivers from wastewater treatment plants in the study area amounted to at least 40 Mg. Ketoprofen,
sulfamethoxazole, carbamazepine and fluoxetine were identified as the primary contributors to the total mass load and
emissions of pharmaceuticals, at up to 56%, 31%, 38% and 27% respectively.

Fluoxetine and loratadine posed the highest risk to the three groups of aquatic organisms tested (algae, Daphnia and
fish), while ibuprofen posed a moderate risk. Sulfamethoxazole posed a high risk only to algae. The other pharmaceuticals
did not pose a risk to the selected aquatic organisms.
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(DOCX)
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