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Abstract 

As a crucial component in rotating machinery, bearings are prone to varying degrees 

of damage in practical application scenarios. Therefore, studying the fault diagno-

sis of bearings is of great significance. This article proposes the Kepler algorithm to 

optimize the weights of neural networks and improve the diagnostic accuracy of the 

model. At the same time, combined with attention mechanisms, the model will focus 

on useful information, ignore useless information, and efficiently extract key features. 

Finally, using third-party bearing data and inputting it into the fault diagnosis model, it 

was verified that Kepler algorithm and attention mechanism can improve the diag-

nostic accuracy. Meanwhile, the algorithm proposed in this paper was compared with 

other algorithms to verify its feasibility and superiority.

1.  Introduction

As a crucial component in rotating machinery, bearings have the advantages of com-
pact structure, light weight, strong load-bearing capacity, and low cost. In practical 
application scenarios, bearings are subjected to complex dynamic heavy load forces 
and are susceptible to varying degrees of damage, resulting in different types of fail-
ure [1]. Meanwhile, the majority of mechanical equipment failures are directly caused 
by bearing failures, accounting for 40% −50% [2,3]. Therefore, studying the fault 
diagnosis of bearings is of great significance. In recent years, this issue has received 
widespread attention from scholars both domestically and internationally.

When diagnosing bearing faults, traditional fault diagnosis methods and artificial 
intelligence fault diagnosis methods can be used. The traditional fault diagnosis 
method is to use sensors to collect data on bearing operation, manually extract 
features from the operation data, and finally use the extracted features to train a 
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machine learning model that can distinguish different types of fault features [4–6]. 
At present, traditional fault diagnosis mainly includes K-nearest neighbor algorithm, 
support vector machine, and artificial neural network. Due to its simple principle, 
K-Nearest Neighbor (KNN) algorithm is often used in early bearing fault diagnosis.
Song et al. [7] proposed a fault detection method based on standardized KNN, which 
characterizes the distance between data and its neighbors through a standard-
ized distance,this method requires a large amount of computation and is inefficient 
because for each text to be classified, its distance to all known samples must be 
calculated. In order to reduce computational complexity and improve efficiency, the 
support vector machine (SVM) method was adopted in later fault diagnosis.Chen et 
al. [8,9] proposed an early fault diagnosis method based on orthogonal neighborhood 
preservation embedding and Adaboost SVM algorithm. The orthogonal neighborhood 
preservation embedding method is used to eliminate redundant information in the 
original multi domain feature set, and then SVM is improved into Adaboost SVM for 
early fault diagnosis. However, this method relies heavily on the operator’s profes-
sional knowledge. In order to reduce the dependence of the model on the operator’s 
professional knowledge,Rex et al. [10,11]proposed a hybrid method for extracting 
and classifying gear faults by integrating Hu invariant moments and artificial neural 
networks. However, this method is inefficient and labor-intensive. In short, traditional 
fault diagnosis methods have obvious drawbacks, as they require a large amount 
of manpower and specialized knowledge in the corresponding field, resulting in low 
accuracy. In addition, there may be errors in the diagnosis process due to subjective 
factors.

Meanwhile, artificial intelligence can also be applied in the field of bearing fault 
diagnosis, achieving excellent results in the field of fault diagnosis [12–15]. Among 
them, neural networks, as a branch of artificial intelligence, are widely used in fault 
detection of bearings [16–19]. Jin Zhihao et al. [20]used neural networks for bearing 
fault detection. This method takes the original time-domain vibration signal as input, 
converts the data form using Welch power spectrum while suppressing high-intensity 
noise, and then trains the convolutional neural network with the obtained power 
spectrum. Finally, the trained model is used for bearing fault diagnosis. However, this 
method requires preprocessing of irrelevant data, and the diagnosis process is rela-
tively complicated. In order to reduce the tedious data preprocessing process, Gao 
Feng et al. [21]established a neural network-based fault diagnosis model to achieve 
adaptive extraction of fault features. Although this method can reduce the prepro-
cessing process, the neural network structure used is relatively simple, which makes 
the diagnosis process more complicated and requires multiple training of the model. 
In order to reduce the number of training models, Chang Miao et al. [22] proposed a 
fault diagnosis algorithm based on an improved neural network.Improving the struc-
ture of the neural network model by adding a new convolutional layer before the fully 
connected layer improves the structure of the neural network. However, this method 
does not optimize the weights of the neural network, and when dealing with numer-
ous data with small differences, the neural network cannot concentrate and efficiently 
capture feature data.
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In order to solve the weight optimization problem in the neural network structure and improve the attention of the neural 
network, this paper uses Kepler algorithm to optimize the weights in the neural network, and applies attention mechanism 
to enhance the attention of the neural network. The optimized neural network model is applied to bearing fault diagnosis, 
which improves the efficiency and accuracy of bearing fault diagnosis.

2.  Basic knowledge

2.1.  Kepler algorithm

In dealing with complex problems and optimization fields, some traditional optimization methods, such as gradient descent 
and genetic algorithms, have achieved good results in many problems. However, when dealing with complex multimodal 
optimization problems and highly nonlinear problems, they still expose slow convergence speed and local optima. There-
fore, new optimization algorithms have emerged to better solve complex problems in modern science and engineering. The 
inspiration for Kepler Optimization Algorithm (KOA) comes from Kepler’s laws of planetary motion, which apply the laws 
of planetary motion to the algorithm and design a new type of swarm intelligence optimization algorithm. Its emergence 
provides engineers with a novel and unique way to solve optimization problems, especially in solving complex numerical 
optimization and machine learning parameter tuning, demonstrating good performance. The advantages of KOA algorithm:

(1)	 Strong global search capability: The KOA algorithm can comprehensively explore the search space by simulating the 
orbital motion of planets, avoiding getting stuck in local optimal solutions

(2)	 Fast convergence speed: KOA algorithm can find the optimal solution in a short time, improving diagnostic efficiency

(3)	 Good parameter optimization effect: By optimizing the hyperparameters of neural network, the KOA algorithm signifi-
cantly improves the accuracy and efficiency of bearing fault diagnosis.

Traditional metaheuristic algorithms such as genetic algorithm (GA), particle swarm optimization algorithm (PSO), and 
ant colony algorithm (ACO) have shown excellent performance in solving complex optimization problems, but they have 
some shortcomings:

(1)	 Easy to get stuck in local optima: These algorithms may converge too early during the search process and cannot find 
the global optimum

(2)	 Slow convergence speed: Traditional metaheuristic algorithms have a slow convergence speed when dealing with 
large-scale problems, which affects diagnostic efficiency

It is precisely because the KOA algorithm has the above advantages that the KOA algorithm superior over traditional 
metaheuristics for this specific bearing diagnosis task. In this article, we apply the Kepler algorithm to optimize the weights 
of neural network. Optimizing the weights of neural network through Kepler algorithm can converge to the optimal value 
more quickly, thereby improving the training speed and prediction accuracy of the model.

The basic principle of KOA [23] is derived from Kepler’s laws of planetary motion. The three laws of KOA summarize 
the laws of planetary motion around the sun. KOA has created a mathematical model based on position and velocity by 
simulating the trajectory of planetary motion and the interaction of universal gravity [24]. The two main aspects of algo-
rithms include:

(1)	 Gravitational attraction: Planets move around their orbits due to the universal gravitational force of the Sun. KOA 
adjusts their search direction by calculating the gravitational interaction between particles (representative solutions), 
enhancing their global search capability.

(2)	 Orbital characteristics: Different orbital features (such as ellipses, parabolas, etc.) are used to simulate different search 
states, making the optimization process diverse and flexible.
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The basic principles of KOA algorithm [25,26] are described in detail as follows:
2.1.1.  Definition of gravity.  As the largest celestial body in the solar system, the sun maintains the orbits of planets 

in elliptical orbits through universal gravity, as shown in Fig 1. The orbital velocity of a planet is inversely proportional to 
its distance from the sun: the closer the distance, the higher the velocity. These dynamics can be explained by the law 
of universal gravitation, which describes that the gravitational force between objects is proportional to their mass and 
inversely proportional to the square of their distance. The expression of universal gravitation is shown in formulas (1) and 
(2).

	
Fgi(t) = ei × µ(t)× MS ×mi

Ri
2
+ ε

+ r1
	 (1)

	

Ri(t) = ∥Xs(t)–Xi(t)∥2 =

√√√√
d∑
j=1

(Xsj(t) – Xij(t))
2

	 (2)

Among them, µ is the gravitational constant; ei  is the eccentricity of a planet’s orbit,it is a random value between 0 and 1; 
Ri representing the Euclidean distance between the sun and planets; Ms  and mi  represent the standardized values of Ms 
and mi; ε is a minimum value; The value of r1 is between 0 and 1, which is a randomly generated value that provides more 
variation for the gravity value during the optimization process.

2.1.2.  Calculate the speed of an object.  When a planet approaches the sun, its velocity increases due to the strong 
gravitational pull of the sun; When a planet moves away from the sun, its speed decreases due to the weakening of 
gravity, and this dynamic behavior can be modeled through equations [27]. This model consists of two parts: adjusting the 
distance between solutions to adjust the velocity of planets close to the sun, in order to enhance search diversity; Reduce 
these distances to decrease the speed of planets away from the sun, improve the problem of insufficient solution diversity, 
and enhance solution diversity. The velocity expression of a planet can be represented by formulas (3) – (14).

	

Vi(t) =




ℓ×
(
2r4

−→
Xi –

−→
Xb

)
+ ℓ̈×

(−→
Xa –

−→
Xb

)
+ (1 – Ri–norm(t))× Γ

×
−→
U1 ×−→r5 ×

(−−→
Xi,up –

−−−→
Xi,low

)
, ifRi–norm(t) ≤ 0.5

r4 × ζ ×
(−→
Xa –

−→
Xi
)
+ (1 – Ri–norm(t))× Γ× U2 ×−→r5 ×

(
r3
−−−→
Xi,low

)
, else

	 (3)

Fig 1.  Planets orbiting the Sun.

https://doi.org/10.1371/journal.pone.0331128.g001

https://doi.org/10.1371/journal.pone.0331128.g001
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	 ℓ =
−→
U ×M× ς	 (4)

	
ς =

[
µ (t)× (Ms +mi)

∣∣∣∣
2

Ri (t) + ε
–

1

ai(t) + ε

∣∣∣∣
] 1

2

	 (5)

	 M = (r3 × (1 – r4) + r4)	 (6)

	

−→
U=

{
0
−→r5 ≤ −→r6

1 Else 	 (7)

	
Γ =

{
1, ifr4 ≤ 0.5
–1,Else 	 (8)

	
ℓ̈ =

(
1 –

−→
U
)
×
−→
M × ς

	 (9)

	
−→
M =

(
r3 ×

(
1 –−→r5

)
+
−→r5
)
	 (10)

	

−→
U1 =

{
0
−→r5 ≤ r4

1 Else 	 (11)

	
U2 =

{
0 r3 ≤ r4
1 Else 	 (12)

	
ai (t) = r3 ×

[
Ti

2 × µ (t)× (Ms +mi)

4π2

] 1
3

	 (13)

	 Ti =
∣r∣ , i = 1, .....N;	 (14)

Among them, Vi(t) represents the velocity of the object i  in time t, Xi  represents the planet i , r3 and r4 is a randomly gener-
ated value in the interval [0,1]. −→r5  and −→r6  are two vectors, random values between 0 and 1; 

−→
Xa and 

−→
Xb represent solutions 

randomly selected from the group; Ms and mi represents the mass of Xs and Xi ; µ(t) is the constant of universal gravita-
tion; ε is a small value used to prevent zero division error; Ri(t) representing the distance between the optimal solution Xs 
and the object Xi  at time t; ai  representing the semi major axis of the elliptical orbit of the object i  at time t; Ti representing 
the orbital period of the object i ; r  is a value randomly generated based on a normal distribution.

2.1.3.  Jumping out of local optima.  KOA draws inspiration from the natural behavior of planets in the solar system 
rotating around the sun and introduces a marker Γ to change the search direction, which can effectively escape from local 
optimal areas and enhance the comprehensive exploration capability of the entire space [28].

2.1.4.  Update target location.  As shown in Fig 2, KOA divides the simulation of the natural motion of celestial bodies 
around the sun in elliptical orbits into two stages: exploration and development. In the exploration phase, KOA explores 
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areas far from the sun to find new solutions. During the development phase, KOA focuses on utilizing known solutions 
close to the sun. The update of the target position can be represented by formula (15):

	

−→
Xi(t+ 1) =

−→
Xi (t) + Γ×

−→
Vi(t) + (Fgi (t) +

∣r∣)×−→
U ×

(−→
XS (t) –

−→
Xi (t)

)
	 (15)

Among them, 
−→
Xi (t+ 1) is the new position of the object i  at time t+ 1; Vi (t) representing the speed required for an object 

i  to reach a new location; Xs (t) representing the best position of the sun discovered so far; Γ used as a flag to change 
search direction.

2.1.5.  Update distance from the sun.  KOA optimizes exploration and development by simulating the natural changes 
in distance between the sun and planets, and adjusts its operating mode based on the values of adjustment parameters. 
The distance between the planet and the sun can be updated using formulas (16) and (17).

	

−→
Xi (t+ 1) =

−→
Xi (t)×

−→
U1 +

(
1 –

−→
U1

)
×(−→

Xi (t)+
−→
Xs+

−→
Xa(t)

3.0 + h×
(−→

Xi (t)+
−→
Xs+

−→
Xa(t)

3.0 –
−→
Xb (t)

))

	 (16)

	
h =

1

eηr 	 (17)

Among them, h is an adaptive factor used to control the distance between the sun and the current planet at time t, η is a 
linearly decreasing factor from 1 to −2.

In summary, the entire calculation process of Kepler algorithm is shown in Fig 3:

2.2  Neural networks

Neural networks [29]mimic the data processing process of human neurons to process data. Neural networks generally 
include convolution operations, which have the characteristics of sparse connections, parameter sharing, and translation 
invariance. Neural networks are mainly composed of several fully connected layers,convolutional layers, and pooling lay-
ers, which will be introduced in this article.

2.2.1  Fully Connected Layer.  The fully connected layer [30] is composed of multiple M-P neurons, as shown on the 
right side of Fig 4, with a chain like structure between layers. Usually, the number of neurons in the next layer (layer width) is 

Fig 2.  Exploration and development process of planets.

https://doi.org/10.1371/journal.pone.0331128.g002

https://doi.org/10.1371/journal.pone.0331128.g002
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Fig 3.  Kepler algorithm flowchart.

https://doi.org/10.1371/journal.pone.0331128.g003

https://doi.org/10.1371/journal.pone.0331128.g003
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chosen to be less than or equal to the number of neurons in the previous layer, in order to compress the high-dimensional data 
of the convolutional neural network into lower dimensional data (feature extraction) for subsequent classifier classification.

M-P neuron is a mathematical model abstracted from biological neurons, and the output expression of a single neuron 
is shown in equation (18).

	
y = g (x1w1 + x2w2 + ...+ xnwn + b) = g

(
n∑
i=1

wixi + b

)

	 (18)

Among them, Xi  represents the input component, b is the bias, Wi is the weight on the corresponding arc on the right side 
of the neuron model. The input data passes through the arc and is multiplied by the weight, then input to the neuron for 
summation, and finally activated by the hidden unit (activation function) to obtain the output of the neuron. From the calcu-
lation process, it can be seen that weights will affect the final result, so optimizing their weights is very necessary.

2.2.2.  Convolutional layer.  The convolutional layer uses convolution operations between the input matrix and the 
weight matrix instead of matrix multiplication [31]. Convolution operation is a mathematical operation on two time-varying 
functions, where and are the real variable functions of, known as kernel functions. Due to the fact that the data processed 
by computers is discrete, the discrete expressions for convolution operations are shown in formulas (19) and (20).

	
(x ∗ w) (T) =

∫
x (t)w (T – t) dt

	 (19)

	
(x ∗ w) (T) =

N∑
t=0

x (t)w (T – t)
	 (20)

Fig 4.  M-P neuron model and fully connected layer structure.

https://doi.org/10.1371/journal.pone.0331128.g004

https://doi.org/10.1371/journal.pone.0331128.g004
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In the formula, T  represents the current convolution time point, t represents the time scale of the time series, and N  is 
the length of the time series, w  is the convolution kernel and also a type of weight.Different weights will greatly affect 
the final calculation result. From the calculation process, it can be seen that weights will affect the final result, so opti-
mizing their weights is very necessary.This article focuses on one-dimensional time series, and the calculation process 
can refer to Fig 5.

2.2.3.  Pooling layer.  The pooling layer replaces the input with local statistics [32], and commonly used statistics in the 
pooling process include maximum mean and norm. The formula for the pooling process can be represented by formula (21).

	
pj(l) = max

js≤i≤js+W–1

{
xi(l–1)

}
j = 0, 1...,

⌈
N –W
S

⌉
+ 1

	 (21)

Among them, pj(l) represents the j  th output component of the pooling layer l . xi(l–1) represents the i  th input component 
of the layer l – 1,

 is the pooling width, W  is the pooling stride, S is the pooling stride, N  is the sum of the lengths of the 
input sequence, and ⌈⌉ represents rounding up. The maximum statistical value for the pooling process shown in Fig 6 is 
selected, with a pooling width of 2 and a pooling stride of 2. From the calculation process of the pooling layer, it can be 
seen that the pooling layer needs to select the maximum value in the data. If the data size of a long time series is rela-
tively close during the data processing, it will be difficult for the pooling layer to select suitable data during the operation 
process, and it will also take a lot of time to perform the operation. To address this issue, attention mechanisms can be 
introduced to ignore redundant irrelevant data and focus attention on useful feature data.

2.3.  Long short term memory network(LSTM)

There are many types of neural networks, and long short-term memory networks are one of them. Long Short Term Mem-
ory [33](LSTM) is a special type of neural network, which is a time recurrent neural network mainly used for processing 

Fig 5.  Process of One Dimensional Convolution Operation.

https://doi.org/10.1371/journal.pone.0331128.g005

https://doi.org/10.1371/journal.pone.0331128.g005
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and modeling sequence data, such as text, speech, time series, etc. Due to the fact that the bearing fault data used in this 
article is time series data, an LSTM network is employed. Due to the presence of fully connected layers and convolutional 
layers in the LSTM network structure, weights are used for mathematical operations in each layer, which can affect the 
final calculation results. Therefore, optimizing the weights of LSTM is crucial.

2.4.  Attention mechanism

Due to the inability of the pooling layer in LSTM networks to handle massive amounts of duplicate data, this paper intro-
duces an attention mechanism to address this issue. The attention mechanism is essentially a resource allocation mech-
anism that changes the way resources are allocated based on the importance of the attention target, tilting resources 
more towards the attention object [34]. Adding attention mechanism to object detection tasks can enhance the represen-
tation ability of the model, reduce the interference of invalid targets, improve the detection effect of attention targets, and 
improve the accuracy of model detection. According to the characteristics of attention mechanism, it can solve the pain 
points of LSTM network processing duplicate data. It can make LSTM network more focused and efficient, and can match 
LSTM network very well.The model is shown in Fig 7 below:

3.  Fault diagnosis model based on Kepler algorithm and attention mechanism

Based on the above description, it can be seen that neural networks have two major pain points. In view of this, this paper 
proposes a new diagnostic model based on LSTM network, optimizes its weights using Kepler algorithm, and combines 
attention mechanism to improve its ability to process duplicate data, solving its two major pain points. This model extracts 
features from a large amount of one-dimensional vibration data through convolution, and then reduces the dimensionality 
through pooling. The pooled data uses attention mechanism to fully extract its features, and then outputs the final diag-
nostic result. Meanwhile, throughout the entire diagnostic process, the weights of the neural network will be optimized 
using the Kepler algorithm. The fault diagnosis model used in this article has a structure as shown in Fig 8:

4.  Experimental analysis

4.1.  Experimental data

The most objective way to evaluate the superiority of the algorithm proposed in this article is to use a third-party standard 
database [35]and compare the prediction results of this algorithm with current mainstream algorithms. This article selects 

Fig 6.  One dimensional max pooling process.

https://doi.org/10.1371/journal.pone.0331128.g006

https://doi.org/10.1371/journal.pone.0331128.g006
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rolling bearing data from Xi’an Jiaotong University, and the fault data of the bearings is obtained through artificial damage 
setting and accelerated experiments [36]. The experimental collection platform is shown in Fig 9. The experimental equip-
ment includes an AC motor, a motor speed controller, a motor speed controller, two support bearings (heavy-duty load roller 
bearings), a hydraulic loading system, etc. During the acceleration testing experiment, three different operating conditions 
were set, and five bearings were tested under each operating condition. The operating conditions set are as follows:

(1)	 2100 revolutions per minute (35 Hz) and 12 kilonewtons;

(2)	 2250 revolutions per minute (37.5 Hz) and 11 kilonewtons;

(3)	 2400 revolutions per minute (40 Hz) and 10 kilonewtons.

Fig 7.  Attention mechanism model.

https://doi.org/10.1371/journal.pone.0331128.g007

Fig 8.  Fault diagnosis model based on Kepler algorithm and attention mechanism.

https://doi.org/10.1371/journal.pone.0331128.g008

https://doi.org/10.1371/journal.pone.0331128.g007
https://doi.org/10.1371/journal.pone.0331128.g008
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The final collected experimental results are as follows, with a total of 9 experimental data states. When diagnosing 
bearing faults, undamaged normal bearing data was added, with a total of 10 data states. The normal bearing data was 
named category 10, and the naming of the bearing data is detailed in Table 1 below. The damage to the bearings after the 
experiment is shown in Figs 10–12.

4.2.  Model parameter

1.  Data preprocessing.  All input features are normalized using [min max normalization] before training, and reduced 
to the [0,1] interval.

Samples with missing values have been removed to ensure data integrity.
All classification labels have been encoded with integers (such as category labels encoded as 1, 2, 3, etc.).
2.  Training/testing set partitioning.  The original dataset is randomly divided into a training set and a testing set, with 

a segmentation ratio of 80%/20%.
3.  Neural network training parameters.  Maximum number of iterations (Epochs): 500
Batch size: 32 samples per batch

This model adopts a double-layer one-dimensional convolution structure (convolution kernel size of 3x1, channel numbers 
of 32 and 64 respectively), integrates SE attention mechanism (channel compression ratio of 1/4), and is combined with 
single-layer LSTM (unit number of 6) and self attention module. The final classification output is achieved through fully 
connected layers and Softmax function. During training, the Adam optimizer is used with an initial learning rate of 0.01, 
which decays to 0.1 after every 100 rounds of training. The L2 regularization coefficient is 0.01, and the maximum training 
is 500 rounds. Before each round of training, the sample order will be randomly shuffled.

Input the fault data of the bearings into the model in this article, and the output structure size of each layer of the neural 
network is shown in Table 2 below:

Fig 9.  Experimental collection platform.

https://doi.org/10.1371/journal.pone.0331128.g009

https://doi.org/10.1371/journal.pone.0331128.g009
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Table 1.  Grouping of Bearing Data.

Operating condition Bearing dataset Number of files Bearing lifetime Fault element Fault category

Condition 1
(35 Hz/12kN)

Bearing 1_1 123 2h 3 min Outer race 1

Bearing 1_2 161 2h 41 min Outer race 1

Bearing 1_3 158 2h 38 min Outer race 1

Bearing 1_4 122 2h 2 min Cage 2

Bearing 1_5 52 52min Inner race and Outer race 3

Condition 2
(37.5 Hz/11kN)

Bearing 2_1 491 8h 11 min Inner race 4

Bearing 2_2 161 2h 41 min Outer race 5

Bearing 2_3 533 8h 53 min Cage 6

Bearing 2_4 42 42min Outer race 5

Bearing 2_5 339 5h 39 min Outer race 5

Condition 3
(40 Hz/10kN)

Bearing 3_1 2538 42h 18 min Outer race 7

Bearing 3_2 2496 41h 36 min Inner race, ball,cage and Outer race 8

Bearing 3_3 371 6h 11 min Inner race 9

Bearing 3_4 1515 25h 15 min Inner race 9

Bearing 3_5 114 1h 54 min Outer race 7

https://doi.org/10.1371/journal.pone.0331128.t001

Fig 10.  Damage to Inner.

https://doi.org/10.1371/journal.pone.0331128.g010
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4.3.  Result analysis

To verify the effectiveness of the algorithm, a comparison was made between the model with Kepler algorithm and the 
model without Kepler algorithm to verify that Kepler algorithm can improve the accuracy of the model. At the same time, 
compare the models with and without attention mechanism to verify that the attention mechanism can extract important 
information features and improve the accuracy of the model.

Fig 11.  Damage to Ring of Bearing the outer ring of the bearing.

https://doi.org/10.1371/journal.pone.0331128.g011

Fig 12.  Damaged Bearing Retainer.

https://doi.org/10.1371/journal.pone.0331128.g012

https://doi.org/10.1371/journal.pone.0331128.g011
https://doi.org/10.1371/journal.pone.0331128.g012
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This article uses four algorithms, namely KOA LSTM Attention (Algorithm 1), LSTM Attention (Algorithm 2), KOA LSTM 
(Algorithm 3), and LSTM (Algorithm 4), to predict fault classification results. The results are compared and summarized in 
Figs 13 and 14.

Table 2.  Neural Network Structure Parameters.

number network layer Convolutional kernel size Number of convolution kernels Output Size

1 input / / 238 × 1

2 Convolution 1 3 × 1 32 26 × 13 × 2 × 238

3 Convolution 2 3 × 1 64 24 × 1 × 64 × 238

4 Global average pooling / 32 1 × 1 × 32 × 238

5 Attention layer / 64 24 × 1 × 64 × 238

6 LSTM layer / / 6 × 238

7 Fully connected layer 1 / 16 1 × 1 × 16 × 238

8 Fully connected layer 2 / 64 1 × 1 × 64 × 238

9 Fully connected layer 3 / 1 10 × 238

10 Classification layer / / 10 × 238

https://doi.org/10.1371/journal.pone.0331128.t002

Fig 13.  Comparison of Kepler algorithm results.

https://doi.org/10.1371/journal.pone.0331128.g013
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The accuracy of the four algorithms is 98.32%, 95.38%, 97.47%, and 94.12%, respectively. Algorithm 1 has a 2.94% 
higher accuracy than Algorithm 2, and Algorithm 3 has a 3.35% higher accuracy than Algorithm 4. The comparison of the 
two sets of results fully demonstrates that Kepler algorithm can optimize the weights of neural networks and improve the 
accuracy of the model. The accuracy of

Algorithm 1 is 0.85% higher than that of Algorithm 3, and the accuracy of Algorithm 2 is 1.26% higher than that of 
Algorithm 4. The comparison results of the two sets of data fully demonstrate that the attention mechanism can effectively 
process massive duplicate data, improve the model’s focus, and enhance the accuracy of the improved model.

To further analyze the performance of each model, we calculated the F1 score of four algorithms in 10 independent 
experiments, and the results are shown in Table 3. And a box plot (F1 macro Boxplot) and a mean ± standard deviation bar 
chart (F1 macro Mean ± Std) were plotted in Fig 15. From the box plot, it can be seen that the F1 macro distribution of the 
KOA-LSTM Attention model is generally higher than other models, with smaller variance and more stable performance. 
The mean bar chart also shows that the model has the highest mean, and the difference is statistically significant.

Meanwhile, based on the prediction results of the test sets of the four algorithms shown in Fig 16, it can be concluded 
that the KOA-LSTM Attention algorithm has the fastest prediction results approaching the true values, which verifies the 
superiority of the proposed algorithm in this paper.

Fig 14.  Comparison of Attention Mechanism Results.

https://doi.org/10.1371/journal.pone.0331128.g014

https://doi.org/10.1371/journal.pone.0331128.g014
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Meanwhile,independent experiments and performance comparisons were conducted for all three scenarios mentioned 
above, quantifying the respective contributions of KOA and attention mechanisms. The experimental results are shown in 
Table 4:

Table 3.  The results of multiple tests.

Repeat Counter LSTM LSTM-
Attention

KOA-
LSTM

KOA-LSTM- 
Attention

1 0.948 0.970 0.916 0.968

2 0.937 0.965 0.915 0.964

3 0.951 0.964 0.925 0.9770

4 0.939 0.971 0.930 0.9670

5 0.936 0.959 0.933 0.972

6 0.937 0.968 0.917 0.964

7 0.944 0.968 0.925 0.973

8 0.941 0.961 0.923 0.966

9 0.939 0.964 0.914 0.974

10 0.947 0.940 0.943 0.985

Average 0.942 0.963 0.924 0.971

https://doi.org/10.1371/journal.pone.0331128.t003

Fig 15.  Comparison of F1-macro for four Models.

https://doi.org/10.1371/journal.pone.0331128.g015
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Due to the fact that the innovation of this article mainly focuses on the joint design of KOA mechanism and attention 
mechanism, the analysis of ablation experiments highlights the role of these two core parts in improving model perfor-
mance and the comprehensive gain brought by their mutual cooperation.

The confusion matrices of the four algorithms are shown in Fig 17
The precision, recall, and F1 score data for each category are shown in Table 5
Through the F1 scores of each category, it can be seen that some small sample categories or easily mixed categories 

(such as categories 1 and 8) have lower scores, mainly due to uneven distribution of categories or similar features. With 
the improvement of the model, the accuracy and F1 of all categories have improved, especially KOA-LSTM Attention, 
which performs the best in each category and has the strongest overall performance. Combining the confusion matrix, 
further identify the main sources of misjudgment for certain categories and guide subsequent model optimization.

To further validate the feature extraction capability of the model, we have added t-SNE visualizations for each model’s 
feature extraction in Fig 18, which intuitively demonstrate the performance of each model in category differentiation from 
the perspective of dimensionality reduction distribution.

Fig 16.  Test set prediction results of four algorithms.

https://doi.org/10.1371/journal.pone.0331128.g016

Table 4.  Results of the Ablation Experiment.

Ablation Experiment Precision Recall F1

KOA 0.933 0.957 0.942

Attention 0.959 0.968 0.963

KOA-Attention 0.915 0.935 0.924

KOA-LSTM-Attention 0.972 0.972 0.971

https://doi.org/10.1371/journal.pone.0331128.t004

https://doi.org/10.1371/journal.pone.0331128.g016
https://doi.org/10.1371/journal.pone.0331128.t004
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Fig 17.  Confusion Matrix.

https://doi.org/10.1371/journal.pone.0331128.g017

https://doi.org/10.1371/journal.pone.0331128.g017
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Table 5.  Evaluation parameter results.

Class Precision Recall F1

1 0.933 1 0.966

2 0.923 0.923 0.923

3 1 0.867 0.929

4 1 1 1

5 0.933 1 0.966

6 1 1 1

7 1 1 1

8 0.929 0.929 0.929

9 1 1 1

10 1 1 1

Average 0.972 0.972 0.971

https://doi.org/10.1371/journal.pone.0331128.t005

Fig 18.  t-SNE Visualization strictly simulated by Confusion Matrix.

https://doi.org/10.1371/journal.pone.0331128.g018
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5.  Conclusion

This article addresses the two major pain points of LSTM networks by applying Kepler algorithm and combined attention 
mechanism to solve their weight and attention problems. The optimized model is applied to the fault diagnosis of bear-
ings, achieving efficient fault diagnosis. Finally, the accuracy of the four algorithms is compared to verify the feasibility and 
superiority of the algorithm proposed in this article.
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