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Abstract 

Advances in data collection have resulted in an exponential growth of high-

dimensional microarray datasets for binary classification in bioinformatics and 

medical diagnostics. These datasets generally possess many features but relatively 

few samples, resulting in challenges associated with the “curse of dimensionality”, 

such as feature redundancy and an elevated risk of overfitting. While traditional 

feature selection approaches, such as filter-based and wrapper-based approaches, 

can help to reduce dimensionality, they often struggle to capture feature interactions 

while adequately preserving model generalization. Therefore, this paper introduces 

the Adaptive Cluster-Guided Simple, Fast, and Efficient (ACG-SFE) feature selection, 

a hybrid approach designed to address the challenges of high-dimensional microar-

ray data in binary classification. ACG-SFE enhances the Simple, Fast, and Efficient 

(SFE) evolutionary feature selection model by integrating hierarchical clustering to 

dynamically group correlated features based on the optimal number of clusters deter-

mined by the Silhouette index, Davies-Bouldin score, and the feature-to-observation 

ratio while adaptively selecting representative features within clusters using mutual 

information and adjusting the selection threshold through a progress factor. This 

hybrid filter-wrapper approach improves feature interactions, effectively minimizing 

redundancy and overfitting while enhancing classification performance. The proposed 

model is assessed against four state-of-the-art evolutionary feature selection models 

on 11 high-dimensional microarray datasets. Experimental results indicate that ACG-

SFE effectively selects a small yet pertinent feature subset, minimizing redundancy 

while attaining enhanced classification accuracy and F-measure. Furthermore, its 

reduced RMSE between train and test accuracy substantiates its capability to reduce 
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overfitting, outperforming comparative models. These findings establish ACG-SFE as 

an effective feature selection model for handling high-dimensional microarray data in 

binary classification, enhancing classification accuracy while selecting minimal rele-

vant features to reduce unnecessary complexity and the risk of overfitting.

Introduction

Microarray datasets, typically generated through advanced omics technologies, 
such as genomics and transcriptomics [1], enable simultaneous measurement of 
thousands of gene expressions, making them valuable for discovering biomarkers 
and improving medical diagnostics [2]. However, microarray data is extremely high-
dimensional, typically containing thousands or even tens of thousands of features 
(genes) but only a few patient samples [3], which poses significant challenges for 
binary classification algorithms. Many measured features (genes) in these datasets 
are irrelevant or noisy, introducing redundancy and unnecessary model complexity, 
which increases computational cost, heightens the risk of overfitting, and reduces 
predictive performance in binary classification [4].

Consequently, dimensionality reduction techniques are vital preprocessing meth-
ods for addressing challenges in high-dimensional gene expression data, as they 
compress high-dimensional data into a lower-dimensional form while preserving 
important information [5]. Generally, dimensionality reduction techniques are catego-
rized into feature extraction and feature selection [6]. Feature extraction transforms 
the original feature into a lower-dimensional feature space by combining original fea-
tures, but this transformation often sacrifices the features’ interpretability [7], making it 
less suitable for medical diagnostics applications where understanding gene rela-
tionships is crucial. Conversely, feature selection preserves interpretability by directly 
selecting the most informative features (genes) while maintaining clear relationships 
with class labels [8], making it highly suitable for microarray data analysis. Selected 
genes from microarray data often represent known biomarkers or critical pathways 
involved in disease progression [9,10], thereby reinforcing the biological relevance 
and clinical interpretability of feature selection models. Furthermore, feature selec-
tion is computationally efficient than feature extraction, as it reduces dimensionality 
without generating new features [11], making it a preferable approach for high-
dimensional microarray data.

Feature selection (FS) techniques are typically categorized into filter, wrapper, and 
embedded approaches [12]. Filter approaches evaluate features independently using 
statistical measures, such as correlation and mutual information, offering computa-
tional efficiency but ignoring interactions between features and their combined effects 
with the classifier [12], potentially resulting in suboptimal selections. In contrast, 
wrapper approaches iteratively evaluate feature subsets based on predictive perfor-
mance with a specific classifier [13]. Although wrapper approaches implicitly capture 
beneficial feature interdependencies through this evaluation process, they do not 
explicitly penalize feature redundancy, which can result in redundant feature subsets 
[14] and a heightened risk of overfitting, particularly in small-sample datasets [15,16]. 
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Embedded approaches perform feature selection during the model training process, providing adaptive selection but limit-
ing generalizability due to their dependency on specific classifier assumptions [17].

Considering these limitations and guided by the no free lunch theorem that no single model universally outper-
forms others [18], recent studies have increasingly adopted hybrid filter-wrapper feature selection approaches. These 
approaches initially apply filter approaches to reduce dimensionality efficiently and subsequently use wrapper approaches 
to refine feature subsets by capturing feature interactions, ultimately improving classification accuracy and providing more 
meaningful support for clinical decision-making [19].

Consequently, this paper introduces the Adaptive Cluster-Guided Simple, Fast, and Efficient Feature Selection (ACG-
SFE) model, a hybrid feature selection approach designed to address the challenges of high-dimensional microarray data 
in binary classification. By integrating filter and wrapper approaches, ACG-SFE addresses the limitations of independent 
evaluation in filter approaches and significantly reduces the risks of redundancy and overfitting associated with wrapper 
approaches. The model effectively captures feature interactions, minimizes redundancy, and enhances generalization via 
hierarchical clustering and adaptive cluster regularization.

The key contributions of ACG-SFE are as follows:

•	 Dynamic hierarchical clustering-based feature grouping:

Design a hierarchical clustering technique that dynamically determines the optimal number of feature clusters using 
Silhouette and Davies-Bouldin scores, along with the feature-to-observation ratio. This technique effectively groups cor-
related features, reduces redundancy, and enhances feature interactions.

•	 Adaptive mutual information-based intra-cluster regularization:

Introduces an adaptive regularization technique that utilizes mutual information to select informative features within 
each cluster, dynamically adjusts the selection threshold through a progress factor. This technique prevents excessive 
feature retention, reduces overfitting, and improves generalization performance.

•	 Hybrid filter-wrapper search optimization:

Integrates dynamic feature clustering and adaptive intra-cluster selection into the Simple, Fast, and Efficient (SFE) 
heuristic wrapper search. This integration effectively identifies an optimal feature subset, significantly enhancing model 
accuracy while minimizing feature redundancy.

The remainder of this paper is organized as follows: The related works section reviews related work on filter, wrapper, 
and hybrid feature selection techniques for high-dimensional microarray data. The research method section presents the 
ACG-SFE model, detailing its methodology and key components. The experiment design section describes the experi-
mental configuration, including datasets, benchmark models, and evaluation metrics. The results and discussion section 
presents the results and discusses ACG-SFE’s effectiveness in reducing redundancy, mitigating overfitting, and optimizing 
feature selection. Finally, the conclusion summarizes key findings and suggests potential future research directions.

Related works

Filter feature selection.  Filter feature selection approaches evaluate each feature’s relevance to the target 
independently, using statistical or information-theoretic measures [20]. This characteristic makes them computationally 
efficient and less prone to overfitting in high-dimensional microarray datasets since they do not involve training a 
classifier during selection [21]. Common filter techniques rank genes by metrics such as t-test scores, chi-square values, 
correlation, or Mutual Information (MI), selecting the top-ranked genes as potential biomarkers [22]. Correlation-based 
filter approaches commonly employ Pearson’s correlation to rank features based on linear relationships [23], while 
Spearman’s correlation detects monotonic relationships [24]. However, strong correlations among selected features 
introduce redundancy, negatively impacting model performance and increasing the risk of overfitting. To address this 
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redundancy, advanced correlation-based methods like Resampling Fast Correlation-Based Filter (RFCBF) simultaneously 
evaluate feature-class relevance and redundancy between features, using resampling to stabilize feature selection and 
improve accuracy [25].

Unlike correlation, MI measures the dependency between features based on information theory [26], effectively 
capturing both linear and nonlinear relationships between features and class labels [27]. For instance, Zhang et al. 
introduced a Maximum Conditional Mutual Information (MCMI)-based filter method, effectively reducing redundancy in 
high-dimensional microarray datasets by selecting genes with strong predictive power and minimal redundancy, thus 
enhancing classification accuracy and model simplicity [28]. Additionally, Morán-Fernández et al. proposed a low-precision 
MI-based feature selection approach optimized for devices with limited computational capabilities, demonstrating that 
reducing the numeric precision of calculations (to 16-bit or even 8-bit) can maintain high classification accuracy on 
microarray datasets while significantly decreasing computational requirements [29].

In addition to these metrics-based methods, clustering techniques have recently gained prominence for their effectiveness 
in addressing redundancy by grouping correlated features and selecting representative ones from each cluster [30,31]. For 
instance, Asghari et al. introduced the Best Clustering Normalized Mutual Information Quantile (BC-NMIQ) model, combining 
clustering with mutual information ranking and using the Incremental Association Markov Blanket (IAMB) algorithm to select 
optimal subsets, resulting in enhanced classification accuracy on high-dimensional medical datasets [32]. Similarly, Guo 
proposed the K-means Neighbourhood Component Feature Selection (KNCFS), which employs correlation-based clustering 
to group collinear features, subsequently constructing subspaces with lower inter-feature correlations to select robust and 
informative feature subsets in high-dimensional datasets effectively [33]. These filter and cluster-based approaches have the 
advantage of speed and can handle ultra-high dimensions, but they struggle to fully capture complex interactions between 
selected features and the classifier since they do not directly consider a classifier’s feedback.

Wrapper-based feature selection.  Wrapper methods approach feature selection as an optimization problem guided 
by a predictive model. Instead of ranking features by a metrics score, wrappers repeatedly evaluate candidate feature 
subsets using a classifier to directly assess subset quality in terms of model performance [13]. This strategy allows 
wrappers to consider feature interactions and their joint contribution to classification accuracy. Techniques like Recursive 
Feature Elimination (RFE) and Exhaustive Feature Selection (EFS) were early wrappers used for feature selection, often 
wrapping KNN, SVM, or other classifiers to search for the best subset [34,35]. By exploring combinations of features, 
wrapper methods can achieve higher predictive accuracy than filters; however, this advantage comes at a substantially 
increased computational cost [15,16].

Exhaustively searching all subsets is infeasible for tens of thousands of features in microarray data, prompting research-
ers to adopt Evolutionary Computation (EC)-based techniques, such as Genetic Algorithms (GA), Binary Particle Swarm 
Optimization (BPSO), Binary Differential Evolution (BDE), and single-agent heuristics like Simple, Fast, and Efficient (SFE) 
to effectively explore large search spaces and select informative features with strong predictive performance [36,37]. For 
instance, Krishna and Rajarajeswari proposed Mutual Fuzzy Swarm Optimization (MFSO), which integrates MI, fuzzy logic, 
and PSO to select informative and biologically meaningful features effectively, significantly enhancing diagnostic accuracy 
across multiple microarray datasets [38]. Similarly, Li et al. developed a two-stage hybrid biomarker selection approach 
combining ensemble filtering and BDE enhanced by binary African vultures optimization (EF-BDBA), demonstrating supe-
rior biomarker selection performance by balancing exploration and exploitation effectively during optimization [39].

Recent studies have introduced computationally efficient wrapper-based algorithms to address the computational 
intensity of traditional evolutionary methods. One prominent example is the Simple, Fast, and Efficient (SFE) algorithm, 
which utilizes a single-agent heuristic to prune redundant or irrelevant features in a non-selection operator quickly. It 
then identifies informative features through a selection operator, selecting smaller yet highly informative feature subsets 
than population-based methods [36]. An enhanced variant, SFE-PSO, further incorporates PSO strategies, balancing 
rapid convergence and comprehensive search capability [36]. However, despite these strengths, SFE and its variants 
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still face challenges such as premature convergence and susceptibility to overfitting, particularly due to their reliance on 
validation accuracy and static selection criteria, which can negatively impact their generalization to new data.

Hybrid feature selection.  Given the complementary strengths of filters and wrappers, hybrid feature selection 
approaches have emerged as a popular strategy for high-dimensional microarray data [40]. Hybrid approaches typically 
follow a two-stage or multi-stage selection process where a fast filter approach first drastically reduces dimensionality by 
performing coarse screening of the features, followed by a wrapper approach that refines the selected subset by capturing 
feature interactions [40]. Recent studies have demonstrated that such hybrid approaches can achieve high accuracy with 
fewer features than pure filters or wrappers alone.

For instance, Song et al. introduced a three-phase hybrid feature selection called Correlation-guided clustering with 
PSO (HFS-C-P), which first employs a filter-based method to eliminate irrelevant features rapidly, then clustering correlated 
features efficiently using correlation-guided clustering, and finally refining the selected feature subsets through an improved 
BPSO that incorporates relevance-guided swarm initialization and adaptive disturbance strategies, achieving a strong bal-
ance between computational efficiency and classification accuracy [41]. Similarly, Anosh Babu et al. proposed a two-stage 
clustering-based hybrid feature selection model combining k-means clustering and a signal-to-noise ratio filter to eliminate 
redundancy and noise, subsequently applying Cellular learning automata combined with Ant Colony Optimization (CLACO) 
as a wrapper to pinpoint highly discriminative genes, resulting in improved performance on cancer microarray datasets [42]. 
Pirgazi et al. proposed a two-phase hybrid method integrating Relief filtering for initial feature weighting with the Shuffled 
Frog Leaping Algorithm (SFLA) and Incremental Wrapper Subset Selection with Replacement (IWSSr) in the wrapper 
phase, effectively identifying compact and highly predictive gene subsets from high-dimensional gene expression data [43].

While these hybrid feature selection methods effectively balance computational efficiency and classification accuracy, 
they often lack adaptability due to their sequential design. Once the features are removed in the filtering step, they are typ-
ically not reconsidered, potentially causing the premature discard of valuable features. Conversely, retaining redundant or 
irrelevant features heightens the risk of overfitting during wrapper-based optimization. Thus, there is a need for an adaptive 
hybrid model capable of dynamically coordinating filter and wrapper approaches to select optimal, non-redundant subsets, 
thereby reducing overfitting and ultimately improving generalization performance on high-dimensional microarray data.

Research method

This paper proposes the Adaptive Cluster-Guided Simple, Fast, and Efficient Feature Selection (ACG-SFE) model, which 
is an advanced feature selection model that builds upon the Simple, Fast, and Efficient (SFE) [36] feature selection model 
to address the challenges of existing feature selection models highlighted in the related works section. It enhances SFE 
by introducing dynamic clustering and adaptive regularization filter mechanisms into the wrapper SFE model to preserve 
valuable features, reduce redundancy, capture important feature interactions, and enhance generalization for high-
dimensional microarray data. The following section outlines ACG-SFE and its key components in detail.

Overview of the ACG-SFE model

Fig 1 illustrates the proposed ACG-SFE model, highlighting the newly introduced components and enhancements over 
the baseline SFE model [36] in green. ACG-SFE integrates the two phases’ search strategy of the SFE algorithm, initially 
performing rapid global exploration to remove redundant or irrelevant features, followed by targeted exploitation to reintro-
duce highly informative features, resulting in a refined initial feature subset [36].

Unlike the standard SFE, which would stop after these two phases, ACG-SFE further refines the feature subset by 
introducing a dynamic hierarchical clustering that groups correlated features in which its optimal number of clusters is 
determined using the Davies-Bouldin index and the Silhouette score and dynamically adjusted according to the feature-to-
observation ratio. By incorporating feature clusters obtained from hierarchical clustering into the SFE wrapper’s iterative 
selection process to select representative features from each cluster, ACG-SFE reduces redundancy caused by highly 
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Fig 1.  Adaptive Cluster-Guided Simple, Fast, and Efficient (ACG-SFE) model. 

https://doi.org/10.1371/journal.pone.0331089.g001

https://doi.org/10.1371/journal.pone.0331089.g001
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correlated features and enhances interactions between the selected feature subset and the classifier, thus improving 
overall classification performance.

ACG-SFE also introduces an adaptive cluster regularization mechanism to reduce overfitting by implementing two com-
plementary strategies. First, a mutual information-based selection selects representative and informative features within 
each cluster, effectively reducing redundancy. Second, an adaptive feature selection threshold, controlled by a progress 
factor, gradually limits the number of features as optimization progresses. Together, these strategies ensure a compact 
and generalizable feature subset, minimizing complexity and enhancing the model’s predictive performance on unseen 
data. The following sections detail each component of the ACG-SFE model.

Search mechanism

The search mechanism of ACG-SFE operates on a binary-coded feature space, where each feature is represented by a 
binary state, with 1 indicating a selected feature and 0 indicating an unselected one, as illustrated in Fig 2. Similar to SFE, 
the initial search process in ACG-SFE consists of two complementary phases: exploration and exploitation, guided by 
adaptive operators.

Exploration (non-selection operator).  In the exploration phase, the non-selection operator (lines 24–29 in Algorithm 
1) globally searches the feature space, systematically switching less informative features from selected (1) to non-
selected (0) status. The operator uses an adaptive non-selection rate (UR), starting high to remove redundant or irrelevant 
features aggressively and gradually decreasing as the search progresses [36]. This adaptive adjustment ensures a 
balanced exploration-exploitation process, refining the feature subset without prematurely discarding valuable features.

Exploitation (selection operator).  In the exploitation phase, the selection operator (lines 30–37 in Algorithm 1) locally 
refines the feature subset by reactivating previously excluded features that significantly enhance model performance. This 
operator ensures the feature subset never becomes empty, maintaining at least one selected feature to prevent premature 
convergence and further enhancing the exploitation capability of the model [36].

Algorithm 1 presents the pseudo-code for the proposed ACG-SFE, illustrating the exploration-exploitation operators’ 
process (lines 24–37 in Algorithm 1) used to rapidly produce an initial feature subset significantly smaller than the original 
feature set. However, since the features have been evaluated independently, the next section introduces and details the 
clustering-based approach that captures feature interrelationships to reduce redundancy, enhance generalization, and 
reduce overfitting.

Dynamic hierarchical clustering-based feature grouping technique

To effectively manage redundancy and feature interdependence, ACG-SFE employs hierarchical clustering using Ward’s 
method and Pearson correlation to group correlated features, enabling selection decisions at the cluster level rather than 
individually. Unlike existing clustering-based FS models, ACG-SFE dynamically determines the optimal number of clus-
ters by evaluating multiple cluster sizes using Davies-Bouldin and Silhouette indices, adjusted based on the dataset’s 
feature-to-observation (Algorithm 2 and lines 14–15 in Algorithm 1). This dynamic clustering approach ensures that each 
cluster group strongly correlates features while clearly distinguishing between clusters, simplifying the search space, and 
preventing redundant evaluation of correlated features.

Fig 2.  Binary representation of feature subset.

https://doi.org/10.1371/journal.pone.0331089.g002

https://doi.org/10.1371/journal.pone.0331089.g002
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Algorithm 1: ACG-SFE feature selection algorithm

    Input: Training dataset with original feature set, 𝐹 ={f
1
,f

2
,f

3
,…,f}

    Output: Optimal feature subset, S ={𝑠
1
,𝑠

2
,𝑠

3
,…,𝑑}

1   Begin:
2     Initialize variables:
3         𝐹𝐸𝑠

max
: Maximum number of function evaluations

4         Run
max
: Maximum number of run

5         𝑈𝑅
max
: Initial value of non-selection operator rate

6         𝑈𝑅
min
: Final value of non-selection operator rate

7     Split data into training, validation, and testing sets:
8         Train_Input: Feature matrix for training data
9         Train_Target: Corresponding labels for model training data
10       Fold_Train_Ind: Indices for training data within each cross-validation fold
11       Fold_Test_Ind: Indices for validation data within each cross-validation fold
12       Test_Input: Feature matrix for test data
13       Test_Target: Corresponding labels for the test data
14   �  Calculate feature-to-observation ratio of Train_Input, feature_obs_ratio = Number of features/ 

Number of observations
15   �  Determine num_clusters, the optimal number of clusters, using Algorithm 2 based on 

feature_obs_ratio
16     feature_clusters = Feature cluster assignments using num_clusters based on Algorithm 3
17     While Run ≤ Run

max
 Do

18       Initialize feature subset 𝑋={𝑥
1
,𝑥

2
,…,𝑥

D
} randomly in the search space

19       Calculate the fitness of 𝑋 for validation data: fit(X)
20       Calculate the number of features in the dataset, 𝑁𝑣𝑎𝑟
21       𝐹𝐸𝑠 = 1
22       While 𝐹𝐸𝑠 ≤ 𝐹𝐸𝑠

max
 Do

23         𝑋𝑁𝑒𝑤 = 𝑋
24         𝑈𝑅 = 𝑈𝑅𝑚𝑎𝑥
25         𝑈𝑁 = [UR × 𝑁𝑣𝑎𝑟] % The number of features to change to non-selected mode
26         U_II𝑑𝑒𝑥 = find the indexes of selected features in 𝑋
27         𝑈 = Generate 𝑈𝑁 random number between 1 to the number of selected features in 𝑋
28         K = 𝑖I𝑑𝑒𝑥(𝑈)
29         Set 𝑋𝑁𝑒𝑤(K) = 0% non-selection operation
30         If the number of selected features in 𝑋𝑁𝑒𝑤 is ==0
31             𝑋𝑁𝑒𝑤 = 𝑋
32             S_Index = find the indexes of non-selected features in X
33             SN = 1% The number of features to change to selected mode
34             S = Generate SN random number between 1 to the number of non-selected features in X
35             K  = 𝑖I𝑑𝑒𝑥(S)
36             Set 𝑋𝑁𝑒𝑤(K) = 1% selection operation
37         End if
38         adaptive_base_features_per_cluster = max(1, ⌈(𝐹𝐸𝑠

max
 − 𝐹𝐸𝑠)/ 𝐹𝐸𝑠

max
 × 3)⌉

39         𝑋𝑁𝑒𝑤 = Apply adaptive MI-based intra-cluster regularization to 𝑋𝑁𝑒𝑤 based on Algorithm 4
40         Calculate the fitness of 𝑋𝑁𝑒𝑤 for validation data: fit(𝑋𝑁𝑒𝑤)
41         If fit(𝑋𝑁𝑒𝑤) ≥ fit(𝑋)
42             𝑋 = 𝑋𝑁𝑒𝑤
43             fit(𝑋) = fit(𝑋𝑁𝑒𝑤)
44         End if
45         𝑈𝑅 = (𝑈𝑅𝑚𝑎𝑥 − 𝑈𝑅𝑚𝑖I) × ((𝐹𝐸𝑠

max
 – 𝐹𝐸𝑠)/ 𝐹𝐸𝑠

max
) + 𝑈𝑅𝑚in

46         𝐹𝐸𝑠 = 𝐹𝐸𝑠 + 1
47       End while
48       FN

run
 = Final number of selected features for this run

49       Run = Run + 1
50     End while
51  End
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Selecting an appropriate number of clusters is crucial. If too few clusters are used, unrelated features can be clustered 
together, reducing the precision of feature selection; conversely, too many clusters can fragment related features, increas-
ing redundancy and computational complexity. To address this, Algorithm 2 dynamically determines the clustering range 
(minimum and maximum cluster counts) based on the dataset’s feature-to-observation ratio (lines 2–9 in Algorithm 2). 
Specifically, for datasets with a low feature-to-observation ratio (less than 300), the divisor used to determine the maxi-
mum number of clusters is set higher, resulting in fewer clusters to ensure closely related features are grouped accurately 
without unnecessary splitting, which suits datasets where the numbers of features and observations are relatively bal-
anced. Conversely, for datasets with higher ratios (300 or greater), the divisor is slightly decreased to yield more clusters, 
preventing unrelated features from being grouped excessively, thus effectively managing redundancy.

Once the clustering range is defined, each candidate number of clusters within this range is evaluated using the 
Davies-Bouldin and Silhouette indices (lines 13–23 in Algorithm 2). The Davies-Bouldin index assesses cluster com-
pactness and separation, with lower scores indicating better-defined clusters, while the Silhouette score measures how 
well features fit within their clusters, with higher scores reflecting more meaningful cluster assignments. Both metrics 
are normalized via min-max scaling (lines 25–38 in Algorithm 2) to ensure a fair comparison across cluster sizes. The 
optimal number of clusters is selected based on the lowest combined normalized score, equally weighting both metrics 
(lines 39–43 in Algorithm 2). For clarity, Fig 3 illustrates this process using Algorithm 2 for training data with a feature-to-
observation ratio of 500.

After determining the optimal number of clusters, hierarchical clustering using Ward’s method is applied to 
group strongly correlated features, minimizing within-cluster variance while maximizing between-cluster separation 

Fig 3.  Numerical example for determining the optimal number of clusters in Algorithm 2.

https://doi.org/10.1371/journal.pone.0331089.g003

https://doi.org/10.1371/journal.pone.0331089.g003
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(Algorithm 3 and lines 16 in Algorithm 1). By conducting feature selection at the cluster level rather than individ-
ually, ACG-SFE simplifies the search space, enhances computational efficiency, reduces redundant feature eval-
uations, and retains the most informative features. The following section describes how these feature clusters 
are integrated into an adaptive mutual information-based intra-cluster regularization mechanism of ACG-SFE to 
reduce overfitting.

Algorithm 2: Determining the optimal number of clusters

  Input:
  Train_Input: Feature matrix for training data
  feature_obs_ratio: Ratio of the number of features to the number of observations in Train_Input
  Output: num_clusters: Optimal number of clusters
1 Begin:
2   Set initial range for clusters:
3     min_clusters = 2
4     If feature_obs_ratio < 300
5       divisor = 10 × ⌈ feature_obs_ratio/ 100 ⌉
6     Else
7       divisor = 10 × ⌈ feature_obs_ratio/ 100 ⌉ − 10
8     End if
9     max_clusters = ⌊ feature_obs_ratio/ divisor ⌋
10   Initialize empty arrays to store Davies-Bouldin and Silhouette scores:
11     db_values = Empty array of size (max_clusters − min_clusters + 1) to store Davies-Bouldin scores
12     sil_values = Empty array of size (max_clusters − min_clusters + 1) to store Silhouette scores
13   For k = min_clusters to max_clusters Do
14     Try
15       Compute hierarchical clustering using Ward’s method:
16         Z = Hierarchical clustering linkage matrix using Ward’s method on Train_Input
17         cluster_ids = Cluster labels for each observation through forming k clusters from Z
18    �   db_values

k
 = Davies-Bouldin index for k clusters to evaluate cluster compactness and 

separation
19    �   sil_values

k
 = Mean Silhouette score for k clusters to measure each observation fits within its 

assigned cluster
20     Catch Exception
21       Set db_values

k
 and sil_values

k
 to NaN

22     End Try
23   End for
24   Remove NaN values from db_values and sil_values
25   Compute the minimum and maximum Davies-Bouldin and Silhouette scores for normalization:
26     DB

min
 = Minimum db_values, DB

max
 = Maximum db_values,

        SIL
min
 = Minimum sil_values, SIL

max
 = Maximum sil_values

27   Initialize optimal cluster search:
28     Set best_score = ∞, optimal_clusters = min_clusters
29   For k = min_clusters to max_clusters Do
30     Try
31       Recompute hierarchical clustering to determine the best k by evaluating normalized scores:
32         Z = Hierarchical clustering linkage matrix using Ward’s method on Train_Input
33         cluster_ids = Cluster labels for each observation through forming k clusters from Z
34       db_index = Davies-Bouldin index to evaluate cluster compactness and separation
35    �   sil_score = Mean Silhouette score to measure how well each observation fits within its 

assigned cluster
36       Normalize Davies-Bouldin and Silhouette scores:
37         normalized_db = (db_index − DB

min
)/ (DB

max
 − DB

min
)

38         normalized_sil = (sil_score − SIL
min
)/ (SIL

max
 − SIL

min
)

39       combined_score = 0.5 × normalized_db + 0.5 × (1 − normalized_sil)
40       If combined_score < best_score
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41         best_score = combined_score
42         optimal_clusters = k
43       End if
44     Catch Exception
45       Skip k
46     End Try
47   End for
48   Set num_clusters = optimal_clusters
49 End

Algorithm 3: Clustering features based on correlation matrix

Input:
Train_Input: Feature matrix for training data
num_clusters: Optimal number of clusters
Output: feature_clusters: Cluster assignments for features
1 Begin:
2     corr_matrix = Correlation matrix of Train_Input
3     Perform hierarchical clustering using Ward’s method:
4         Z = Hierarchical clustering linkage matrix using Ward’s method on corr_matrix
5     �    feature_clusters = Cluster labels for each feature through forming num_clusters clusters 

from Z
6 End

Adaptive mutual information-based intra-cluster regularization technique

To further optimize feature selection, ACG-SFE employs an adaptive Mutual Information (MI)-based intra-cluster regu-
larization strategy (Algorithm 4) that refines feature selection within clusters through two complementary mechanisms: 
MI-based feature ranking and adaptive adjustment of the number of selected features.

Algorithm 4: Adaptive MI-based Intra-cluster Regularization

  Input:
  �  X: Feature selection mask representing features chosen through non-selection and selection operators
    feature_clusters: Cluster assignments for features
    Train_Input: Feature matrix for training data
    Train_Target: Corresponding labels for model training data
    adaptive_base_features_per_cluster: Base limit on the number of selected features per cluster
    𝐹𝐸𝑠: Current number of function evaluations
    𝐹𝐸𝑠

max
: Maximum number of function evaluations

   Output: X_Adaptive: Updated feature selection mask
1 Begin:
2   Initialize X_Adaptive as a zero vector of the same size as X
3   unique_clusters = Distinct cluster labels from feature_clusters
4   progress_factor = 𝐹𝐸𝑠/ 𝐹𝐸𝑠

max

5    For each cluster_id in unique_clusters Do
6      feature_indices_in_cluster = Indices of features belonging to cluster_id
7     � mi_scores = Mutual information values between each feature in feature_indices_in_cluster and 

Train_Target using Algorithm 5
8      Intra-cluster selection based on mutual information and adaptive feature limit:
9     � �  adaptive_feature_limit = ⌈adaptive_base_features_per_cluster×(1+(1 − progress_factor)×0.5 × ran-

dom_value)⌉
10  �  �   selected_features = Top-ranked features from feature_indices_in_cluster based on mi_scores, 

selecting a number of features equal to the minimum of adaptive_feature_limit and the cluster size
11       Update X_Adaptive to include selected_features
12   End for
13 End
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Mutual information-based feature ranking.  ACG-SFE ranks features within each cluster based on their MI with the 
target labels (lines 6–7 in Algorithm 4). MI quantifies the dependency between a feature and the target, enabling features 
to be ranked by their relevance. Algorithm 5 computes MI scores by first generating and normalizing a joint histogram of 
feature values and target labels, then summing over all feature-target probability pairs, which also can be formulated by 
standard MI formulation [44,45]:

	
MI(X,Y) =

∑
x∈X

∑
y∈Y

P(x, y)log
(

P(x, y)
P(x)P(y)

)

	 (1)

where P(x, y) represents the joint probability of feature X  and target Y , while P(x) and P(y) are their respective marginal 
probabilities. Features with higher MI scores, indicating stronger associations with the target labels, are prioritized for 
selection. This approach reduces redundancy by eliminating each cluster’s less informative or highly correlated features.

Algorithm 5: Mutual Information Calculation

  Input:
    X: Feature values
    y: Target labels
  Output: mi: Mutual information score between X and y
1 Begin:
2     joint_hist = Joint histogram of X and y, normalized as probabilities
3     marg_x = Marginal probability distribution of X
4     marg_y = Marginal probability distribution of y
5     expected_joint = marg_x × marg_y
6     Identify valid entries where joint_hist > 0 to avoid log(0)
7     mi = ∑(joint_hist(valid) × log(joint_hist(valid)/ expected_joint(valid)))
8 End

Adaptive feature limit adjustment.  To prevent overfitting and unnecessary complexity, ACG-SFE adaptively limits the 
maximum number of selected features per cluster using an evolving threshold (lines 9 in Algorithm 4). Initially, the algo-
rithm allows more features per cluster to promote broad exploration. As optimization progresses, the threshold decreases 
gradually to emphasize targeted refinement (exploitation).
Specifically, the adaptive feature limit is calculated using two components

•	 Adaptive base feature limit per cluster (line 38 in Algorithm 1):

	
adaptive_base_features_per_cluster = max(1,

⌈(
FEsmax – FEs

FEsmax

)
× 3

⌉
)
	 (2)

This formula systematically decreases the upper bound on the number of features selected per cluster as the number of 
function evaluations (FEs) progresses. Early on, a higher limit encourages extensive exploration, whereas later stages 
focus on refining the most impactful subset of features.

•	 A Scaling Factor (SF) introduces controlled randomness to balance exploration and exploitation:

	 SF = 1 + (1 – progress_factor)× 0.5× random_value	 (3)

Here, the progress factor represents the proportion of optimization completed (FEs/FEsmax), and the random value is 
uniformly sampled from [0,1]. At the early optimization stages (low progress factor), the scaling factor is closer to its upper 
bound (≈1.5). This stage encourages exploration by allowing the selection of more features per cluster and maintaining 
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diversity through controlled randomness, thus preventing the premature exclusion of potentially useful features. As optimi-
zation progresses (high progress factor), SF gradually approaches its lower bound (≈1), reducing the number of features 
selected per cluster. This shift focuses the algorithm on refining the most informative feature subset while preventing 
excessive feature selection, thus stabilizing feature selection, reducing redundancy, and effectively mitigating overfitting.

Finally, the adaptive feature limit per cluster is calculated by applying the scaling factor to the adaptive base feature limit:

	 adaptive_feature_limit = ⌈adaptive_base_features_per_cluster× SF⌉	 (4)

Once the adaptive feature limit is computed, the number of selected features per cluster is constrained by the smaller 
value between the adaptive limit and the cluster size. If a cluster contains fewer features than the computed limit, all its 
features are retained; otherwise, only the top-ranked features (based on mutual information) up to the limit are selected. 
This adaptive mechanism ensures the selection of a compact, stable, and representative feature subset, effectively reduc-
ing redundancy and complexity and enhancing generalization.

Fitness function

After determining the feature subset through adaptive MI-based intra-cluster regularization, the selected features are 
evaluated using a fitness function to measure their classification performance (line 40 in Algorithm 1). The fitness function 
employed by ACG-SFE relies on validation accuracy, assessing how effectively the selected subset generalizes to unseen 
validation data. Specifically, the validation accuracy is calculated as:

	
Accval =

TP+ TN
TP+ TN+ FP+ FN 	 (5)

where TP (True Positive) and TN (True Negative) denote the number of correctly classified positive and negative samples, 
respectively, while FP (False Positives) and FN (False Negatives) represent misclassified positive and negative samples.

An iterative validation procedure (lines 41–44 in Algorithm 1) continuously evaluates and refines the feature subset. In 
each iteration, the updated feature subset (XNew) is assessed on validation data. If XNew achieves equal or higher valida-
tion accuracy than the previous best subset, it replaces the previous best subset. Otherwise, the previous best subset is 
retained to avoid performance degradation. This iterative approach ensures the best feature subset remains compact, stable, 
high-performing, and generalizable, optimizing feature reduction and classification performance across diverse datasets.

Experiment design

Datasets.  Experiments are conducted using 11 high-dimensional real-world microarray datasets, as listed in 
Table 1, to evaluate the performance and generalization ability of the proposed ACG-SFE algorithm. These datasets 
are characterized by a high dimensionality, with features ranging from 2,000 to 19,993 and observations from 20 to 
253, resulting in feature-to-observation ratios between 32.26 and 631.35. Since this paper specifically addresses 
high-dimensional feature selection without significant class imbalance, the selected datasets have balanced to slightly 
imbalanced binary class distributions, with Imbalance Ratios (IR) ranging from 1 to 4.84. All datasets are publicly 
accessible and sourced from reputable repositories, including Mendeley Data [46], GitHub repositories [47,48], Shenzhen 
University’s repository [49], and the NCBI Gene Expression Omnibus (GEO) database [50]. These public datasets have 
been widely utilized in feature selection research, providing a reliable benchmark for fair comparisons with existing 
methods and reproducibility of the proposed ACG-SFE algorithm.

Comparative models and parameter settings

The performance of the proposed ACG-SFE algorithm is evaluated against four state-of-the-art feature selection mod-
els: BDE [51], BPSO [52,53], SFE [36], and SFE-PSO [36]. Additionally, a scenario Without Feature Selection (WFS) is 
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included as a baseline to demonstrate the practical impact of applying feature selection. BDE and BPSO are included 
because they are well-known evolutionary algorithms that are widely used for feature selection in high-dimensional data-
sets and previously benchmarked against SFE. Besides, the SFE algorithm is selected due to its computational efficiency 
and lightweight state-of-the-art wrapper-based model, which forms the foundation for the proposed ACG-SFE model. 
Furthermore, the SFE-PSO hybrid model, which combines SFE and PSO, is included to examine whether the proposed 
ACG-SFE achieves further improvements beyond existing SFE-based hybridizations.

Hyperparameter settings for all algorithms, summarized in Table 2, follow the baseline SFE paper to ensure consis-
tency and fair comparisons throughout the experiments. The population size for population-based evolutionary algorithms, 
including BDE, BPSO, and the PSO component of SFE-PSO, is consistently set to 20 for fair comparisons. Specifically, 
BDE employs a Mutation Factor (F) of 0.8 and a Crossover Rate (CR) of 0.2 to balance exploration and exploitation. 
Meanwhile, BPSO uses an inertia weight (w) of 1, a cognitive coefficient (c1) of 2, and a social coefficient (c2) of 1.5 to 
achieve a balanced search strategy, combining each particle’s individual experiences with collective swarm intelligence.

Parameters: F, mutation factor; CR, crossover rate; b, population size; w, inertia weight; c1, cognitive coefficient; c2, 
social coefficient; 𝑈𝑅

max
, maximum non‑selection operator rate; 𝑈𝑅

min
, minimum non‑selection operator rate; SN, fixed 

selection number.
In contrast, SFE, the SFE component of SFE-PSO, and the proposed ACG-SFE utilize a single-agent heuristic 

approach, dynamically applying non-selection and selection operators. The non-selection operator employs a linearly 
decaying non-selection operator rate (UR) to remove redundant features, starting from a maximum of 0.3 to broadly 
explore feature subsets and gradually decreasing toward 0.001 to emphasize exploitation. Additionally, the selection 
operator ensures that at least one feature remains selected using a fixed selection number (SN = 1), preventing scenarios 
where no features are selected.

Table 1.  List of 11 datasets and their description.

No. Dataset #Fea. #Obs. #Classes Majority Minority IR #Fea./#Obs.

1 Colon 2000 62 2 40 22 1.82 32.26

2 DLBCL 5469 77 2 58 19 3.05 71.03

3 Prostate GE 5966 102 2 52 50 1.04 58.49

4 Leukemia 7070 72 2 47 25 1.88 98.19

5 ALLAML 7129 72 2 47 25 1.88 99.01

6 CNS 7129 60 2 38 22 1.73 118.82

7 Prostate Cancer 12627 20 2 10 10 1.00 631.35

8 Ovarian Cancer 15154 253 2 162 91 1.78 59.90

9 SMK_CAN_187 19993 187 2 97 90 1.08 106.91

10 Prostate Tumor 10509 102 2 52 50 1.04 103.03

11 Lung Cancer 12533 181 2 150 31 4.84 69.24

Abbreviations: #Fea., number of features; #Obs., number of observations; IR, imbalance ratio (majority/minority); #Fea./#Obs., feature-to-observation 
ratio (number of features/number of observations).

https://doi.org/10.1371/journal.pone.0331089.t001

Table 2.  Hyperparameter settings.

Algorithms Parameter values

WFS –

BDE [51] F = 0.8; CR = 0.2; b = 20

BPSO [52,53] w = 1; c1 = 2; c2 = 1.5

SFE [36], SFE-PSO [36], ACG-SFE 𝑈𝑅
max

 = 0.3; 𝑈𝑅
min

 = 0.001; SN = 1

https://doi.org/10.1371/journal.pone.0331089.t002

https://doi.org/10.1371/journal.pone.0331089.t001
https://doi.org/10.1371/journal.pone.0331089.t002
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Experimental setup

Experiments employ the K-Nearest Neighbors (KNN) classifier with k = 1, selected due to its simplicity [54], non-parametric 
flexibility [55], and sensitivity to the selected features’ quality. Unlike parametric classifiers that rely on predefined data 
distributions, KNN makes no distributional assumptions, enabling flexible adaptation to diverse datasets [56]. Since KNN 
classifies data based on feature-space distances [57], it directly benefits from informative feature subsets and is adversely 
influenced by irrelevant or redundant features, making it highly effective for evaluating feature selection models.

The datasets are partitioned into training (80%) and testing (20%) sets to evaluate generalization performance. To 
ensure reproducibility and fair comparison across multiple feature selection models, all experiments utilize the same 
training-test split and identical stratified 5-fold cross-validation partitions within the training data, consistently generated 
using a fixed random seed of 42. Within the training set, the 5-fold cross-validation strategy iteratively evaluates valida-
tion accuracy at each of the 6,000 function evaluation steps, guiding feature selection toward an optimal subset. The final 
best-selected feature subset, obtained at the end of these evaluations, is then assessed on the test data to confirm the 
robustness and generalization capability.

Several metrics comprehensively measure feature selection effectiveness, including test accuracy, F-measure, Root 
Mean Square Error (RMSE), number of selected features, Feature Reduction Rate (FRR), and Jaccard similarity. Test 
accuracy measures overall predictive performance, while the F-measure evaluates the balance between precision and 
recall, capturing robustness across different class distributions. The RMSE between training and test accuracy is com-
puted to quantify overfitting, with a lower RMSE indicating better generalization and reduced overfitting, calculated as:

	
RMSE =

√
1

n

∑n

i=1
(Train Accuracyi – Test Accuracyi)

2

	 (6)

The number of selected features and the FRR measure the degree of dimensionality reduction, reflecting how the model 
removes redundant or non-informative features while preserving essential information. FRR measures the percentage 
reduction in dimensionality achieved through feature selection, defined as:

	
FRR =

(
1 –

Number of Selected Features
Total Features

)
× 100

	 (7)

The Jaccard similarity metric evaluates feature selection stability across multiple runs by measuring the similarity between 
subsets of selected features. Given two index vectorsA and B, representing two selected subsets, the Jaccard similarity 
is calculated as the ratio of the intersection to the union of these subsets [58], with a higher percentage indicating greater 
consistency and stability of selected features across independent runs, computed as:

	
Jaccard Similarity (A,B) =

|A ∩ B|
|A ∪ B|

=
|A ∩ B|

|A|+ |B| – |A ∩ B|
× 100

	 (8)

Each feature selection model is executed independently for 30 runs to assess the consistency and reliability of its perfor-
mance. The performance metrics from these runs are then averaged to provide a stable and representative measure of 
overall performance. Statistical tests, such as the Wilcoxon signed-rank test and the Friedman test, were used to further 
validate the statistical significance of the results. The Wilcoxon signed-rank test evaluates statistical significance in pair-
wise comparisons between proposed ACG-SFE and other models, while the Friedman test ranks models across datasets, 
ensuring robust comparative analysis. The source code of the proposed ACG-SFE model can be accessed publicly at: 
https://github.com/yiwei9464/ACG-SFE.git.

https://github.com/yiwei9464/ACG-SFE.git
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All experiments are conducted on a desktop equipped with a 13th Gen Intel(R) Core(TM) i9-13900F processor (2.00 
GHz) and 64 GB of RAM, running on a 64-bit Windows 11 Pro system to provide sufficient computational power for han-
dling high-dimensional datasets effectively.

Results and discussion

This section evaluates the performance and selected features of the proposed ACG-SFE and comparative models using 
the metrics described in the Experiment setup. The analysis covers classification accuracy, overfitting mitigation, fea-
ture redundancy reduction, F-measure, the consistency and clustering behavior of selected features, as well as stability. 
Computational efficiency, measured as the mean runtime across 30 independent runs, is also assessed to evaluate each 
model’s feasibility and scalability, as provided in S1 File. Statistical significance of all the results is evaluated using the 
Wilcoxon signed-rank and Friedman tests.

Classification accuracy

Classification accuracy is a primary metric for evaluating feature selection performance. Table 3 presents the worst, best, 
mean, and standard deviation values of test classification accuracy across 30 independent runs. The Wilcoxon signed-
rank test (significance level of 0.05) is used to assess statistical significance, with symbols “+” (significantly better), “−” 
(significantly worse), and “≈” (no significant difference) indicating comparative performance relative to benchmark models. 
Additionally, the mean Friedman test, averaging model ranks across all datasets, comprehensively evaluates the algo-
rithms’ performance.

The proposed ACG-SFE model outperforms benchmark algorithms in 9 out of 11 datasets, demonstrating its superior 
capability to select highly informative features and effectively reduce overfitting. Specifically, ACG-SFE achieves perfect 
accuracy (100%) on the leukemia, prostate cancer, ovarian cancer, and lung cancer datasets. It also significantly improves 
accuracy on colon, DLBCL, ALLAML, CNS, and SMK_CAN_187 datasets, further highlighting its effectiveness in feature 
selection.

For the Prostate GE dataset, ACG-SFE achieves the same mean accuracy (85.00%) as the WFS scenario but signifi-
cantly reduces dimensionality, selecting only 8 out of 5,966 features. In the Prostate Tumor dataset, ACG-SFE attains 
marginally lower mean accuracy (84.67%) than WFS (85.00%), but this difference is not statistically significant based on 
the Wilcoxon signed-rank test. Moreover, ACG-SFE significantly reduces dimensionality by selecting just 13 out of 10,509 
features. These results demonstrate that ACG-SFE selects a more compact and highly relevant feature subset while 
maintaining comparable classification performance.

Examining the variability of the feature selection models, SFE and SFE-PSO exhibit higher fluctuations in test accuracy, 
with standard deviations exceeding 5% in 10 out of 11 datasets, indicating instability in feature selection. In contrast, BDE, 
BPSO, and ACG-SFE exhibit more consistent performance with a standard deviation of less than 5% across all datasets, 
demonstrating greater reliability and stability.

The Wilcoxon signed-rank and Friedman test results for test accuracy confirm ACG-SFE’s superior performance, 
consistently outperforming or performing on par with other comparative models. Additionally, ACG-SFE achieves the best 
average rank (1.59) in the Friedman test, significantly outperforming the other algorithms.

Fig 4 illustrates the average test accuracy across datasets, clearly highlighting ACG-SFE’s superior performance 
compared to all comparative models. Among the benchmarks, the WFS scenario achieves the highest accuracy, closely 
followed by BDE and BPSO, indicating their effectiveness in retaining informative features without substantial perfor-
mance loss. Conversely, SFE and SFE-PSO exhibit lower average accuracy (as illustrated in Fig 4) and higher variability 
(as shown in Table 3), reflecting instability and potential overfitting.

Fig 5 demonstrates the convergence behaviors of all feature selection models across 6,000 function evaluations. ACG-
SFE consistently achieves the highest accuracy across most datasets, including colon, DLBCL, Prostate GE, leukemia, 
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Table 3.  Test accuracy (%) across 30 runs (worst, best, mean, and standard deviation) for six models.

No. Dataset Metrics WFS BDE BPSO SFE SFE-PSO Proposed ACG-SFE

1 Colon Worst 66.67 58.33 58.33 41.67 41.67 75.00

Best 66.67 66.67 66.67 83.33 83.33 75.00

Mean 66.67 (+) 61.67 (+) 65.56 (+) 63.61 (+) 64.44 (+) 75.00

Std 0.00 4.15 2.88 12.85 10.48 0.00

2 DLBCL Worst 86.67 80.00 80.00 66.67 53.33 93.33

Best 86.67 86.67 86.67 100.00 100.00 93.33

Mean 86.67 (+) 83.33 (+) 86.22 (+) 83.33 (+) 81.78 (+) 93.33

Std 0.00 3.39 1.69 8.88 11.74 0.00

3 Prostate GE Worst 85.00 75.00 80.00 65.00 65.00 85.00

Best 85.00 90.00 90.00 95.00 100.00 85.00

Mean 85.00 (≈) 83.67 (≈) 84.83 (≈) 80.83 (+) 82.5 (≈) 85.00

Std 0.00 3.70 2.45 8.72 8.07 0.00

4 Leukemia Worst 78.57 71.43 78.57 57.14 64.29 100.00

Best 78.57 85.71 85.71 92.86 100.00 100.00

Mean 78.57 (+) 78.10 (+) 78.81 (+) 73.10 (+) 77.86 (+) 100.00

Std 0.00 2.61 1.30 9.51 9.63 0.00

5 ALLAML Worst 85.71 78.57 85.71 50.00 64.29 92.86

Best 85.71 85.71 85.71 85.71 92.86 100.00

Mean 85.71 (+) 85.24 (+) 85.71 (+) 70.48 (+) 77.86 (+) 98.33

Std 0.00 1.81 0.00 8.33 7.58 3.07

6 CNS Worst 66.67 58.33 66.67 41.67 33.33 75.00

Best 66.67 75.00 66.67 83.33 83.33 75.00

Mean 66.67 (+) 66.67 (+) 66.67 (+) 60.56 (+) 63.33 (+) 75.00

Std 0.00 3.79 0.00 11.97 11.91 0.00

7 Prostate Cancer Worst 75.00 75.00 75.00 25.00 25.00 100.00

Best 75.00 75.00 75.00 100.00 100.00 100.00

Mean 75.00 (+) 75.00 (+) 75.00 (+) 66.67 (+) 72.50 (+) 100.00

Std 0.00 0.00 0.00 20.06 21.12 0.00

8 Ovarian Cancer Worst 94.00 94.00 94.00 94.00 92.00 100.00

Best 94.00 96.00 94.00 100.00 100.00 100.00

Mean 94.00 (+) 94.27 (+) 94.00 (+) 97.73 (+) 97.27 (+) 100.00

Std 0.00 0.69 0.00 2.15 2.00 0.00

9 SMK_CAN_187 Worst 59.46 54.05 59.46 43.24 43.24 62.16

Best 59.46 67.57 64.86 75.68 72.97 62.16

Mean 59.46 (+) 61.35 (≈) 60.99 (+) 58.83 (+) 58.74 (+) 62.16

Std 0.00 3.56 1.83 7.53 6.92 0.00

10 Prostate Tumor Worst 85.00 80.00 80.00 60.00 45.00 80.00

Best 85.00 85.00 85.00 90.00 90.00 85.00

Mean 85.00 (≈) 81.50 (+) 82.83 (+) 77.17 (+) 75.83 (+) 84.67

Std 0.00 2.33 2.52 8.38 9.57 1.27

11 Lung Cancer Worst 94.44 94.44 94.44 86.11 88.89 100.00

Best 94.44 97.22 94.44 100.00 100.00 100.00

Mean 94.44 (+) 95.28 (+) 94.44 (+) 93.24 (+) 94.17 (+) 100.00

Std 0.00 1.29 0.00 3.47 2.86 0.00

Wilcoxon Test (+| ≈ |-) 9|2|0 9|2|0 10|1|0 11|0|0 10|1|0 –

Friedman Test (Mean Rank) 3.63 3.86 3.67 4.24 4.02 1.59

Notes: Accuracy values are percentages. Std, standard deviation. Symbols indicate Wilcoxon signed‑rank tests (α = 0.05) comparing ACG‑SFE with each 
benchmark model: + , ACG‑SFE significantly higher accuracy; − , ACG‑SFE significantly lower accuracy; ≈ , no significant difference.

https://doi.org/10.1371/journal.pone.0331089.t003

https://doi.org/10.1371/journal.pone.0331089.t003
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ALLAML, CNS, prostate cancer, ovarian cancer, and lung cancer, demonstrating effective and stable convergence. Nota-
bly, on the SMK_CAN_187 dataset, ACG-SFE initially obtained the lowest accuracy before 4,000 evaluations but then 
sharply improved to attain and sustain the highest accuracy, highlighting its ability to refine feature selection progressively. 
In the prostate tumor dataset, although ACG-SFE’s accuracy is marginally lower than WFS, ACG-SFE significantly outper-
forms BDE, BPSO, SFE, and SFE-PSO.

Comparatively, SFE and SFE-PSO exhibit fluctuating convergence patterns, suggesting potential overfitting due to 
insufficient regularization, resulting in unstable performance frequently below WFS. BPSO maintains stable accuracy, 
closely mirroring WFS performance in 8 of 11 datasets, indicating limited improvements over the baseline. Similarly, BDE 
shows stable convergence but often underperforms relative to WFS in 6 of 11 datasets, suggesting its inadequacy in 
addressing overfitting effectively for high-dimensional data.

Overfitting analysis via RMSE of train and test accuracy

Overfitting is a significant challenge in high-dimensional datasets, affecting the model’s generalization capability to unseen 
data. Table 4 presents the worst, best, mean, and standard deviation of RMSE between train and test accuracy across 30 
runs, assessing each model’s generalization capability.

ACG-SFE achieves the lowest RMSE on 9 of 11 datasets, demonstrating superior generalization. Notably, it attains an 
RMSE of 0.00% in leukemia, prostate cancer, ovarian cancer, and lung cancer datasets, indicating perfect generalization. 
Additionally, it achieves the lowest RMSE among all models for colon, DLBCL, ALLAML, CNS, and SMK_CAN_187 data-
sets. In Prostate GE and prostate tumor datasets, ACG-SFE maintains RMSE values comparable to WFS, effectively pre-
serving generalization while substantially reducing dimensionality. Although ACG-SFE records its highest RMSE (37.84%) 
on the SMK_CAN_187 dataset due to its extremely high dimensionality (19,993 features), this RMSE remains the lowest 
among all tested algorithms.

Fig 4.  Average test classification accuracy of six feature selection models.

https://doi.org/10.1371/journal.pone.0331089.g004

https://doi.org/10.1371/journal.pone.0331089.g004


PLOS One | https://doi.org/10.1371/journal.pone.0331089  September 8, 2025 19 / 38

In contrast, SFE and SFE-PSO exhibit the highest RMSE values across most datasets, with SFE highest in six and 
SFE-PSO highest in three, reflecting significant overfitting due to inadequate regularization and excessive reliance on val-
idation accuracy. Meanwhile, BPSO and BDE maintain stable RMSE values but do not show significant improvement over 
WFS, highlighting their limited effectiveness in addressing overfitting.

Statistical analyses using the Wilcoxon signed-rank and Friedman tests confirm ACG-SFE’s significant superiority. 
ACG-SFE significantly reduces RMSE in 9 of 11 datasets, achieving the top mean Friedman rank (1.59). Fig 6 visually 

Fig 5.  Convergence curve of feature selection algorithms across 11 datasets with KNN classifier.

https://doi.org/10.1371/journal.pone.0331089.g005
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Table 4.  RMSE between train and test accuracy (%) across 30 runs (worst, best, mean, and standard deviation) for six models.

No. Dataset Metrics WFS BDE BPSO SFE SFE-PSO Proposed ACG-SFE

1 Colon Worst 33.33 41.67 41.67 58.33 58.33 25.00

Best 33.33 33.33 33.33 16.67 16.67 25.00

Mean 33.33 (-) 38.33 (-) 34.44 (-) 36.39 (-) 35.56 (-) 25.00

Std 0.00 4.15 2.88 12.85 10.48 0.00

2 DLBCL Worst 13.33 20.00 20.00 33.33 46.67 6.67

Best 13.33 13.33 13.33 0.00 0.00 6.67

Mean 13.33 (-) 16.67 (-) 13.78 (-) 16.67 (-) 18.22 (-) 6.67

Std 0.00 3.39 1.69 8.88 11.74 0.00

3 Prostate GE Worst 15.00 25.00 20.00 35.00 35.00 15.00

Best 15.00 10.00 10.00 5.00 0.00 15.00

Mean 15.00 (≈) 16.33 (≈) 15.17 (≈) 19.17 (-) 17.5 (≈) 15.00

Std 0.00 3.70 2.45 8.72 8.07 0.00

4 Leukemia Worst 21.43 28.57 21.43 42.86 35.71 0.00

Best 21.43 14.29 14.29 7.14 0.00 0.00

Mean 21.43 (-) 21.90 (-) 21.19 (-) 26.90 (-) 22.14 (-) 0.00

Std 0.00 2.61 1.30 9.51 9.63 0.00

5 ALLAML Worst 14.29 21.43 14.29 50.00 35.71 7.14

Best 14.29 14.29 14.29 14.29 7.14 0.00

Mean 14.29 (-) 14.76 (-) 14.29 (-) 29.52 (-) 22.14 (-) 1.67

Std 0.00 1.81 0.00 8.33 7.58 3.07

6 CNS Worst 33.33 41.67 33.33 58.33 66.67 25.00

Best 33.33 25.00 33.33 16.67 16.67 25.00

Mean 33.33 (-) 33.33 (-) 33.33 (-) 39.44 (-) 36.67 (-) 25.00

Std 0.00 3.79 0.00 11.97 11.91 0.00

7 Prostate Cancer Worst 25.00 25.00 25.00 75.00 75.00 0.00

Best 25.00 25.00 25.00 0.00 0.00 0.00

Mean 25.00 (-) 25.00 (-) 25.00 (-) 33.33 (-) 27.50 (-) 0.00

Std 0.00 0.00 0.00 20.06 21.12 0.00

8 Ovarian Cancer Worst 6.00 6.00 6.00 6.00 8.00 0.00

Best 6.00 4.00 6.00 0.00 0.00 0.00

Mean 6.00 (-) 5.73 (-) 6.00 (-) 2.27 (-) 2.73 (-) 0.00

Std 0.00 0.69 0.00 2.15 2.00 0.00

9 SMK_CAN_187 Worst 40.54 45.95 40.54 56.76 56.76 37.84

Best 40.54 32.43 35.14 24.32 27.03 37.84

Mean 40.54 (-) 38.65 (≈) 39.01 (-) 41.17 (-) 41.26 (-) 37.84

Std 0.00 3.56 1.83 7.53 6.92 0.00

10 Prostate Tumor Worst 15.00 20.00 20.00 40.00 55.00 20.00

Best 15.00 15.00 15.00 10.00 10.00 15.00

Mean 15.00 (≈) 18.50 (-) 17.17 (-) 22.83 (-) 24.17 (-) 15.33

Std 0.00 2.33 2.52 8.38 9.57 1.27

11 Lung Cancer Worst 5.56 5.56 5.56 13.89 11.11 0.00

Best 5.56 2.78 5.56 0.00 0.00 0.00

Mean 5.56 (-) 4.72 (-) 5.56 (-) 6.76 (-) 5.83 (-) 0.00

Std 0.00 1.29 0.00 3.47 2.86 0.00

Wilcoxon Test (+| ≈ |-) 0|2|9 0|2|9 0|1|10 0|0|11 0|1|10 –

Friedman Test (Mean Rank) 3.63 3.86 3.67 4.24 4.02 1.59

Notes: RMSE values are percentages. RMSE, root mean square error; Std, standard deviation. Symbols indicate Wilcoxon signed‑rank tests (α = 0.05) 
comparing ACG‑SFE with each benchmark model: − , ACG‑SFE significantly lower RMSE (better generalization); + , ACG‑SFE significantly higher 
RMSE; ≈ , no significant difference.

https://doi.org/10.1371/journal.pone.0331089.t004
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reinforces ACG-SFE’s consistent advantage in reducing overfitting by illustrating its lowest average RMSE across 
datasets.

Feature redundancy analysis: number of selected features and feature reduction rate

Effective feature selection aims to minimize redundant features while preserving those most informative for classification. 
Therefore, this section compares the proposed ACG-SFE with comparative models based on the number of selected fea-
tures and the Feature Reduction Rate (FRR).

Table 5 shows that ACG-SFE selects the fewest features compared to other models in 10 of 11 datasets, consistently 
selecting fewer than 32 features without compromising classification accuracy. The only exception is the prostate cancer 
dataset, where ACG-SFE selects 43 features, more than SFE (21 features). However, ACG-SFE achieves 100% test 
accuracy compared to SFE’s 66.67% for the prostate cancer dataset, demonstrating the greater relevance of ACG-SFE’s 
selected features.

Further analysis using the FRR presented in Table 6 confirms that ACG-SFE consistently achieves average 
FRRs above 99% across 10 datasets, effectively eliminating redundant features. The Wilcoxon signed-rank test 
confirms that ACG-SFE significantly reduces more features than other models in all but the prostate cancer data-
set. The Friedman test further supports these findings, ranking ACG-SFE first, with mean ranks of 1.21 for the 
number of features and 1.20 for FRR, underscoring its superior capability in dimensionality reduction and redun-
dancy elimination.

Fig 7 illustrates the FRR comparison, highlighting ACG-SFE’s highest average reduction rate (99.79%). Although SFE 
and SFE-PSO achieve high FRRs at 99.52% and 99.06%, respectively, their inadequate regularization leads to unstable 
performance and overfitting. Conversely, BDE (50.01%) and BPSO (10.81%) exhibit significantly lower FRRs, indicating a 
limited ability to eliminate redundant features. These results highlight ACG-SFE’s balanced approach, achieving substan-
tial feature reduction without compromising classification stability and generalization.

Fig 6.  Average RMSE of train and test classification accuracy of six feature selection models.

https://doi.org/10.1371/journal.pone.0331089.g006
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Table 5.  Number of selected features across 30 runs (worst, best, mean, and standard deviation) for six models.

No. Dataset Metrics WFS BDE BPSO SFE SFE-PSO Proposed ACG-SFE

1 Colon Worst 2000.00 1052.00 1840.00 24.00 47.00 9.00

Best 2000.00 963.00 1641.00 4.00 6.00 9.00

Mean 2000.00 (-) 999.4 (-) 1711.33 (-) 13.53 (-) 16.70 (-) 9.00

Std 0.00 20.13 45.99 4.32 9.83 0.00

2 DLBCL Worst 5469.00 2841.00 5234.00 66.00 134.00 10.00

Best 5469.00 2681.00 4948.00 22.00 17.00 10.00

Mean 5469.00 (-) 2735.73 (-) 5110.77 (-) 31.37 (-) 45.50 (-) 10.00

Std 0.00 39.02 118.41 8.02 30.59 0.00

3 Prostate GE Worst 5966.00 3064.00 5223.00 82.00 316.00 8.00

Best 5966.00 2894.00 3915.00 16.00 22.00 8.00

Mean 5966.00 (-) 2982.80 (-) 4649.83 (-) 37.33 (-) 66.73 (-) 8.00

Std 0.00 44.52 365.34 11.64 60.92 0.00

4 Leukemia Worst 7070.00 3654.00 6763.00 147.00 2221.00 13.00

Best 7070.00 3443.00 6174.00 18.00 23.00 12.00

Mean 7070.00 (-) 3536.3 (-) 6497.50 (-) 45.53 (-) 169.67 
(-)

12.37

Std 0.00 51.09 213.37 28.41 411.62 0.49

5 ALLAML Worst 7129.00 3665.00 6808.00 132.00 497.00 24.00

Best 7129.00 3480.00 5685.00 13.00 15.00 20.00

Mean 7129.00 (-) 3559.07 (-) 6393.30 (-) 37.50 (-) 70.30 (-) 21.23

Std 0.00 43.54 270.88 19.83 88.53 0.82

6 CNS Worst 7129.00 3639.00 6805.00 53.00 141.00 31.00

Best 7129.00 3450.00 5490.00 2.00 9.00 31.00

Mean 7129.00 (-) 3551.77 (-) 6289.9 (-) 36.70 (-) 57.50 (-) 31.00

Std 0.00 41.83 347.10 9.07 35.33 0.00

7 Prostate Cancer Worst 12627.00 6388.00 12090.00 64.00 140.00 46.00

Best 12627.00 6176.00 11978.00 1.00 22.00 41.00

Mean 12627.00 (-) 6307.60 (-) 12029.43 (-) 21.00 (+) 73.00 (-) 43.40

Std 0.00 56.08 27.82 20.41 38.24 1.50

8 Ovarian Cancer Worst 15154.00 7706.00 14455.00 78.00 189.00 13.00

Best 15154.00 7469.00 12799.00 5.00 27.00 13.00

Mean 15154.00 (-) 7577.5 (-) 14079.47 (-) 32.13 (-) 67.30 (-) 13.00

Std 0.00 52.24 384.32 25.66 41.32 0.00

9 SMK_CAN_187 Worst 19993.00 10100.00 17498.00 187.00 371.00 4.00

Best 19993.00 9881.00 15016.00 70.00 64.00 4.00

Mean 19993.00 (-) 10000.10 (-) 16451.50 (-) 95.53 (-) 134.57 
(-)

4.00

Std 0.00 52.89 612.46 19.89 84.44 0.00

10 Prostate Tumor Worst 10509.00 5372.00 10039.00 63.00 193.00 15.00

Best 10509.00 5151.00 7677.00 26.00 36.00 13.00

Mean 10509.00 (-) 5265.63 (-) 8841.87 (-) 47.80 (-) 100.50 
(-)

13.27

Std 0.00 55.00 614.49 7.60 55.50 0.58

(Continued)
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F-measure

The F-measure complements accuracy by evaluating the balance between precision and recall, making it particularly 
valuable to evaluate datasets with class imbalance. Table 7 presents the worst, best, mean, and standard deviation of the 
F-measure across 30 independent runs for all evaluated models.

ACG-SFE achieves the highest F-measure on all datasets except Prostate GE. For the Prostate GE dataset, ACG-SFE 
ties with WFS at 86.96%, consistent with their identical test accuracy at 85%. Notably, it achieves a perfect F-measure 
at 100% on leukemia, prostate cancer, ovarian cancer, and lung cancer, confirming its strong capability to select highly 
relevant features.

For datasets with higher imbalance (IR more than 3), such as DLBCL and lung cancer, ACG-SFE significantly out-
performs comparative models, highlighting its effectiveness in addressing class imbalance scenarios. Notably, although 
ACG-SFE’s test accuracy (84.67%) for Prostate Tumor is slightly lower than WFS (85.00%), it attains the highest 
F-measure among all models for this dataset, indicating better-balanced precision and recall, resulting in more reliable 
classification result. Statistical analyses further support ACG-SFE’s effectiveness, with the Wilcoxon test showing sig-
nificant improvements across 10 datasets, and the Friedman test ranks ACG-SFE as the best-performing model with a 
mean rank of 1.39.

Fig 8 highlights ACG-SFE’s superior performance, showing the highest average F-measure at 89.03% compared to all 
comparative models. While WFS, BDE, and BPSO have similar average F-measure of around 76%, SFE and SFE-PSO 
perform notably lower at 68.81% and 72.43%, respectively. These results underline ACG-SFE’s ability to optimize feature 
selection effectively while ensuring high predictive accuracy across datasets with balanced or moderate class imbalance.

Consistency and clustering behavior of selected features

Feature selection consistency and clustering behavior are essential indicators of a model’s robustness and generalizability 
across datasets. Fig 9 illustrates the overall distribution of feature selection frequencies for the ACG-SFE model across 
30 independent runs, highlighting that most features selected by the model are consistently chosen in nearly every run, 
underscoring the stability and reliability of the model.

Fig 10 specifically shows the stable features, defined as those features consistently selected in more than 15 out of 
30 runs. Across all datasets, ACG-SFE identifies a small set of consistently selected features, reinforcing their predictive 
relevance rather than random selection.

To further examine the predictive quality and clustering behavior of these stable features selected by the ACG-SFE 
model, PCA scatter plots are illustrated in Fig 11. Clear and distinct separations between classes are evident in datasets 
such as Leukemia, ALLAML, Prostate Cancer, Ovarian Cancer, and Lung Cancer, highlighting strong linear separability 
and biological relevance of these stable features. For other datasets, including Colon, DLBCL, Prostate GE, CNS, and 

No. Dataset Metrics WFS BDE BPSO SFE SFE-PSO Proposed ACG-SFE

11 Lung Cancer Worst 12533.00 6377.00 12533.00 80.00 240.00 10.00

Best 12533.00 6214.00 11929.00 36.00 26.00 8.00

Mean 12533.00 (-) 6276.33 (-) 12492.83 (-) 55.57 (-) 92.17 (-) 8.87

Std 0.00 43.38 152.86 9.66 65.44 0.73

Wilcoxon Test (+| ≈ |-) 0|0|11 0|0|11 0|0|11 1|0|10 0|0|11 –

Friedman Test (Mean Rank) 5.96 4.00 5.04 2.25 2.53 1.21

Notes: Std, standard deviation. Symbols denote Wilcoxon signed‑rank tests (α = 0.05) comparing ACG‑SFE with each benchmark model: − , ACG‑SFE 
significantly fewer selected features (better); + , ACG‑SFE significantly more selected features (worse); ≈ , no significant difference.

https://doi.org/10.1371/journal.pone.0331089.t005

Table 5.  (Continued)
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Table 6.  Feature reduction rate (FRR) (%) across 30 runs (worst, best, mean, and standard deviation) for six models.

No. Dataset Metrics WFS BDE BPSO SFE SFE-PSO Proposed ACG-SFE

1 Colon Worst 0.00 47.40 8.00 98.80 97.65 99.55

Best 0.00 51.85 17.95 99.80 99.70 99.55

Mean 0.00 (+) 50.03 (+) 14.43 (+) 99.32 (+) 99.17 (+) 99.55

Std 0.00 1.01 2.30 0.22 0.49 0.00

2 DLBCL Worst 0.00 48.05 4.30 98.79 97.55 99.82

Best 0.00 50.98 9.53 99.60 99.69 99.82

Mean 0.00 (+) 49.98 (+) 6.55 (+) 99.43 (+) 99.17 (+) 99.82

Std 0.00 0.71 2.17 0.15 0.56 0.00

3 Prostate GE Worst 0.00 48.64 12.45 98.63 94.70 99.87

Best 0.00 51.49 34.38 99.73 99.63 99.87

Mean 0.00 (+) 50.00 (+) 22.06 (+) 99.37 (+) 98.88 (+) 99.87

Std 0.00 0.75 6.12 0.20 1.02 0.00

4 Leukemia Worst 0.00 48.32 4.34 97.92 68.59 99.82

Best 0.00 51.30 12.67 99.75 99.67 99.83

Mean 0.00 (+) 49.98 (+) 8.10 (+) 99.36 (+) 97.60 (+) 99.83

Std 0.00 0.72 3.02 0.40 5.82 0.01

5 ALLAML Worst 0.00 48.59 4.50 98.15 93.03 99.66

Best 0.00 51.19 20.26 99.82 99.79 99.72

Mean 0.00 (+) 50.08 (+) 10.32 (+) 99.47 (+) 99.01 (+) 99.70

Std 0.00 0.61 3.80 0.28 1.24 0.01

6 CNS Worst 0.00 48.95 4.54 99.26 98.02 99.57

Best 0.00 51.61 22.99 99.97 99.87 99.57

Mean 0.00 (+) 50.18 (+) 11.77 (+) 99.49 (+) 99.19 (+) 99.57

Std 0.00 0.59 4.87 0.13 0.50 0.00

7 Prostate Cancer Worst 0.00 49.41 4.25 99.49 98.89 99.64

Best 0.00 51.09 5.14 99.99 99.83 99.68

Mean 0.00 (+) 50.05 (+) 4.73 (+) 99.83 (-) 99.42 (+) 99.66

Std 0.00 0.44 0.22 0.16 0.30 0.01

8 Ovarian Cancer Worst 0.00 49.15 4.61 99.49 98.75 99.91

Best 0.00 50.71 15.54 99.97 99.82 99.91

Mean 0.00 (+) 50.00 (+) 7.09 (+) 99.79 (+) 99.56 (+) 99.91

Std 0.00 0.34 2.54 0.17 0.27 0.00

9 SMK_CAN_187 Worst 0.00 49.48 12.48 99.06 98.14 99.98

Best 0.00 50.58 24.89 99.65 99.68 99.98

Mean 0.00 (+) 49.98 (+) 17.71 (+) 99.52 (+) 99.33 (+) 99.98

Std 0.00 0.26 3.06 0.10 0.42 0.00

10 Prostate Tumor Worst 0.00 48.88 4.47 99.40 98.16 99.86

Best 0.00 50.98 26.95 99.75 99.66 99.88

Mean 0.00 (+) 49.89 (+) 15.86 (+) 99.55 (+) 99.04 (+) 99.87

Std 0.00 0.52 5.85 0.07 0.53 0.01

11 Lung Cancer Worst 0.00 49.12 0.00 99.36 98.09 99.92

Best 0.00 50.42 4.82 99.71 99.79 99.94

Mean 0.00 (+) 49.92 (+) 0.32 (+) 99.56 (+) 99.26 (+) 99.93

Std 0.00 0.35 1.22 0.08 0.52 0.01

Wilcoxon Test (+| ≈ |-) 11|0|0 11|0|0 11|0|0 10|0|1 11|0|0 –

Friedman Test (Mean Rank) 5.96 4.00 5.04 2.25 2.53 1.21

Notes: Values are percentages. FRR, feature reduction rate (see Eq. (7) for the definition); Std, standard deviation. Symbols denote Wilcoxon 
signed‑rank tests (α = 0.05) comparing ACG‑SFE with each benchmark model: + , ACG‑SFE significantly higher FRR (better); − , ACG‑SFE significantly 
lower FRR (worse); ≈ , no significant difference.

https://doi.org/10.1371/journal.pone.0331089.t006
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Prostate Tumor, PCA plots reveal some overlap between classes but still show discernible class separation, indicating 
informative selected features but less obvious linear patterns.

Notably, for the SMK_CAN_187 dataset, the PCA visualization shows significant overlap between classes, indicating 
limited linear separability. In contrast, the t-SNE visualization for the SMK_CAN_187 dataset in Fig 12 demonstrates sub-
stantially improved class distinction, indicating selected features effectively capturing nonlinear relationships and reducing 
class overlap. Similar improvements with t-SNE are observed in other datasets, including Colon, DLBCL, Prostate GE, 
and Prostate Tumor dataset, where nonlinear t-SNE methods separate the classes and reduce class overlap despite PCA 
showing moderate overlap. However, the CNS dataset shows limited improvement with t-SNE compared to PCA, suggest-
ing differences between classes in the CNS dataset are inherently subtle and challenging to capture visually. Collectively, 
these visualizations demonstrate that the stable features selected by ACG-SFE model reliably capture informative, gener-
alizable patterns for effective class discrimination across diverse datasets.

Stability analysis

Stability analysis assesses the consistency in selected features and predictive performance across repeated independent 
runs. Table 8 summarizes the feature selection stability measured by Jaccard similarity across 30 runs for the proposed 
ACG-SFE and comparative evolutionary algorithms. ACG-SFE demonstrates exceptional stability, achieving a perfect 
mean Jaccard similarity score (100%) in 6 out of 11 datasets, including Colon, DLBCL, Prostate GE, CNS, Ovarian 
Cancer, and SMK_CAN_187. This perfect consistency with the highest test accuracy among all models underscores the 
reliability of the ACG-SFE model in identifying biologically meaningful feature subsets.

For datasets such as Leukemia, ALLAML, Prostate Cancer, and Prostate Tumor, the ACG-SFE model maintains high 
feature selection stability, achieving mean Jaccard similarities ranging from 91.09% to 96.30%. Although minor variability 
is present due to randomness applied in the feature selection, the stability remains significantly higher compared to com-
parative models, reflecting the reliability of the proposed ACG-SFE. For the Lung Cancer dataset, the stability of ACG-SFE 
is comparatively lower, with a mean Jaccard similarity of 89.53%, slightly below that of BPSO at 99.36%, suggesting the 

Fig 7.  Average FRR of six feature selection models.
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Table 7.  F‑measure (%) across 30 runs (worst, best, mean, and standard deviation) for six models.

No. Dataset Metrics WFS BDE BPSO SFE SFE-PSO Proposed ACG-SFE

1 Colon Worst 75.00 66.67 70.59 53.33 46.15 82.35

Best 75.00 75.00 75.00 88.89 87.50 82.35

Mean 75.00 (+) 72.09 (+) 74.41 (+) 73.17 (+) 73.17 (+) 82.35

Std 0.00 2.60 1.53 10.37 9.08 0.00

2 DLBCL Worst 90.00 85.71 85.71 76.19 58.82 95.65

Best 90.00 90.00 90.00 100.00 100.00 95.65

Mean 90.00 (+) 87.86 (+) 89.71 (+) 88.41 (+) 87.04 (+) 95.65

Std 0.00 2.18 1.09 6.59 9.26 0.00

3 Prostate GE Worst 86.96 78.26 83.33 58.82 66.67 86.96

Best 86.96 90.91 90.91 95.24 100 86.96

Mean 86.96 (≈) 85.89 (≈) 86.87 (≈) 81.49 (+) 83.69 (+) 86.96

Std 0.00 3.00 1.85 9.14 7.67 0.00

4 Leukemia Worst 57.14 50.00 57.14 0.00 0.00 100.00

Best 57.14 75.00 75.00 90.91 100.00 100.00

Mean 57.14 (+) 57.34 (+) 57.74 (+) 49.84 (+) 60.28 (+) 100.00

Std 0.00 4.40 3.26 23.02 20.67 0.00

5 ALLAML Worst 75.00 57.14 75.00 0.00 0.00 88.89

Best 75.00 75.00 75.00 75.00 88.89 100.00

Mean 75.00 (+) 73.81 (+) 75.00 (+) 42.82 (+) 58.25 (+) 97.41

Std 0.00 4.53 0.00 19.69 19.30 4.78

6 CNS Worst 60.00 44.44 60.00 0.00 20.00 66.67

Best 60.00 72.73 60.00 80.00 80.00 66.67

Mean 60.00 (+) 59.52 (+) 60.00 (+) 46.39 (+) 50.13 (+) 66.67

Std 0.00 6.12 0.00 16.16 16.19 0.00

7 Prostate Cancer Worst 80.00 80.00 80.00 0.00 40.00 100.00

Best 80.00 80.00 80.00 100.00 100.00 100.00

Mean 80.00 (+) 80.00 (+) 80.00 (+) 68.11 (+) 74.67 (+) 100.00

Std 0.00 0.00 0.00 20.75 19.55 0.00

8 Ovarian Cancer Worst 95.52 95.52 95.52 95.38 94.12 100.00

Best 95.52 96.97 95.52 100.00 100.00 100.00

Mean 95.52 (+) 95.72 (+) 95.52 (+) 98.27 (+) 97.92 (+) 100.00

Std 0.00 0.50 0.00 1.63 1.50 0.00

9 SMK_CAN_187 Worst 57.14 48.48 57.14 42.42 38.71 65.00

Best 57.14 68.42 64.86 75.68 75.00 65.00

Mean 57.14 (+) 59.93 (+) 59.23 (+) 57.76 (+) 57.88 (+) 65.00

Std 0.00 4.82 2.50 8.97 8.10 0.00

10 Prostate Tumor Worst 84.21 80.00 80.00 58.82 52.17 80.00

Best 84.21 85.71 84.21 90.00 90.00 85.71

Mean 84.21 (+) 81.31 (+) 82.39 (+) 77.12 (+) 76.12 (+) 85.33

Std 0.00 2.06 2.12 8.85 8.91 1.45

11 Lung Cancer Worst 80.00 80.00 80.00 28.57 50.00 100.00

Best 80.00 90.91 80.00 100.00 100.00 100.00

Mean 80.00 (+) 83.27 (+) 80.00 (+) 73.52 (+) 77.55 (+) 100.00

Std 0.00 5.08 0.00 16.69 12.44 0.00

Wilcoxon Test (+| ≈ |-) 10|1|0 10|1|0 10|1|0 11|0|0 11|0|0 –

Friedman Test (Mean Rank) 3.70 3.89 3.73 4.23 4.05 1.39

Notes: Values are percentages. Std, standard deviation. Symbols denote Wilcoxon signed‑rank tests (α = 0.05) comparing ACG‑SFE with each bench-
mark model: + , ACG‑SFE significantly higher F-measure; − , ACG‑SFE significantly lower F-measure; ≈ , no significant difference.

https://doi.org/10.1371/journal.pone.0331089.t007
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presence of multiple equally predictive feature subsets. Nonetheless, the ACG-SFE model consistently achieves perfect 
classification accuracy and F-measure (100%) for this dataset, confirming the selected features’ strong predictive rele-
vance despite the slight variations.

Comparatively, BDE, SFE, and SFE-PSO exhibit significantly lower stability, with mean Jaccard similarity scores gener-
ally below 52%, indicating substantial inconsistency. BPSO shows moderate stability with mean Jaccard similarity scores 
above 63%, but remains consistently lower than ACG-SFE, except for Lung Cancer. Statistical analyses using Wilcoxon 
signed-rank and Friedman tests further confirm ACG-SFE’s high stability, assigning it the best overall Friedman rank of 
1.14 across all models.

Further evaluation of predictive performance stability for the ACG-SFE model is provided by the control charts of test 
accuracy, as illustrated in Fig 13. ACG-SFE consistently achieves high accuracy with minimal variability across 10 of 11 
datasets, highlighting robust and reliable performance. Only the Prostate Tumor dataset shows increased variability, with 
accuracy briefly dropping below control limits in 2 out of 30 runs. Such occasional fluctuations suggest minor sensitivity 
to differences in selected feature subsets. Nevertheless, the overall mean accuracy of 84.57% remains highest among 
comparative evolutionary models, reinforcing the ACG-SFE model’s overall effectiveness.

Similar stability patterns are evident in the control charts of RMSE between training and test accuracy (Fig 14) and 
the F-measure (Fig 15). For most datasets, the RMSE of ACG-SFE consistently remains low, highlighting strong gener-
alization capability and minimal overfitting across runs. Likewise, the F-measure control charts demonstrate stable and 
balanced predictive performance, reflecting consistent precision and recall. The Prostate Tumor dataset again displays 
greater variability in both RMSE and F-measure, aligning with the observed fluctuations in test accuracy. This variability 
likely results from minor differences in selected feature subsets across runs. Nonetheless, the performance variations 
across 10 of the 11 datasets remain within acceptable and stable ranges, reinforcing the robustness and generalization 
capability of the ACG-SFE model.

Collectively, these stability analyses, complemented by the Jaccard similarity measures and performance control 
charts, reinforce the consistency and generalization capabilities of the ACG-SFE model, highlighting its suitability for reli-
able and reproducible analysis of high-dimensional microarray datasets.

Fig 8.  Average F-measure of six feature selection models.

https://doi.org/10.1371/journal.pone.0331089.g008
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Conclusion

This paper proposes the Adaptive Cluster-Guided Simple, Fast, and Efficient (ACG-SFE) algorithm, a hybrid feature selec-
tion model designed for high-dimensional microarray datasets in binary classification. ACG-SFE effectively enhances classi-
fication by capturing feature interactions, reducing redundancy, and improving generalization through three main strategies: 
dynamic hierarchical clustering to group correlated features, adaptive mutual information-based intra-cluster regularization to 
select highly informative cluster features, and a hybrid filter-wrapper heuristic search for efficient feature optimization.

Fig 9.  Overall distribution of feature selection frequencies across 30 runs for the ACG-SFE model.

https://doi.org/10.1371/journal.pone.0331089.g009
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Experimental results demonstrate that the ACG-SFE model consistently outperforms state-of-the-art evolutionary 
feature selection models across multiple evaluation metrics, including classification accuracy, F-measure, feature reduc-
tion rate, and RMSE between training and testing accuracy, and Jaccard similarity measure. Statistical analyses using 
Wilcoxon signed-rank and Friedman tests further confirm that ACG-SFE achieves higher classification accuracy and 
F-measure while effectively minimizing redundant features and overfitting compared to comparative models. Thus, the 
proposed ACG-SFE provides a stable, high-performance, and generalizable solution for feature selection, effectively 
addressing critical challenges in high-dimensional microarray data analysis.

Fig 10.  Frequency of stable features selected by ACG‑SFE for each dataset.

https://doi.org/10.1371/journal.pone.0331089.g010
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Fig 11.  PCA scatter plots using stable features selected by ACG‑SFE for each dataset.

https://doi.org/10.1371/journal.pone.0331089.g011
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Fig 12.  t‑SNE plots using stable features selected by ACG‑SFE for each dataset.

https://doi.org/10.1371/journal.pone.0331089.g012
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Table 8.  Jaccard similarity (%) across 30 runs (worst, best, mean, and standard deviation) for five evolutionary feature selection models.

No. Dataset Metrics BDE BPSO SFE SFE-PSO Proposed ACG-SFE

1 Colon Worst 29.85 68.77 0.00 12.77 100.00

Best 37.07 83.38 9.09 100.00 100.00

Mean 33.45 (+) 74.84 (+) 0.52 (+) 63.13 (+) 100.00

Std 1.14 2.49 1.46 23.10 0.00

2 DLBCL Worst 31.63 82.76 0.00 8.79 100.00

Best 35.49 91.80 3.51 100.00 100.00

Mean 33.41 (+) 87.72 (+) 0.37 (+) 44.77 (+) 100.00

Std 0.71 2.61 0.73 24.67 0.00

3 Prostate GE Worst 31.61 50.09 0.00 4.32 100.00

Best 35.27 77.64 4.11 100.00 100.00

Mean 33.45 (+) 63.74 (+) 0.38 (+) 48.73 (+) 100.00

Std 0.71 5.64 0.72 26.77 0.00

4 Leukemia Worst 31.47 77.53 0.00 0.76 92.31

Best 35.19 91.58 4.17 100.00 100.00

Mean 33.38 (+) 85.02 (+) 0.33 (+) 38.19 (+) 96.30

Std 0.68 3.52 0.62 25.42 3.85

5 ALLAML Worst 31.87 69.25 0.00 1.59 80.00

Best 36.18 91.62 4.26 97.37 100.00

Mean 33.32 (+) 81.29 (+) 0.37 (+) 42.00 (+) 91.85

Std 0.65 4.29 0.76 24.27 4.06

6 CNS Worst 31.17 62.75 0.00 3.79 100.00

Best 35.66 91.16 3.17 100.00 100.00

Mean 33.20 (+) 78.90 (+) 0.35 (+) 41.35 (+) 100.00

Std 0.62 5.38 0.66 24.58 0.00

7 Prostate Cancer Worst 31.89 90.13 0.00 8.74 83.33

Best 34.58 91.83 2.78 88.73 100.00

Mean 33.31 (+) 90.96 (≈) 0.04 (+) 30.56 (+) 91.09

Std 0.48 0.29 0.27 16.01 3.13

8 Ovarian Cancer Worst 32.17 75.01 0.00 5.77 100.00

Best 34.56 91.31 8.33 73.33 100.00

Mean 33.37 (+) 86.75 (+) 0.26 (+) 32.73 (+) 100.00

Std 0.41 3.05 0.86 17.40 0.00

9 SMK_CAN_187 Worst 32.28 60.85 0.00 11.45 100.00

Best 34.55 77.73 2.23 100.00 100.00

Mean 33.36 (+) 69.88 (+) 0.27 (+) 51.20 (+) 100.00

Std 0.37 3.05 0.41 29.92 0.00

10 Prostate Tumor Worst 31.84 58.48 0.00 12.18 85.71

Best 34.90 91.06 2.86 100.00 100.00

Mean 33.46 (+) 72.55 (+) 0.27 (+) 43.16 (+) 92.63

Std 0.49 5.98 0.53 23.83 6.12

11 Lung Cancer Worst 31.90 90.95 0.00 5.65 80.00

Best 100.00 100.00 2.20 95.92 100.00

Mean 35.50 (+) 99.36 (-) 0.23 (+) 40.84 (+) 89.53

Std 11.34 1.66 0.46 22.88 6.99

Wilcoxon Test (+| ≈ |-) 11|0|0 9|1|1 11|0|0 11|0|0 –

Friedman Test (Mean Rank) 3.53 2.02 5.00 3.31 1.14

Notes: Values are percentages. Std, standard deviation. Symbols denote Wilcoxon signed‑rank tests (α = 0.05) comparing ACG‑SFE with each bench-
mark model: + , ACG‑SFE significantly higher similarity; − , ACG‑SFE significantly lower similarity; ≈ , no significant difference.

https://doi.org/10.1371/journal.pone.0331089.t008
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Despite achieving the lowest RMSE among comparative models, the relatively high RMSE (37.84%) on the extremely 
high-dimensional SMK_CAN_187 dataset indicates potential scalability limitations, likely due to increased complexity in 
capturing feature interactions in ultra-high-dimensional spaces. Future research could enhance ACG-SFE by (1) develop-
ing incremental or online selection strategies for streaming data, (2) incorporating multi-objective optimization to balance 
accuracy, redundancy, and feature relevance, and (3) integrating reinforcement learning to manage high-class imbalance 
in high-dimensional datasets effectively.

Fig 13.  Control chart of test accuracy stability across 30 runs of ACG‑SFE for each dataset.

https://doi.org/10.1371/journal.pone.0331089.g013
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