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Abstract 

Over-recruitment of the prefrontal cortex (PFC) during complex walking conditions 

may reflect altered motor and cognitive performance in people with knee osteoarthri-

tis (OA). Our objectives were (1) to assess PFC activation, and motor and cognitive 

performance, during single- and dual-task walking in people with knee OA and (2) to 

examine the association of PFC activation with the performance. Forty-eight people 

with symptomatic knee OA completed three tasks, (1) single-task walking (STW) (2) 

subtraction by 7 from a 3-digit number (S7), and (3) dual-task walking (DTW), a com-

bination of STW and S7. Oxygenated hemoglobin concentration changes (ΔHbO
2
) in 

bilateral prefrontal cortex (PFC) were assessed using functional Near-Infrared Spec-

troscopy. Motor performance outcomes included gait speed, step duration variability, 

and stride length variability. Cognitive performance was assessed as the correct 

response rate during S7. We used repeated measures ANCOVA to compare the 

outcomes by tasks. Correlation and multiple linear regression analyses were used 

to determine the association between PFC activation and performance outcomes. 

PFC activation was higher during STW and DTW compared to S7 but not significantly 

different between STW and DTW. People with knee OA walked slower (d = 0.63) and 

had higher variability in step duration (d = 0.45) and stride length (d = 0.37) during 

DTW compared to STW. Greater activation in right ventrolateral PFC (R2 = 0.15) and 

left dorsomedial PFC (R2 = 0.12) were associated with lower step duration variability. 

When walking is challenged with a cognitive task, people with knee OA show deterio-

ration of gait performance and no change in PFC activation.
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Introduction

Knee osteoarthritis (OA) is a leading cause of pain and disability affecting approx-
imately 600 Million people worldwide [1]. People with knee OA exhibit altered gait 
patterns (e.g., greater knee loading and excessive muscular co-contraction) likely 
reflecting alterations of underlying neuromotor control of gait [2,3]. Finding of greater 
gait variability in people with symptomatic knee OA provides evidence of altered neu-
romotor control [4,5]. Altered neuromotor control of gait and resulting gait deficits can 
increase the risk of falls, and worsening pain and physical function [6–10]. However, 
neural substrates underlying altered gait control in people with knee OA have not 
been examined, most likely due to the challenges in measuring brain activity during 
dynamic movement. This limitation has hindered the development of interventions 
that could directly target these neural mechanisms.

In contrast to the historical focus on spinal cord and midbrain as key regions for 
control of rhythmic locomotion, recent neuroimaging studies have highlighted the role 
of cortical activity for locomotor control [11,12]. Prefrontal cortex (PFC) is one of those 
regions, identified as crucial for goal-directed walking [12]. In other populations with 
gait impairments (e.g., Parkinson's Disease, stroke, multiple sclerosis), hyperactiva-
tion of the prefrontal cortex (PFC) during walking has been reported using functional 
near-infrared spectroscopy (fNIRS), a portable neuroimaging device, when compared 
to healthy controls [13–15]. Further, there is evidence of reduced “brain reserve,” i.e., 
the availability of neurophysiological resources to further increase PFC activity, when 
walking is challenged with concurrent motor or cognitive tasks (i.e., dual-task walking) 
[14,16]. A study by Bishnoi et al. demonstrated that individuals with knee OA showed 
a attenuated increase in PFC activation when transitioning from normal to perturbed 
walking, relative to healthy controls, suggesting limited neural resources during tasks 
requiring heightened neuromuscular control [17]. These findings are thought to reflect 
reliance on greater attentional resources during walking to compensate for pathologi-
cal deficits (e.g., muscle weakness, proprioceptive loss) [3,14,18,19].

However, greater reliance on the PFC for performing tasks of moderate difficulty 
may reflect an inefficient neural mechanism, as proposed by the “neural efficiency 
theory”, which posits that higher brain activation is not inherently advantageous [20]. 
Possibly, the same level of task can be performed with lower cortical recruitment for 
young adults for example compared to older adults, which is more efficient neural 
processing [20]. However, for knee OA population, symptoms, such as pain, could 
induce neural inefficiency. A study by Hamacher et al. demonstrated that reducing pain 
severity in individuals with knee OA led to decreased motor-cognitive dual-task costs 
(toe-clearance variability) during dual-task walking suggesting that pain relief may 
enhance motor performance [21]. Therefore, understanding the neurophysiological 
mechanisms underlying gait control could provide new insight into existing interven-
tions with the potential to restore normal movement patterns in knee OA populations.

Our primary objectives were (a) to characterize PFC activation and gait perfor-
mance across single- and dual-task walking conditions in people with knee OA, and 
(b) to determine the association between PFC function and gait performance during 
single- and dual-task walking in people with knee OA. We hypothesized that (a) 
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people with knee OA would exhibit worse gait performance but similar PFC activation during dual-task walking compared 
to single-task walking conditions due to reduced brain reserve, and (b) greater PFC activation during single- and dual-task 
walking would be associated with better gait performance in people with knee OA. A secondary aim was to examine differ-
ences in PFC function during single- and dual-task walking between people with knee OA and healthy controls.

Methods

2.1.  Participants

Participants were recruited from the general community using advertisements that included flyers posted in the commu-
nity, and online and social media advertising from November 2022 to January 2024. Individuals were originally screed 
with online screening form and phone screening was followed up only for the ones who met the eligibility criteria. Inclusion 
criteria include (1) age between 50–75, (2) body mass index (BMI) < 40, (3) ability to walk for a minimum of 20 minutes 
without any assistive devices, (4) meeting National Institute for Health and Clinical Excellence clinical guidelines for knee 
osteoarthritis (i.e., age ≥ 50 years, presence of activity-related pain, presence of morning knee stiffness ≤ 30 minutes), (5) 
knee pain severity of ≥ 4/10 during the previous week, and (6) knee pain on most days for 3 months or more. Exclusion 
criteria include (1) mini-mental state examination (MMSE) score < 24, (2) contraindications to exercise, (3) any health con-
ditions that limit the ability to walk (except knee pain), (4) currently receiving chemotherapy or radiation therapy for cancer 
except for non-melanoma skin cancer, (5) history of other disease that may involve the knee joint including inflammatory 
joint disease, (6) any knee surgery in the previous 6 months, (7) joint replacement in either hip or ankle, (8) previous knee 
osteotomy partial or total knee replacement in either knee, (9) corticosteroid or hyaluronic acid injections in either knee 
in the previous 3 months, (10) neurological conditions that impact motor functioning, and (11) other pain in lower back 
or legs that is greater than knee pain. Healthy controls (n = 10) were recruited after all OA participants had been enrolled 
and were frequency matched to the OA group based on age, sex, and BMI. Inclusion and exclusion criteria for the healthy 
individuals are provided in Supplementary Table 1 in S1 File.

The more painful knee, or a knee selected at random in case of similar pain in both knees, was designated as the index 
knee. For the control group, the study knee was selected at random. This study was approved by the Institutional Review 
Board at Boston University and all participants provided written informed consent before enrollment.

2.2.  Experimental protocol

Participants performed three tasks during a single in-person visit (Fig 1). These tasks were: serial 7 subtraction (S7), 
i.e., serially subtract seven aloud from a random three-digit number while sitting, single-task walking (STW) i.e., walking 
around a 10m walkway at a self-selected pace in a counter-clockwise direction, and dual-task walking (DTW), i.e., walk-
ing around a 10m walkway while subtracting seven aloud from a random three-digit number at a self-selected pace in a 
counter-clockwise direction. Our dual task walking paradigm was designed to simulate daily walking, which often requires 
additional cognitive effort, such as walking while talking or navigating environmental challenges. The order of tasks was 
counterbalanced across participants. Each task consisted of eight 30 second bouts interspersed with a standing (for STW 
and DTW) or sitting (for S7) rest period that was randomly varied between 11-15s to avoid possible anticipation effects. 
The total duration of single run for each task was about 6 minutes. No guidance regarding task prioritization was provided 
for DTW.

2.3.  fNIRS-derived PFC function

We employed a continuous wave, wearable fNIRS system (NIRSport2; NIRx, Medical Technologies, Berlin, Germany) for 
data acquisition. Fourteen sources and twelve detectors, creating thirty long separation channels, were placed over the 
left-ventrolateral PFC (LVLPFC), right-ventrolateral PFC (RVLPFC), left-dorsolateral PFC (LDLPFC), right-dorsolateral 
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PFC (RDLPFC), left-dorsomedial PFC (LDMPFC), right-dorsomedial PFC (RDMPFC), left-ventromedial PFC (LVMPFC), 
and right-ventromedial PFC (RVMPFC), as shown in Fig 2. Channels included in each subdivision of PFC are visualized 
in Fig 2. Sources and detectors are separated by approximately 30 mm (i.e., long-separation channels). Six short separa-
tion channels with an inter-optode distance of 8 mm were used to measure systemic hemodynamics over the superficial 
layer [22]. Near-infrared light was emitted at 760 and 850 nm, with a sampling rate of 10.2 Hz. Caps of varying sizes (54, 
56, or 58 cm) were used based on head circumference, and a black shower cap was placed to minimize ambient light 
interference. Raw light intensities were collected through the software made by the manufacturer (Aurora fNIRS, NIRx, 
Medical Technologies)

The signal processing of fNIRS data was performed with Homer3 (v.1.58) [23]. Following the recent guideline 
[24,25], data was quality-checked and processed. Initially, channels exhibiting low intensity (<2e-03) or less than a 
certain threshold of signal to noise ratio (i.e., 5) were excluded. Subsequently, raw signals were converted to opti-
cal density (OD), and motion artifacts were corrected using spline interpolation and wavelet-based filtering methods 
[26,27]. The corrected OD signals underwent low-pass filtering using a sixth-order Butterworth filter with a 0.5 Hz 
cutoff frequency to eliminate slow drifts and high-frequency noise. Concentration changes of oxygenated hemoglo-
bin (HbO₂) were calculated from the filtered OD signals using the modified Beer-Lambert law without applying partial 
pathlength correction [28]; hence, results are reported in μM·mm units. The hemodynamic response function (HRF) 
was estimated by a General Linear Model (GLM) approach that uses ordinary least squares. HRFs were modeled 
using consecutive Gaussian temporal basis functions with 1-second standard deviations, spaced at 1-second inter-
vals, spanning from −2–30 seconds and accounting for third-order drift. To correct for systemic physiological interfer-
ence, each long-separation channel was regressed against the short-separation channel with the highest temporal 
correlation. We had five participants having excessive motion artifacts in all the short-separation channels. For these 
individuals, we used the average value of the long-separation channels as a regressor. fNIRS data provide relative 
oxy-hemoglobin (HbO

2
) and deoxy-hemoglobin (HbR) concentration, indicators of the functional activity from the 

covered cortex regions. Given prior evidence suggesting greater sensitivity of HbO₂ compared to HbR for assessing 
locomotion-related cortical activity, we only reported HbO

2
 in the current study [29,30]. In the statistical analysis, we 

used the mean HRF of HbO
2
 from 5-30s period of each bout of each task after accounting for the 5s of physiological 

delay in the hemodynamic response [31].

Fig 1.  (A) Experimental protocol of Serial 7 subtraction (S7), single-task walking (STW), and dual-task walking (DTW) (B) Experimental setup 
during STW.

https://doi.org/10.1371/journal.pone.0331070.g001

https://doi.org/10.1371/journal.pone.0331070.g001
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2.4.  Motor and cognitive performance

Gait performance outcomes included gait speed, variability in step duration, and variability in stride length during STW 
and DTW. To estimate gait speed and variability measures, participants wore three wireless inertial sensors (Opal, APDM, 
Portland, OR, USA; 128 Hz including tri-axial accelerometers, gyroscopes, and magnetic sensors), two at the dorsum of 
each foot, and one on the lower back. Real-time sensor data was recorded during walking and spatiotemporal gait mea-
sures were extracted for each bout of STW and DTW using manufacturer provided software (Moveo Explorer, APDM, 
Portland, OR, USA). The spatiotemporal measures (that included gait speed) were then used to calculate the variability 
measures. Specifically, coefficient of variation (CoV) of step duration and stride length were used as an indicator of gait 
variability. The CoV was calculated with the following equation: (Standard Deviation (SD)/Mean)*100. Cognitive perfor-
mance was assessed with the correct response rate (%) (CRR = response rate per second × percent of accuracy) during 
serial 7 subtraction during S7 and DTW [32].

2.5.  Statistical analysis

The normality of ΔHbO
2
 in each subregion of PFC and each performance outcome were determined visually with his-

togram comparison. Repeated measures Analysis of Covariance (ANCOVA), followed by pairwise comparisons, was 
used to compare ΔHbO

2
 in each subregion and each performance outcome between tasks with age, sex, and BMI as 

covariates. For each pairwise comparison, we report the mean difference (95% confidence intervals) and the effect size 

Fig 2.  Probe design covering bilateral prefrontal cortex (PFC) areas. The probe consists of 14 sources (red) and 12 detectors (blue), resulting in 30 
channels (numbered in black from 1 to 30); six short-separation detectors (colored in gray; numbered in blue from16 to 21) were used; PFC were subdi-
vided into left ventrolateral PFC (LVLPFC) (Channel 6, 19, 20); right ventrolateral (RVLPFC) (Channel 1, 7, 8); left dorsolateral (LDLPFC) (Channel 16, 
17, 18, 29, 30); right dorsolateral PFC (RDLPFC) (Channel 9, 10, 11, 21, 22); left dorsomedial (LDMPFC) (Channel 14, 15, 26, 27, 28); right dorsomedial 
(RDMPFC) (Channel 12, 13, 23, 24, 25); left ventromedial (LVMPFC) (Channel 4, 5); right ventromedial (RVMPFC) (Channel 2, 3).

https://doi.org/10.1371/journal.pone.0331070.g002

https://doi.org/10.1371/journal.pone.0331070.g002
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(Cohen’s d). Effect size of 0.2 can be considered a “small” effect size, 0.5 represents a “medium” effect size and 0.8 a 
“large” effect size [33]. We used Pearson correlations to examine the correlation between the ΔHbO

2
 of each subregion (8 

regions) and each performance outcome. For pairs with a correlation coefficient (r) larger than 0.2, we further used mul-
tiple linear regression analysis with age, sex, and BMI as confounders. The normality of residuals from each model was 
tested using Q-Q (quantile-quantile) plot.

For the secondary analyses comparing OA and control groups, we used linear mixed-effects model to evaluate the 
interaction effect by groups (control vs. knee OA) and tasks (STW vs. DTW) on ΔHbO

2
 while adjusting for age, sex, 

and BMI as confounders. Partial eta-squared (ηp²) values were reported to quantify the magnitude of each fixed inter-
action effect. ηp² values were interpreted as small (0.01–0.05), medium (0.06–0.13), or large (≥0.14) effects [33]. If 
the interaction effects were not significant, we further evaluated the main effects for group (OA vs. control). We have 
reported the effect size (Cohen’s d) for each comparison. All statistical analyses were conducted using RStudio (version 
2023.12.1 + 402).

Results

Our sample comprised of 48 participants with knee OA and 10 control participants (Table 1). Our OA participants were 
over the age of 60, a majority were women, and their mean BMI was in the overweight category (Table 1). Based on the 
average Knee injury and Osteoarthritis Outcome Score (KOOS) scores, the participants were experiencing mild to mod-
erate OA-related disability. The control group was on average, similar to the OA group in terms of age and proportion of 
women. However, the average BMI was lower for the control group.

3.1.  Comparison of PFC activation and performance between tasks in the OA group

ΔHbO
2
 was similar between STW and DTW in all PFC subregions (Fig 3, Table 2). However, ΔHbO

2
 during STW and 

DTW was higher compared to S7 in all PFC subregions (Fig 3, Table 2). During DTW, OA participants had 9% (d = 0.63) 
slower gait speed and had 26% greater step duration CoV (d = 0.45) and 13% greater stride length CoV (d = 0.37) com-
pared to STW (Fig 4, Table 3). The CRR was similar between S7 and DTW (d = 0.15).

3.2.  Association of PFC activation with performance outcomes in the OA group

The heatmap in Fig 5 visualizes the correlation coefficient between the ΔHbO
2
 of each region and each performance 

outcome by task. Multiple linear regression analyses were done with eleven correlation pairs of ΔHbO
2
 and performance 

outcomes with pairs having a correlation coefficient (r) greater than 0.2 (greater than a ‘very weak’ correlation) (Table 4). 

Table 1.  Participant characteristics.

OA
(n = 48)

Controls
(n = 10)

Age, (years), Mean (SD) 64.8 (7.2) 62.6 (8.5)

Women, n (%) 35 (72.9) 7 (70.0)

BMI, kg/m2, Mean (SD) 29.5 (5.5) 25.9 (3.6)

Study knee at right side, n (%) 28 (58.3) 4 (40.0)

KOOS Pain (range 0–100), Mean (SD) 64.5 (12.1) NA

KOOS ADL (range 0–100), Mean (SD) 73.1 (14.3) NA

MMSE Score 28.8 (1.2) 28.9 (1.1)

BMI = body mass index; SD = standard deviation; KOOS = Knee injury and Osteoarthritis Outcome Score; 
ADL = Activity of daily living; MMSE = Mini-Mental State Examination.

https://doi.org/10.1371/journal.pone.0331070.t001

https://doi.org/10.1371/journal.pone.0331070.t001
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Greater ΔHbO
2
 in RVLPFC (R

2
 = 0.15) and LDMPFC (R

2
 = 0.12) were related with lower CoV (%) of step duration (i.e., 

lower variability) during DTW.

3.3.  Secondary analysis: Comparison of PFC activation between OA and control groups

There was a significant interaction between group and task for LDMPFC ΔHbO
2
 with small effect size (β = 38.70, p = 0.040, 

ηp² = 0.04). Individuals with knee OA exhibited greater ΔHbO
2
 during STW vs. S7 but the ΔHbO

2
 was similar across the 

two tasks for controls. (Supplementary Fig 1 in S1 File). No significant interaction effects were observed for ΔHbO
2
 in 

other subregions of PFC. For these other subregions, people with knee OA showed higher ΔHbO
2
 with small to medium 

effect sizes (d = 0.2–0.4) (Supplementary Fig 1 in S1 File).

Discussion

We investigated the role of the prefrontal cortex during STW and DTW in people with knee OA. We identified three key 
findings in our cohort of people with symptomatic knee OA: (1) PFC activation was similar between STW and DTW (2) 
walking performance was worse during DTW compared to STW, but cognitive performance was similar between DTW and 
the S7; and (3) greater PFC activation during DTW was associated with lower gait variability. Additionally, we observed 
that people with knee OA had generally greater PFC activation compared to healthy controls. These novel findings 
indicate that people with knee OA may lack the ability to harness PFC to maintain gait performance during challenging 
walking conditions.

4.1.  Comparison of PFC activation between tasks in the OA group

We observed similar activation in all PFC subregions during STW and DTW in our cohort of people with knee OA. Given 
the greater cognitive demand during DTW compared to STW, an increase in PFC activation would be expected as 
reported in prior studies among healthy individuals [16,34,35]. Bishnoi et al. reported an increase in PFC activation during 
a perturbed walking task (i.e., anterior-posterior perturbation on a treadmill) compared to normal walking, in people with 
knee OA, which differs from our findings [17]. This discrepancy may be primarily attributed to differences in task char-
acteristics and disease severity. For individuals with knee OA, perturbed walking may be a more attention-demanding 
task than mental arithmetic. The absence of increased PFC activation in our study may indicate reduced brain reserve 
[36]. Evidence for this comes from prior studies in other populations with gait impairments. Hawkins et al. reported a 
significant increase in PFC activation from STW to DTW in healthy young and older adults but not in people with stroke 
[14]. Similar findings were reported in people with Parkinson's disease [13,37]. These observations are consistent with 
the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) hypothesis [18]. According to CRUNCH, 

Fig 3.  ΔHbO2 in each subregion of PFC during Serial 7 (S7), single-task walking (STW), and dual-task walking (DTW) in the OA group. †Medium 
effect size (d) when compared to S7; and ‡Large effect size (d) when compared to S7.

https://doi.org/10.1371/journal.pone.0331070.g003

https://doi.org/10.1371/journal.pone.0331070.g003
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older adults exhibit increased brain activation relative to young adults when faced with submaximal levels of task demand, 
which serves to preserve task performance. However, this increased activation brings them closer to their brain’s 
resources limit, which has been interpreted as a ‘reduced brain reserve mechanism’. As task demands increase, neuro-
physiological resources reach a limit, resulting in insufficient processing and diminished task performance.

Table 2.  Post-hoc planned contrasts with an adjusted mean difference and effect size with 95% 
confidence intervals (CIs) for ΔHbO2 in all PFC subregions in the OA group.

Comparison ΔHbO2

Adjusted Mean difference (95% CI) Cohen's d (95% CI)

LVLPFC

  STW-S7 34.72 (9.81, 59.55) 0.46 (0.04, 0.87)

  DTW-S7 29.07 (4.12, 54.01) 0.36 (−0.06, 0.77)

  DTW-STW −5.65 (−30.49, 19.26) 0.06 (−0.34, 0.47)

RVLPFC

  STW-S7 47.88 (30.47, 65.30) 0.87 (0.44, 1.30)

  DTW-S7 46.66 (29.25, 64.07) 0.92 (0.49, 1.35)

  DTW-STW −1.22 (−18.64, 16.19) 0.02 (−0.39, 0.43)

LDLPFC

  STW-S7 26.01 (8.46, 43.56) 0.47 (0.06, 0.87)

  DTW-S7 22.73 (5.18, 40.28) 0.51 (0.10, 0.91)

  DTW-STW −3.28 (−20.83, 14.27) 0.05 (−0.35, 0.45)

RDLPFC

  STW-S7 39.05 (23.21, 54.90) 0.81(0.39, 1.22)

  DTW-S7 38.00 (22.15, 53.84) 0.79 (0.37, 1.20)

  DTW-STW −1.06 (−16.90, 14.79) 0.02 (−0.38, 0.42)

LDMPFC

  STW-S7 38.25 (21.98, 54.53) 0.72 (0.30, 1.13)

  DTW-S7 31.82 (15.54, 48.10) 0.77 (0.35, 1.19)

  DTW-STW −6.43 (−22.71, 9.84) 0.10 (−0.30, 0.50)

RDMPFC

  STW-S7 42.24 (25.91, 58.57) 0.80 (0.38, 1.21)

  DTW-S7 37.73 (21.40, 54.06) 0.79 (0.37, 1.21)

  DTW-STW −4.51 (−20.83, 11.82) 0.07 (−0.33, 0.47)

LVMPFC

  STW-S7 55.20 (28.95, 81.46) 0.82 (0.37, 1.26)

  DTW-S7 53.18 (26.93, 79.44) 0.83 (0.38, 1.27)

  DTW-STW −2.02 (−28.27, 24.24) 0.02 (−0.40, 0.45)

RVMPFC

  STW-S7 50.35 (26.30, 74.41) 0.87 (0.42, 1.31)

  DTW-S7 44.65 (20.60, 68.71) 0.71 (0.27, 1.14)

  DTW-STW −5.70 (−29.76, 18.35) 0.07 (−0.35, 0.50)

S7 and STW were used as reference conditions. left-ventrolateral PFC (LVLPFC); right-ventrolateral PFC 
(RVLPFC); left-dorsolateral PFC (LDLPFC); right-dorsolateral PFC (RDLPFC); left-dorsomedial PFC (LD-
MPFC); right-dorsomedial PFC (RDMPFC); left-ventromedial PFC (LVMPFC); and right-ventromedial PFC 
(RVMPFC); Single-task walking (STW); Dual-task walking (DTW); Serial 7 (S7). There were 2, 2, 1, 6, and 
6 excluded participants from the comparison of LDLPFC, RDLPFC, LDMPFC, LVMPFC, and RVMPFC due 
to the missing values.

https://doi.org/10.1371/journal.pone.0331070.t002

https://doi.org/10.1371/journal.pone.0331070.t002
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Our findings from comparison of PFC activation between people with knee OA and age- and sex-matched healthy 
older adults support the notion of suboptimal neural efficiency in the OA group. We observed higher PFC activation 
in the OA group irrespective of task suggesting relatively greater remaining cognitive resources in healthy individuals 
(Supplementary Fig 1 in S1 File). Additionally, although not statistically analyzed, the control participants showed 
increased activation in the left hemisphere and a concurrent decrease in the right hemisphere from STW to DTW, a 
pattern not seen in the OA group (Supplementary Fig 1 in S1 File). This pattern may reflect a more efficient realloca-
tion of neural resources toward the left hemisphere, consistent with the neural efficiency hypothesis, which posits that 
more cognitively efficient individuals exhibit less diffuse and more targeted brain activation during cognitive tasks [20]. 
This finding aligns with previous literature demonstrating left-lateralized activation during mental arithmetic and dual-
task paradigms [38,39].

We observed significantly lower activation across all PFC subregions during the S7 task compared to both STW and 
DTW. This finding is consistent with recent evidence in individuals with Parkinson's disease [37]. However, in the data 
from healthy individuals, similar activation levels were observed in some PFC subregions between S7 and walking tasks. 
Taken together, these results suggest that motor performance may be more attention-demanding than cognitive tasks 
alone in individuals with chronic pain or motor impairments, such as those with knee OA, compared to healthy older 
adults. Clinically, this underscores the importance of promoting gait automaticity to reduce executive load and lower fall 
risk in the knee OA population.

Fig 4.  Boxplots of performance outcomes during Serial 7 (S7), single-task walking (STW) and dual-task walking (DTW) in the OA group; 
†Medium effect size (d); ‡Large effect size (d).

https://doi.org/10.1371/journal.pone.0331070.g004

Table 3.  Post-hoc planned contrasts with an adjusted mean difference for motor and cognitive 
performance outcomes between tasks in the OA group.

Adjusted Mean difference (95% CI) Cohen's d (95% CI)

Gait speed (m/s) 
DTW-STW

−0.11 (−0.14, −0.08) 0.63 (0.22, 1.04)

CoV of step duration (%) 
DTW-STW

0.88 (0.27, 1.50) 0.45 (0.05, 0.86)

CoV of stride length (%) 
DTW-STW

1.19 (0.27, 2.11) 0.37 (−0.04, 0.77)

S7 Correct response rate (%) 
DTW-S7

−1.76 (−3.48, −0.04) 0.15 (−0.25, 0.55)

S7 and STW were used as reference conditions. CoV = Coefficient of Variation.

https://doi.org/10.1371/journal.pone.0331070.t003

https://doi.org/10.1371/journal.pone.0331070.g004
https://doi.org/10.1371/journal.pone.0331070.t003
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4.2.  Comparison of performance outcomes between tasks

In our study, people with knee OA walked slower and had increased variability in step duration and stride length during 
DTW compared to STW. We can deduce that our dual-task walking paradigm had induced adequate cognitive loading 
during walking given that a 0.1m/s reduction in gait speed is a clinically meaningful change [40]. However, the cognitive 
performance, assessed with the correct response rate during serial 7 subtraction, was similar during DTW and S7. These 
findings collectively indicate that people with knee OA might have prioritized the cognitive task during DTW given the dete-
rioration in gait performance compared to STW, but similar cognitive performance compared to S7. Similar findings have 
been observed from people with neurological disease (i.e., Parkinson's Disease, stroke) [14,37], chronic back pain and 
older adults with dementia, who showed decreased gait speed and increased gait variability during dual-task overground 
walking compared to single-task overground walking [41,42]. Meanwhile, prior studies consistently show similar perfor-
mance for the cognitive task during single- and dual-task conditions [37,43–45]. These findings underscore the importance 
of gait training in dual-task condition for people with knee OA since the dual-task cost (i.e., increased gait variability) could 
potentially be reduced by such training [46]. Hence, interventions to improve dual-task walking performance may be con-
sidered for reducing fall risk and improving gait quality in people with knee OA.

Fig 5.  Heatmap of the Pearson correlation coefficient (r) between ΔHbO2 of each subregion and each performance outcome during single-task 
(STW/S7) and dual-task (DTW) in the OA group. Correlation coefficient (r) values were only overlayed in the figure. Coefficient of Variation (CoV) of 
step duration and stride length were negated so that positive values of all performance outcomes could indicate better gait performance. CRR = Correct 
response rate.

https://doi.org/10.1371/journal.pone.0331070.g005

https://doi.org/10.1371/journal.pone.0331070.g005
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4.3.  Association between PFC activation and performance outcomes

In people with knee OA, we observed that greater RVLPFC and LDMPFC activation was related with lower gait variability, 
but only during DTW. Similar relationships were seen for other PFC subregions but it is important to note that, as would be 
expected, all associations between PFC activation and gait measures were weak with adjusted model R2 ≤ 0.15. However, 
the consistency of associations across the PFC subregions suggests that individuals with knee OA may need greater 
executive resources to prevent a deterioration in gait performance. Similar results were seen for people with Parkin-
son's Disease where greater DLPFC activity was related to lower variability in stride length and cadenced during walking 
while counting forward [37]. A significant positive correlation between better functional mobility (based on Berg Balance 
Testing) and higher PFC activation in people with hemiplegic stroke also supports our results [47]. Interestingly, in healthy 
individuals higher DLPFC activity has been reported to be associated with higher gait variability and worse cognitive per-
formance [34]. These contrasting findings may reflect the inefficiency of PFC function in individuals with knee OA. Unlike 
healthy individuals who can perform walking tasks with minimal cortical demand, those with knee OA appear to rely more 
heavily on top-down control from the PFC, as suggested by comparisons between the two groups. This pattern is con-
sistent with the concept of neural inefficiency, in which increased brain activation does not necessarily lead to improved 
performance but may instead indicate reduced gait automaticity and greater cognitive burden [20]. Clinically, such inef-
ficiency may limit adaptability to complex walking environments and contribute to an increased risk of instability or falls 
during multitasking. These findings emphasize the value of incorporating dual-task assessments into clinical evaluations 

Table 4.  Summary of multiple linear regression models determining the association between 
ΔHbO2 and motor/cognitive performance outcomes after adjusting for age, sex, and BMI in the OA 
group. Only pairs of ΔHbO2 and performance outcomes showing correlation coefficient (r) values 
greater than 0.2 were investigated. Bold indicates p < 0.05.

Exposure Estimate per SD unit (95% CI) Adjusted R2

Associations with Gait Speed during DTW

RVLPFC 0.04 (−0.01, 0.09) 0.12

Associations with CoV of Step Duration (%) during STW

LVMPFC −0.31 (−0.85, 0.22) 0.04

Associations with CoV of Step Duration (%) during DTW

RVLPFC −0.80 (−1.44, −0.16) 0.15

LDLPFC −0.57 (−1.21, 0.08) 0.10

LDMPFC −0.72 (−1.39, −0.05) 0.12

RDMPFC −0.64 (−1.29, 0.02) 0.11

LVMPFC −0.64 (−1.33, 0.05) 0.15

RVMPFC −0.59 (−1.28, 0.09) 0.11

Associations with CoV of Stride Length (%) during DTW

RVLPFC −0.78 (−1.75, 0.18) 0.19

Associations with CRR during S7

LVLPFC −2.70 (−6.47, 1.08) 0.00

Associations with CRR during DTW

LVLPFC −2.66 (−5.82, 0.50) 0.13

left-ventrolateral PFC (LVLPFC); right-ventrolateral PFC (RVLPFC); left-dorsolateral PFC (LDLPFC); 
right-dorsolateral PFC (RDLPFC); left-dorsomedial PFC (LDMPFC); right-dorsomedial PFC (RDMPFC); 
left-ventromedial PFC (LVMPFC); and right-ventromedial PFC (RVMPFC), Coefficient of Variation (CoV), 
Single-task walking (STW), Dual-task walking (DTW), Serial 7 (S7).

https://doi.org/10.1371/journal.pone.0331070.t004

https://doi.org/10.1371/journal.pone.0331070.t004
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and support the potential benefits of interventions aimed at enhancing neural efficiency through targeted motor-cognitive 
training in this population.

We should note the limitations of our study that may impact interpretation. Our study was cross-sectional, and there-
fore, we cannot confirm causality or directionality. Our findings may not be generalizable to individuals with knee OA who 
may have different clinical characteristics compared to our cohort. We also need to acknowledge that we cannot rule out 
the risk of type II error although adjustments for multiple comparisons are not recommended if associations are biologi-
cally plausible [48]. Our interpretations are based on observed effect sizes which are independent of the study small size 
unlike p-values. Though much research using fNIRS during walking examines the prefrontal cortex, it is important to note 
that other cortical areas are likely involved in executive locomotor control. Previous studies have shown changes in motor 
and somatosensory regions during walking [29,49,50]. Future research should explore a broader range of cortical regions. 
Finally, we did not include a control group in our study. However, inclusion of a control group is unlikely to provide any 
clinically meaningful information given that our focus is on a population with knee OA and there are several prior studies in 
healthy cohorts.

Conclusion

In conclusion, the current study highlights that individuals with knee osteoarthritis have similar prefrontal cortex activa-
tion during single- and dual-task walking. Further, their gait performance is worse during dual-task walking compared to 
single-task walking but cognitive performance is similar during dual-task walking and serial 7 task. Lastly, greater pre-
frontal cortex activation during dual-task walking was related to lower gait variability. Overall, these findings suggest that 
people with knee OA may not have sufficient brain reserve to increase prefrontal cortex function and maintain gait per-
formance when challenged with dual-task conditions during walking. This may increase their risk of falls while walking in 
everyday life and interventions to improve dual-task walking performance may be considered in future studies.
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