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Abstract 

Photonic crystal fiber based surface plasmon resonance (PCF-SPR) biosensors 

are sophisticated optical sensing platforms that enable precise detection of minute 

refractive index (RI) variations for various applications. This study introduces a highly 

sensitive, low-loss, and simply designed PCF-SPR biosensor for label-free analyte 

detection, operating across a broad RI range of 1.31 to 1.42. In addition to conven-

tional methods, machine learning (ML) regression techniques were integrated to 

predict key optical properties, while explainable AI (XAI) methods, particularly Shap-

ley Additive exPlanations (SHAP), were used to analyze model outputs and identify 

the most influential design parameters. This hybrid approach significantly accelerates 

sensor optimization, reduces computational costs, and improves design efficiency 

compared to conventional methods. The proposed biosensor achieves impressive 

performance metrics, including a maximum wavelength sensitivity of 125,000 nm/

RIU, amplitude sensitivity of −1422.34 RIU ⁻ ¹, resolution of 8 × 10 ⁻ ⁷ RIU, and a figure 

of merit (FOM) of 2112.15. ML models demonstrated high predictive accuracy for 

effective index, confinement loss, and amplitude sensitivity. SHAP analysis revealed 

that wavelength, analyte refractive index, gold thickness, and pitch are the most criti-

cal factors influencing sensor performance. The combination of a simple yet efficient 

design and advanced ML-driven optimization makes this biosensor a promising can-

didate for high-precision medical diagnostics, particularly cancer cell detection, and 

chemical sensing applications.

1.  Introduction

Photonic crystal fiber-based surface plasmon resonance (PCF-SPR) biosensors 
combine both photonic crystal fiber (PCF) surface plasmon resonance (SPR) 
techniques to provide very sensitive and ideal optical characteristics. Knight et al. 
conceptualized PCF in 1996 [1], marking a significant breakthrough in optical fiber 
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technology. Its unique design is characterized by both the core and the cladding 
areas, which have a regular pattern of air holes along the length of the core [2]. Com-
paratively, PCF outshines conventional fibers in terms of their optical properties, such 
as chromatic dispersion, birefringence, and confinement loss (CL) [3,4]. SPR is an 
optical phenomenon that occurs when incident light excites collective electron oscil-
lations at the interface of a metal and a dielectric medium, enabling highly sensitive 
detection of refractive index (RI) changes. The material composition and design vari-
ation of PCF-SPR biosensors greatly influence their sensitivity performances. Various 
studies explored diverse sensing mechanisms using PCF-SPR biosensor technology 
[5–7]. To get the best performance, the parameters like the air hole radius in core 
cladding areas, pitch distance (p), gold layer thickness (t

g
), perfectly matched layer 

(PML) thickness, and analyte layer thickness are optimized. Gold and silver are the 
most-used materials for plasmonic applications due to their high electron densities. 
Silver is better for plasmonic electronics because it is a better conductor, while gold is 
better for strong plasmonic resonance applications because it is more stable chemi-
cally and has a higher absorption coefficient [8,9]. PCF-SPR sensors are renowned 
for their exceptional sensitivity, compact dimensions, and versatility. To optimize the 
performance of PCF-SPR biosensors, it is essential to minimize CL and enhance 
sensitivity. The enhancement of sensor performance remains a focus for exceptional 
efficacy, and finding them applicable in diverse scientific and industrial domains 
[10,11]. Specifically, PCF-SPR sensors are widely applied in diverse fields such as 
medical diagnostics, biochemical sensing, detection of bioorganic compounds, and 
various clinical testing procedures [12,13].

PCF-SPR biosensor development has advanced significantly in recent years 
to explore high sensitivity characteristics. Recently, researchers have been using 
machine learning (ML) approaches to evaluate SPR sensor performance based on 
different input features, especially design parameters. Researchers have focused 
on addressing the complexity and minimizing the time-intensive nature of simula-
tions to explore high-performance SPR-PCF biosensor models [14–16]. Traditional 
ML models are being used to optimize the performance of PCF-SPR performance. 
Also, artificial neural networks (ANNs) help accurately guess the optical features 
of PCF, such as its effective index, mode area, dispersion, and CL [17]. ML training 
and testing are faster than traditional methods like numerical MODE solutions [18]. 
This makes it possible to accurately predict outcomes for various PCF parameters. 
Furthermore, the research [19] shows a fast deep learning model for predicting opti-
cal properties in photonic sensors, with low mean square error (MSE) outperforming 
conventional methods. Another study presents a COMSOL Multiphysics simulation 
along with a novel artificial intelligence (AI)-driven method for optimizing PCF design 
[20]. Researchers have investigated the application of support vector machines 
(SVMs) as a substitute for ANNs in forecasting the optical properties of PCF. For 
this case, they explored optical biosensors with a design error rate of less than 
3% shows that ML-based methods have been used to improve their performance. 
ML applications for structural optimization have been emerging to improve PCF-
SPR biosensors in order to make them more sensitive and CL. In order to enhance 
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performance, a study by [21] investigated a PCF-SPR sensor that used ANN. Where the sensor achieved an wavelength 
sensitivity (Sλ) of 18,000 nm/RIU, an amplitude sensitivity (S

A
) of 889.89 RIU ⁻ ¹, and a resolution of 5.56 × 10 ⁻ ⁶ RIU for 

analyte RI (n
a
) 1.31 to 1.4. Similarly, [22] developed a high-sensitivity PCF-SPR biosensor for cancer detection, achiev-

ing a figure of merit (FOM) of 36.52 RIU ⁻ ¹ and an Sλ of 13,257.20 nm/RIU. All of this research demonstrates how well ML 
works to optimize PCF-SPR biosensors, which makes them ideal for chemical, pharmacological, and biological sensing 
applications.

Although PCF-SPR biosensors exhibit considerable potential in sensing applications, enhancing their performance 
has a significant barrier [23]. The main challenges involve ensuring an optimal balance among sensitivity, accuracy, and 
signal loss and providing compatibility with various analyte. Several studies have systematically investigated methods to 
improve the efficiency and performance of PCF-SPR biosensors [24–26]. Recent studies show that combining ML with 
PCF-SPR biosensor technology is a useful way to improve sensor performance. Researchers have shown that ML meth-
ods can predict the operating parameters and optimal design in an efficient way. This takes a lot less time than traditional 
simulation techniques. Despite that, the utilization of ML in PCF-SPR biosensor design remains emerging. Only a few 
researches have been done that use ML-based modelling for high-performance biosensor design optimization. To the best 
of our knowledge, no previous study has integrated explainable artificial intelligence (XAI) with ML for the optimization of 
PCF-SPR biosensor designs. This gap in the literature review highlights the need for an extensive study that will focus 
on the efficient, high-performance PCF-SPR biosensor design. This study aims to fill up this gap by carefully looking at 
the important design factors and performance of PCF-SPR biosensors. We focused on performance improvement in key 
areas like sensitivity, resolution, and FOM with a simple designed sensor. This study not only looks at how to improve 
sensors, but it also shows how input parameters can change the properties of sensors using XAI. The primary objectives 
of our research work are:

•	 To explore a highly sensitive, efficient PCF-SPR biosensor design characterized by low CL, high S
A
, Sλ, Resolution and 

FOM.

•	 To employ diverse ML methods to enhance the predictive power of biosensor properties by optimizing accuracy and 
reducing error.

•	 To employ XAI techniques, such as SHAP, to uncover the influence of design parameters, enabling a more transparent 
and interpretable biosensor design process.

Here’s how we present our research: Section 2 outlines the study’s materials, methods, design parameters, simulation 
process, and the ML techniques. Section 3 presents result and analysis of our study, comparing them with key findings. 
Section 4 provides a discussion, while Section 5 concludes the study by summarizing our findings and suggesting direc-
tions for future research.

2.  Materials and methods

This investigation utilizes a structured approach that combines biosensor design, optical simulations, ML, and XAI to 
explore a PCF-SPR biosensor. The research workflow for PCF-SPR biosensor model optimization, using ML applications, 
is illustrated in Fig 1. The initial phase involves the design of the PCF-SPR biosensor. Then we performed sensor design 
and simulations using COMSOL Multiphysics to evaluate essential properties, including effective refractive index (N

eff
), CL, 

S
A
, Sλ, Resolution and FOM. Next, we generated and preserved the data from these simulations for future analysis. Sub-

sequently, we utilize ML algorithms to predict and improve the performance of the sensor. Multiple regression models have 
been employed, including random forest regression (RF), decision tree (DT), gradient boosting (GB), extreme gradient 
boosting (XGB), and bagging regressor (BR). These models aid in uncovering patterns and correlations among various 
design parameters and the attributes that are being optimized. This speeds up the optimization process and improves its 



PLOS One | https://doi.org/10.1371/journal.pone.0330944  September 15, 2025 4 / 30

effectiveness relative to traditional methods. XAI methodologies like SHAP are utilized to examine how different param-
eters influence the performance of the sensor. This allows for the modification and enhancement of the design based on 
insights derived from data. In conclusion, we evaluate the accuracy of the ML models through metrics such as R-squared 
(R2), mean absolute error (MAE), and MSE.

2.1  Working principle of PCF-SPR biosensor

Fig 2 illustrates the working principle of an optical fiber-based sensing system that relies on evanescent field interaction 
for detection. A broadband light source injects light into the core of a specially designed optical fiber, where it propagates 
through total internal reflection. At each reflection point, a portion of the light extends beyond the core into the cladding 
region as an evanescent wave. A syringe injection pump introduces the target sample (such as a chemical or biomolecule 
solution) into a flow chamber that surrounds the sensitive region of the fiber. When the evanescent field interacts with 
the sample, any change in the local RI, absorption, or scattering alters the transmitted light’s properties. This modified 
optical signal is collected at the output end and sent to an optical spectrum analyzer (OSA), which measures variations 
in the transmission spectrum (e.g., wavelength shift or intensity change). The data is then processed and analyzed using 
computer software to detect and quantify the presence of the analyte, making the system highly suitable for label-free and 
real-time sensing applications.

Fig 1.  Research workflow for PCF-SPR biosensor model optimization.

https://doi.org/10.1371/journal.pone.0330944.g001

https://doi.org/10.1371/journal.pone.0330944.g001
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The proposed PCF-SPR biosensor is engineered for effective real-time sensing in both medical diagnostics and environ-
mental monitoring. In the medical domain, it is capable of detecting a wide range of biomarkers, including cancer indicators, 
hormones, proteins, and pathogens such as viruses and bacteria in aqueous biofluids like blood and serum. Its high sensi-
tivity and broad n

a
 detection range (1.31–1.42) make it particularly suitable for early-stage disease diagnosis and continuous 

health monitoring. This RI range covers most biological analytes, typically found in environments with n
a
 values between 1.33 

and 1.40, while the inclusion of the 1.31 to 1.32 range, though less common in practical biosensing, allows for theoretical 
analysis of sensor behavior near the lower detection threshold. This supports a more comprehensive understanding of sen-
sitivity performance and helps evaluate the design’s robustness under edge-case or simulation-driven conditions. In environ-
mental applications, the sensor can be employed to identify chemical contaminants, solvents, and pollutants in water or air 
samples. Its fast response time, compatibility with microfluidic systems, and adaptability to portable and point-of-care plat-
forms make it highly suitable for on-site detection, addressing critical challenges in both clinical and environmental settings.

2.2  Sensor cross-sectional design

The proposed biosensor optimization approach involves simulation with defined geometric features, incorporating com-
ponents like gold layers, a fused silica substrate, air cavities, and an analyte zone. Fig 3 presents the cross-sectional 
structure of a PCF based SPR biosensor, developed for precise biochemical detection. The design with a smaller number 
of air holes reduces fabrication complexity. In our design, we have utilized only 11 air holes, a significantly smaller num-
ber compared to previous redesigns. The fiber consists of a core surrounded by a structured cladding, where periodically 
arranged air holes (d1, d2) help guide light through the fiber. The spacing between these air holes is defined by the pitch 
(p), ensuring proper light propagation. Key structural distances include D1 = 2.6 × p, D2 = 3 × p, and D3 = 3.5 × p, which 

Fig 2.  Schematic diagram of a Fiber-Optic SPR Biosensor system for biochemical detection.

https://doi.org/10.1371/journal.pone.0330944.g002

https://doi.org/10.1371/journal.pone.0330944.g002
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represent the radial placement of different regions in the fiber structure. D1 extends from the fiber’s center to the gold 
layer, the region where SPR takes place. D2 reaches the analyte layer, where interactions between biomolecules and the 
sensing surface occur. D3 extends further to the PML, which absorbs unwanted radiation and minimizes reflection. These 
structural parameters are essential for optimizing light transmission, improving sensor performance, and enhancing detec-
tion sensitivity. The color-coded regions represent different fiber components.

2.3  Methodologies

The performance of a PCF-SPR biosensor depends on several key parameters [27]. N
eff

 ensures proper light propaga-
tion and phase matching. While CL measures optical power leakage, lower values indicate better efficiency. S

A
 enhances 

detection by quantifying intensity changes, and Sλ detects small RI variations by measuring resonance wavelength shifts. 
Resolution determines the smallest detectable RI change, with higher resolutions offering more precision. The FOM bal-
ances sensitivity and resonance sharpness, ensuring accurate detection. These parameters collectively evaluate sensor 
performance for biomedical, chemical, and environmental applications. Moreover, the surface plasmon polariton (SPP) 
in PCF SPR biosensors states electromagnetic waves that move over the metal-dielectric interface and are produced 
when light combines with free electrons on the metal surface. The phenomenon that generates SPP is called SPR. These 
waves are highly sensitive to changes in the n

a
, which makes them crucial in PCF-SPR biosensors for analyte detection. 

Conversely, the fundamental mode directs light through the PCF, facilitating its propagation within the sensor. Here we are 
giving the brief overview of different optical parameters for the PCF-SPR biosensor.

The Sellmeier equation defines the calculation of the RI of fused silica, based upon the wavelength of light [28]. The 
equation is stated as follows:

	
n2(λ) = 1 +

B1λ
2

λ2 – C1
+

B2λ
2

λ2 – C2
+

B3λ
2

λ2 – C3 	 (1)

Fig 3.  Cross-sectional diagram of a PCF-Based SPR biosensor.

https://doi.org/10.1371/journal.pone.0330944.g003

https://doi.org/10.1371/journal.pone.0330944.g003
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The Sellmeier model utilizes specific constants to characterize the wavelength-dependent RI of materials. The con-
stants used in this context are: B1 = 0.69616300, B2 = 0.407942600, B3 = 0.897479400, and C1 = 0.00467914826, 
C2 = 0.0135120631, C3 = 97.9340025.

The CL is denoted by the symbol α(dB/cm) [28]. CL in the sensor is computed according to the following relation, using 
the imaginary part of the N

eff
:

	
α(

dB
cm

) = 8.686× k0lm(Neff)× 104
	 (2)

Where k
0
 = 2π/λ represents the free-space wave number, and Im(N

eff
) is the imaginary component of the N

eff
. This expres-

sion quantifies optical attenuation resulting from imperfect mode confinement, which plays a crucial role in sensor 
characterization.

Amplitude sensitivity (S
A
) is another vital property that indicates the sensor’s response with the variations of n

a
 by 

observing changes in transmitted light intensity [29]. The numerical formulation is expressed as:

	
SA =

1

α(λ, na)
· ∂α(λ, na)

∂na 	 (3)

Here, n
a
 indicates the RI of the analyte, and ∂na represents the difference between the n

a
 of two neighboring analytes. 

The function α(λ, n
a
) denotes the CL, while ∂α(λ, n

a
) presents the variation in CL as the n

a
 changes. This formula evaluates 

the effect of n
a
 fluctuations on the amplitude of light waves through the SPR sensor.

Another critical performance metric is wavelength sensitivity (Sλ), which reflects how the sensor output responds to 
changes in the incident light’s wavelength [29]. It is defined by the following relation:

	
Sλ =

∆λpeak

∆na 	 (4)

Where Δλ
peak

 represents the peak wavelength variation, and Δn
a
 is the variation in n

a
 between two adjacent analytes.

The calculation of sensor resolution is essential to assess the detection capability of the proposed sensor, as defined 
by the equation below [30]:

	
R (RIU) = ∆na ×

∆λmin

∆λpeak	 (5)

Where Δn
a
 represents the change in n

a
, and Δλ

min
 = 0.1 nm denotes the smallest detectable wavelength shift. This equation 

helps quantify the sensor’s ability to distinguish small variations in analyte concentration.
The Figure of Merit (FOM) is an important parameter used to evaluate the performance of an SPR-based biosensor. It 

is defined as the ratio of Sλ to the full width at half maximum (FWHM) of the resonance curve [30]. The formula for FOM is 
given by:

	
FOM =

Sλ

FWHM	 (6)

Where, Sλ (nm/RIU) indicates the shift in resonance wavelength per unit change in n
a
, and FWHM (nm) representing the 

spectral width of the resonance dip.
For a high-performance PCF-SPR biosensor, higher values of FOM, Sλ, and S

A
 contribute to improved detection accu-

racy, enhanced signal response, and better analyte sensitivity. In contrast, lower CL improves light propagation, minimizes 
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signal attenuation, and enhances overall sensor efficiency. The mapping of optical parameters and their impact on biosen-
sor performance is given below.

•	 Higher FOM → Sharper resonance peak → Improved detection accuracy and resolution

•	 Higher S
A
 → Greater intensity variations → More precise signal detection

•	 Higher Sλ → Larger resonance wavelength shift → Enhanced sensitivity to analyte changes

•	 Lower CL → Better light propagation → Reduced signal attenuation and improved efficiency

2.4  Dataset generation

In this study, we have used COMSOL Multiphysics software to design and simulate the sensor models and evaluated 
these models using the finite element method (FEM) [31]. The dataset is derived from simulation outputs and includes 
critical structural and optical features such as core diameters (d1, d2), spacing between air holes pitch (p), thickness of 
the gold coating (t

g
), n

a
, operational wavelength (wl), calculated N

eff
, CL, and S

A
. In addition to these primary features, 

we derived further optical performance metrics such as Sλ, resolution, and FOM. This comprehensive dataset was also 
utilized to train ML models aimed at predicting key optical responses of the proposed sensor across various structural 
configurations, thereby facilitating the identification of high-performance design combinations.

To evaluate each single-mode calculation simulation took around 2 minutes. The amount of time varies according to the 
number of degrees of freedom resolved. The number of degrees of freedom solved for our mode analysis is 242881. This 
number depends on the structural design of the sensor, particularly the size and arrangement of the air holes. We used a 
workstation with a 2.3 GHz Intel Core i3 processor and 12 GB of RAM to perform the calculations.

The simulation process generally follows these steps:

•	 Build the biosensor design according to the plan.

•	 Choose suitable electromagnetic interfaces for the analysis.

•	 Define the materials used for the core and cladding.

•	 Create a mesh to ensure precise estimates.

•	 Choose the input settings.

•	 Use a suitable solver to run the exercise.

•	 Evaluate the results and explain what the data means.

•	 Change the settings if necessary and improve the model.

•	 Gather the results and create a dataset for more research.

Here, Fig 4 represents different states of the PCF-SPR biosensor model, depending on its design and field distributions. 
Here, Fig 4(a) shows the meshed model of our biosensor model. That divides the computational domain into small, 
finite elements to solve partial differential equations (PDEs) for light propagation using the FEM [32]. The accuracy and 
efficiency of the simulation depend on the quality of the mesh. That depends on the air hole arrangement and other 
design parameters of the sensor structure. Again, Fig 4(b) illustrates the electric field distribution of the core mode for the 
y-polarized mode. The bright regions indicate areas of strong electric field intensity, revealing how light interacts within the 
fiber. Fig 4(c) displays the power flow distribution of the SPP mode for the y-polarized mode. The energy is mostly gath-
ered near the plasmonic interface. This shows that the core mode and the plasmonic mode are coupled, which is import-
ant for sensing purposes.
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This dataset employs parameters such as d1, d2, p, t
g
, n

a
, and wl as predictor variables. The outputs or target attributes 

include the N
eff

, CL, S
A
, and Sλ. From the simulation result, we have got N

eff
 and then numerically calculated the optical 

properties. The data provides insights into how structural modifications influence light propagation and resonance behav-
ior of the sensor. This dataset provides an important insight for PCF-SPR biosensor performance optimization. Table 1 
presents an overview of the main variables included in the dataset used for analyzing the PCF-SPR biosensor.

2.5  AI techniques for PCF-SPR sensor optimization

Prior studies [33] mentioned that SPR-based sensors are well-suited for label-free detection of cancer markers due to 
their ability to monitor RI variations resulting from specific molecular binding events. AI techniques, particularly ML, have 
emerged as a powerful tool in the design and optimization of PCF-SPR biosensors. These data-driven models facilitate 
rapid prediction of complex optical properties, such as N

eff
, CL, and S

A
, based on sensor design parameters. That signifi-

cantly reduces the time-consuming simulation processes. ML models, including RF, SVM, GB, and Bayesian regulariza-
tion neural networks (BRANNs), have shown potential in modeling nonlinear relationships between structural features and 
sensor performance. Such approaches enable efficient inverse design, structural tuning, and enhanced prediction fidelity, 
making them ideal for biosensing applications. Furthermore, integrating ML with XAI enhances both optimization speed 
and interpretability. Based on other studies [34], different AI techniques can be used for sensor performance optimization 
as follows:

Fig 4.  PCF-SPR biosensor: (a) meshed model, (b) core mode electric field distribution, and (c) SPP mode power flow distribution for 
y-polarized mode.

https://doi.org/10.1371/journal.pone.0330944.g004

Table 1.  Description of dataset variables used in PCF-SPR biosensor modeling.

Feature Explanation Example Value/ Unit

d1 Small air hole diameter (µm) 0.6, 1.2, 1.4, 1.6

d2 Large air hole diameter(µm) 0.6, 0.8, 1

p Pitch (distance between two air holes) (µm) 2, 2.5, 3

t
g

Thickness of gold (nm) 30, 40, 50, 60

n
a

The RI of the analyte 1.31-1.42

wl Wavelength (µm) 0.4–1.35

N
eff

Core mode N
eff

 on y-axis 1.4284–1.47

CL Confinement loss (dB/cm) 1.614–437.15

S
A

Amplitude sensitivity (RIU-1) −1422.34–95.78

https://doi.org/10.1371/journal.pone.0330944.t001

https://doi.org/10.1371/journal.pone.0330944.g004
https://doi.org/10.1371/journal.pone.0330944.t001


PLOS One | https://doi.org/10.1371/journal.pone.0330944  September 15, 2025 10 / 30

BRANNs are capable of learning from small, noisy datasets and capturing complex nonlinear dependencies between 
input parameters and output targets. The method reduces overfitting and enhances generalization through regularization, 
making it ideal for high-accuracy, real-time applications and inverse sensor design. Classical ML models such as SVM, 
DT, and ensemble methods like RF, AdaBoost (AB), and GB have been used for classifying optical modes and predicting 
sensor behavior. These models are particularly useful in early-stage design to efficiently evaluate large design spaces and 
estimate key performance indicators. Furthermore, advanced deep learning architectures, including feedforward neural 
networks (FNNs), convolutional neural networks (CNNs), and generative models such as variational autoencoders (VAEs) 
and conditional generative adversarial networks (GAN), are now being applied for precise resonance prediction, analyte 
classification, and automated inverse design of PCF structures. CNNs can analyze mode profile images, while autoencod-
ers and 1D-CNNs help in denoising experimental data. Deep reinforcement learning (DRL) offers an adaptive framework 
for multi-objective optimization under fabrication and material constraints. It enables the sensor to learn from operational 
history and adjust design parameters in real-time, thereby supporting self-calibrating and self-optimizing systems. Adap-
tive sensing and environmental compensation AI techniques can also be employed to monitor environmental drift and 
sensor degradation. By learning from prior data, these models can dynamically adjust sensing parameters to maintain 
consistent accuracy over extended periods, which is especially critical in remote or in vivo diagnostics. So it is clear that 
the integration of these AI techniques not only enhances predictive accuracy but also reduces design time and compu-
tational cost, thus enabling the rapid development of next-generation PCF-SPR biosensors with enhanced sensitivity, 
robustness, and adaptability.

2.6  ML algorithms

Since our target variables are continuous, regression models were the appropriate choice for prediction tasks. We applied 
various regression algorithms to analyze the dataset and assess how design and other factors impact the outcomes. 
Below is an overview of the ML regression techniques employed:

Decision Tree Regression (DTR) operates by dividing the input feature space into distinct regions and making predic-
tions based on the average target value within each region [35]. This supervised, non-parametric approach is intuitive and 
allows straightforward visualization of decision rules. However, if left unchecked, it can easily overfit the training data.

Random Forest Regression (RFR) builds an ensemble of decision trees by training each tree on a different random 
subset of the data and selecting random features at each split [36,37]. The final prediction is obtained by averaging the 
outputs of all individual trees. This approach enhances prediction stability and accuracy while effectively reducing the risk 
of overfitting, making it well-suited for handling complex and varied datasets.

Gradient Boosting Regression (GBR) sequentially constructs an ensemble of weak learners, where each subsequent 
model aims to correct the residual errors of its predecessors [38]. This iterative refinement enables GBR to model com-
plex patterns effectively and achieve high prediction accuracy.

Extreme Gradient Boosting Regressor (XGBR) extends GB by optimizing both computational speed and predictive 
performance [39]. It combines a series of decision trees trained to minimize errors, excelling at handling large-scale data 
and intricate relationships within features.

BR improves model stability by training several base regressors on different randomly sampled subsets of data with 
replacement [40]. This ensemble method reduces variance and enhances prediction accuracy. The ensemble’s output is 
determined by combining the predictions of all base models through averaging, which helps minimize prediction variability 
and mitigates the risk of overfitting.

The integration of ML techniques plays a crucial role in predicting the optical properties of the proposed PCF-SPR 
biosensor, such as N

eff
, CL, and S

A
. These ML models effectively learn the nonlinear mapping between key design param-

eters (e.g., n
a
, t

g
, pitch, air-hole diameters) and corresponding optical properties. This not only reduces computational 

time from minutes to milliseconds but also allows for rapid screening of multiple design combinations. Among the tested 
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models, RFR and XGBR provided the excellent trade-off between prediction accuracy and execution time. Furthermore, 
ML approaches aid in precise finalization of sensor parameters based on maximum sensitivity, minimal CL, and high FOM.

2.7  ML models evaluation metrics

ML regression model performance evaluation needs to assess using different performance metrics [41]. Here the metrics 
description will be described in short to understand the implication and numerical calculation process. Smaller MSE values 
indicate a more accurate model, as they reflect smaller differences between predicted and actual outcomes. MSE evalu-
ates how well a model predicts by quantifying the average squared gap between actual outcomes and predicted values. 
It reflects how much the predictions deviate from the true values, with lower MSE indicating better model accuracy. The 
metric is calculated by averaging the squares of all prediction errors across the dataset [41].

	
MSE =

1

N

∑N

i=1
(yi – ŷ)2

	 (7)

Here, ŷ  stands for the model’s forecasted value, while y denotes the actual observed value.
A MAE reflects higher predictive accuracy, as it captures the average magnitude of deviation between forecasts and 

actual outcomes. MAE is computed by averaging the absolute errors across all predictions, providing a straightforward 
indicator of prediction quality [41]. The equation (8) presents the formula for MAE calculation.

	
MAE =

1

N

∑N

i=1
| yi – ŷi |	 (8)

In this context, N denotes the total number of data points and y
i
 represents the observed value, while ŷirepresents the 

predicted value.
The R2 value quantifies the efficacy of a model in predicting the dependent variable’s outcome. The range is from 0 to 

1, with 0 indicating no explanation of the variance in the dependent variable and 1 indicating a complete explanation of the 
relationships. An R2 value of 1 indicates that the model accounts for 100% of the variance in the target variable, while a 
score of 0.5 suggests that the model explains 50% of the variance [41].

We use the following formula to compute the R2 value:

	
R2 = 1 –

∑n
i=1 (yi – ŷi)

2

∑n
i=1 (yi – y)2 	 (9)

In this expression, the numerator ∑(yᵢ − ŷᵢ)² represents the total squared error between the predicted values ŷᵢ and the 
actual observations yᵢ. The denominator ∑(yᵢ − ȳ)² captures the total variation in the actual data around the mean value ȳ.

2.8  Explainable AI (XAI)

XAI that makes AI models easier to understand and interpret. It focuses on developing methods that make the decisions 
and processes of AI systems transparent, so users can make sense of how outcomes are reached. This is crucial in areas 
like healthcare, finance, and automotive industries, where the accuracy and reliability of AI predictions are critical [42–44]. 
SHAP is one of the most widely used methods for model interpretability. It provides both global explanations that capture 
the overall behavior of the model and local explanations that detail how individual features influence specific predictions. 
SHAP assigns each feature a value representing its contribution to the prediction. These values are consistent and addi-
tive, ensuring that the sum of all feature contributions equals the difference between the predicted value and the model’s 
average output, thereby offering a fair and transparent measure of feature importance [45].
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To enhance the transparency and trustworthiness of the ML model used for predicting optical properties, SHAP was 
employed as an XAI technique. SHAP provides detailed insights into how each input parameter, such as air hole diam-
eters, pitch, t

g
, and n

a
 contributes to model outputs like N

eff
, CL, and S

A
. By visualizing SHAP values, we were able to 

identify the most influential design features, enabling more informed and efficient adjustments to the PCF-SPR biosensor 
structure. While SHAP does not directly enhance the sensor’s physical sensing performance, it plays a crucial role in inter-
preting the ML model’s predictions. This interpretability supports targeted design optimization, reduces the dependency on 
exhaustive simulations, and fosters the decision-making process for sensor performance optimization.

3.  Results & analysis

3.1  Analysis of simulation results

Fig 5 displays the coupling point where the surface SPP mode intersects with the core mode. The structure features air 
hole diameters of 0.6 μm for d1 and 1 μm for d2, with a t

g
 of 40 nm. We have used the COMSOL Multiphysics simulation 

to evaluate N
eff

 real and imaginary values along the y-axis that were used to calculate various propagation properties. Fig 
5 displays the coupling point where the surface SPP mode intersects with the core mode under the conditions: n

a
 of 1.37, 

core diameters d1 = 0.6 μm and d2 = 1 μm, and a t
g
 = 40 nm. The figure demonstrates how loss increases with the decrease 

in wavelengths and then decreases as they increase. The figure also shows how N
eff

 varies with wavelength, indicating a 
decrease in N

eff
 as the wavelength increases. At a wavelength of 0.67 µm, the real parts of N

eff
 for the y-polarized core and 

SPP modes coincide, marking the phase matching condition. This point is significant as SPR occurs here. At this wave-
length, CL reaches its maximum, and N

eff
 is 1.451. The graphs in Fig 6 illustrate how changes in d1 and d2 size influence 

CL variation with wavelength, where p = 2 µm, t
g
 = 40 nm, and n

a
 = 1.37. In Fig 6(a), where d2 is fixed at 1 µm, d1 increases 

gradually from 0.6 µm to 1.6 µm. With the increase of d1, CL also increases gradually. The lowest loss is observed when 
d1 is 0.6 µm, while larger values of d1 result in higher loss. Similarly, graph in Fig 6(b), where d1 is fixed at 1.2 µm and 
d2 changes from 0.6 µm to 1.2 µm. In this case, the highest CL is seen at d2 = 0.6 µm, and the loss goes down as d2 
increases.

Furthermore, Fig 7 illustrates the relationship between S
A
 and wavelength for different air hole sizes. We kept the other 

parameters fixed at p = 2µm, t
g
 = 40 nm, and n

a
 = 1.37. From the graphs, it is clear that the variation in air hole dimensions 

influences the sensor’s response, which causes changes in S
A
. In Fig 7(a), S

A
 is plotted for different d1 values, keeping 

Fig 5.  N
eff

 core and SPP mode phase matching at peak CL.

https://doi.org/10.1371/journal.pone.0330944.g005

https://doi.org/10.1371/journal.pone.0330944.g005
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d2 = 1 µm as a fixed value. From the graph, we get that as d1 increases from 0.6 µm to 1.2 µm, the S
A
 curve shifts to a 

higher value. The highest S
A
 is achieved at d1 = 1.2 µm, indicating that a larger air hole in this design enhances plasmonic 

interaction and improves sensitivity. Fig 7(b) presents the effect of d2 variation, keeping d1 = 1.2 µm as constant. The 
graph shows that as d2 increases from 0.6 µm to 1.2 µm, S

A
 also increases. This suggests that an increase in d2 makes 

the core-plasmon coupling stronger. Overall, the analysis demonstrates that optimizing d1 and d2 plays a crucial role in 
achieving high CL and S

A
, which impacts the sensor’s detection capabilities.

Additionally, from the experiment, we depict that the thickness of t
g
 has a significant effect on sensor performance. We 

varied t
g
 from 30nm to 60nm while keeping d1 = 0.6µm, d2 = 1µm, and p = 2µm constant. Fig 8(a) shows how CL changes 

with wavelength for different values of t
g
. The graph in Fig 8(a) indicates that as the t

g
 increases, the CL decreases. 

For t
g 
= 30nm (blue curve), the highest CL is observed, with a peak value of 350 dB/cm 0.65µm. When the thickness of 

t
g
 increases to 40 nm (green curve), the peak CL shifts slightly toward higher wavelengths and reduces intensity. For 

Fig 6.  Effect of d1and d2 variation on CL (a) wavelength vs. CL with different d1 for fixed d2 = 1µm (b) wavelength vs. CL with different d2 for 
fixed d1 = 1.2 µm.

https://doi.org/10.1371/journal.pone.0330944.g006

Fig 7.  Effect of air hole diameter variation on S
A
 (a) S

A
 vs. wavelength with the changes of d1, (b) S

A
 vs. wavelength with the changes of d2.

https://doi.org/10.1371/journal.pone.0330944.g007

https://doi.org/10.1371/journal.pone.0330944.g006
https://doi.org/10.1371/journal.pone.0330944.g007
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t
g 
= 50nm (red curve), the CL continues to decline, and the peak becomes broader. At t

g 
= 60nm (cyan curve), the loss is at 

its lowest value, with a less pronounced peak, indicating a weaker plasmonic effect. This pattern suggests that a thinner 
gold layer enhances plasmonic resonance, leading to higher CL, while a thicker layer reduces it.

Again, Fig 8(b) presents the impact of different t
g
 on S

A
 across varying wavelengths. The graph indicates that as t

g
 

increases, S
A
 tends to decrease. When t

g
 = 30 nm (blue curve), the most significant negative S

A
 is observed 0.66 µm. 

Increasing the thickness to 40 nm (green curve) results in a slight reduction in sensitivity and a shift in the peak toward a 
longer wavelength. With t

g
 = 50 nm (red curve), the sensitivity declines further, and the peak becomes broader. At t

g
 = 60 nm 

(cyan curve), the lowest sensitivity is recorded, with a less prominent peak, indicating weaker plasmonic interaction. 
These findings suggest that a thicker gold layer minimizes CL and improves sensitivity, while a thinner layer reduces the 
sensor’s overall performance.

Pitch size also plays a crucial role in determining the performance of the sensor. In this study, the pitch was varied from 
2 µm to 3 µm while keeping n

a
 = 1.37, d1 = 0.6 µm, d2 = 1 µm, and t

g
 = 40 nm constant. Fig 9(a) illustrates how CL changes 

with wavelength for different pitch values. The graph in Fig 9(a) shows that as the pitch increases, CL decreases. At pitch, 
p = 2 µm (blue curve), the highest CL is observed at wavelength 0.66 µm with high intensity. When the pitch increases to 
2.5 µm (green curve), the peak shifts slightly toward a longer wavelength, and the loss intensity reduces. With a pitch of 3 
µm (red curve), CL continues to decline, and the peak becomes broader, indicating a weaker plasmonic effect. This sug-
gests that a smaller pitch leads to stronger light confinement and higher loss, while a larger pitch allows better mode prop-
agation and reduces CL. Again, Fig 9(b) examines the effect of pitch variation on S

A
. A similar trend is observed, where a 

smaller pitch results in higher sensitivity, with a pitch of 2 µm showing the strongest negative S
A
 at wavelength 0.66 µm. 

As the pitch increases to 2.5 µm, the sensitivity decreases slightly, shifting toward a longer wavelength. When the pitch 
reaches 3 µm, the S

A
 further weakens, leading to a broader response. These findings indicate that pitch size must be opti-

mized based on the sensor’s intended application. We should carefully adjust the pitch choice to balance sensitivity and 
stability in sensor design.

Fig 10 illustrates the variation in CL across wl for different analyte refractive indices, keeping d1 = 0.6 µm, d2 = 1 µm, 
p = 3 µm, and gold thickness at 60 nm constant. This analysis provides insights into how n

a
 influences the optical behaviour 

of the sensor. In Fig 10(a), CL rises with wavelength, displaying distinct peaks for n
a
 values between 1.31 and 1.41. As n

a
 

increases, the resonance peak shifts to longer wavelengths, and the peak intensity gradually increasing. This shift reflects 
stronger plasmonic coupling at higher n

a
 values, resulting in greater CL. The trend underscores the strong dependence 

Fig 8.  (a) Wavelength vs. CL with variation of t
g
 (b) wavelength vs. S

A
 with different t

g
.

https://doi.org/10.1371/journal.pone.0330944.g008

https://doi.org/10.1371/journal.pone.0330944.g008
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of CL on n
a
, highlighting its importance in sensor performance. Fig 10(b) exhibits a similar pattern but extends the wave-

length range up to 2.5 µm and includes an additional n
a
 value of 1.42. As n

a
 increases, the resonance peaks continue 

shifting toward longer wavelengths, with the highest CL observed for n
a
 = 1.42. The peaks become more prominent, and 

loss values rise significantly, especially at higher n
a
 values. These results emphasize the significant impact of n

a
 on CL, 

showing that increasing n
a
 shifts resonance to longer wavelengths while amplifying loss. This behaviour is critical for 

designing sensors with enhanced sensitivity and precision in detecting variations in n
a
.

Again, Fig 11 displays how S
A
 varies with wavelength across different analyte refractive indices, using fixed parame-

ters: d1 = 0.6 µm, d2 = 1 µm, p = 3 µm, and a gold thickness of 60 nm. The variations in S
A
 across different wl indicate the 

influence of n
a
 on plasmonic interactions. As n

a
 increases from 1.31 to 1.41, the sensitivity peaks shift towards longer wl. 

For n
a
 = 1.31–1.32 (blue curve), the first significant drop occurs around 0.65 µm, whereas for n

a
 = 1.40–1.41 (red curve), 

the minimum sensitivity shifts beyond 0.9 µm. The negative peaks indicate strong plasmonic coupling, highlighting the 
sensor’s capability to detect small changes in n

a
. These variations suggest that the optimal sensing wavelength shifts as 

Fig 9.  (a) Wavelength vs. CL with variation of pitch (b) wavelength vs. S
A
 based on pitch variation.

https://doi.org/10.1371/journal.pone.0330944.g009

Fig 10.  CL vs. wavelength (a) n
a
 = 1.31-1.41, (b) n

a
 = 1.31-1.42.

https://doi.org/10.1371/journal.pone.0330944.g010

https://doi.org/10.1371/journal.pone.0330944.g009
https://doi.org/10.1371/journal.pone.0330944.g010
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n
a
 increases, making precise wl selection crucial for achieving high sensitivity. Overall, the results emphasize the impact 

of n
a
 on S

A
 and the importance of choosing the appropriate wl for effective sensing. The shift in resonance peaks with 

increasing n
a
 highlights the need for wl tuning to maximize detection accuracy.

The Table 2 presents different characteristics of the SPR biosensor across various parameter values of n
a
, with con-

stant d1 = 0.6 µm, d2 = 1 µm, p = 3 µm, and t
g
 = 60 nm. It presents CL, peak resonance wavelength (λ

peak
), S

A
, Sλ, resolution, 

and FOM corresponding to n
a
 values. As n

a
 increases, the resonance wavelength shifts to longer values. We observe that 

the peak loss found at 590 nm wavelength for n
a
 = 1.31, and it reaches 2210nm for n

a
 = 1.42. S

A
 remains low for smaller 

n
a
 values but increases significantly beyond n

a
 = 1.36. At n

a
 = 1.31, S

A
 is 10 (RIU-1), but it jumps to 50 (RIU-1) at n

a
 = 1.38 

and reaches 1250 (RIU-1) at n
a
 = 1.41, showing improved sensor response for higher na. Sλ also increases as n

a
 rises. It 

reaches a maximum of 125,000 nm/RIU at n
a
 = 1.41. The resolution improves with the increase of n

a
, reaching 8.00 × 10−7 

RIU at n
a
 = 1.41, which employs the sensor’s ability to detect small changes in n

a
. Furthermore, FOM also rises steadily 

with the increase of n
a
. It remains below 50 for lower n

a
 values but increases beyond n

a
 = 1.36 and highest at 1402.28 

at n
a
 = 1.41. These results show that the sensor performs improves with higher n

a
 values, because CL, S

A
, Sλ, and FOM 

reach their highest values.

Fig 11.  S
A
 vs. wavelength for n

a
 = 1.31-1.41.

https://doi.org/10.1371/journal.pone.0330944.g011

Table 2.  Optical properties of the proposed SPR biosensor for different na.

na max_CL (dB/cm) λpeak (nm) SA (RIU–1
) Sλ (nm/RIU) Resolution (RIU) FOM (RIU–1

)

1.31 4.62 590 3.23 1000 1.00 × 10 ⁻ 5 20.99

1.32 5.36 600 14.98 1000 1.00 × 10 ⁻ 5 23.28

1.33 6.23 610 35.69 2000 5.00 × 10 ⁻ 5 48.61

1.34 7.23 630 29.14 2000 5.00 × 10 ⁻ 5 49.27

1.35 8.32 650 35.85 2000 5.00 × 10 ⁻ 5 48.68

1.36 10.52 670 60.03 3000 3.33 × 10 ⁻ 5 76.82

1.37 12.36 700 66.80 3000 3.33 × 10 ⁻ 5 73.07

1.38 15.96 730 82.40 5000 2.00 × 10 ⁻ 5 122.66

1.39 20.10 780 86.27 7000 1.43 × 10 ⁻ 5 157.23

1.4 25.84 850 89.32 11000 9.09 × 10 ⁻ 6 253.56

1.41 34.64 960 90.92 125000 8.00 × 10 ⁻ 7 1402.28

1.42 166.88 2210 – – – –

https://doi.org/10.1371/journal.pone.0330944.t002

https://doi.org/10.1371/journal.pone.0330944.g011
https://doi.org/10.1371/journal.pone.0330944.t002
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Table 3 presents the performance evaluation of the PCF-SPR biosensor based on various design parameters and n
a
. 

The design parameters are small and large air hole diameters (d1, d2), pitch (p), t
g
, and the optical properties, such as 

λ
peak

, CL, Sλ, resolution, FOM, and S
A
. With the increase of n

a
 from 1.31 to 1.41, the λ

peak
 shifts to higher values that vary 

from 0.57 µm to 0.95 µm. Maximum CL varies significantly, reaching its highest value of 445.37 dB/cm at n
a
 = 1.4. Simi-

larly, Sλ increases and reaches a peak value of 105000 nm/RIU at n
a
 = 1.41. Resolution also improves as n

a
 rises, reaching 

9.52 × 10 ⁻ 7 RIU at n
a 
= 1.41. Furthermore, the FOM shows a rapid increase and shows the highest value at 2112.15 RIU-1 

for n
a
 = 1.41, which confirms superior sensing capability. Again S

A
 also rises with increasing n

a
, where the highest value 

is 95.28 RIU-1 at n
a
 = 1.41. These results suggest that the sensor performs with optimized parameters such as d1 = 0.6 

µm, d2 = 1.0 µm, p = 2.5 µm, and t
g
 = 40 nm, contributing to maximum sensitivity and resolution. From this table, we get the 

results and insights with parameter variation on biosensor efficiency that help to select optimal design configurations for 
the best performing sensor.

Table 4 presents the maximum absolute S
A
 values for different n

a
 in a PCF-SPR biosensor. The listed parameters 

include the structural dimensions: d1, d2, p, t
g
 along with the operating wavelength (wl). The S

A
 (RIU-1) values represent 

the sensor’s ability to detect changes in the surrounding RI, making them crucial for evaluating the sensor’s performance. 
As n

a
 increases, S

A
 values generally increase in magnitude, indicating enhanced sensitivity. The highest negative S

A
 value 

of −1422.34 RIU-1 is observed at n
a
 = 1.39, highlighting the sensor’s peak detection capability at this n

a
.

3.2  ML-based performance analysis

Using ML, we have used the simulation-based dataset to explore other design combinations and to explore better-
performing designs. The dataset “Dataset 1” contains 5252 samples with eight features, where d1, d2, t

g
, n

a
, and wl serve 

as inputs, while N
eff

, CL, and S
A
 are designated as outputs. We have created two subsets, “Dataset 2” and “Dataset 3”, 

from the initial primary “Dataset 1”. “Dataset 2” contains the combined samples for N
eff

 and CL, while “Dataset 3” includes 
samples for S

A
. Using the train-test split method using the Scikit-learn library, we partitioned the dataset into training and 

testing sets with a 75% and 25% ratio. After preprocessing and splitting the data, each model was trained on the training 
set, and its performance was evaluated on the testing set. We implemented various ML algorithms employing ensemble 
techniques and subsequently applied XAI methods to these models to improve interpretability and transparency.

The polynomial equation y = 40.15x² − 105.93x + 70 shown in Fig 12 describes how the resonance wavelength shifts 
as n

a
 changes. In this equation, x represents n

a
, and y is the resonance wavelength in micrometers. The quadratic term 

(40.15x²) means that the wavelength shift increases more rapidly as n
a
 increases. The linear term (−105.93x) shows the 

direct impact of n
a
 on resonance wavelength. The negative coefficient −105.93 means that for smaller values of n

a
 the 

Table 3.  Optical properties for different na with best performing design parameters.

d1 (µm) d2 (µm) p (µm) tg (nm) na λpeak (µm) max_CL (dB/cm) Sλ (nm/RIU) Resolution (RIU) FOM (RIU–1
) SA (RIU

–1
)

0.6 1.0 2.0 50 1.31 0.58 28.81 1000 1.00 × 10 ⁻ 4 28.85 22.00

0.6 1.0 3.0 50 1.32 0.58 8.11 2000 5.00 × 10 ⁻ 5 48.88 27.85

1.2 0.6 2.0 40 1.33 0.59 98.99 2000 5.00 × 10 ⁻ 5 53.54 35.59

0.6 1.0 3.0 40 1.34 0.6 24.04 2000 5.00 × 10 ⁻ 5 56.57 71.91

1.2 0.6 2.0 40 1.35 0.62 152.20 3000 3.33 × 10 ⁻ 5 90.59 64.16

1.6 0.8 2.0 40 1.36 0.65 230.99 3000 3.33 × 10 ⁻ 5 101.45 68.54

1.6 0.8 2.0 40 1.37 0.68 302.80 4000 2.50 × 10 ⁻ 5 141.23 78.54

1.6 0.6 2.0 40 1.38 0.71 437.15 6000 1.67 × 10 ⁻ 5 250.99 89.28

0.6 1.0 2.0 40 1.39 0.77 372.63 10000 1.00 × 10 ⁻ 5 338.63 71.04

0.6 1.0 2.0 40 1.4 0.86 445.37 87000 1.15 × 10 ⁻ 6 1718.34 88.37

0.6 1.0 2.5 40 1.41 0.95 333.97 105000 9.52 × 10 ⁻ 7 2112.15 95.28

https://doi.org/10.1371/journal.pone.0330944.t003

https://doi.org/10.1371/journal.pone.0330944.t003
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resonance wavelength (µm) initially decreases. However, as n
a
 increases, the positive quadratic term 40.15x² starts to 

dominate linear term (−105.93x), causing the resonance wavelength to rise sharply. The constant term (70.45) is the esti-
mated resonance wavelength when n

a
 is zero, though this value is theoretical and does not hold physical significance. The 

equation follows a curved trend rather than a straight-line change, meaning that at higher n
a
 values, small shifts cause 

more noticeable wavelength changes. This pattern is useful in biosensor applications, where detecting small n
a
 variations 

is important with high sensitivity and accuracy.
Fig 13 compares the actual and predicted N

eff
 values using the RFR model. The actual values are marked in purple, 

while the predicted values are in orange. The graph shows that the RFR model predicts N
eff

 accurately, with minor devia-
tions in some areas. Additionally, Fig 14 presents the validation of different ML models for predicting N

eff
. We have plotted 

together the actual data alongside the predicted data using the DTR, RFR, GBR, XGBR, and BR models. The close match 
between actual and predicted values implies that all models perform well, showing minimal variations. The validation con-
firms that these models generalize effectively, maintaining consistency across different wavelength values.

Table 5 provides performance metrics such as R², MAE, and MSE for both training and test datasets for different ML 
models. Here, DTR achieves the highest train R² (0.999969) but has slightly lower test accuracy. RFR, BR, and XGBR 
show strong generalization, with high R² values and low errors. KNN records the lowest test R² (0.992828) and the 

Table 4.  Maximum absolute SA values for different na.

d1(µm) d2(µm) p(µm) tg(nm) na wl(µm) SA(RIU
–1
)

1.6 0.8 2.0 40 1.31 0.59 −82.11

1.6 0.8 2.0 40 1.32 0.60 −107.04

1.6 0.8 2.0 40 1.33 0.62 −140.07

1.6 0.8 2.0 40 1.34 0.63 −205.60

1.6 0.8 2.0 40 1.35 0.65 −300.03

1.6 0.8 2.0 40 1.36 0.68 −481.88

1.6 0.8 2.0 40 1.37 0.72 −721.13

1.2 0.8 2.0 40 1.38 0.77 −1209.86

0.6 1.0 3.0 30 1.39 0.74 −1422.34

0.6 1.0 2.0 30 1.40 1.00 −505.40

0.6 1.0 2.5 40 1.41 0.95 95.28

https://doi.org/10.1371/journal.pone.0330944.t004

Fig 12.  Polynomial regression analysis of resonance wavelength with the change of n
a.

https://doi.org/10.1371/journal.pone.0330944.g012

https://doi.org/10.1371/journal.pone.0330944.t004
https://doi.org/10.1371/journal.pone.0330944.g012
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highest test MAE. (0.007912), indicating lower accuracy. GBR performs well, achieving a high test R² (0.997951) and the 
lowest test MSE (0.000053). The validation results suggest that ensemble models such as RFR, GBR, and XGBR provide 
the most reliable predictions for N

eff
 with minimal error. In terms of execution time, the DTR is the fastest, with the lowest 

training time (0.020 sec) and test time (0.000099 sec). However, it is less accurate compared to ensemble models. While 
XGBR offers better efficiency, with a lower training time (0.238 sec) compared to RFR (0.618 sec), RFR remains a strong 
performer due to its consistent performance. Although GBR is slightly more accurate, it requires more computational 
resources. Overall, XGBR and RFR emerge as the best performers, offering strong predictive accuracy with a balance of 
execution efficiency.

Furthermore, we have calculated the SHAP values using the RFR model, to assess feature importance and interpret-
ability in the analysis. SHAP values quantify how much each feature of the input data influences the model’s prediction, 
relative to the average prediction. Positive SHAP values indicate an increase in the target value N

eff
, while negative values 

mean a decrease. It also helps to understand how much each input attribute contributes to N
eff

’s final prediction. Fig 15 
illustrates this by combining feature importance with feature effects. Each point on the summary plot represents a Shap-
ley value for a feature and an instance, with the y-axis indicating the feature and the x-axis the Shapley value. The color 
gradient from blue to red represents the feature’s value from low to high. Notably, wl has a significant impact on N

eff
, with 

higher values (in red) decreasing and lower values (in blue) increasing. This also shows that wl has a significant negative 

Fig 13.  Actual vs. predicted N
eff

 using RFR model.

https://doi.org/10.1371/journal.pone.0330944.g013

Fig 14.  Validation of N
eff

 predictions across different ML models.

https://doi.org/10.1371/journal.pone.0330944.g014

https://doi.org/10.1371/journal.pone.0330944.g013
https://doi.org/10.1371/journal.pone.0330944.g014
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impact on N
eff

, underscoring its crucial role in determining N
eff

, while other variables have a less significant influence on N
eff

 
value prediction.

Again, the SHAP waterfall plot in Fig 16 shows how different input features contribute to predicting N
eff

, starting from a 
base value E[f(x)] = 1.453 and going to a final predicted value f(x) = 1.454. The plot depicts that each input feature either 
increases or decreases N

eff
, impacting the final predicted value. The blue bars represent negative contributions, while the 

red bars indicate positive contributions. It reveals that wavelength (wl = 0.63 µm) has the most significant impact, which 
increases N

eff
 by 0.00187. Pitch (p = 2 µm) decreases N

eff
 by 0.00064, while d1 (1.2 µm) slightly decreases it by 0.00012. 

The influence of d2 (1 µm) is a small negative contribution of 0.00008. The n
a
 = 1.35 has a minor positive effect of 0.00003, 

whereas the t
g
 = 0.04 µm has no noticeable impact. This SHAP plot provides insight into how input parameters influence 

the predicted N
eff

 value. We observe that wl is the most dominant factor, followed by p, while other features have a much 
smaller effect on the final prediction.

3.2.1  Confinement loss (CL).  The graph in Fig 17 shows how the predicted CL values compare to the actual ones 
using the RFR model. The actual data points, represented in purple, are plotted alongside the predicted values in orange. 
The pattern suggests that the model accurately follows the trend of CL, although slight differences are noticeable in 
higher ranges. Overall, the predictions align well with actual values across different wavelengths, demonstrating the 
model’s effectiveness. A further evaluation of ML models in predicting CL is displayed in Fig 18. The actual data is plotted 
alongside predicted values using DTR, RFR, GBR, XGBR, and BR models. The results indicate that most of the models 
match the actual data closely, showing minimal variation, which confirms their reliability for generalization.

Table 5.  Comparative performance metrics for Neff across different ML models.

Models Train R2 Test R2 Train MAE Test MAE Train MSE Test MSE Execution Time (sec)

Train time Test time

DTR 0.999969 0.996479 4.50 × 10 ⁻ 5 2.34 × 10 ⁻ 3 8.10 × 10 ⁻ 7 8.90 × 10 ⁻ 5 0.020045 0.000099

RFR 0.999592 0.997477 8.44 × 10 ⁻ 4 2.22 × 10 ⁻ 3 1.07 × 10 ⁻ 5 6.50 × 10 ⁻ 5 0.617616 0.007231

KNN 0.996601 0.992828 4.35 × 10 ⁻ 3 7.91 × 10 ⁻ 3 8.95 × 10 ⁻ 5 1.86 × 10 ⁻ 4 0.048177 0.008654

GBR 0.999261 0.997951 2.16 × 10 ⁻ 3 2.71 × 10 ⁻ 3 1.95 × 10 ⁻ 5 5.30 × 10 ⁻ 5 0.387928 0.008544

XGBR 0.999401 0.997684 1.52 × 10 ⁻ 3 2.22 × 10 ⁻ 3 1.58 × 10 ⁻ 5 5.90 × 10 ⁻ 5 0.237774 0.007392

BR 0.999593 0.997447 8.43 × 10 ⁻ 4 2.22 × 10 ⁻ 3 1.07 × 10 ⁻ 5 6.60 × 10 ⁻ 5 0.614761 0.006754

https://doi.org/10.1371/journal.pone.0330944.t005

Fig 15.  SHAP summary plot for N
eff

 prediction.

https://doi.org/10.1371/journal.pone.0330944.g015

https://doi.org/10.1371/journal.pone.0330944.t005
https://doi.org/10.1371/journal.pone.0330944.g015
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Fig 16.  SHAP waterfall plot for N
eff

 prediction.

https://doi.org/10.1371/journal.pone.0330944.g016

Fig 17.  Actual vs. predicted CL using RFR model.

https://doi.org/10.1371/journal.pone.0330944.g017

Fig 18.  Validation of different ML models for CL prediction against actual data.

https://doi.org/10.1371/journal.pone.0330944.g018

https://doi.org/10.1371/journal.pone.0330944.g016
https://doi.org/10.1371/journal.pone.0330944.g017
https://doi.org/10.1371/journal.pone.0330944.g018
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Additionally, to analyze performance, Table 6 provides a comparison of performance metrics such as R², MAE, and 
MSE for both training and test datasets. Where DTR has a high train R² of 0.999444, its lower test R² of 0.927159 sug-
gests reduced accuracy when handling new data. RFR and BR exhibit strong predictive capabilities, with test R² values 
of 0.96148 and 0.961493, respectively, along with lower error rates. XGBR also performs well, achieving a test R² of 
0.941124 and a test MSE of 0.000935. KNN and GBR show slightly lower test R² values (0.909516 and 0.912935) and 
higher MAE, indicating relatively lower accuracy compared to ensemble models. For CL prediction, DTR is the fastest, 
with a training time of 0.021 seconds and a test time of 0.0003 seconds, but it has lower test accuracy. RFR and BR 
achieve the highest test R² but require longer training times (0.627 and 0.655 seconds). XGBR provides a strong balance, 
with a high test R², a low test MSE, and moderate training time (0.261 seconds). KNN and GBR have the lowest test R² 
and higher errors, making them less suitable. Among all, RFR and BR demonstrate the most reliable CL predictions with 
minimal error.

Like N
eff

 analysis, we also used SHAP to explore the impact of different input parameters on CL. SHAP values were 
computed using the RFR model that is one of the most effective models in this study. The summary plot in Fig 19 pres-
ents the distribution of SHAP values for various features for CL prediction. Each point represents an individual prediction 
instance, with the y-axis displaying the features and the x-axis showing their corresponding SHAP values. The color gradi-
ent from blue to red reflects the feature values, where blue denotes lower values and red represents higher ones. Among 
all parameters, wl emerges as the most influential, showing both high and low values leading to significant variations in 

Table 6.  Performance metrics of ML models for CL prediction.

Models Train R2 Test R2 Train MAE Test MAE Train MSE Test MSE Execution Time (sec)

Train time Test time

DTR 0.999444 0.927159 1.64 × 10 ⁻ 4 1.01 × 10 ⁻ 2 9.00 × 10 ⁻ 6 1.16 × 10 ⁻ 3 0.021194 0.000303

RFR 0.993567 0.96148 3.37 × 10 ⁻ 3 8.58 × 10 ⁻ 3 1.03 × 10 ⁻ 4 6.22 × 10 ⁻ 4 0.62719 0.010593

KNN 0.953331 0.909516 9.81 × 10 ⁻ 3 1.45 × 10 ⁻ 2 7.49 × 10 ⁻ 4 1.43 × 10 ⁻ 3 0.05 0.005948

GBR 0.946968 0.912935 1.29 × 10 ⁻ 2 1.62 × 10 ⁻ 2 8.50 × 10 ⁻ 4 1.40 × 10 ⁻ 3 0.423946 0.005308

XGBR 0.976157 0.941124 8.68 × 10 ⁻ 3 1.29 × 10 ⁻ 2 3.83 × 10 ⁻ 4 9.35 × 10 ⁻ 4 0.261034 0.004159

BR 0.993551 0.961493 3.37 × 10 ⁻ 3 8.57 × 10 ⁻ 3 1.04 × 10 ⁻ 4 6.22 × 10 ⁻ 4 0.654856 0.011571

https://doi.org/10.1371/journal.pone.0330944.t006

Fig 19.  SHAP summary plot for CL prediction.

https://doi.org/10.1371/journal.pone.0330944.g019

https://doi.org/10.1371/journal.pone.0330944.t006
https://doi.org/10.1371/journal.pone.0330944.g019
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the model’s output. The n
a
 and t

g
 also play a crucial role, generally increasing CL with higher values. Other parameters, 

such as p, d1, and the large air hole d2, have a smaller but still noticeable effect. The variations in SHAP values suggest 
complex feature interactions, which are essential for refining the model’s interpretability. A SHAP waterfall plot in Fig 20 
shows the change from the baseline E[f(X)] =47.157 to the final prediction f(x)= 77.28. This shows how these features 
have an effect. The n

a
 parameter makes the most substantial contribution, increasing CL by 45.61283 units. In contrast, 

wl reduces the prediction by −35.02253 units, while t
g
 contributes an additional 21.55977 units. Similarly, d2 leads to a 

decrease of 2.51656 units, whereas p has a minimal positive and d2 negative impact. These changes demonstrate how 
different input variables influence CL, with wavelength standing out as the dominant factor.

3.2.2  Amplitude sensitivity (S
A
).  In Fig 21, actual and predicted S

A
 values are compared, where actual values are 

shown in purple and predicted values are marked in orange. The results indicate that the model has excellent predictions, 
but some deviations appear, particularly at lower sensitivity values. Fig 22 presents a detailed evaluation to predict S

A
 

using ML models. The black line represents the actual data, while various colors display the predictions from DTR, RFR, 
XGBR, GBR, and BR. Most models follow the expected trend, but RFR and BR exhibit the closest match to actual values, 
indicating their strong predictive accuracy.

Fig 20.  SHAP waterfall plot for CL prediction.

https://doi.org/10.1371/journal.pone.0330944.g020

Fig 21.  Actual vs. predicted result of S
A
 using RFR model.

https://doi.org/10.1371/journal.pone.0330944.g021

https://doi.org/10.1371/journal.pone.0330944.g020
https://doi.org/10.1371/journal.pone.0330944.g021
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Again, Table 7 presents key performance metrics such as R², MAE, and MSE for both training and test datasets for pre-
dicting S

A
. Where, DTR shows an R² of 1.0 in training but drops to 0.788216 in testing, indicating overfitting. Its test MAE 

(0.010117) and MSE (0.001413) are relatively high, suggesting weaker generalization. DTR is the fastest, with a training 
time of 0.018 seconds and a test time of 0.0005 seconds, but has a lower test R² (0.788216). RFR and BR achieve the 
highest test R² (0.868116 and 0.867602) with a test MAE around 0.00924 but require longer training times (0.474 and 
0.470 seconds). XGBR provides a strong balance, with a test R² of 0.813183, low test MSE (0.001356), and moderate 
training time (0.218 seconds). KNN and GBR perform weaker, with KNN showing the lowest test R² (0.50024) and highest 
test MAE (0.023273). Overall, RFR and BR offer the best accuracy, their balance of high accuracy and low error makes 
them well-suited for S

A
 prediction.

The SHAP summary plot in Fig 23 makes it very clear that the feature wl has the biggest effect on S
A
. This highlights 

how important it is for optimal sensor model performance. Additionally, the feature also demonstrates a substantial impact, 
underscoring its importance in predicting S

A
. The SHAP summary plot also depicts that t

g
 has a moderate effect, indicating 

its notable impact on predictions. In contrast, d1 and d2 show minimal impacts, suggesting that these parameters have 
less influence on S

A
 compared to wl, n

a
, and t

g
. Again, Fig 24 illustrates a SHAP waterfall model with a specific s

a
mple. It 

shows how various features contribute to the model’s final prediction, starting with a baseline value of E [f(X)] = −32.067 
and reaching an output of f(x) = −36.866. Here, the feature wl has the most significant negative impact, decreases the 
prediction by −9.11925 units. The n

a
 feature also adds a substantial 2.01146 units to the prediction. In contrast, the feature 

Fig 22.  Validation of S
A
 predictions from various ML models against experimental data.

https://doi.org/10.1371/journal.pone.0330944.g022

Table 7.  SA Prediction performance metrics for different ML models.

Models Train R2 Test R2 Train MAE Test MAE Train MSE Test MSE Execution Time (sec)

Train time Test time

DTR 1 0.788216 9.24 × 10 ⁻ 7 0.010117 1.54 × 10 ⁻ 9 0.001413 0.017517 0.000493

RFR 0.977498 0.868116 3.53 × 10 ⁻ 3 0.00923 1.57 × 10 ⁻ 4 0.000985 0.474224 0.004532

KNN 0.747129 0.50024 1.54 × 10 ⁻ 2 0.023273 1.76 × 10 ⁻ 3 0.003449 0.036002 0.004144

GBR 0.917111 0.789826 9.54 × 10 ⁻ 3 0.014027 5.74 × 10 ⁻ 4 0.001557 0.311306 0.003934

XGBR 0.949936 0.813183 8.25 × 10 ⁻ 3 0.013992 3.48 × 10 ⁻ 4 0.001356 0.218452 0.003612

BR 0.977638 0.867602 3.52 × 10 ⁻ 3 0.009254 1.56 × 10 ⁻ 4 0.000988 0.470452 0.008843

https://doi.org/10.1371/journal.pone.0330944.t007

https://doi.org/10.1371/journal.pone.0330944.g022
https://doi.org/10.1371/journal.pone.0330944.t007
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t
g
 increases the prediction by 1.09693 units. The d1 and d2 features contribute small negative adjustments. This demon-

strates the sensitivity of the model’s output to changes in each feature, with wl and n
a
 being the most influential in driving 

the prediction upward.

3.3  Comparison with previous works

Table 8 compares the performance of our proposed PCF-SPR biosensor with recent works, highlighting significant 
improvements in optical properties. The proposed design outperforms previous models in terms of CL, S

A
, Sλ, resolution, 

and FOM, demonstrating superior sensing capabilities. In terms of Sλ, the proposed biosensor achieves 125,000nm/RIU, 
which is higher than all the works. The S

A
 of −1422.34 RIU ⁻ ¹ remains competitive, close to 7220 RIU ⁻ ¹ [46] and −1971.30 

RIU ⁻ ¹ [47], while excelling in other performance areas. Additionally, the proposed biosensor achieves an exceptionally 
low resolution of 8 × 10 ⁻ ⁷ RIU, which is superior to previous models [20,21,47–52]. Among all the properties, the FOM 
of 2112.15 RIU ⁻ ¹ is significantly higher than those reported in other studies [17,22,49,50,52] indicating a better balance 
between sensitivity and resolution. In our study, we employed six ML models (DTR, RFR, KNN, GBR, XGBR, BR), along 

Fig 23.  SHAP summary plot of S
A
 prediction.

https://doi.org/10.1371/journal.pone.0330944.g023

Fig 24.  SHAP waterfall plot of S
A
 prediction.

https://doi.org/10.1371/journal.pone.0330944.g024

https://doi.org/10.1371/journal.pone.0330944.g023
https://doi.org/10.1371/journal.pone.0330944.g024
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with XAI techniques, specifically SHAP, to gain insights into the model’s decision-making process. The XGBR model 
demonstrated excellent performance with an R² value of 0.9976 for the prediction of N

eff
, outperforming other models in 

the literature. The use of XAI methods like SHAP made the results more interpretable, providing valuable information 
about how different design parameters impact the sensor’s performance. This transparency not only enhanced our under-
standing of the system but also allowed for more informed decisions during the optimization process. The ML models 
showed lower error rates and higher accuracy compared to previous works, achieving an MAE of 0.00221 and an MSE of 
0.00059, which are significantly lower than most of the other studies. This demonstrates the robustness of the ML models 
in predicting sensor performance. Additionally, integrating XAI with ML optimization significantly reduced computational 
time and cost, making it more efficient than conventional methods for exploring optimal design combinations. Overall, the 
proposed PCF-SPR biosensor, with its combination of ML and XAI techniques, shows substantial improvements in S

A
, Sλ, 

resolution, and FOM compared to previous designs. This makes it a promising candidate for high-precision applications in 
various sensing domains, while the inclusion of XAI offers valuable insights into the underlying sensor behavior.

Furthermore, compared to traditional PCF-SPR sensor optimization approaches that rely solely on parametric sweeps 
using FEM, our hybrid methodology incorporating ML (e.g., RFR, XGB) and SHAP-based XAI significantly enhances 
computational efficiency and interpretability. FEM alone often demands substantial time and computing power for iter-
ative tuning of design parameters. In contrast, our work reduces the time for predicting key optical parameters such 
as N

eff
, CL, and S

A
 from minutes to milliseconds, enabling rapid exploration of a broader design space. Recent sensor 

architectures have demonstrated high performance using complex geometries. Such as IMD-EMD merged PCF [53] and 
quasi D-shaped waveguides with external metal deposition [54], offering high sensitivities for detecting heavy metals, oils 
[55], and cancer biomarkers [56]. However, these structures typically require higher fabrication and simulation costs. Our 
proposed sensor, in comparison, achieves high performance metrics (Sλ = 125,000 nm/RIU and FOM = 2112.15) using 
a simpler geometry with the help of an intelligent data-driven approach. By combining ML and XAI with efficient sensor 
design, this framework supports rapid development of adaptive, intelligent biosensing platforms for diverse real-world 
applications.

Table 8.  Comparison with previous work.

References na Range Wavelength 
Range (nm)

Maximum Sλ 
(nm/RIU)

Maximum
SA (RIU

–1
)

R (RIU) FOM (RIU–1) ML Application

Model Best Performance

[17](2024) 1.33 - 1.43 550-3500 123,000 – 8.13 × 10 ⁻ ⁷ 683 ANN MSE = 0.0097
R² = 0.9987

[21](2024) 1.31 to 1.40 720-1280 18000 889.89 5.56 × 10 −6 – ANN MSE = 0.002

[22](2024) 1.380−.401 960-1060 13,257.20 – – 36.52 – –

[48](2024) 1.36-1.38 600-1000 7143 −270 2.9 × 10 ⁻ ⁵ – – –

[46](2023) 1.26-1.36 1500–2000 48,000 7220 – – DNN, GB R2 = 0.98, MAE = 0.007

[47](2024) 1.362-1.401 600-1600 35,714.28 −1971.30 2.80 × 10 ⁻ ⁶ – – –

[20](2024) 1.37 - 1.41 600-900 5500 – 2.05 × 10 ⁻ ⁵ – SVM R2 = 0.96
F1-Score = 0.958
MCC = 0.923

[49](2024) 1.27 - 1.41 539-900 12,300 1623.6 8.13 × 10 ⁻ ⁶ 560 – –

[50](2024) 1.25–1.36 1120–2050 33,000 – 3.03 × 10 − 6 268.29 – –

[51](2024) 1.28 - 1.44 740-1000 1000 98.422 0.001 – MLR, ANN R2 = 0.98
RMSE = 0.1647 R2 = 0.99
RMSE = 0.1585

[52](2025) 1.26-1.38 692-1593 5400 – 3.2 × 10 ⁻ ⁵ 120.43 – –

proposed 1.31-1.42 400-2300 125,000 −1422.34 8 × 10 −7 2112.15 DTR, RFR, KNN, GB, 
XGBR, BR, XAI

R2 = 0.9975 MAE = 0.0022 
MSE = 0.00059

https://doi.org/10.1371/journal.pone.0330944.t008

https://doi.org/10.1371/journal.pone.0330944.t008
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4.  Discussion

Moreover, from our results and analysis, it confirms that ML models can accurately predict various optical properties. By 
providing rapid and precise predictions, ML lowers computational costs and time and accelerates the optimization pro-
cess for high-performance PCF-SPR biosensor design. This approach enables efficient exploration of the best-performing 
configurations by evaluating numerous design variations without additional simulations. Furthermore, the comparison 
between COMSOL simulations and ML models highlights the significant advantage of ML in terms of computational effi-
ciency. While COMSOL requires approximately 2 minutes for each single-mode calculation, ML models achieve similar 
predictions in only milliseconds. Among the tested RFR and XGBoost, RFR provides the best balance between accuracy 
and execution time. The drastic reduction in computation time makes ML-based approaches highly efficient for rapid mode 
prediction, offering a promising alternative for scenarios requiring multiple evaluations with minimal processing overhead.

Additionally, SHAP analysis provides interpretability and a clear understanding of each input feature’s influence on the 
sensor’s optical properties. This work effectively enhanced the sensor design by using COMSOL simulations to create 
data, ML for rapid optimization, and SHAP for better understanding. The SHAP analysis reveals that Au thickness (t

g
) and 

pitch (p) play notable roles in sensor performance. For N
eff

, p has a moderate negative effect, indicating that increasing 
pitch slightly lowers the effective index due to reduced core confinement. In contrast, t

g
 shows minimal influence on N

eff
. 

For CL, t
g
 significantly increases loss, aligning with its known effect of enhancing plasmonic interaction but introducing 

absorption. Pitch has a minor positive effect on CL, suggesting a marginal loss increase with wider spacing. In S
A
 predic-

tion, t
g
 moderately boosts sensitivity, confirming its importance in optimizing SPR strength. However, p has minimal effect 

on S
A
. Overall, t

g
 is more critical for optimizing S

A
 and CL, while pitch subtly influences mode confinement.

The performance of the proposed PCF-SPR biosensor is evaluated using two critical metrics, Sλ and FOM, which 
together determine the sensor’s effectiveness in high-precision detection tasks. The sensor achieves exceptional values, 
with a maximum Sλ of 125,000 nm/RIU and FOM of 2112.15, indicating its strong capability to detect change of n

a
. High 

Sλ ensures that even minimal variations in the n
a
 cause significant shifts in the resonance wavelength, making the sen-

sor highly effective for detecting biochemical interactions. The FOM, which combines sensitivity with spectral resolution, 
reflects the sharpness of the resonance peak, an essential factor for achieving accurate and low-error detection results.

Such sensor performance is particularly advantageous in medical diagnostics, especially for detecting cancer biomark-
ers [33,56], where early-stage detection requires identifying minute biomolecular changes in samples like blood or serum. 
The integration of ML and XAI into the design process enables accurate prediction of optical responses and efficient 
parameter optimization. This not only reduces reliance on computationally intensive simulations but also enhances the 
sensor’s adaptability in real-time, making it well-suited for dynamic and complex biological systems. Our proposed design, 
covering a wide n

a
 detection range of 1.31–1.42, allows for effective operation across diverse diagnostic media. Beyond 

medical diagnostics, the biosensor’s high sensitivity, low CL, and wide operational range make it equally applicable to 
chemical and environmental sensing tasks, such as the detection of organic solvents, contaminants, and pharmaceutical 
compounds.

While ML models are highly effective at predicting key optical properties such as N
eff

, CL, and sensitivity, certain 
non-quantifiable or dynamic sensing parameters remain challenging to predict. For instance, parameters influenced by 
fabrication tolerances, material degradation, surface roughness, and temperature-dependent shifts are often difficult to 
capture accurately using ML unless real experimental data are integrated into the training process. Similarly, nonlinear 
environmental effects, such as biofouling or long-term drift, typically require real-time adaptive models or physical testing 
for accurate assessment. Despite these limitations, the ML-based predictions offer significant benefits for the overall 
sensor design process. They drastically reduce computational load, enable rapid evaluation of large design spaces, and 
help in identifying optimal configurations without exhaustive simulation runs. More importantly, explainable ML tech-
niques such as SHAP add interpretability, allowing designers to understand which parameters most strongly influence 
sensor behavior.
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5.  Conclusion

This study demonstrates the significant enhancement of optical properties in PCF-SPR biosensors by integrating ML 
with simulation-based design. The proposed biosensor features a simple design with low CL, high S

A
, Sλ, and a high 

FOM. Operating over n
a
 range from 1.31 to 1.42, with gold employed as the plasmonic material. The biosensor achieves 

exceptional performance metrics, including a maximum Sλ of 125,000 nm/RIU, an S
A
 of −1422.34 RIU ⁻ ¹, a resolution of 

8 × 10 ⁻ ⁷ RIU, and a FOM of 2112.15. The integration of various ML models, including RFR, DTR, GBR, XGBR, KNN, and 
BR, accelerated the optimization process, significantly reducing computational costs and time compared to conventional 
methods. The XGBR model demonstrated excellent predictive accuracy (R² = 0.9976, MAE = 0.00221, MSE = 0.00059) 
for N

eff
 predictions. Specially, the use of XAI techniques, particularly SHAP, provided valuable insights into how design 

parameters influence sensor performance, enabling efficient exploration of optimal parameter combinations. Due to its 
high sensitivity and low CL, the proposed biosensor is well-suited for detecting small n

a
 variations, making it ideal for 

medical diagnostics, disease detection, environmental monitoring, biochemical sensing, and industrial applications. Future 
work can focus on exploring alternative plasmonic materials, enhancing the generalization of ML models, and conducting 
experimental validations to further improve the sensor’s reliability and real-world applicability.
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