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Abstract

Objective

Sleep-wearable technology has developed rapidly. However, few carried out vali-
dation in the real clinical settings. This study aimed to validate the performance of
a consumer-grade sleep-tracking device compared to polysomnography (PSG) in
participants from sleep clinics.

Methods

Participants referred to sleep clinic from 2021 to 2023 were recruited. Demographics
and sleep questionnaires were also collected. All participants completed the PSG test
in a sleep laboratory, along with a smart watch (HUAWEI WATCH GT2) that collected
movement and heart rate signals using built-in sensors. Epoch-by-epoch agreement
analysis and the Bland-Altman method were applied to evaluate the performance of
smart watch.

Results

98 participants were included in this study. 82 of them were men, with a mean age of
45.3+10.6 years. The smart watch had a high sensitivity (95.9%), accuracy (87.3%),
positive predictive value (72.2%), and relatively low specificity (47.9%) for sleep/wake
performance. Sleep staging comparisons were mixed. Comparing to PSG, although
smart watch tended to overestimate total sleep time (+28.7 min, P=0.001), sleep
efficiency (+5.94%, P<0.001), sleep onset latency (+8.53min, P<0.001) and under-
estimate wake after sleep onset (-37.00 min, P<0.001), acceptable agreement was
observed in sleep/wake detection (Kappa coefficient>0.4), total sleep time and sleep
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efficiency (intraclass correlation coefficient>0.4). This agreement was less satisfac-
tory in patients with OSA or insomnia.

Conclusion

This study compared the performance of a consumer-grade sleep-tracking device
with that of PSG. The HUAWEI WATCH GT2 exhibited high agreement in sleep/wake
detection. Such devices could be used as alternatives for successive sleep detection
and could provide significant benefits to sleep hygiene with more advanced algo-
rithms in the future.

Introduction

Sleep accounts for one-third of an individual’s life. Poor sleep is associated with
various morbid conditions including cardiovascular disease, dementia, and sudden
death. In clinical practice, sleep is measured by polysomnography (PSG), a proce-
dure collects multiple biological signals during sleep. Despite being a golden stan-
dard technique for sleep-breathing disorders, PSG has several shortcomings that
limit its application. These include low cost-effectiveness, first-night effects, night-
to-night variability, and the need for professional technicians and doctors. Owing to
their considerable cost, sleep centers usually carry out single-night sleep monitoring.
Therefore, certain sleep disorders may have been overlooked. Alternative methods
for PSG include portable monitoring and actigraphy, which overcome some of these
issues but are still imprecise and restricted to certain populations [1].

The concept of wearable technologies was first proposed in the 1960s [2]. Since
then, owing to the development of artificial intelligence, sleep-wearable technology,
especially in the consumer market, has developed rapidly. Similar to actigraphy,
these consumer devices detect an individual’s movements to determine their sleep
status using built-in accelerometers. Furthermore, some wearables claim to possess
machine learning and use multiple sensors to improve their performance and pro-
vide information other than sleep/wake detection. However, these functions have not
been fully validated. Private and frequently updated algorithms and rapidly iterative
products make it difficult to transform them into clinical practice. In fact, overwhelm-
ing messages provided by wearables often frustrate the customers. Some may have
unnecessary worries about their situation and seek medical help.

Despite the limitations mentioned above, previous studies have shown that con-
sumer sleep technology (CSTs) have equivalent performance to actigraphy, while
other information, such as sleep staging acquired from new sensors, has mixed
results [3—5]. Most studies performed validation in healthy subjects, which could not
fully represent clinical settings. Several studies have validated patients with sleep
disorders such as insomnia and OSA [6-8]. However, these studies simply demon-
strated the performance of different devices without further comparison among
disease subgroups. Further evidence regarding new functions in CSTs and clinical
populations is required.
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The most validated commercial devices are from Fitbit. However, since the takeover by Google in 2021, Fitbit devices
have possessed less of a market for wearable technologies. Other commercial devices, such as Apple, Samsung, and
HUAWEI, are welcomed by consumers but have not been validated by researchers. The disproportionate ratio of market
possession to device validation indicates a need for further evaluation. The HUAWEI smart watch dominates the sales
share in the Chinese smart watch market [9]. It was claimed that the device could provide various personal health infor-
mation including sleep, blood glucose, and heart rhythm due to built-in signals such as photoplethysmography, motion,
and heart rate variation. A previous study proved its feasibility for atrial fibrillation screening [10], but little is known about
its performance in sleep detection.

This study aimed to validate the performance of a commercial smart watch, HUAWEI WATCH GT2, which collects
movement and heart rate variation signals for sleep detection, against PSG and compare the performance of a smart
watch in clinical settings across participants with different sleep disorders.

Methods
Study population

Participants referred to sleep clinic with suspected sleep disorders were recruited from March 1st 2021 to April 30th 2023.
The following inclusion criteria were applied: (1) age> 18 years, (2) completion of demographic and sleep questionnaires,
and (3) willingness to wear a smart watch while monitoring sleep with PSG. The exclusion criteria were as follows: (1) total
sleep time <4h; (2) other conditions such as traumatic brain injury, dementia, or stroke that would affect their comprehen-
sion of informed consent; (3) recent (< 1 month) treatment for sleep disorders such as hypnotics, cognitive behavior ther-
apy for insomnia (CBT-I), or continuous positive airway pressure (CPAP) for OSA; and (4) engaged in shift work within the
last 6 months. The study was approved by the ethics committee of Peking Union Medical College Hospital (JS-2089) and
was conducted in accordance with the Declaration of Helsinki ethic requirements. All participants provided written consent
prior to the study.

Demographics

Baseline characteristics were collected questionnaires and clinical examinations. Demographics, medical history, medi-
cation use, and personal behaviors were recorded. Body mass index (BMI) and waist-to-hip ratio (WHR) were calculated
based on the demographics. Self-reported questionnaires, including the Pittsburgh Sleep Quality Index (PSQl), Epworth
Sleepiness Scale (ESS), and Insomnia Severity Index (ISl), were used to evaluate the sleep quality, daytime sleepiness,
and insomnia severity. Participants with PSQI scores of 2 5 were considered to have poor sleep quality. Daytime sleepi-
ness was defined as an ESS score = 10. Clinical insomnia was confirmed if participants claimed to take hypnotics or had
an ISl score 2 15.

Overnight polysomnography

All participants completed a single-night PSG (Embla N7000, Natus Medical Incorporated, Orlando, FL, USA) monitoring
in the sleep center from 11 p.m. to 6 a.m. A certified sleep laboratory technician scored the sleep stages and respiratory
events according to the American Academy of Sleep Medicine (AASM) standard protocol recommendations. Five stages,
awake, N1, N2, N3, and rapid eye movement (REM) sleep, were recorded using PSG. Epochs of 30s were used for
sleep summary and epoch-by-epoch (EBE) analysis. Apnea was defined as a decrease in respiratory airflow by 90% from
baseline for more than 10 seconds. Hypopnea was defined as a decrease in respiratory airflow of 30% for more than 10s,
accompanied by a decrease in oxygen saturation of more than 3%, or arousal. Apnea hypopnea index (AHI) 2 15/h was
used to diagnose OSA. Other hypoxemia indices, such as the percentage of time spent with SpO,<90% (T90), oxygen
desaturation index (ODI), and lowest pulse oxygen saturation (LSpO,) were also collected.
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Smart watch measurements

At the beginning of sleep tracking (lights off, 23:00 P.M.), the research staff ensured that the smart watch was correctly
worn on the non-dominant wrist. The study design followed a standard framework for testing the performance of CSTs
proposed in an earlier study [11]. To ensure the same length of total recording time (TRT) for data synchronization, the
watch was removed at the same time when PSG was completed (lights on, 6:00 A.M.). Data for the watch were not avail-
able as output files from the software. Accordingly, sleep stage information for each 30s epoch was manually extracted
from the summary graphs on the mobile app designed for the research study. Details about this process are presented

in Fig 1. The smart watch provides four stages of sleep recordings based on movement and heart rate variation signals:
awake, light sleep, deep sleep, and REM sleep. After checking the specifications with the manufacturer, it was confirmed
that light sleep equaled stages N1 and N2 and deep sleep equaled stage N3. The measurements of interest, including
total sleep time (TST), sleep efficiency (SE, TST/minutes between lights off and lights on), and wake after sleep onset
(WASO), were generated according to the scored epochs of the PSG and the smart watch. Sleep latency was calculated
in two ways: (1) sleep onset latency (SOL), the time from lights off to the first epoch scored as any sleep stage, and (2)
latency to persistent sleep (LPS), the time from lights off to the first epoch of 10 consecutive minutes scored as any sleep
stage. The latter is often used to assess the sleep quality of patients with insomnia.

REM
23:00:00-01:00:30 Watch

...................................................................... L.
22:30:00 P.M. 06:00:00 A.M.

REM
23:00:00-00:01:30 PSG

_______________________________________ et e e e, i e e e e
22:30:00 P.M. 06:00:00 A.M.

Fig 1. Schematic graph of sleep monitoring by smart watch and PSG. The same lights off (22:00 P.M.) and lights on (06:00 A.M.) time were strictly
set. In this example, for smart watch, the time from lights off to the detection of sleep data (22:30:00 P.M.) was recognized as sleep onset latency (SOL,
30min in this example). 30s of epochs are generated from the summary graphs of smart watch and PSG. The start and end time of every sleep stage
could also be obtained from the graph (REM from 23:00:00 to 01:00:30 for smart watch and REM from 23:00:00 to 00:01:30 for PSG in this example). By
comparing with PSG, the agreement of each 30-second epoch from the smart watch can be evaluated.

https://doi.org/10.1371/journal.pone.0330774.9001
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Statistical analysis

Baseline demographics and sleep measurements are presented as mean (+ SD) or median (interquartile range,
25%-75%) for continuous variables, depending on the data distribution. Categorical variables are summarized as fre-
quencies with proportions.

The following EBE agreement statistics were calculated for the sleep/wake and sleep stage analyses: sensitivity, spec-
ificity, accuracy, Cohen’s Kappa coefficient, and prevalence and bias-adjusted kappa (PABAK). Matthews correlation
coefficient (MCC) was presented to further evaluate robustness of the results. A confusion matrix was used to calculate the
true-positive (TPs), true-negative (TNs), false-positive (FPs), and false-negative (FNs) values. The sensitivity, specificity,
accuracy, positive predictive value (PPV), and negative predictive value (NPV) were calculated based on the confusion
matrix. Cohen’s kappa coefficient was used to calculate the percentage of scoring agreement between the two devices, not
due to chance, and PABAK further gave balanced weight to epochs [12]. MCC was calculated using following equation:

TP x TN—FP x FN
V(TP FP) x (TP+ FN) x (TN + FP) x (TN + FN)

MCC =

Parameters with a Kappa coefficient>0.4 was considered acceptable agreement. These metrics were calculated for each
subject and averaged to generate group-level EBE performance. Agreement was interpreted according to recommended
guidelines: 0—-0.20 indicates slight agreement, 0.21-0.40 is fair, 0.41-0.60 is moderate, 0.61-0.80 is substantial, and
0.81-1.0 is almost perfect [13].

Bland-Altman plots were used to assess the agreement between PSG and the smart watch for each continuous sleep
parameter. The overall levels of bias and upper and lower limits of agreement are presented. The mean of the two mea-
surements was used to represent the size of the measurements. Sleep summary parameters were also statistically com-
pared with PSG using Student’s paired t-tests, intraclass correlation coefficient (ICC) using the absolute agreement mode,
and Hedges’ g effect sizes.

To test whether the smart match had different performances in participants with sleep disorders, the agreement
between the two devices in OSA or insomnia group was further compared with that of healthy controls in the second anal-
ysis using chi-square test.

All data were analyzed using R software (RStudio running R version 4.2.2). A two-sided P-value of <0.05 was consid-
ered significant.

Results
Baseline characteristics

In total, 164 participants were consecutively recruited for this study. 66 were excluded due to participants’ condition

or data loss. 98 met the inclusion criteria and were analyzed finally. Fig 2 showed population recruitment of this study.
Among these participants, 82 (83.7%) were male with a mean age of 45 years and a mean BMI of 26.0 kg/m?2. More than
50% of participants complained of poor sleep quality and daytime sleepiness. The median TST and SE were 405.8 min
and 85%, respectively. According to the PSG results, 33 patients were normal participants and 47 had moderate-to-severe
OSA (AHI>15/h). 30 were considered to have clinical insomnia with an I1SI1=15. 12 were suffered from comorbid insomnia
and sleep apnea. The baseline patient characteristics are listed in Table 1.

Overall performances of smart watch against PSG

In the final analyses, 92992 epochs were exported manually for comparison. A confusion matrix illustrating the sleep stag-
ing agreement between the PSG and smart watch is presented in Fig 3. Overall, the PSG and smart watches had higher
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agreement in the wake and light sleep classifications. There were high error rates for the smart watch in misclassifying
PSG REM epochs as light sleep. Similarly, for PSG-scored epochs that differed from the device, device epochs scored as
deep sleep and REM sleep were often classified as light sleep. Misclassification errors among other possible stage classi-
fications were comparatively low.

164 participants agreed to
take part in the study

Excluded due to:

(1) Age <18 (n=4);

(2) Receiving SDB treatment (n = 14);

(3) Engaged in shift work within the last 6
y months (n = 10).

136 participants finished
PSG and wearable sleep
tracking

Excluded due to:
(1) Total sleep time < 4h (n = 20);
(2) Unsuccessful watch data recording (n = 18).

98 participants were
analyzed

Fig 2. Flowchart of study population.

https://doi.org/10.1371/journal.pone.0330774.9002

Table 1. Baseline demographic and sleep parameters.

Variables Overall (n=98)
Age, y 45.3+10.6

Sex, male, n (%) 82 (83.7)

Race, Han, n (%) 93 (94.9)

WHR, % 0.94+0.06

BMI, kg/m? 26.0 (24.7-28.7)
Hypertension, n (%) 26 (27.7)

CVD, n (%) 12 (12.8)
Smoke, n (%) 31(31.6)
Alcohol use, n (%) 78 (79.6)
Hypnotic use, n (%) 7(7.14)
ESS>10, n (%) 54 (55.1)
PSQlz5, n (%) 84 (85.7)
1S1215, n (%) 25 (25.5)

TST, min 405.8 (364.5-433.0)
Sleep efficiency 85.0 (76.5-91.7)
AHI,/h 14.4 (5.1-33.5)
ODl,/h 10.6 (3.9-28.0)
LSpO,, % 88.0 (84.0-91.0)
T90, % 0 (0-0.3)

WHR, waist hip ratio; BMI, body mass index; CVD, cardiovascular disease; ESS, Epworth Sleepiness
Scale; PSQI, Pittsburgh Sleep Quality Index; ISI, insomnia severity index; TST, total sleep time; AHI, ap
nea-hypopnea index; ODI, oxygen desaturation index; LSpO2, lowest pulse oxygen saturation; T90, time
spent with Sp02<90%.

https://doi.org/10.137 1/journal.pone.0330774.t001
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For EBE agreement of sleep versus wake state compared with PSG, the smart watch had a high sensitivity of 95.3%
and a low specificity of 44.5%. The PPV was 72.20% and the kappa coefficient reached acceptable agreement (k=0.43)
between the two devices. After adjusting for the prevalence and bias of epochs, the PABAK improved substantially
(k=0.75). For sleep staging agreement, smart watch showed high accuracy (>70%) for all sleep stages with the exception
of light sleep. The PABAK coefficients implied moderate to substantial agreement between the PSG and smart watch for
deep and REM sleep. MCC reached acceptable agreement (0.48) for sleep/wake classification which was highest among
sleep stages detection. (Table 2).

For continuous sleep summary results (Table 3), according to mean bias values and paired t-tests, except for light

sleep (P=0.07), smart watch significantly overestimated TST, SE, SOL, deep sleep, and REM sleep by 28.5min

(P<0.001), 5.94% (P<0.001), 8.53min (P=0.048), 14.3min (P=0.038), and 27.91min (P<0.001), respectively, while
underestimated WASO by 37 min (P<0.001). After adjusting for unstable sleep, the LPS levels between the two devices
were not significantly different (P=0.812). Bland-Altman plots comparing the smart watch with PSG for each sleep vari-
able are presented in Fig 4. Biases were generally the lowest magnitude and least variable when participants had higher
TST and SE, and were more variable and biased in participants with lower TST and SE. In contrast, for individuals with

Wake

Light sleep

Smart
Watch

Deep sleep

REM sleep

Wake

Polysomnography

Light sleep

Deep sleep

REM sleep

7950
(47.76%)

4405
(26.47%)

820
(4.93%)

3469
(20.84%)

2364
(5.47%)

10271
(23.78%)

8895
(20.59%)

537
(2.85%)

6001
(31.83%)

9685
(51.37%)

2630
(13.95%)

20000

212
(1.48%)

10000

8425
(68.92%)

5000

887
(6.20%)

4775
(33.39%)

15000

Fig 3. Confusion matrix of sleep staging agreement between polysomnography and smart watch. The percentages of each sleep stage scored
by smart watch are presented. Deeper color indicates higher frequencies.

https://doi.org/10.1371/journal.pone.0330774.9003

Table 2. Summary of epoch-by-epoch analysis for smart watch against PSG.

Sleep stage | Sensitivity (%) | Specificity (%) | Accuracy (%) PPV (%) NPV (%) Kappa (k) PABAK MCC
Wake 44.46 (31.90) 95.34 (10.41) | 87.35(12.14) 30.55 (17.63) 45.61 (17.36) 0.43 (0.29) 0.75 (0.24) 0.48 (0.28)
[38.20-50.75] [93.49-97.54] | [85.11-89.85] [26.94, 34.12] [43.33, 49.52] [0.38-0.49] [0.70-0.80] [0.43-0.53]
Sleep 95.34 (10.41) 44.46 (31.90) |87.35(12.14) 72.20 (17.08) 47.82 (19.66) 0.43 (0.29) 0.75 (0.24) 0.48 (0.28)
[93.46, 97.55] [38.16, 50.88] | [85.09, 89.89] [68.79, 75.55] [43.67, 51.45] [0.38, 0.49] [0.70-0.80] [0.43-0.53]
Light 50.09 (13.40) 62.21 (10.89) | 56.61 (8.55) 45.23 (8.40) 49.76 (0.54) 0.12 (0.16) 0.13 (0.17) 0.12 (0.17)
[47.41-52.82] [60.09-64.35] | [54.96-58.27] [43.61, 46.88] [49.67, 49.88] [0.08-0.15] [0.10-0.17] [0.09-0.15]
Deep 52.69 (23.18) 84.35 (8.98) 77.20 (8.15) 38.72 (13.70) 47.65 (4.71) 0.32 (0.20) 0.54 (0.16) 0.34 (0.21)
[48.20-57.32] [82.58-86.12] | [75.62-78.82] [36.11, 41.50] [46.87, 48.71] [0.28-0.36] [0.51-0.58] [0.30-0.38]
REM 34.50 (18.60) 80.97 (7.04) 73.66 (6.97) 30.23 (12.74) 48.68 (5.58) 0.12 (0.15) 0.47 (0.14) 0.13 (0.16)
[30.82-38.12] [79.60-82.37] |[72.30-75.01] [27.77, 32.74] [47.38, 49.53] [0.09-0.15] [0.45-0.50] [0.10-0.16]

PPV, positive predictive value; NPV, negative predictive value; PABAK, prevalence and bias-adjusted kappa; MCC, Matthews correlation coefficient.

Data are reported as the mean (standard deviation) [95% confidence intervals].

https://doi.org/10.1371/journal.pone.0330774.t002
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Table 3. Summary of sleep indices for the smart watch against PSG.

Measures Device Mean*SD PSG MeantSD Bias Mean (95% CI) t(P) ICC (P) Effect sizes (Hedges’ g)
TST 418.01+64.85 389.53+66.25 28.47 (15.01-41.94) 4.20 (< 0.001) 0.437 (< 0.001) 0.433

N1-2 206.62+39.75 220.39+73.22 -13.77 (-28.77-1.23) -1.82(0.072) 0.190 (0.028) -0.233

N3 110.53+39.82 96.19+53.71 14.34 (0.80-27.87) 2.10 (0.0381) 0.019 (0.577) 0.302

REM 100.86+32.99 72.95+27.71 27.91 (19.52-36.30) 6.60 (< 0.001) 0.040 (0.288) 0.912

SE (%) 88.17+13.31 82.23+14.02 5.94 (3.14-8.74) 4.21 (< 0.001) 0.439 (< 0.001) 0.433

WASO 22.11+40.17 59.11+60.83 —-37.00 (-47.44--26.56) -7.03 (< 0.001) 0.391 (< 0.001) -0.715

SOL 34.33+45.08 25.81+24.85 8.53 (0.08-16.97) 2.00 (0.048) 0.324 (< 0.001) 0.233

LPS 34.39+45.08 33.34+32.38 1.05 (-7.69-9.78) 0.24 (0.812) 0.386 (< 0.001) 0.027

TST, total sleep time; REM, rapid eye movement; SE, sleep efficiency; WASO, wake after sleep onset; SOL, sleep onset latency; LPS, latency to per-
sistent sleep; ICC, interclass correlation coefficient.

https://doi.org/10.1371/journal.pone.0330774.t003

lower WASO/SOL (and thus higher TST and SE), the agreement between the smart watch and PSG was better, and when
there was higher WASO/SOL, the differences were more variable. Similarly, Bland-Altman plots showed better agreement
with LPS comparing to SOL.

Performances in patients with sleep disorders

Subgroup analysis was performed to validate the performance of the smart watch in participants with certain sleep dis-
orders. The performance in healthy controls showed the best agreement in sleep/wake detection among all participants,
with the highest values of sensitivity (97.4%), accuracy (89.9%), kappa (k=0.46), PABAK coefficient (k=0.80), and MCC
(0.51). Compared to healthy controls, t-tests revealed lower accuracy in patients with insomnia (83.0%, P=0.038) and
lower sensitivity in patients with OSA (92.5%, P=0.028), suggesting relatively poor performance of the smart watch in
patients with sleep disorders (Table 4). No significant differences were observed in sleep staging agreement among the
different sleep disorders. For continuous sleep summary results, the smart watch showed similar performance across
subgroups, with overestimation of TST, SE, and REM sleep and underestimation of WASO (Table 5).

Discussion

This study performed a sleep validation test against PSG for HUAWEI WATCH GT2, a smart wrist-worn consumer device
with multiple healthcare functions. The test was conducted in a real medical environment to evaluate its clinical feasibility.
The results indicated high sensitivity but relatively low specificity and a substantial range of inter-rater reliability for sleep/
wake state detection, while the agreement was inconsistent for sleep staging. The device showed a tendency to overesti-
mate the TST and SE and underestimate the WASO. For patients with OSA or insomnia, agreement was less satisfactory.
Despite unsatisfactory results in certain aspects, the smart watch can be used as an alternative option for sleep/wake
state detection in the general population.

To the best of our knowledge, this is the first validation study on sleep tracking using the HUAWEI WATCH in a Chinese
population. The robust result of the agreement in sleep/wake detection indicated its potential usability in daily monitoring.
With the rapid development of modern society, more people are suffering from physical and mental ilinesses. These side
effects often lead to sleep deprivation and disturbances, which perpetuate an individual’s poor condition. The related dis-
ease burden has resulted in huge costs to society and families. This urgent situation demands more public awareness of
sleep health in the general population.

Previous studies have emphasized multiple dimensions to achieve sleep health [14]. These included the sleep dura-
tion, SE, sleep timing, alertness, and sleep satisfaction. Although PSG and clinical questionnaires are standard criteria for
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Fig 4. Bland-Altman plot between polysomnography and smart watch. Mean bias, upper and lower limits of agreement are presented. (A) total
sleep time, (B) sleep efficiency, (C) wake after sleep onset, (D) sleep onset latency, (E) latency to persistent sleep.

https://doi.org/10.1371/journal.pone.0330774.9004
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Table 4. Epoch by epoch agreement for smart watch against PSG for sleep detecting in patients with sleep disordered breathing.

Status Sensitivity (%) Specificity (%) Accuracy (%) Kappa (k) PABAK MCC

Normal 97.36 (96.03-98.87) 45.72 (34.35-56.91) 89.91 (87.54-92.65) 0.46 (0.36-0.56) 0.80 (0.75-0.85) 0.51 (0.41-0.61)
Insomnia 94.19 (90.39-99.1) 37.59 (25.57-48.89) 83.03 (77.85-89.05) # 0.35 (0.25-0.45) 0.66 (0.56-0.78) 0.41 (0.31-0.50)
OSA 92.45 (88.83-96.79) # 48.95 (40.06-57.49) 85.48 (81.77-89.61) 0.44 (0.36-0.52) 0.71 (0.64-0.79) 0.48 (0.41-0.56)
All 95.34 (93.49-97.54) 44.46 (38.20-50.75) 87.35 (85.11-89.85) 0.43 (0.38-0.49) 0.75 (0.70-0.80) 0.48 (0.43-0.53)

OSA, obstructive sleep apnea; PABAK, prevalence and bias-adjusted kappa; MCC, Matthews correlation coefficient.

Comparisons were made between insomnia/OSA and healthy control.

Data are reported as the mean (95% confidence intervals).

#P < 0.05.

https://doi.org/10.1371/journal.pone.0330774.t004

Table 5. Summary of sleep indices for the smart watch against PSG.

Sleep stage | Status Sensitivity (%) Specificity (%) Accuracy (%) Kappa (k) PABAK MCC
Light Normal 47.74 (10.75) 62.22 (9.77) 56.63 (7.72) 0.10 (0.13) 0.13 (0.15) 0.10 (0.14)
[44.12 - 51.31] [58.98 - 65.46] [564.05 - 59.24] [0.05 - 0.14] [0.08 - 0.18] [0.05-0.14]
Insom- 51.32 (13.59) 61.33 (12.62) 56.63 (9.45) 0.12 (0.18) 0.13 (0.19) 0.13 (0.19)
nia [46.56 - 56.12] [56.83 - 65.76] [63.28 - 59.97] [0.06 - 0.19] [0.06 - 0.20] [0.06-0.19]
OSA 52.14 (15.15) 63.67 (11.38) 57.46 (8.92) 0.15 (0.17) 0.15 (0.18) 0.16 (0.18)
[47.99 - 56.55] [60.46 - 66.78] [564.96 - 59.92] [0.10 - 0.20] [0.10 - 0.20] [0.10-0.21]
Deep Normal 56.97 (20.57) 84.03 (8.81) 77.08 (6.29) 0.37 (0.18) 0.54 (0.13) 0.39 (0.18)
[50.14, 63.97] [81.07, 87.02] [75.00, 79.24] [0.30, 0.43] [0.50, 0.59] [0.33-0.45]
Insom- 49.34 (23.42) 84.67 (8.52) 76.98 (9.52) 0.30 (0.20) 0.54 (0.19) 0.31(0.21)
nia [41.5, 57.83] [81.71, 87.67] [73.74, 80.38] [0.23, 0.37] [0.47, 0.61] [0.24-0.39]
OSA 48.11 (25.69) 85.30 (9.28) 77.98 (9.25) 0.28 (0.22) 0.56 (0.18) 0.30 (0.23)
[41.086, 55.57] [82.74, 87.98] [75.37, 80.60] [0.22, 0.34] [0.51, 0.61] [0.24-0.37]
Rem Normal 33.86 (15.26) 81.15 (6.99) 73.02 (6.68) 0.13 (0.12) 0.46 (0.13) 0.13 (0.13)
[28.75, 38.99] [78.88, 83.55] [70.82, 75.32] [0.09, 0.17] [0.42, 0.51] [0.09-0.18]
Insom- 31.99 (19.97) 80.08 (6.63) 72.50 (6.78) 0.09 (0.16) 0.45 (0.14) 0.09 (0.17)
nia [24.93, 39.02] [77.69, 82.37] [70.08, 74.94] [0.03, 0.14] [0.40, 0.50] [0.03-0.15]
OSA 35.71 (20.27) 82.11 (7.34) 75.31 (7.11) 0.13 (0.16) 0.51 (0.14) 0.15 (0.16)
[29.80, 41.30] [80.01, 84.15] [73.32, 77.31] [0.09, 0.18] [0.47, 0.55] [0.10-0.19]

Reported as mean (standard deviation) [95% confidence intervals].

PABAK, prevalence and bias-adjusted kappa; MCC, Matthews correlation coefficient.

Data are reported as the mean (standard deviation) [95% confidence intervals].

https://doi.org/10.1371/journal.pone.0330774.t005

sleep assessment, limited medical resources and the recent Covid-19 pandemic have forced us to develop simpler and
more accessible modes of sleep monitoring. Single night monitoring by PSG is also difficult for clinicians to evaluate sleep
quality over a period of time. Wearables and nearables were developed to overcome these limitations. Compared to PSG,
wearables and nearables have millions of customers and do not require medical technicians. In addition, these devices
are convenient for monitoring multi-night sleep. Compared to nearables such as mattresses or radar, wearables can
directly collect signals from users, regardless of their bed partners. Together with other advantages, such as cellphone
messages and GPS location, wearables, especially wrist watches or bands, are welcomed by consumers worldwide.

In contrast to the prosperity of the consumer market, the validation of these devices is scarce. Despite their nonclinical
utilization, many still claim sleep detection without user classification, which makes validations of these devices neces-
sary in clinical settings. Many studies have attempted to achieve this by directly comparing parameters such as the TST,
SE, and WASO [15—17]. The result could be misinterpreted as an incorrect match between wearables and PSG within a
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given time while presenting similar parameters. Epoch-by-epoch analysis, as the standard method for validation studies,
has been less frequently adopted because of its time-consuming nature and data privacy. This study used this standard
method and fully evaluated its feasibility, providing convincing evidence that the HUAWEI WATCH GT2 could serve as an
alternative to PSG in the general population.

Many of the current findings on the overall performance are consistent with studies that have also tested the perfor-
mance of consumer sleep-tracking devices against PSG. For sleep/wake detection, previous studies reported a sensitivity
greater than 90%, and specificity ranging from 20% to 80% [18]. The smart watch also showed high sensitivity at the cost
of relatively low specificity and overestimated the TST while underestimating the WASO. For the sleep staging results,
based on the PABAK coefficient, the smart watch showed a moderate to substantial range of agreement, except for light
sleep. High levels of specificity and accuracy were observed for awake, deep, and REM sleep. Disagreements regarding
light sleep have also been found in a previous Fitbit validation study [19].

For participants with certain sleep disorders, smart watch performance was less satisfactory. When restricted to healthy
participants, the smart watch had the highest sensitivity, accuracy, PABAK coefficients, and MCC. Previous studies have
reported similar results in participants with sleep disorders or special occupations, such as police officers and paramedics
undergoing shift work [7,19-21]. This poor performance is largely due to the use of activity trackers for sleep/wake scor-
ing. In situation where participants lie motionless yet awake, the tracker may misclassify these non-movement periods
as “sleep” [22]. Such cases are more frequently observed in patients with disturbed sleep, such as those with OSA or
insomnia, and are impractical for clinical use. A recent trial also showed that consumer wearables were less accurate for
fragmented or disturbed sleep [23].

Based on these results, could the device be used in clinical settings? Currently, there are no criteria for portable devices to
judge the degree of agreement that is sufficient for clinical use. Some studies used the following criteria to judge satisfactory
agreement by differences of <30min and <5% between the devices and PSG for the TST and SE values, respectively [24,25].
Others have directly compared the agreement of devices with actigraphy and tested their substitutability. The smart watch
almost reached these criteria and could serve as a low-cost substitute for actigraphy for sleep/wake state detection in a healthy
population. However, the inconsistent performance of the participants with sleep disturbances requires further validation. Note
the chance-corrected agreements between expert sleep scorers for independently scoring a common set of PSG records using
a five-stage categorization of sleep were 0.70, 0.24, 0.57, 0.57, and 0.69 for the W, N1, N2, N3, and R stages, respectively [26].
The low inter-rater reliability of sleep staging in PSG also required the criteria of satisfied sleep staging agreement for evalu-
ating sleep-tracking devices. The smart watch also failed to record 18 participants due to the following reasons: most (n=10)
removed or loosened watch band during sleep monitoring because of uncomfortable experience. Another reason was the
shifted position due to major body movements (n=6). Only few unsuccessful recordings were caused by the device (low battery,
n=1; lost not stored at cloud, n=1). These reasons indicate improvements of hardware are needed.

This study had several limitations. The study was conducted at a single center with a limited number of participants.
Other sleep and mental disorders, including periodic limb movement disorders, narcolepsy, and depression, were not
evaluated. The real agreement of smart watches in the healthy controls in this study might be better. Actigraphy was not
used as a reference in this study, and a direct comparison between the smart watch and actigraphy was not achieved.
However, based on previous studies, the smart watch reached a similar agreement with research-grade actigraphy.
Finally, the exact algorithm used in the device is unknown. Iterative generations and products with updated algorithms
demand new validations, whereas validated products have become old-fashioned. This issue inhibits the clinical applica-
tion of wearable consumer devices.

Conclusions

In summary, the performance of smart watch in sleep/wake detection is comparable to that of research-grade sleep wear-
ables such as actigraphy. In situations where polysomnography is impractical, a smart watch is a reasonable method for
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estimating 2-stage sleep quality. However, both clinicians and consumers should be aware of sleep stage overestimations
and underestimations, and pay attention when interpreting sleep stage information or sleep quality of sleep-disturbed
patients. Further studies are required to develop more advanced algorithms for consecutive monitoring.

Acknowledgments

The authors would like to thank Hairong Zhang and Lijuan Fan for their help in collecting data.

Author contributions

Conceptualization: Rong Huang.

Funding acquisition: Rong Huang.

Investigation: Junwei Guo.

Methodology: Junwei Guo.

Supervision: Jinmei Luo, Yi Xiao.

Validation: Junwei Guo.

Writing — original draft: Junwei Guo.

Writing — review & editing: Jinmei Luo, Yi Xiao.

References

1.

10.

1.

12.

13.
14.

Rosen IM, Kirsch DB, Carden KA, Malhotra RK, Ramar K, Aurora RN, et al. Clinical Use of a Home Sleep Apnea Test: An Updated American Acad-
emy of Sleep Medicine Position Statement. J Clin Sleep Med. 2018;14(12):2075-7. https://doi.org/10.5664/jcsm.7540 PMID: 30518456

Lu L, Zhang J, Xie Y, Gao F, Xu S, Wu X, et al. Wearable Health Devices in Health Care: Narrative Systematic Review. JMIR Mhealth Uhealth.
2020;8(11):e18907. https://doi.org/10.2196/18907 PMID: 33164904

Chinoy ED, Cuellar JA, Huwa KE, Jameson JT, Watson CH, Bessman SC, et al. Performance of seven consumer sleep-tracking devices compared
with polysomnography. Sleep. 2021;44(5):zsaa291. https://doi.org/10.1093/sleep/zsaa291 PMID: 33378539

Miller DJ, Lastella M, Scanlan AT, Bellenger C, Halson SL, Roach GD, et al. A validation study of the WHOOP strap against polysomnography to
assess sleep. J Sports Sci. 2020;38(22):2631-6. https://doi.org/10.1080/02640414.2020.1797448 PMID: 32713257

de Zambotti M, Goldstone A, Claudatos S, Colrain IM, Baker FC. A validation study of Fitbit Charge 2™ compared with polysomnography in adults.
Chronobiol Int. 2018;35(4):465-76. https://doi.org/10.1080/07420528.2017.1413578 PMID: 29235907

Cook JD, Eftekari SC, Dallmann E, Sippy M, Plante DT. Ability of the Fitbit Alta HR to quantify and classify sleep in patients with suspected central
disorders of hypersomnolence: A comparison against polysomnography. J Sleep Res. 2019;28(4):e12789. https://doi.org/10.1111/jsr.12789 PMID:
30407680

Moreno-Pino F, Porras-Segovia A, Lépez-Esteban P, Artés A, Baca-Garcia E. Validation of Fitbit Charge 2 and Fitbit Alta HR Against Polysomnog-
raphy for Assessing Sleep in Adults With Obstructive Sleep Apnea. J Clin Sleep Med. 2019;15(11):1645-53. https://doi.org/10.5664/jcsm.8032
PMID: 31739855

Kang S-G, Kang JM, Ko K-P, Park S-C, Mariani S, Weng J. Validity of a commercial wearable sleep tracker in adult insomnia disorder patients and
good sleepers. J Psychosom Res. 2017;97:38-44. https://doi.org/10.1016/].jpsychores.2017.03.009 PMID: 28606497

Global Wrist-Worn Device Market Ships Almost 44 Million Units in 2Q 2024, Led by China’s 10.9% YoY Growth. In IDC media center [Internet].
2024 Sep 5. https://my.idc.com/getdoc.jsp?containerld=prCHE52577924

Guo Y, Wang H, Zhang H, Liu T, Liang Z, Xia Y, et al. Mobile Photoplethysmographic Technology to Detect Atrial Fibrillation. J Am Coll Cardiol.
2019;74(19):2365-75. https://doi.org/10.1016/j.jacc.2019.08.019 PMID: 31487545

Menghini L, Cellini N, Goldstone A, Baker FC, de Zambotti M. A standardized framework for testing the performance of sleep-tracking technology:
step-by-step guidelines and open-source code. Sleep. 2021;44(2):zsaa170. https://doi.org/10.1093/sleep/zsaa170 PMID: 32882005

Byrt T, Bishop J, Carlin JB. Bias, prevalence and kappa. J Clin Epidemiol. 1993;46(5):423-9. https://doi.org/10.1016/0895-4356(93)90018-v PMID:
8501467

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159—74. PMID: 843571
Buysse DJ. Sleep health: can we define it? Does it matter?. Sleep. 2014;37(1):9-17. https://doi.org/10.5665/sleep.3298 PMID: 24470692

PLOS One | https://doi.org/10.1371/journal.pone.0330774 September 30, 2025 12713



https://doi.org/10.5664/jcsm.7540
http://www.ncbi.nlm.nih.gov/pubmed/30518456
https://doi.org/10.2196/18907
http://www.ncbi.nlm.nih.gov/pubmed/33164904
https://doi.org/10.1093/sleep/zsaa291
http://www.ncbi.nlm.nih.gov/pubmed/33378539
https://doi.org/10.1080/02640414.2020.1797448
http://www.ncbi.nlm.nih.gov/pubmed/32713257
https://doi.org/10.1080/07420528.2017.1413578
http://www.ncbi.nlm.nih.gov/pubmed/29235907
https://doi.org/10.1111/jsr.12789
http://www.ncbi.nlm.nih.gov/pubmed/30407680
https://doi.org/10.5664/jcsm.8032
http://www.ncbi.nlm.nih.gov/pubmed/31739855
https://doi.org/10.1016/j.jpsychores.2017.03.009
http://www.ncbi.nlm.nih.gov/pubmed/28606497
https://my.idc.com/getdoc.jsp?containerId=prCHE52577924
https://doi.org/10.1016/j.jacc.2019.08.019
http://www.ncbi.nlm.nih.gov/pubmed/31487545
https://doi.org/10.1093/sleep/zsaa170
http://www.ncbi.nlm.nih.gov/pubmed/32882005
https://doi.org/10.1016/0895-4356(93)90018-v
http://www.ncbi.nlm.nih.gov/pubmed/8501467
http://www.ncbi.nlm.nih.gov/pubmed/843571
https://doi.org/10.5665/sleep.3298
http://www.ncbi.nlm.nih.gov/pubmed/24470692

PLO\Sﬁ\\.- One

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Asgari Mehrabadi M, Azimi |, Sarhaddi F, Axelin A, Niela-Vilén H, Myllyntausta S, et al. Sleep Tracking of a Commercially Available Smart Ring
and Smartwatch Against Medical-Grade Actigraphy in Everyday Settings: Instrument Validation Study. JMIR Mhealth Uhealth. 2020;8(10):e20465.
https://doi.org/10.2196/20465 PMID: 33038869

Kanady JC, Ruoff L, Straus LD, Varbel J, Metzler T, Richards A, et al. Validation of sleep measurement in a multisensor consumer grade wearable
device in healthy young adults. J Clin Sleep Med. 2020;16(6):917—-24. https://doi.org/10.5664/jcsm.8362 PMID: 32048595

Kawasaki Y, Kasai T, Sakurama Y, Sekiguchi A, Kitamura E, Midorikawa I, et al. Evaluation of Sleep Parameters and Sleep Staging (Slow Wave
Sleep) in Athletes by Fitbit Alta HR, a Consumer Sleep Tracking Device. Nat Sci Sleep. 2022;14:819-27. https://doi.org/10.2147/NSS.S351274
PMID: 35502231

Depner CM, Cheng PC, Devine JK, Khosla S, de Zambotti M, Robillard R, et al. Wearable technologies for developing sleep and circadian bio-
markers: a summary of workshop discussions. Sleep. 2020;43(2):zsz254. https://doi.org/10.1093/sleep/zsz254 PMID: 31641776

Kahawage P, Jumabhoy R, Hamill K, de Zambotti M, Drummond SPA. Validity, potential clinical utility, and comparison of consumer and research-
grade activity trackers in Insomnia Disorder I: In-lab validation against polysomnography. J Sleep Res. 2020;29(1):e12931. https://doi.org/10.1111/
jsr.12931 PMID: 31626361

Ogasawara M, Takeshima M, Kosaka S, Imanishi A, Itoh Y, Fujiwara D, et al. Exploratory Validation of Sleep-Tracking Devices in Patients with
Psychiatric Disorders. Nat Sci Sleep. 2023;15:301—12. https://doi.org/10.2147/NSS.S400944 PMID: 37123093

Stucky B, Clark |, Azza Y, Karlen W, Achermann P, Kleim B, et al. Validation of Fitbit Charge 2 Sleep and Heart Rate Estimates Against Polysomno-
graphic Measures in Shift Workers: Naturalistic Study. J Med Internet Res. 2021;23(10):e26476. https://doi.org/10.2196/26476 PMID: 34609317

Scott H, Lack L, Lovato N. A systematic review of the accuracy of sleep wearable devices for estimating sleep onset. Sleep Med Rev.
2020;49:101227. https://doi.org/10.1016/j.smrv.2019.101227 PMID: 31901524

Willoughby AR, Golkashani HA, Ghorbani S, Wong KF, Chee NIYN, Ong JL, et al. Performance of wearable sleep trackers during nocturnal sleep
and periods of simulated real-world smartphone use. Sleep Health. 2024;10(3):356—68. https://doi.org/10.1016/j.sleh.2024.02.007 PMID: 38570223

de Zambotti M, Baker FC, Willoughby AR, Godino JG, Wing D, Patrick K, et al. Measures of sleep and cardiac functioning during sleep using a
multi-sensory commercially-available wristband in adolescents. Physiol Behav. 2016;158:143-9. https://doi.org/10.1016/j.physbeh.2016.03.006
PMID: 26969518

de Zambotti M, Baker FC, Colrain IM. Validation of Sleep-Tracking Technology Compared with Polysomnography in Adolescents. Sleep.
2015;38(9):1461-8. https://doi.org/10.5665/sleep.4990 PMID: 26158896

Lee YJ, Lee JY, Cho JH, Choi JH. Interrater reliability of sleep stage scoring: a meta-analysis. J Clin Sleep Med. 2022;18(1):193—-202. https://doi.
org/10.5664/jcsm.9538 PMID: 34310277

PLOS One | https://doi.org/10.1371/journal.pone.0330774  September 30, 2025 13713



https://doi.org/10.2196/20465
http://www.ncbi.nlm.nih.gov/pubmed/33038869
https://doi.org/10.5664/jcsm.8362
http://www.ncbi.nlm.nih.gov/pubmed/32048595
https://doi.org/10.2147/NSS.S351274
http://www.ncbi.nlm.nih.gov/pubmed/35502231
https://doi.org/10.1093/sleep/zsz254
http://www.ncbi.nlm.nih.gov/pubmed/31641776
https://doi.org/10.1111/jsr.12931
https://doi.org/10.1111/jsr.12931
http://www.ncbi.nlm.nih.gov/pubmed/31626361
https://doi.org/10.2147/NSS.S400944
http://www.ncbi.nlm.nih.gov/pubmed/37123093
https://doi.org/10.2196/26476
http://www.ncbi.nlm.nih.gov/pubmed/34609317
https://doi.org/10.1016/j.smrv.2019.101227
http://www.ncbi.nlm.nih.gov/pubmed/31901524
https://doi.org/10.1016/j.sleh.2024.02.007
http://www.ncbi.nlm.nih.gov/pubmed/38570223
https://doi.org/10.1016/j.physbeh.2016.03.006
http://www.ncbi.nlm.nih.gov/pubmed/26969518
https://doi.org/10.5665/sleep.4990
http://www.ncbi.nlm.nih.gov/pubmed/26158896
https://doi.org/10.5664/jcsm.9538
https://doi.org/10.5664/jcsm.9538
http://www.ncbi.nlm.nih.gov/pubmed/34310277

