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Abstract

Remote sensing object detection (RSOD) is highly challenging due to large variations in
object scales. Existing deep learning-based methods still face limitations in addressing
this challenge. Specifically, reliance on stride convolutions during downsampling leads

to the loss of object information, and insufficient context-aware modeling capability ham-
pers full utilization of object information at different scales. To address these issues, this
paper proposes a Haar wavelet-based Attention Network (HWANet). The model includes
a Low-frequency Enhanced Downsampling Module (LEM), a Haar Frequency Domain
Self-attention Module (HFDSA), and a Spatial Information Interaction Module (SIIM).
Specifically, LEM employs the Haar wavelet transform to downsample feature maps and
enhances low-frequency components, mitigating the loss of object information at different
scales. The HFDSA module integrates Haar wavelet transform and explicit spatial priors,
reducing computational complexity while enhancing the capture of image spatial struc-
tures. Meanwhile, the SIIM module facilitates interactions among information at different
levels, enabling multi-level feature integration. Together, SIIM and HFDSA strengthen
the model’s context-aware modeling capability, allowing full utilization of multi-scale infor-
mation. Experimental results show that HWANet achieves 93.1% mAP50 on the NWPU
VHR-10 dataset and 99.1% mAP50 on the SAR-Airport-1.0 dataset, with only 2.75M
parameters, outperforming existing methods.

Introduction

Remote Sensing Object Detection (RSOD) is the process of using object detection methods
to identify and locate various ground objects, such as buildings, roads, vegetation, and water
bodies, in remote sensing imagery [1-4]. Due to its significant applications in land use plan-
ning, forest resource surveys, and agricultural monitoring, RSOD has become a key research
topic in the field of remote sensing [5-7].

However, factors such as imaging angles, terrain fluctuations, and object distances in
remote sensing images cause significant scale variations in target objects, which in turn
increase the complexity of object detection algorithms [8-10]. Traditional object detection
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methods [11,12] rely on handcrafted features, such as edges, textures, and colors, for object
recognition. These methods, however, perform poorly when handling objects of different
scales. In recent years, deep learning methods, particularly Convolutional Neural Networks
(CNN), have made considerable progress in RSOD. By automatically learning high-level fea-
tures from images, deep learning models demonstrate greater adaptability and robustness
when encountering large variations in object scales [13,14].

Many researchers have applied deep learning methods to tackle the challenge of object
scale variations in RSOD. Liang et al. [15] proposed the Spatial-Channel Dual-Frequency
Mixer (SCDFMixer) for RSOD, addressing large variations in object scales through a scale-
adaptive perception aggregator (SPA). Lin et al. [16] introduced the Scale Selection Net-
work(SSN), which optimizes object detection performance by selecting multi-scale features
to handle the object scale variations in RSOD. The methods mentioned above are based on
CNN. However, due to the locality inherent in convolution operations, CNN faces limitations
when dealing with objects that exhibit significant scale variations, as they struggle to capture
global information effectively. This constraint weakens the model’s context-aware modeling
capability. Consequently, researchers have introduced the self-attention mechanism to over-
come the limitations of CNN in modeling global dependencies and to improve scale varia-
tion handling. Gao et al. [17] proposed a few-shot object detection model for remote sensing
images that uses Feature Aggregation and the self-attention mechanism to handle scale vari-
ations in objects. Zhou et al. [18] proposed a correlation learning detector based on trans-
former (CLT-Det), which uses the self-attention mechanism to capture spatial correlations
and positional information, addressing the challenge of large variations in object scales.

Although these methods leverage self-attention to effectively capture global information,
the separate extraction of global and local features by self-attention and CNN may lead to
insufficient feature fusion, thereby affecting the recognition of small targets or detailed fea-
tures.

To overcome the limitations of CNN and self-attention in handling significant variations
in object scale in RSOD, researchers have proposed a method that combines both approaches.
Lietal. [19] proposed a Pyramid Convolutional Vision Transformer(PCViT), which cap-
tures information about objects at different scales through a pyramid structure and enhances
feature extraction capability by introducing a Parallel Convolution Module (PCM). Xue et
al. [20] proposed a Dual network structure with InterweAved Global-local feature hierar-
chy based on the TRansformer architecture (DIAG-TR), which enhances object detection in
remote sensing images by combining CNN and self-attention, and capturing object informa-
tion at different scales through the global-local feature hierarchy. Zhan et al. [21] proposed a
novel transformer-based multigranularity visual language fusion (MGVLF) module, address-
ing the scale variation of objects in RSOD by introducing a combined CNN and Transformer
approach, which enhances object localization performance through multi-scale visual features
and multi-granularity textual embeddings.

Although the aforementioned methods have made some progress in addressing object
scale variations in RSOD, they generally rely on strided convolutions for downsampling,
which leads to the loss of information for objects at different scales. While methods com-
bining CNN and self-attention partially alleviate the shortcomings of both, existing stud-
ies still overlook the crucial role of explicit spatial priors in self-attention for global infor-
mation extraction. This results in an insufficient understanding of the spatial structure of
the image, making it difficult for the model to accurately capture the spatial relationships
between objects of different scales, thereby limiting its context-aware modeling capability.
Furthermore, these methods lack effective mechanisms for multi-level feature interaction,
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failing to fully explore the relationships between local and global information, leading to con-
flicts among feature information and further restricting the effectiveness of context-aware
modeling.

To solve the aforementioned issues, this paper presents a Haar wavelet-based Downsam-
pling and Attention Network (HWANet). First, we design a Low-frequency Enhanced Down-
sampling Module (LEM) to replace traditional strided convolutions. This module employs
the Haar wavelet transform [22] to downsample feature maps and enhance low-frequency
information, thereby achieving effective downsampling and preventing information loss. Sub-
sequently, to improve the model’s context-aware modeling capability and enable it to fully
utilize information from objects at different scales and their related features, we design two
modules: Haar Frequency Domain Self-attention(HFDSA) and Spatial Information Interac-
tion Module(SIIM). Specifically, HFDSA incorporates explicit spatial priors when extract-
ing global information, thereby improving the model’s understanding of spatial structures
within the image. Meanwhile, SIIM effectively integrates multi-level feature information by
strengthening interactions between features of different levels during fusion.

This paper makes the following contributions:

« The Haar wavelet-based Downsampling and Attention Network (HWANet) is proposed to
improve the performance of RSOD under large variations in object scales. Compared to
other models, HWANet demonstrates superior performance.

o The Low-frequency Enhanced Downsampling Module (LEM) is designed, which utilizes
the Haar wavelet transform to downsample feature maps and enhance the decomposed
low-frequency components. This effectively prevents the loss of information for objects at
different scales during the downsampling process.

« The Haar Frequency Domain Self-attention Module (HFDSA) is designed. By incorporat-
ing explicit spatial priors, this Module enhances the model’s understanding of spatial rela-
tionships between objects at different scales in the image, thereby improving the model’s
context-aware modeling capability. Meanwhile, integrating the Haar wavelet transform
significantly reduces the computational complexity of the self-attention.

« The Spatial Information Interaction Module (SIIM) is proposed. By reinforcing the interac-
tion among information at different levels, it effectively integrates multi-level features, and
reduces conflicts between features, thereby enhancing the model’s context-aware modeling
capability.

Related works

Remote sensing object detection model

Currently, deep learning-based RSOD models are mainly divided into two categories: two-
stage detection models and one-stage detection models.

The research on two-stage object detection models has been widely explored in remote
sensing scenarios. For example, Shi et al. [23] proposed a dual-head global reasoning net-
work (DGRN) that combines classification and localization by propagating visual and spatial
embeddings between positive and negative candidate regions, and performing relational rea-
soning with a graph convolutional network. Liu et al. [24] proposed ORFENet, which inte-
grates object reconstruction and a multi-receptive field adaptive feature enhancement module
(MRFAFEM) to reduce object information loss during training and dynamically enhance the
micro-object detection capability through multi-receptive field features. Although two-stage
detection methods have certain advantages in accuracy and localization, their overall process
is relatively complex, computationally intensive, and slower in detection speed. They require
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generating candidate regions first, followed by feature extraction, region classification, and
bounding box regression.

One-stage detection models directly perform class prediction and bounding box regression
on the image, eliminating the need for candidate region generation, thus achieving an end-to-
end training process and faster detection speed. Based on the one-stage YOLO model, Yi et al.
[25] proposed LAR-YOLOVS, an improved RSOD model based on YOLOv8. This model uses
a dual-branch attention mechanism to enhance feature extraction and combines attention-
guided bidirectional feature pyramid networks and a robust RIOU loss function to improve
the model’s detection accuracy. Zhang et al. [26] proposed FFCA-YOLO, a model for small
object detection, which enhances feature extraction capability through feature enhancement
methods and reduces background interference in remote sensing images. Wang et al. [27] pro-
posed a unified framework called Feature Fusion Single-Stage Detection (FMSSD), which
strengthens contextual information by performing feature fusion at multiple scales and within
the same-scale layers, thus balancing detection speed and accuracy.

RSOD typically requires strong real-time performance and low computational demands.
Therefore, although two-stage detection models have certain advantages in accuracy, their
complex multi-stage process and large computational load often make it difficult to meet the
requirements of real-time applications. Based on this, this paper uses the one-stage object
detection model YOLOVS as the baseline model for this study.

Remote sensing scale variation detection model

Target objects in remote sensing images often exhibit significant scale variations. The poten-
tial interference between objects of different scales makes it challenging for models to accu-
rately detect both small and large targets simultaneously.

Existing methods typically address this by extracting and integrating features from mul-
tiple levels, enabling models to effectively adapt to variations in target scales. Wang et al.

[28] proposed Feature-Reflowing Pyramid Network(FRPNet), a feature-reflowing pyra-

mid network that addresses large variations in object scales using a non-local block and
pyramid structure. Huang et al. [29] proposed a Cross-Scale Feature Fusion Pyramid Net-
work(CF2PN), which employs a Cross-Scale Fusion Module (CSFM) to enhance seman-

tics and a Thinning U-shaped Module (TUM) to extract multi-level features, addressing the
challenge of object scale variations in RSOD. These methods primarily extract and integrate
multi-level features through CNN to improve model accuracy. However, CNN still faces
challenges in extracting global information, which has led some studies to incorporate self-
attention to overcome these limitations. Li et al. [30] proposed the Scale-Robust Comple-
mentary Learning Network (SCLNet), a network that enhances robustness against scale vari-
ations in RSOD through self-attention and interscale contrastive complementary learning.
However, separating the self-attention from CNN for feature extraction often leads to insuf-
ficient feature fusion. To address this, researchers have further explored the integration of
CNN and self-attention. Zhan et al. [21] combined CNN with Transformers, enhancing tar-
get localization performance through multi-scale visual features and multi-granularity textual
embeddings.

Although existing methods have made some progress in addressing scale variations in
RSOD by extracting and integrating multi-level features, they typically use CNN-based
strided convolutions for downsampling, leading to the loss of object information. Moreover,
these methods overlook the importance of explicit spatial priors in the self-attention mecha-
nism and lack effective mechanisms to integrate features extracted by CNN and self-attention,
which limits the model’s context-aware modeling capability. Recent wavelet-based studies

PLOS One | https://doi.org/10.1371/journal.pone.0330759 September 4, 2025 4/ 22



https://doi.org/10.1371/journal.pone.0330759

PLOS One Haar Wavelet Attention Network for remote sensing object detection

provide new insights. The Wavelet-based Bi-dimensional Aggregation Network WBANet

[31] employs Haar wavelet decomposition to achieve lossless downsampling preserving high-
frequency textures while expanding receptive fields. The Dual Encoder Crack Segmentation
Network DECS-Net [32] utilizes Haar wavelet-based high-low frequency attention to enhance
edge awareness in structural damage detection. Despite these advances current methods still
lack mechanisms to prevent information loss during downsampling incorporate explicit spa-
tial priors in self-attention and fully unify CNN-local and Transformer-global features [33].
Complementing these efforts, evolutionary multi-objective optimization (EMO) studies reveal
that explicit spatial priors critically stabilize model convergence under complex variations
[34-37]. Williams et al. [34,37] independently demonstrated, through bi-objective optimiza-
tion, how sparse adversarial attacks and verification of spatial constraints mediate the trans-
formation of feasible regions—insights that align closely with our emphasis on spatially aware
modeling. To address these issues, this paper designs three modules: LEM, HFDSA, and SIIM.

Proposed method

This paper adopts YOLOVS as the baseline model. Compared to the latest algorithms,
YOLOV8 demonstrates stronger generalization capabilities on small-scale datasets and
achieves higher accuracy on most datasets.

Overview

In summary, existing approaches suffer from two primary issues. First, strided convolutions
lead to information loss during downsampling. Second, inadequate context-aware model-
ing impedes these methods from fully harnessing object information and associated features.
These deficiencies collectively diminish detection performance in scenarios with substantial
scale variations. Based on these considerations, this paper designs HWANet, with the overall
architecture shown in Fig 1.

This paper proposes LEM to replace strided convolutions optimizing the model’s infor-
mation retention during the downsampling process. To enhance the model’s context-aware
modeling capability, this paper first proposes a low computational complexity HFDSA,
which extracts global information by incorporating explicit spatial priors, thereby improv-
ing the model’s understanding of spatial structures in the image. Then, the proposed SIIM
and HFDSA are integrated into C2SIIM to strengthen the interaction between features at dif-
ferent levels, promoting the deep fusion of global and local feature information. HFDSA and
SIIM improve the model’s capability to leverage information from objects at various scales
and their associated features, thereby enhancing the model’s ability to capture context-aware
representations.

Low-Frequency Enhanced Downsampling Module (LEM)

Most models rely on strided convolutions for downsampling. Strided convolutions reduce the
dimensions of feature maps by skipping certain pixels, which can result in the loss of infor-
mation. When dealing with large variations in object scales in RSOD, the use of strided con-
volutions can cause small objects to become blurred, and edge details of large objects may be
lost.

To resolve this problem, this paper proposes LEM, whose specific structure is depicted in
Fig 2. LEM mainly consists of the Haar wavelet transform and Feature Shift(whose structure
is shown in Fig 3). These low-frequency components in the Haar wavelet transform reflect the
overall shape and key features of the objects, while the high-frequency components typically
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Fig 1. The overall framework of HWANet. The LEM replaces certain strided convolution modules in the backbone and neck networks to
mitigate information loss during downsampling. Subsequently, the SIIM is utilized to construct C2SIIM, thereby enhancing the model’s
context-aware modeling capability.

https://doi.org/10.1371/journal.pone.0330759.9001

contain noise. From this perspective, LEM first reduces the size of the feature map by applying
the Haar wavelet transform to decompose the input feature map. Next, Feature Shift is applied
to enhance the low-frequency components. Next, the high-frequency components are elimi-
nated to minimize noise interference. Finally, the remaining frequency-domain feature com-
ponents are concatenated along the channel dimension,andal X 1 convolution is applied to
reduce the number of feature channels, achieving downsampling and preventing information
loss.

Given Input € REXHXW the mathematical formulations of the LEM can be articulated as
follows:

LL,LH, HL, HH = fyy (Input) (1)
ELL = fis(LL) + LL )
Output = Conviy; (Concat(HL, LH, ELL)) 3)

where LL, LH, HL, HH € R®2%% denote the approximation (low-frequency) component,
vertical component, horizontal component, and diagonal component information obtained
from the Haar wavelet transform, respectively. fyw and frs denote the Haar wavelet transform

PLOS One | https://doi.org/10.1371/journal.pone.0330759 September 4, 2025 6/ 22



https://doi.org/10.1371/journal.pone.0330759.g001
https://doi.org/10.1371/journal.pone.0330759

PLOS One Haar Wavelet Attention Network for remote sensing object detection

Feature Shift K=1,S=1 |:

Haar Wavelet @ Matrix Addition l:

C1xHxW

Fig 2. Structure of the LEM. LEM first performs a Haar wavelet transform on the input feature, discards the HH component, and simul-
taneously applies Feature Shift to the LL component to enhance feature representation, resulting in ELL. Finally, ELL, LH, and HL are
concatenated along the channel dimension, and a 1 X 1 convolution is applied to perform channel transformation, producing the final
output.

https://doi.org/10.1371/journal.pone.0330759.9g002

and the Feature Shift operation (whose structure is shown in Fig 3), respectively. ELL rep-
resents the enhanced low-frequency components. In the LEM, this paper enhances the low-
frequency components through the Feature Shift operation. Since remote sensing images typ-
ically contain a large amount of surface information, shifting features in different directions
can capture diverse spatial features, providing a more comprehensive understanding of ter-
rain, vegetation, buildings, and other land features, while also enhancing the model’s ability
to capture fine spatial details. Finally, discarding the HH part can reduce noise interference,
improve the purity of the feature, and highlight the key low-frequency component.
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Fig 3. Structure of Feature Shift (FS). The Feature Shift mechanism divides the feature map into eight parts along
the channel dimension and shifts each part by one position in a different direction. The missing areas are padded with
zeros, and finally, all the shifted features are concatenated back together along the channel dimension.

https://doi.org/10.1371/journal.pone.0330759.g003
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Haar Frequency Domain Self-Attention (HFDSA)

Current approaches that utilize the self-attention mechanism often fail to account for the sig-
nificance of explicit spatial priors when addressing scale variations in RSOD. While the self-
attention mechanism is effective in capturing global information, the lack of explicit spatial
priors makes it challenging for the model to accurately capture spatial relationships between
objects of varying scales in remote sensing images, thus limiting its contextual modeling abil-
ity. Additionally, these methods have not effectively addressed the high computational com-
plexity of the self-attention mechanism, which impacts the model’s efficiency and real-time
performance.

Building on the previous points, this paper proposes a self-attention mechanism called
the Haar Frequency Domain Self-attention (HFDSA), whose structure is shown in Fig 4. The
HFDSA first applies the Haar wavelet transform to the input features to extract low-frequency
components. These low-frequency components not only retain the main feature informa-
tion of the image but also have a reduced size, significantly lowering the computational
complexity.

Then, HFDSA employs the self-attention mechanism to process the low-frequency com-
ponents, thereby extracting global information. During this process, a distance decay matrix
is introduced to provide explicit spatial priors, thereby improving the model’s understanding
of spatial structures within the image. Finally, the processed feature map is upsampled back
to the original input size. The mathematical formulations of the HFDSA can be articulated as

follows:

LL,LH, HL, HH = fi(Input) (4)

Q=LLXWqo, K=LLXWg, V=LLXWy (5)

HFDSA = (Softmax(QK") ® D) V (6)
,"""""""[_:-__:-__:-_-:-_- ------------------------------------------------------------ ™
: ' I HW |Haar Wavelet ® Element-wise Multiplication @ matrix multiplication |

I p
i | HH | :
1 |
: | | |
: : | D |
|

[} ;; | I
[ | 1
| | | g :
! 1
1 I LH
: = il ;
[}
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Fig 4. Structure of HFDSA. HFDSA first performs a Haar wavelet transform on the input features, then exclusively applies the self-attention to the LL component, and
finally upsamples the processed features back to their original input size. During this process, a distance decay matrix is introduced to provide explicit spatial priors for
the model. By processing only the low-frequency components, HFDSA effectively reduces noise interference and enhances the model’s stability.

https://doi.org/10.1371/journal.pone.0330759.9g004
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where LL, LH, HL, HH represent the approximation (low-frequency) component, vertical
component, horizontal component, and diagonal component information obtained from the
Haar wavelet transform, respectively. firw represents the Haar wavelet transform; D represents
the distance decay matrix.

The HFDSA introduces a distance decay matrix D, which adjusts the attention weights
based on the spatial distances between patches. Specifically, this matrix incorporates explicit
spatial priors into the feature map, causing the attention weights between patches to decrease
as their spatial distance increases. Explicit spatial priors effectively enhance the model’s
understanding of spatial structures, thereby improving its ability to capture spatial relation-
ships between objects, and in turn, enhancing its context-aware modeling capability.

The mathematical formulations of D can be articulated as follows:

A=In(1-270%9) (7)
R I

D, = : : (8)
et = x| e fn = x
b=yl -yl

D,=| : ©)
Wr=yul - lyn =yl

D' =2 X (Dx+Dy) (10)
Dll D12 Dln ,
Dy Db, - D D;j

o e (11)
: : . : ZZ—le kj
Dnl Dn2 Dnn

In remote sensing images, each patch has a unique coordinate representation (x, y) where
D is the distance decay matrix generated on the basis of the coordinates of each patch. The
decay factor 4 is derived from the manually set initial value j, the number of input channels ¢
in the HFDSA.

By integrating these improvements, HFDSA not only retains the advantages of the self-
attention mechanism in extracting global information but also overcomes the computational
bottlenecks and spatial relationship modeling deficiencies when handling large variations in
object scales.

To alleviate the computational burden of self-attention, this paper applies the Haar wavelet
transform to compress the input feature map, thereby reducing the overall computational
complexity. Specifically, for an input sequence of length N, the self-attention mechanism typ-
ically has a computational complexity of O(N?). Let the Input be Input € R“*M*W
applying the Haar wavelet transform, LL € REXZ%7 is obtained, where the computational
complexity for both Input and LL is given by the following expressions:

, and upon

ni=0((HX W)?) (12)
nzzo((fx?}) ):1160((H>< w)?) (13)

where n; and #, represent the computational complexity of the self-attention mechanism
applied to the Input and LL, respectively. The results show that #, is much smaller than n;.
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Spatial Information Interaction Module (SIIM)

In RSOD, because target objects often exhibit large variations in scale, it is particularly impor-
tant to effectively interact and integrate information across different levels. Global informa-
tion is used to capture overall features, while local information focuses on details. However,
current models often overlook the connections and interactions between different levels. This
lack of effective interaction can lead to feature conflicts or information loss, thereby weaken-
ing the context-aware modeling capability and preventing the models from fully utilizing the
information from objects at different scales and their related features. To tackle these prob-
lems, this paper presents the spatial information interaction module (SIIM), the structure of
which is shown in Fig 5.

SIIM first performs a convolution operation to expand the channels of the input feature
map, laying the foundation for subsequent processing, and then divides the feature map into
Ei, E, E5, and E4. In the SIIM, HFDSA extracts global information from Ej, resulting in the
feature map Es. The computational complexity is significantly reduced by applying the self-
attention mechanism to only a subset of channels. The global features captured by the self-
attention mechanism, Es, are then multiplied element-wise with the feature map E,, which
contains local details, effectively fusing the global and local information to form a more com-
prehensive representation with context awareness and detail resolution. After this multipli-
cation, a lightweight GB (whose structure is shown in Fig 6) is used for information extrac-
tion. Then, the features processed by the GB are concatenated with Es, resulting in I5. The
mathematical formulations can be articulated as follows:

1
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Fig 5. Structure of SIIM. SIIM first expands the input features along the channel dimension. Then, it processes E1 and E2 to obtain global
information I4. Next, it extracts local edge information from E3 and E4 to obtain 16, with the guidance of I4 during this process. Finally, 14
and I6 are concatenated along the channel dimension, and the channels are compressed back to their original dimensionality.

https://doi.org/10.1371/journal.pone.0330759.9g005
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Fig 6. Structure of the GB. GSConv first applies a standard convolution to the input feature with C1 channels, reduc-
ing the channel number to C2/2, followed by a depthwise convolution (DWConv). Then, the output of DWConv is
fused with the feature before processing, restoring the channel number to C2.

https://doi.org/10.1371/journal.pone.0330759.g006

Es = HFDSA(E,) (14)
I; = Concat(GB(E, ©® E5), Es) (15)

In SIIM, ES is applied to I;. Combining Feature Shift with 1 X 1 convolution, it effectively
enhances the capture and fusion of the local features, making the model’s extraction of local
information richer and more precise. Finally, the FS-processed feature maps are added to I,
resulting in the feature I;. The mathematical formulations can be articulated as follows:

I, = Concat(E, E;) (16)
I4=COHV1X1(fF3(Il)) +I3 (17)

FS is applied to E; and E4 to extract local texture information, resulting in the feature map
Is. The mathematical formulations can be articulated as follows:

I, = Concat(Es, E;) (18)
15 = 12 + I4 (19)
Is = I, + Convyxg (fps(IS)) (20)
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In extracting local texture features I, this paper uses I, for guidance, providing contex-
tual support for the edge features, and preventing the edge and texture features from acting
independently without a global semantic background.

SIIM performs channel concatenation and convolution on I and I, resulting in the out-
put feature map. SIIM effectively integrates multi-level information by interacting with infor-
mation at different levels and exploring the relationships between them. This significantly
improves the model’s context-aware modeling capability, allowing it to fully leverage the tar-
get objects and their associated information, thereby better handling large variations in object
scales.

Experimental evaluation and analysis

In this paper, YOLOVS8n is chosen as the baseline model, and the performance of HWANet
is assessed using the NWPU-VHR-10 and SAR-Airport-1.0 datasets, with an 80-20 split for
training and testing. All experiments are carried out on an RTX 4060 GPU, utilizing the
PyTorch framework. During the training, the input images are resized to 640x640 pixels. The
model is trained for 300 epochs with a batch size of 4, using the SGD optimizer. The learn-
ing rate starts at 0.01, the weight decay coeflicient is 0.005, and the momentum is initialized
at 0.937.

Datasets

This paper trains and tests HWANet on two public datasets. The following is a detailed intro-
duction to these datasets:

o The NWPU VHR-10 [38-40] dataset is an open-access remote sensing dataset created for
the purpose of spatial object detection. It consists of 800 ultrahigh-resolution images with
object scales ranging from 0.1 to 30 meters, making it suitable for multi-scale detection.
The backgrounds cover urban, rural, and industrial areas with complex scenes and vary-
ing lighting conditions, offering both challenges and practical value for training and eval-
uating object detection algorithms. Among these images, 650 are meticulously annotated,
and the dataset includes diverse object categories such as airplanes (A), ships (S), storage
tanks (ST), baseball fields (BF), tennis courts (TC), basketball courts (BC), ground track
field (GTR), harbors (H), bridges (B), and vehicles (V). The dataset can be obtained at https:
//gcheng-nwpu.github.io/.

o The SAR-Airport-1.0 [41] dataset is a specialized, high-quality dataset created for object
detection tasks in synthetic aperture radar (SAR) imagery. It contains SAR images from
multiple airports, covering various environments and conditions, and provides rich object
information such as airplanes, aprons, and runways. Each image’s objects are meticulously
annotated, including bounding boxes and class information. The dataset can be obtained at
https://doi.org/10.57760/sciencedb.15367.

Accuracy metrics

In remote sensing object detection tasks, mAP50 and mAP50-95 are key metrics for evalu-
ating model performance. mAP50 calculates the mean average precision at an intersection
over a union (IoU) threshold of 0.5, which is suitable for scenarios with lower overlap require-
ments, such as detecting buildings in urban environments. In contrast, mAP50-95 encom-
passes multiple IoU thresholds ranging from 0.5 to 0.95, providing the average precision of
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the model under various overlap conditions. This multilevel evaluation offers a more compre-
hensive assessment of the model’s detection capability in complex backgrounds. By combin-
ing these two metrics, researchers can better understand the model’s performance and relia-
bility in practical applications. The mathematical formulations of the mAP can be articulated

as follows:
P= i (21)
TP + FP
TP
R~ (22)
TP + FN
n-1
AP=>"[R(i) - R(i +1)] - P(i) (23)
i=0
1 n
AP=— AP 24
mAP=—3 (24)

i=1

In the formula provided, TP stands for the count of true positive samples that the model
predicts correctly. FN indicates the actual positives that are mistakenly predicted as negatives
(false negatives), while FP refers to the negative samples that the model inaccurately classi-
fies as positives. P represents the model’s precision, R indicates recall, and n denotes the total
number of classes involved.

Comparisons with previous methods

This paper compares multiple models on the NWPU-VHR-10 dataset in terms of parame-
ter count, GFLOPs, and object detection performance (mAP50 and mAP50-95). As shown in
Table 1, the HWANet model has only 2.75M parameters—the fewest among all the compared
models—and with the lowest computational complexity at just 7.90 GFLOPs. First, HWANet
employs a downsampling module called the LEM, which retains important image features.
Second, HWANet integrates SIIM and HFDSA, significantly enhancing the model’s context-
aware modeling capability, which in turn improves its accuracy in detecting objects of various
sizes. In terms of the mAP50-95 metric, HWANet achieves an accuracy of 61.0%, surpass-
ing models with higher computational demands, such as Faster R-CNN. Although Faster R-
CNN has a larger parameter count, its performance is limited by structural complexity and
incompatibility with high-resolution remote sensing imagery. In contrast, WTHA-ViT [42]
employs a wavelet tree structure to decompose features into frequency subbands, enabling
adaptive frequency selection for each patch and facilitating cross-frequency interactions. By
leveraging wavelet-based downsampling, it reduces computational load; however, its per-
formance trails HWANet due to less efficient global context integration and higher param-
eter redundancy. Similarly, DetailCaptureYOLO [43] utilizes discrete wavelet transforms
(DWT) for detail-preserving downsampling and a Dynamic Fusion PAN to aggregate multi-
scale features, achieving superior mAP50-95 that reflects exceptional small-object detection
capabilities—though at a 3.5x higher computational cost than HWANet. Collectively, this
highlights that while TPH-YOLO’s advantage in mAP50-95 is built upon its higher parame-
ter count and GFLOPs, HWANet establishes a unique balance of efficiency and accuracy for
resource-constrained applications.

Fig 7 shows a comparison of the detection results of the YOLOv10s, FFCA-YOLO, and
HWANet models on several images. The figure illustrates significant differences in the per-
formance of the three models across different scenarios. In (a) and (b) of Fig 7, YOLOv10s
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Table 1. Comparison Experiments for HWANet in NWPU VHR-10 Dataset.

Method Para(M) GFLOPs mAP50 mAP50-95
Faster R-CNN [44] 41.17 127.7 77.8 -
RetianNet [45] 36.29 12327 89.4 -
ShuftleNet [46] 12.1 82.17 83.0 -
ARSD [47] 11.57 26.65 90.92 -
Swin-Transformer [48] 29.98 79.1 86.8 52.5
YOLOV6S [49] 16.29 44.0 91.8 59.6
YOLOv8S 11.12 28.5 92.3 59.8
YOLO-World [50] 3.53 10.4 92.6 59.7
YOLOV10S [51] 8.04 24.5 90.4 57.9
TPH-YOLO [52] 41.53 160.1 92.9 57.6
FFCA-YOLO [26] 7.14 51.4 92.8 57.8
WTHA-VIT [42] 35.07 228.46 89.13 56.52
DetailCaptureYOLO [43] 28.7 109.3 84.14 54.61
HWANet (Ours) 2.75 7.9 93.1 61.0

https://doi.org/10.1371/journal.pone.0330759.t001

results in false-positives and missed detections, whereas HWANet performs more accu-
rately in bounding large objects such as baseball fields and ground track fields. In (d) of Fig 7,
HWANet accurately detects objects even in complex backgrounds, demonstrating the advan-
tages of its feature fusion strategy in RSOD. In general, HWANet demonstrates superior per-
formance compared to the other models in terms of detection accuracy and bounding box
precision.

Table 2 presents a comparative analysis of multiple object detection models on the SAR-
Airport-1.0 dataset, with Fig 8 illustrating some detection results from HWANet. The
HWANet model, with only 2.75M parameters, has the smallest parameter count among all the
models. Despite the lightweight design, HWANet achieves a mAP50 score of 99.1%, perform-
ing on par with larger models like TPH-YOLO (41.51M parameters). Expanding this com-
parison, WTHA-ViT leverages its wavelet tree structure to adaptively select frequency com-
ponents for SAR imagery, achieving 96.6% mAP50 at 228.46 GFLOPs. Meanwhile, Detail-
CaptureYOLO’s discrete wavelet transform (DWT) downsampling and Dynamic Fusion PAN
deliver the highest mAP50 (97.7%) among all models, demonstrating exceptional airport
infrastructure detection capability. For comprehensive accuracy (mAP50-95), TPH-YOLO
leads at 80.1% versus HWANet’s 77.3%, while WTHA-ViT and DetailCaptureYOLO attain
75.0% and 74.2% respectively. TPH-YOLO’s advantage stems primarily from its Transformer
prediction head (TPH) handling complex scenarios. Notably, both wavelet-based models
show tradeoffs: WTHA-ViT’s frequency-adaptive approach improves airport structure recog-
nition but incurs higher computation, while DetailCaptureYOLO’s detail-preserving design
excels in mAP50 yet trails in holistic mAP50-95 due to SAR-specific texture challenges.

Ablation study of HWANet

To assess the performance of the proposed method, ablation studies were performed using the
NWPU-VHR-10 dataset. The findings of these experiments are shown in Tables 3 to 7.

Table 3 presents a comparison of the baseline model with several variants incorporating
the LEM and SIIM modules on this dataset. The experimental results show that the inclusion
of LEM and SIIM modules reduces both the number of parameters and the computational
complexity of the model. Notably, the parameter count reaches its lowest value at 2.67M when
only the LEM is introduced. The mAP50 of the baseline model is 91.6%, which increases to
92.4% with the introduction of the LEM, and further improves to 92.7% after adding SIIM.
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R

Fig 7. Detection results of each model. The partial detection results of YOLOv10S, FFCA-YOLO, and HWANet on the NWPU VHR-10 dataset are as follows: in (a) and
(e), YOLOV10S incorrectly identified the background as a vehicle and an airplane, respectively; in (b), Yolov10S failed to accurately detect the ground track field; in (c),

FFCA-YOLO mistakenly identified the background as a ship; and in (d), only HWANet correctly detected all the objects. Reprinted from [38-40] under a CC BY license,
with permission from Gong Cheng, original copyright 2014. Data public visit: https://gcheng-nwpu.github.io/.

https://doi.org/10.1371/journal.pone.0330759.g007

Table 2. Comparison Experiments for HWANet in SAR-Airport-1.0.

Method Para(M) GFLOPs mAP50 mAP50-95
Swin-Transformer [48] 29.98 79.1 98.1 72.5
YOLOV6S [49] 16.29 44.0 99.1 76.3
YOLOv8S 11.12 284 98.9 75.2
YOLO-World [50] 3.53 9.4 98.4 75.1
YOLOvV10S [2] 8.03 24.4 95.8 69.7
TPH-YOLO [52] 41.51 160.6 99.1 80.1
FFCA-YOLO [26] 7.12 51.2 97.2 73.0
WTHA-VIT [42] 35.07 228.46 96.6 75.0
DetailCaptureYOLO [43] 28.7 109.3 97.7 74.2
HWANet (Ours) 2.75 7.9 99.1 773

https://doi.org/10.1371/journal.pone.0330759.t002
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Fig 8. The detection results of SAR-Airport-1.0. Reprinted from [41] under a CC BY license, with permission from Fan Zhang, original copyright 2024. Data public
visit: https://doi.org/10.57760/sciencedb.15367.

https://doi.org/10.1371/journal.pone.0330759.g008

Table 3. Ablation Experiment on NWPU-VHR-10.

Method Para(M) |GFLOPs |mAP50|A S ST BF TC BC GTR |H B \%

Baseline 3.00 8.1 91.6 99.5 |94.7 989 98.0 940 |77.0 968 975 |70.4 (889
Baseline + LEM 2.67 7.6 92.4 98.3 92.4 98.9 989 (988 |80.1 (994 (956 (744 |86.9
Baseline + SIIM 3.08 8.4 92.7 99.4 92.8 97.4 989 (963 |753 993 |98.2 827 |87.0
Baseline + LEM + SIIM  |2.75 7.9 93.1 99.4 92.3 99.0 (989 954 782 962 (973 849 |89.7

https://doi.org/10.1371/journal.pone.0330759.t003

When both LEM and SIIM are applied simultaneously, the model achieves its highest mAP50
0f 93.1%. The model’s performance in detecting various object categories also shows signif-
icant improvement. For example, in the ground track field category, the accuracy increases
from 77.0% in the baseline model to 78.2% after incorporating LEM and SIIM, indicating
notable enhancements in this category. The most substantial improvement occurs in the
bridge category, where the baseline accuracy of 70.4% increases to 84.9% with the addition of
LEM and SIIM, representing a 14.5% increase. This result demonstrates that the LEM module,
by enhancing low-frequency feature extraction, enables the model to better capture objects
such as bridges, which exhibit large spans and distinct structural characteristics. In addition,
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Table 4. Ablation Experiment on NWPU-VHR-10 without HFDSA.

Method Para(M) |GFLOPs \/mAP50|A S ST BF TC BC GTR |H B A%
Baseline +SIIM 3.07 8.4 92.0 99.4 93.9 87.4 98.3 93.4 81.8 97.0 96.2 83.3 89.2
Baseline +LEM + SIIM  (2.74 7.7 92.1 99.4 92.1 99.2 99.0 95.9 76.7 98.5 94.1 75.0 91.0

https://doi.org/10.1371/journal.pone.0330759.t004

Table 5. Ablation Experiment on NWPU-VHR-10 without HH.

Method Para(M) GFLOPs mAP50 mAP50-95
HWANet+(HH) 2.81 8.0 90.6 57.9
HWANet (Ours) 2.75 7.9 93.1 61.0

https://doi.org/10.1371/journal.pone.0330759.t005

Table 6. Ablation Experiment on NWPU-VHR-10 without the distance decay matrix.

Method Para(M) GFLOPs mAP50 mAP50-95
HWANet-(D) 2.75 7.9 90.7 59.5
HWANet (Ours) 2.75 7.9 93.1 61.0

https://doi.org/10.1371/journal.pone.0330759.t006

Table 7. Comparing the GPU Memory Usage of SIIM+HFDSA and SIIM+HFDSA (Without Using Haar Wavelet

Transform).

Method Input Size GPU Memory Usage (MB)
SIIM+HFDSA (without HW) 64X 32X 32 65.19

SIIM+HFDSA 64 X 32X 32 5.17

SIIM+HFDSA (without HW) 64X 16 X 16 4.30

SIIM+HFDSA 64X 16 X 16 0.54

https://doi.org/10.1371/journal.pone.0330759.t007

the SIIM module further enhances the model’s ability to identify bridge objects in complex
scenes by integrating features from different levels. The combination of LEM and SIIM not
only improves the overall detection accuracy but also ensures that the model maintains a low
parameter count and computational complexity while delivering superior performance.

HFDSA demonstrates strong global information extraction capabilities. To more specifi-
cally highlight the importance of HFDSA, this paper provides a detailed analysis in Table 4,
comparing the model’s performance on the NWPU-VHR-10 dataset after replacing HFDSA
in the SIIM module with standard convolution. According to the data from Tables 3 and 4,
when only SIIM is introduced, the model's mAP50 drops from 92.7% (with HFDSA) to 92.0%
(with standard convolution). Further analysis of the results with both LEM and SIIM shows
that the mAP50 decreases from 93.1% to 92.1%. The results highlight the essential role of
HFDSA in handling significant variations in object scales. By leveraging its global informa-
tion extraction capability and incorporating explicit spatial priors, HFDSA enables the model
to better understand spatial structures in images, thereby significantly improving detection
accuracy.

The ablation study in Table 5 reveals that omitting the HH component from the LEM
module is essential. When the HH branch is retained (HWANet+(HH)), mAP50 falls from
93.1% to 90.6% and mAP50-95 from 61.0% to 57.9%, while Para(M) and GFLOPs edge up
from 2.75 M to 2.81 M and from 7.9 to 8.0, respectively. The performance drop confirms that
the high-frequency diagonal subband mainly injects sensor artifacts and environmental noise,
which corrupt learned features and undermine detection robustness. Moreover, its removal
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trims the representation without discarding semantically useful cues, since the minor parame-
ter and computation reductions show that HH adds little discriminative information yet con-
sumes resources. SIIM’s feature-shift mechanism compensates for any texture loss, allowing
HWANet to deliver an optimal accuracy-efficiency balance.

To validate the contributions of the distance decay matrix and Haar wavelet-based low-
frequency attention, we conducted an ablation study comparing the full HWANet with a vari-
ant that removed the distance decay matrix (HWANet-(D)). As shown in Table 6, both models
maintained identical parameters (2.76M vs. 2.75M) and computational costs (7.9 GFLOPs),
ensuring that any performance differences were solely due to architectural changes. Remov-
ing the distance decay matrix led to significant performance degradation (-2.4% mAP50, -
1.5% mAP50-95). This matrix provides explicit spatial priors in the High-Frequency Spatial
Attention (HFDSA) mechanism, forcing attention weights to decay with increasing spatial
distance. Without it, the model struggled to capture spatial relationships between multi-scale
objects, weakening the context-aware modeling capability. Ultimately, the synergy between
the distance decay matrix and wavelet-based attention enabled HWANet to achieve peak per-
formance (93.1% mAP50). The wavelet attention provided an efficient and noise-robust foun-
dation for global modeling, while the distance decay matrix injected critical spatial induc-
tive biases for precise relationship reasoning across scales. This combination is essential for
handling extreme scale variations in Remote Sensing Object Detection (RSOD).

Fig 9 visualizes the comparison between HWANet and YOLOv8n on a specific image.
YOLOv8n mistakenly detected the background as a baseball field. Owing to the powerful
global information extraction capability of HFDSA, and the effective information interaction
of SIIM, HWANet avoids this misdetection, delivering more accurate results.

Table 7 compares the GPU memory usage between SIIM+HFDSA and SIIM+HFDSA (without
HW) on tensors of different sizes. The results show that, for the 64 X 32 X 32 input size,
SIIM+HFDSA demonstrates a significant advantage, with a memory usage of only 5.17 MB,
much lower compared to SIIM+HFDSA (without HW)’s 65.19 MB. However, for the 64 X 16
X 16 input size, the GPU memory usage of SIIM+HFDSA (without HW) increases to 4.3 MB,
significantly higher than SIIM+HFDSA’ 0.54 MB. This is because the self-attention mech-
anism requires calculating the correlations between each patch, leading to increased com-
putational and memory demands. In contrast, HFDSA compresses the matrix representa-
tion through the Haar wavelet transform, reducing memory consumption while retaining the
main image information.

YOLOv8&n

Grogd Track field 0

Fig 9. Comparison of the detection results between YOLOv8n and HWANet. Reprinted from [38-40] under a CC BY license, with permission from Gong Cheng,
original copyright 2014. Data public visit: https://gcheng-nwpu.github.io/.

https://doi.org/10.1371/journal.pone.0330759.g009
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Conclusion

This paper addresses the issues of information loss during downsampling and insufficient
context-aware modeling capability in existing methods for RSOD when dealing with large
varijations in object scales. A Haar wavelet-based Attention Network, HWANet, is proposed.
The model consists of three main modules: the Low-frequency Enhanced Downsampling
Module (LEM), the Haar Frequency Domain Self-attention Mechanism (HFDSA), and the
Spatial Information Interaction Module (SIIM). The LEM utilizes Haar wavelet transform

to perform downsampling on feature maps and enhances the low-frequency components
through Feature Shift (FS) operations. This approach effectively preserves critical informa-
tion while preventing the loss of information from objects at different scales during the down-
sampling process. In addition, to further enhance the model’s context-aware modeling capa-
bilities and make more effective use of target information, this paper introduces the HFDSA
and SIIM modules. HFDSA incorporates explicit spatial priors to enhance the model’s under-
standing of spatial structures within images. SIIM facilitates the interaction and fusion of
features at different levels, enabling the effective integration of multi-level features.

Despite these advances, HWANet presents certain limitations worthy of consideration.
The method’s reliance on Haar wavelet transforms may impact its adaptability to complex
scenes with non-stationary texture patterns. Additionally, the multi-module architecture
could introduce computational demands challenging for edge device deployment. Future
work will address these constraints through lightweight wavelet alternatives and dynamic
feature pruning strategies.

In future research, we aim to combine HWANet with more sophisticated self-supervised or
semi-supervised learning techniques to further improve its detection performance on small-
sample or unlabeled datasets. Moreover, to address more challenging remote sensing scenar-
ios, we will explore the incorporation of more sophisticated semantic fusion strategies into
HWANet to further improve its performance in RSOD.
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