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Abstract 

Kinematic calibration is essential for improving the absolute accuracy of parallel 

robots, but conventional identification methods often struggle with the complex, 

non-linear coupling of their numerous geometric error parameters. This can lead 

to convergence to local rather than global optima, limiting the effectiveness of the 

calibration. To address this challenge, this paper proposes a novel self-calibration 

methodology based on a global optimization strategy. Taking the 5PUS-RPUR paral-

lel robot as an example, its inverse kinematics is established based on screw theory. 

A sensitivity analysis is performed using the finite difference method to screen for 

and eliminate error sources with a negligible impact on the moving platform’s pose. 

Measurement points are then selected uniformly throughout the workspace using 

the farthest point sampling algorithm. An objective function for the GA is constructed 

by integrating the actuator displacement errors from each kinematic chain with the 

overall pose error of the moving platform. Non-linear constraints are handled using 

a penalty function approach. Based on measurement data from an onboard IMU 

and joint encoders, the identification results are obtained. The experimental results 

demonstrate that the proposed method significantly improves the robot’s positional 

accuracy across its entire workspace. The superiority and efficacy of this approach 

are further corroborated by a benchmark comparison with three recent, state-of-the-

art calibration methodologies.

1.  Introduction

Lower-mobility parallel robots offer advantages such as simpler architecture and 
lower costs in design, control, and manufacturing compared to their 6-DOF counter-
parts [1]. They are well-suited for numerous tasks requiring fewer than six DOFs in 
industrial and medical applications [2]. For instance, 3T2R motion capabilities cover a 
wide range of applications, including 5-axis machining [3,4], welding [5], and surgi-
cal procedures [6]. However, physical robots are unavoidably subject to geometric 
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imperfections, such as manufacturing tolerances and link misalignments, which 
cause significant discrepancies between the commanded and the actual end-effector 
pose. Calibration offers a powerful and cost-effective method to compensate for 
these deviations through software, thereby enhancing pose accuracy without requir-
ing expensive improvements in manufacturing precision [7–9].

Kinematic calibration generally involves four key steps: error modeling, mea-
surement, parameter identification, and compensation [10]. First, an error model is 
formulated to relate the robot’s nominal kinematics to its actual behavior, typically 
using data from internal or external sensors. Based on this model, a parameter 
identification process is then performed to quantify the geometric errors [11–13]. 
Subsequently, the identified parameters are used to modify the controller model, 
thereby improving the pose accuracy of the parallel robot [14,15]. However, the large 
number of error parameters and their complex, non-linear coupling in parallel robots 
significantly complicate the identification process. To address these challenges, 
numerous researchers have explored advanced identification strategies, motivating 
the work presented in this paper. Luo et al. [16] developed a kinematic model for 
a novel 4PPa-2PaR parallel manipulator that incorporates its non-ideal geometric 
parameters. They employed the Levenberg-Marquardt (LM) algorithm to identify 10 
key error parameters, with the objective of minimizing the error in each individual 
kinematic chain. After calibration, the average pose accuracy of the moving platform 
was greatly improved. Song et al. [17] proposed a robust calibration method for joint 
compensation based on an artificial neural network (ANN). Taking a Stewart platform 
as their case study, they set the minimization of individual kinematic chain errors 
as the optimization objective. The calibration experiments demonstrated a 91.90% 
reduction in the mean position error and a 90.22% reduction in the mean posture 
error. Gao et al. [18] established a linear error model for individual kinematic chains 
with the objective of minimizing inverse kinematic residuals. By combining full-pose 
measurements with actuator displacement data, they employed an iterative linear 
least-squares method for parameter identification. This approach reduced the pose 
error from 8 mm/ 0.4° before calibration to 0.4 mm/ 0.04° after calibration. Using 
screw theory, Sun et al. [19] established a comprehensive error model that included 
18 geometric error sources of a 3-DoF rotational parallel manipulator. They then 
solved the error equation for each individual chain by combining Tikhonov regulariza-
tion with the Generalized Cross-Validation (GCV) method for optimal parameter iden-
tification. Post-calibration results showed an improvement in orientation accuracy of 
over 53.4%. Zhang et al. [20] constructed a non-linear error model for the individual 
chains of a Stewart platform using closed-loop vector constraints. They employed the 
LM algorithm to solve the resulting non-linear least-squares problem. The experimen-
tal results demonstrated a significant improvement in accuracy: the position error was 
reduced from the millimeter level to within ±0.2 mm, while the orientation accuracy 
improved by an order of magnitude compared to the uncalibrated system. He et al. 
[21] presented a calibration methodology for a 7-DOF UP&2UPS-4R hybrid manipu-
lator. A comprehensive error model was established by treating the parallel mecha-
nism as an equivalent serial chain. An iterative least-squares method was employed 

Department (grant number Y202351264); the 
National Natural Science Foundation of China 
(NSFC) [grant number U21A20122, 52475077]; 
the Zhejiang Provincial Natural Science 
Foundation (grant number LD24E050003); the 
China Postdoctoral Science Foundation [grant 
number 2023T160580, 2023M743102].

Competing interests: The authors have 
declared that no competing interests exist.



PLOS One | https://doi.org/10.1371/journal.pone.0330675  September 2, 2025 3 / 21

to identify the kinematic parameter errors. This approach reduced the average error of the hybrid manipulator by 85%, 
significantly enhancing its kinematic accuracy. Existing strategies for error parameter identification, however, possess cer-
tain limitations. While optimization algorithms such as gradient descent, the Newton-Raphson method, and least-squares 
are computationally efficient, they typically employ an independent chain optimization strategy. This approach can only 
guarantee a local optimum for each individual kinematic chain, as it neglects the mutual constraint relationships between 
them. Consequently, the overall calibration result may deviate significantly from the global optimum.

Due to the high-order non-linearities and strong coupling among the various chain error parameters, obtaining an 
explicit mathematical model of their interdependencies is exceedingly difficult. This limitation necessitates an optimization 
approach capable of navigating the complex solution space without relying on a predefined coupling model. To this end, 
we turn to the Genetic Algorithm (GA), a metaheuristic renowned for its powerful global search capabilities and its adept-
ness at handling non-linear, multi-modal problems. The GA has demonstrated significant success in diverse fields such as 
the optimal allocation of electric vehicle charging stations [22], mobile robot path planning [23], and aircraft mission plan-
ning [24]. To achieve a globally optimal calibration for the parallel robot, we design a weighted fitness function that fuses 
the actuator displacement errors from individual chains with the overall pose error of the robot’s end-effector. This func-
tion, serving as the GA’s optimization objective, simultaneously evaluates the contribution of all chains to the end-effector 
accuracy during the optimization process. It thereby compels the algorithm to find a parameter set that holistically coor-
dinates error compensation across the entire robot, fundamentally circumventing the issue of explicit parameter coupling 
and achieving a truly global optimum.

This paper presents the error modeling and kinematic calibration of a five degree-of-freedom 5PUS-RPUR (R, P, S, 
and U stand for revolute, prismatic, spherical, and universal joints) parallel robot, with the implementation by the follow-
ing steps: (1) formulation of the inverse kinematics by integrating screw theory, Paden–Kahan (PK) subproblems and the 
elimination method; (2) error modeling within the screw theory framework and global sensitivity analysis of the influence of 
the geometric variations onto the moving platform pose; (3) identification of geometric parameters by pose measurement 
using a IMU and encoder. With the objective function that integrates individual chain actuator errors with the end-effector 
pose error, the parameter identification is realized by solving an unconstrained nonlinear optimization problem via GA. 
After calibration, the position error of the moving platform is significantly improved throughout the operational workspace.

2.  Analysis of inverse kinematics

The inverse kinematics problem involves determining the required actuator displacements to achieve a desired 
end-effector pose. While a common approach for this analysis is to combine screw theory with Paden-Kahan (PK) sub-
problems, this method is not directly applicable to the 5PUS-RPUR robot, specifically for the inverse kinematics of its 
RPUR chain. To address this limitation, the elimination method is used to reduce the unknown parameters in the pose 
analysis of the RPUR chain.

There are three recognized basic PK subproblems [25]. For the inverse position analysis of the 5PUS-RPUR parallel 
robot, the solution does not involve PK subproblems 3. This study only clarifies the first two recognized subproblems. PK 
subproblem 1 is shown in Fig 1(a), the spatial point p

1
 rotates around the fixed axis ξ to the given point p

2
, and r is a point 

on the axis ξ. θ is the rotation angle to be calculated.

	




θ = atan2
(
ξT (u′ × v′) ,u′Tv′

)

u′ = u – ξξTu
v′ = v – ξξTv 	 (1)

PK subproblem 2 is shown in Fig 1(b), the spatial point p
1
 rotates around axis ξ

2
 and axis ξ

1
 to the given point p

3
, respec-

tively, and θ
1
 and θ

2
 are the rotation angles to be calculated.
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


z = ι1ξ1 + ι2ξ2 + ι3 (ξ1 × ξ2)

ι1 =
(ξT1ξ2)ξ

T
2u–ξ

T
1v

(ξT1ξ2)
2
–1

, ι2 =
(ξT1ξ2)ξ

T
1v–ξ

T
2u

(ξT1ξ2)
2
–1

ι23 =
∥u∥2–ι21–ι

2
2–2ι1ι2ξ

T
1ξ2

∥ξ1×ξ2∥2 	 (2)

In addition to the known P-K sub-problems, a novel kind of subproblem 3 is encountered in our problem. As shown in 
Fig 2, the spatial point p

1
 moves along the axis ξ

1
 by a distance θ

1
 to the given point p

2
, the distance between position 

vectors p
2
 and p

3
 is given as δ. The unknown parameter θ

1
 can be formulated as

	




θ1 = ∥v∥ cos θ0 + δ′

v = p3 – p1, cos θ0 =
(

ξTv
∥v∥

)

δ′
2
= (∥v∥ cos θ0)2 –

(
∥v∥2 – δ2

)
	 (3)

where if δ′2 = 0, there will be one solution for subproblem 3, and vector p
3
 – p

1
 is perpendicular to vector ξ

1
; else if δ ′2 > 0, 

two solutions exist while position vectors p
2
 and p′

2 lie on opposite sides of the perpendicular line to vector ξ
1
. Otherwise, 

no solution exists. In particular, when point p
3
 is on axis ξ

1
, then θ

1
 = (p

3
 – p

1
)Tξ

1
 – δ.

2.1.  Structure of the 5PUS-RPUR parallel robot

The virtual prototype of the 5PUS-RPUR parallel robot is shown in Fig. 3a, which consists of a base, a moving platform, 
and two types of serial PUS and RPUR chains. The PUS chain contains a prismatic joint (P) comprised of a module, a 
side plate and a slider, a universal joint (U1) and a spherical joint (S), where U and S are connected by the fixed-length 
rod. The RPUR chain consists of two revolute joints (R), a prismatic joint composed of an electric cylinder and a push rod, 
a universal joint (U2) and a fixed-length rod, where the first revolute joint (R1) is directly connected to the base and the 
second revolute joint (R2) is connected to the universal joint via the fixed-length rod.

As shown in Fig. 3b, the kinematic screws of each branch chain are established in the static coordinate system. The 
screw of the P joint in the PUS chain is along its motion direction, and the U joint is decomposed into two R joints, with 
the twists of the R joints along their rotation axis directions. The S joint is decomposed into three R joints, one along the 
direction of the fixed-length rod AiBi, and the other two are parallel to the X and Y axes of the static coordinate system 
when its Z-axis is rotated to align to the direction of AiBi. For the RPUR chain, the universal joint is decomposed into two R 
joints, with screw directions parallel to the X axis of the static coordinate system and the Y axis of the moving coordinate 
system. The screw directions of the other two R joints are both along their axial directions. The screw direction of the P 
joint is parallel to the z-axis direction.

Fig 1.  The two recognized basic PK sub-problems. (a) PK sub-problem 1. (b) PK sub-problem 2.

https://doi.org/10.1371/journal.pone.0330675.g001

https://doi.org/10.1371/journal.pone.0330675.g001
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2.2.  Inverse displacement analysis of the PUS chain

In terms of the joint connection form of the PUS chain, the pose of the center point on the moving platform can be 
expressed as

	
gi(θ) =

5∏
j=1

exp
(
ξ̂i,j, θi,j

)
· gi (0) , i = 1 ∼ 5

	 (4)

where exp(·) is the product of exponential formula [26]. i and j are the indices for the kinematic chain and the joint within 
that chain, respectively. gi(0) and gi(θ) represent the initial and desired pose of the moving platform. θi,j and ξ̂i,j (j = 1 ∼ 6) 
denote the displacement and the kinematic screw of each branch joint.

Since the posterior three joint axes of the PUS chain intersect with a point Bi, the following formula can be obtained 
according to the principle of position invariance.

	 exp(ξ̂i,4, θi,4) · exp(ξ̂i,5, θi,5) · exp(ξ̂i,6, θi,6) · PBi = PBi	 (5)

with PBi = [pBi 1]T, pBi denotes the position vector of the point Bi.
Taking the right multiplication for Eq. (4) with the inverse matrix g–1i (0) and matrix PBi, Eq. (4) can be rewritten as

	 gi(θ)g
–1
i (0)PBi = exp(ξ̂i,1, θi,1) · exp(ξ̂i,2, θi,2)exp(ξ̂i,3, θi,3)PBi 	 (6)

Similarly, due to the last two joints in the first three joints converging at a point Ai, it can be obtained from the principle of 
position invariance.

Fig 2.  PK subproblem 3.

https://doi.org/10.1371/journal.pone.0330675.g002

Fig. 3.  Virtual prototype and kinematic screw system of the 5PUS-RPUR parallel robot. (a) Virtual prototype. (b) Kinematic screw system.

https://doi.org/10.1371/journal.pone.0330675.g003

https://doi.org/10.1371/journal.pone.0330675.g002
https://doi.org/10.1371/journal.pone.0330675.g003
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	 exp(ξ̂i,2, θi,2) · exp(ξ̂i,3, θi,3) · PAi = PAi 	 (7)

with PAi = [pAi 1]T, pAi denotes the position vector of the point Ai.
Taking the left dot product of Eq. (7) with exp(–ξ̂i,1, θi,1), we get

	 exp(–ξ̂i,1, θi,1)gi(θ)g
–1
i (0)PBi = exp(ξ̂i,2,θi,2)exp(ξ̂i,3, θi,3)PBi	 (8)

Subtracting the matrix PAi on both sides of Eq. (8), we obtain

	 exp(–ξ̂i,1, θi,1)gi(θ)g
–1
i (0)PBi – PAi = exp(ξ̂i,2, θi,2)exp(ξ̂i,3, θi,3) (PBi – PAi)	 (9)

According to the principle of distance invariance [27], it is easy to obtain

	

∣∣PBi – PAi
∣∣ =

∣∣∣exp(ξ̂i,2, θi,2)exp(ξ̂i,3, θi,3) (PBi – PAi)
∣∣∣
	 (10)

Substituting Eq. (10) into Eq. (9) shows that it corresponds to PK subproblem 3, and its parameters are expressed as 
follows.

	

{
ξ̂ = –ξ̂

T
i,1,p1 = gi(θ)g

–1
i (0)PBi

v = PAi – p1, δ
2 = ∥PBi – PAi∥2 	 (11)

It is worth noting that the prismatic pair can be regarded as the revolute pair of the rotational axis at infinity. Substituting 
the parameters into PK subproblem 3, the analytical expression of θi,1 can be derived.

On the basis of the known θi,1, Eq. (9) can be regarded as PK subproblem 2, and the corresponding subproblem param-
eters are expressed as follows.

	

{
ξ1 = ξ̂i,2, ξ2 = ξ̂i,3,u = PBi – PAi
v = exp(–ξ̂i,1, θi,1)gi(θ)g

–1
i (0)PBi – PAi	 (12)

where the analytical expressions for θi,2 and θi,3 can be solved from the PK subproblem 2.
Substituting the equation exp(ξ̂i,6, θi,6)PAi = PAi into Eq. (4), which can be rewritten as

	

exp(ξ̂i,4, θi,4)exp(ξ̂i,5, θi,5) (PBi – PAi) = exp(–ξ̂i,3, θi,3)
exp(–ξ̂i,2, θi,2)exp(–ξ̂i,1, θi,1)gi(θ)g

–1
i (0) (PBi – PAi)	 (13)

where the vector PAi should be selected on the axis ξ̂i,6 and not on the axes ξ̂i,4 and ξ̂i,5. On the basis of the known ξ̂i,1
, ξ̂i,2 and ξ̂i,3, the analytical expressions of θi,4 and θi,5 can be solved by using the inverse solution formula of PK subprob-
lem 2.

Multiplying Eq. (5) on the left by exp(–ξ̂i,5, θi,5) · · · exp(–ξ̂i,1, θi,1) and on the right by g–1i (0)·Ap, we can obtain

	 exp(ξ̂i,6, θi,6) ·A p = exp(–ξ̂i,5, θi,5) · · · exp(–ξ̂i,1, θi,1) · gi(θ) · g–1i (0) ·A P	 (14)

where AP = [Ap 1]T, Ap is the position vector of any spatial point not on the rotational axis. The analytical expression of θi,6 
can be solved by using the inverse solution formula of PK subproblem 1.
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2.3.  Inverse displacement analysis of the RPUR chain

In terms of the structural form of the RPUR chain, the pose of the center point on the moving platform can be 
expressed as

	
gi(θ) = exp

(
ξ̂i,1, θi,1

)
· exp

(
ξ̂i,2, θi,2

)
· exp

(
ξ̂i,3, θi,3

)
· exp

(
ξ̂i,4, θi,4

)
· exp

(
ξ̂i,5, θi,5

)
· gi (0) , i = 6

	 (15)

where ξ̂i,j  and θi, j (j = 1 ~ 5) represent the joint kinematic screw and joint displacement of the RPRU chain.
Expanding Eq. (15) and taking the first-row matrix from both sides, we obtain

	
[
cos(β)cos(γ) –cos(β)sin(γ) sin(β) x

]
=

[
cos (θi,4 + θi,5) 0 sin (θi,4 + θi,5) sin (θi,4) h0

]
	 (16)

with gi(θ) =
[
Rx(α)Ry(β)Rz(γ) p

01×3 1

]
, p =

[
x y z

]T
,

where α, β and γ represent the Euler rotation angles of the moving platform around the x, y and z axes of the moving 
coordinate system. p denotes the position vector of the reference point on the moving platform. h

0
 is the distance from 

the center of U2 to the origin of the moving coordinate system. According to Eq. (16), γ = 0. This indicates that the 5PUS-
RPUR parallel robot has the motion characteristic with three-dimensional positional movement and two-dimensional 
Eulerian angular rotation.

In terms of Eq. (16), the relationship between joint angle displacements θi,4 and θi,5 as well as the pose of the moving 
platform can be obtained.

	

{
θi,4 = arcsin

(
x
h0

)

θi,5 = β – θi,4 	 (17)

where the expressions of joint angles θi,4 and θi,5 are obtained using the elimination method. Taking the right multiplication 
for both sides of Eq. (15) with the vector PD, it can be obtained based on the principle of distance invariance.

	 exp(ξ̂i,1, θi,1) · exp(ξ̂i,2, θi,2) · PD = gi(θ) · g–1i (0) · exp(ξ̂i,5, –θi,5) · exp(ξ̂i,4, –θi,4) · PD	 (18)

where PD denotes the position vector of the center of universal joint 2.
Due to the distance from the center of U to the origin of the static coordinate system is not affected by R2, the joint 

displacement θi,2 can be solved by PK subproblem 3, and the subproblem parameters are expressed as

	

{
p1 = pU,p3=pO, ξ = ξ̂i,2,

δ =
∥∥∥gi(θ)/gi (0) exp(ξ̂i,5, –θi,5)exp(ξ̂i,4, –θi,4)PD – PO

∥∥∥
	 (19)

where P
o
 = [p

o
 1]T, p

o
 is the position vector of the origin of the moving coordinate system.

On the basis of the known joint displacements θi,2, θi,4 and θi,5, the analytical expression of the joint angle θi,1 can be 
obtained by converting Eq. (18) to PK subproblem 1, and the subproblem parameters are expressed as

	

{
r = pO, ξ̂ = ξ̂i,1, P1 = exp(ξ̂i,2, θi,2) · PD,
P2 = gi(θ)/gi (0) · exp(ξ̂i,5, –θi,5) · exp(ξ̂i,4, –θi,4) · PD	 (20)

where p
1
 and p

2
 are matrices consisting of the first three columns of elements of matrices P

1
 and P

2
. PD = [pD 1]T, pD is the 

position vector of the U center in the RPRU chain.
Likewise, the explicit expressions of joint displacements θi,3 can be analyzed by Eq. (15) equivalent to PK subproblem 

1, and the subproblem parameters are expressed as
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{
r = pD, ξ̂ = ξ̂i,3,p1 = pO
p2 = exp(ξ̂i,2, θi,2) · exp(ξ̂i,1, θi,1) · gi(θ) · g–1i (0) · exp(ξ̂i,5, –θi,5) · exp(ξ̂i,4, –θi,4)PO	 (21)

At this point, the analytical formulas of each branched chain joint have been obtained. It should be noted that there will 
be generally two solutions in the PK subproblems 1 and 2, and the sum value of the two solutions is π or -π. The correct 
solution can be obtained by setting the constraint conditions. The PK subproblem 3 yields two solutions, and the solution 
with the smaller absolute displacement is correct.

3.  Error and sensitivity analysis

3.1.  Error modeling of the PUS chain

A closed-loop vector method is used for the error analysis of the 5PUS-RPUR parallel robot. Considering the manufactur-
ing and assembly errors, the error mapping model of the PUS chain is analyzed. On the basis of Fig. 3(b), the geometric 
errors in the PUS chain are described in Fig. 4.

From the analysis of the inverse kinematics, the pose mapping relationship between the moving platform and the 
actuator joints only requires the initial and final pose of the moving platform, and the position vector of the U center point 
Ai and the S center point Bi. The main factors affecting the position vector of point A include the module position deviation 
∆ψ

1i, the side plate angle deviation ∆λi, the actuator zero-point error ∆θi, and the manufacturing error of the base length 
∆Di. The position error of the vector OiBi is affected by the assembly error ∆ψ

2i of the spherical pair and the manufactur-
ing error ∆di of the bearing. Considering the above conversion errors, the forward kinematics of the PUS chain can be 
expressed as

	
∆g(θ) =

6∏
j=1

exp
(
∆ξ̂i,j,∆θi,j

)
·∆g (0) , i = 1 ∼ 5

	 (22)

	




∆ξ̂i,1 = [000,∆si,1]
T,∆si,1 = Ri,1[001]

T,Ri,1 = Rz (2 (i – 1)π/5)Ry(λ+∆λ – π/2)

∆ξ̂i,2 =
[
∆si,20PAi × si,2

]T
,∆si,2 = Ri,2ey,Ri,2 = Rz (2 (i – 1)π/5)Ry( – φi)Ry(∆λ)

∆ξ̂i,3 =
[
∆si,30PAi × si,3

]T
,∆si,3 = Ri,3ex,Ri,3 = Ri,2Ry(∆ψU11)

∆ξ̂i,4 =
[
∆si,40PBi ×∆si,4

]T
,∆si,4 = Ri,4ex,Ri,4 = Ri,3Rx(∆ψU12)

∆ξ̂i,5 =
[
∆si,50PBi ×∆si,5

]T
,∆si,5 = Ri,5ey,Ri,5 = Ri,4Ry(∆S11)

∆ξ̂i,6 =
[
∆si,60PBi ×∆si,6

]T
,∆si,6 = Ri,6ez,Ri,6 = Ri,5Rx(∆S12) 	 (22a)

Fig 4.  Structure diagram of branched PUS with errors.

https://doi.org/10.1371/journal.pone.0330675.g004

https://doi.org/10.1371/journal.pone.0330675.g004
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



0PAi = OiD
′
i + D′

iAi, 0PBi = OiB
′
i + B′

iBi

OiD
′
i = Rz (2 (i – 1)π/5+∆ψ1i)Di,Di = [D+∆Di 0 0]

T

D′
iAi = (ui +∆θi) [Rz (2 (i – 1)π/5+∆ψ1i) (Ry (–λ –∆λi)) ez]

OiB
′
i = ∆RNBi +∆P,∆R = Rx(∆α)Ry(∆β),N Bi = [0 0 ∆di]

T

B′
iBi = Rz (2 (i – 1)π/5+∆ψ2i)

(
PB′

i + B′′
iBi

)
PB′

i = [ri 0 0]
T,B′′

iBi = [∆ri 0 ∆di]
T,∆P = [∆x ∆y ∆z]T 	 (22b)

where ∆ξ̂i,j denotes the screw axis of the j-th joint in the i-th PUS limb, considering geometric errors. ∆θ̂i,j
represents the actual joint displacement, inclusive of geometric errors. ex, ey and ez are the unit vectors along the X, 

Y, and Z axes of the fixed coordinate frame. 0PAi and 0PBi denote the position vectors of the center points of the U and S 
at the initial pose. ∆P and ∆R represent the initial position and posture error of the moving platform, respectively. φi is the 
nominal angle between the constant-length link AiBi and the Z-axis of the fixed frame. ri and d are the distance of point Bi 
from the origin of the moving coordinates and the distance of point B from the XOY plane. The parameters with manufac-
turing error include ∆ri, ∆Di and ∆di, and the parameters with assembly error include ∆ψ

1i, ∆ψ2i and ∆λi. By replacing the 
vector points PAi and PBi in the inverse kinematics of the PUS chain with the vectors 0PAi and 0PBi.

3.2.  Error modeling of the RPUR chain

The geometric errors in the RPUR chain are described in Fig 5, including the assembly pose error of R1, the initial posi-
tion error of the electric cylinder, the angular error of U2, the assembly pose error of R2, and the initial pose error of the 
moving platform. The relationship between these geometric source errors and the pose of the moving platform is estab-
lished using forward kinematics and can be formulated as

	
∆g(θ) =

5∏
j=1

exp
(
∆ξ̂i,j,∆θi,j

)
·∆g (0) , i = 6

	 (23)

Fig. 5.  Structure diagram of branched RPUR with errors.

https://doi.org/10.1371/journal.pone.0330675.g005

https://doi.org/10.1371/journal.pone.0330675.g005
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



∆ξ̂6,1 = [∆si,1 0Po×∆si,1]
T,∆si,1 = R6,1[100]

T,R6,1 = Rz(∆ψ16)

∆ξ̂6,2 = [000∆s6,2]
T ,∆s6,2 = R6,2[001]

T,R6,2 = R6,1Rx (∆ψR1)

∆ξ̂6,3 =
[
∆s6,30PD × s6,3

]T
,∆s6,3 = R6,3[100]

T,R6,3 = R6,2Ry (∆ψU22)

∆ξ̂6,4 =
[
∆s6,40PD × s6,4

]T
,∆s6,4 = R6,4[0 10]

T,R6,4 = R6,3Rx (∆ψU21)

∆ξ̂6,5 =
[
∆s6,50PP′ × s6,5

]T
,∆s6,5 = R6,5[010]

T,R6,5 = R6,5Rz (∆ψ26) 	 (23a)

	

{
0PD = 0PO′ +O′C+ CD, 0PP′ = Rx (∆ψR2)Rz (∆ψ26) [∆r6 0 0]

T

0PO′ = Rz (∆ψ16) [
∆,O′C = Rx (∆ψr1) [0 0 lc]

T,CD = [0 0 ld +∆θ6]
T

	 (23b)

where 0PO′, 
0PD and 0PP′ denote the position vectors of the center points of the O′, D and P′ at the initial pose. lc is the 

center distance from the electric cylinder to U2, and ld is the center distance from push rod to the origin. Δθ
6
 represents the 

zero-position error of the electric cylinder, and ∆ψ
r1
 represents the initial deviation of R1.

3.3.  Sensitivity analysis

As stated above, there are 69 error sources affecting the moving platform pose accuracy of the parallel robot. The indi-
vidual identification of each source is complex, tedious, and computationally expensive. Therefore, a geometric error 
sensitivity model is established to screen out errors that have a minor impact on the moving platform pose. The mapping 
between the geometric errors and the moving platform’s pose can be obtained from Eqs. (22) and (23). Taking the degree 
of freedom of the PUS chain in the x-direction as an example, the sensitivity index is established as follows

	
ηxi =

∂x
∂qpi	 (24)

where qpi denotes the vector of geometric error sources affecting the position x, namely qpi: {Δψ1i, Δψ2i, Δλi, ΔDi, Δri, Δdi, 
Δθi}. Additionally, the other error vectors include qωi: {Δψ1i, Δψ2i, Δλi, Δ

1ψ
U11

, Δ1ψ
U12

, Δψ
S11

, Δψ
S12

,Δψ
S13

}, qp6
: {Δψ

R1
, Δψ

16
, 

Δo
6
, Δθ

6
, Δψ

R2
, Δψ

16
, Δr

6
}, and qω6

: {Δψ
R1

, Δψ
16

, Δψ
R2

, Δψ
26

, Δψ
U21

, Δψ
U22

}.
In order to visually analyze the workspace, the Tilt-and-Torsion (T&T) angle containing azimuth ϕP, tilt θP and torsion ψP 

is used to describe the posture change of the parallel robot [28]. The rotation matrix of the T&T angle can be expressed as

	
TTR (ϕP, θP, 0) = Rz (ϕP)Ry (θP)Rz (–ϕP)Rz(0)	 (25)

Due to the degree of freedom property of the 5PUS-RPUR parallel robot, the Euler angle γ of rotation of the moving plat-
form around the z-axis is equal to 0. The Euler angles are converted into the T&T angle form, which can be expressed as

	

{
α = asin (–sin ϕP sin θP)
β = asin (cos ϕP sin θP)	 (26)

The workspace of the 5PUS-RPUR parallel robot is limited by the range of the actuators, the mechanical limit of passive 
joints and the interference between links. The mathematical expression of the workspace is

	
W=

{
(x, y, z,ϕP, θP) ∈ R5

∣∣∣ f (x, y, z,ϕP, θP) ≤ 0
}

	 (27)

where f (⋅) denotes the constraints, which include rod length, corner and link interference constraints. x, y, z and ϕP, θP are 
the position and posture parameters of the moving platform respectively. For the 5PUS-RPUR parallel robot, the x limit 
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range is determined by the length of the fixed-length rod 2, the y limit range is the sum of the parameter d and the maxi-
mum displacement of the actuator, and the z limit range is the maximum displacement of the actuator. While the azimuth 
angle ϕP is within [0, 2π] and the tilt angle θP is within [0, π/2]. Then, the above pose parameters are evenly divided, and 
the divided parameters are combined and substituted into the inverse kinematics of the PUS and RPUR chains to obtain 
the poses of the parallel robot’s components. After that, it is judged whether the poses satisfy the constraints; all valid 
poses satisfying the constraints constitute the reachable workspace of the parallel robot.

(1)	 Rod length constraints: θ
min

 ≤ θi ≤ θ
max

 (i = 1 ~ 5), θ
min

 and θ
max

 indicate the minimum and maximum displacements of the 
actuator joint.

(2)	 Corner constraints: θUi = arccos[L̂i·(si,2 × si,3)]≤θUmax
,

θSi = arccos(L̂i·si,6)≤θSmax
, θUmax

 and θSmax
 indicate the maximum rotation angle of the U and S pair.

(3)	 Link interference constraints: dR ≥ dsa, DP6
 ≥ D

1
 + D

2
, dsa is the interference distance between the fixed-length rod 2 and 

the moving platform, which can be limited with the rotation angle of the R pair in the RPUR chain connected to the 
moving platform. Without loss of generality, the actuator joints of the RPUR and PUS chains are equated to spheres 
with diameters D

1
 and D

2
, respectively.

As shown in Fig. 6, the reachable workspace of the 5PUS-RPUR parallel robot is analyzed by the search method. 
First, the range of pose parameters x, y, z and ϕP, θP are determined according to the structural characteristics, and the 

Fig 6.  Flow diagram of the reachable workspace.

https://doi.org/10.1371/journal.pone.0330675.g006

https://doi.org/10.1371/journal.pone.0330675.g006
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structure size of the parallel robot is given in Table 1. Next, the step size of pose parameters is set to Δx = Δy = Δz = 0.01m 
and ΔϕP = ΔθP = π/60 rad. Substitute the initial values of the moving platform’s pose parameters into the inverse kinematics 
of the parallel robot to obtain the poses of each component, and then iteratively check whether the current pose parame-
ters of the moving platform satisfy the rod length, corner, and link interference constraints. If the constraints are satisfied, 
store the current poses; otherwise, discard the poses. Finally, the set of all poses satisfying the constraints is output, 
which represents the reachable workspace of the parallel robot’s moving platform.

Following the steps in Fig 6 the parallel robot pose reachable workspace is obtained as shown in Fig 7. From the side 
view, the position workspace of the reference point is trapezoidal distribution, which is determined by the structure of the 
parallel robot. On the other hand, the posture workspace is basically enveloped in an entire circle, which can achieve flexi-
ble rotation within a limited range.

Given the strong coupling and nonlinear characteristics inherent among the source errors in Eq. (24), deriving an 
independent analytical relationship between each error and the moving platform’s pose is exceedingly difficult. There-
fore, a numerical method is employed to solve for the partial derivatives [29]. The mean sensitivity of each error source is 
calculated at different pose points based on the structural parameters mentioned above. The resulting histograms of the 
mean sensitivity for position and posture errors are shown in Figs 8 and 9, respectively. It can be observed that the robot’s 
moving platform pose is highly sensitive to angular variations within the geometric errors. The error sources with a minor 
impact on the moving platform’s position error, namely ΔDi, Δθi, Δo

6
, and Δθ

6
, are screened out to simplify the complexity 

and improve the efficiency of parameter identification.

Table 1.  Size parameters of the 5PUS-RPUR parallel robot.

Parameter Symbol Value (unit)

Center distance from 1# S pair to movable platform r
1

200 mm

Center distance from 2# S pair to movable platform r
2

213.13 mm

Center distance from 3# S pair to movable platform r
3

225.60 mm

Center distance from 4# S pair to movable platform r
4

237.47 mm

Center distance from 5# S pair to movable platform r
5

248.78 mm

Center distance from the electric cylinder to the universal joint 2 lc 514 mm

Center distance from push rod to origin ld 113 mm

Distance from the intersection of the side plate plane and the X-axis to the origin D 1000 mm

Distance from point B to XOY plane d 760 mm

Length of fixed-length rod 1 l
1

600 mm

Length of fixed-length rod 2 l
2

132 mm

Side plate angle λ 30°

https://doi.org/10.1371/journal.pone.0330675.t001

Fig 7.  Reachable pose workspace of the 5PUS-RPUR parallel robot. (a) Position workspace (left view). (b) Position workspace (right view).

https://doi.org/10.1371/journal.pone.0330675.g007

https://doi.org/10.1371/journal.pone.0330675.t001
https://doi.org/10.1371/journal.pone.0330675.g007
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4.  Kinematic calibration

To ensure the effective identification of geometric source errors, the selection of measured points is crucial. The measured 
points should go through all controllable degrees of freedom. Moreover, it is believed that measuring enough poses is 
beneficial to increase the identification robustness [30]. However, in practical applications, a compromise must be struck 

Fig 9.  Mean of sensitivity indices of RPUR chain throughout the reachable workspace. (a) Mean of position sensitivity indices of PRUR chain. (b) 
Mean of posture sensitivity indices of PRUR chain.

https://doi.org/10.1371/journal.pone.0330675.g009

Fig 8.  Mean of sensitivity indices of PUS chain throughout the reachable workspace. (a) Mean of position sensitivity indices of PUS chain. (b) 
Mean of posture sensitivity indices of PUS chain.

https://doi.org/10.1371/journal.pone.0330675.g008

https://doi.org/10.1371/journal.pone.0330675.g009
https://doi.org/10.1371/journal.pone.0330675.g008
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between identification robustness and calibration efficiency. Research indicates that the number of identification equations 
should be at least twice the number of parameters to be identified [19]. Following a sensitivity analysis, 57 parameters 
have been identified for estimation, dictating a requirement for no fewer than 114 measurement poses. In light of this, 121 
uniform measured points are selected within the prescribed workspace using a farthest point sampling algorithm [31]. 
This set includes 11 position points, with 11 different posture points selected at each of these fixed positions. The specific 
distribution is illustrated in Figs 10 and 11.
Fig 11 shows the distribution of measured posture points when the moving platform’s reference point is fixed at P

3
 = 

[−11.6, −115.4, 860] mm. This distribution is also generated using the farthest point sampling algorithm.
To validate the kinematic calibration process of the 5PUS-RPUR parallel robot, the kinematic calibration experiment is car-
ried out. The 5PUS-RPUR parallel robot system is built as shown in Fig 12, including a host computer, GTS motion control 
card, IMU sensor, servo motor with encoder and parallel mechanism body.

In the kinematic calibration experiment, the theoretical displacement of each actuator is obtained by applying theo-
retical pose measured points of the moving platform to the inverse kinematics. The motion command of the theoretical 
displacement is input in the host computer, and the pose variation of the moving platform is measured by IMU. Consid-
ering the manufacturing and assembly errors and the initial pose deviation of the moving platform, the IMU measured 
data is substituted into the error mapping model. It should be noted that the IMU cannot measure absolute poses. The 
joint displacement calculated by the first collected data is used as the reference, and the joint displacement obtained by 
other pose data minus the reference is used as the available data. Furthermore, exclusively considering the discrepancy 
in actuator displacement, derived from encoder and IMU data, while neglecting the coupling effects between kinematic 
chains, would inevitably introduce coupling errors and degrade the identification accuracy. Therefore, a comprehensive 
objective function is established by integrating the actuator displacement deviations with the pose error of the moving 
platform. This can be expressed as:

	




min f(X) = (1 –ϖ1 –ϖ2)
6∑
i=1

∥∥∆θei –∆θIMUi

∥∥+
6∑
i=1

(ϖ1∆EPi+ϖ2∆ERi) (i = 1 ∼ 6)

s.t. X ∈ R,R ⊆ U, l1 –∆l1 ≤ ∥PAi – PBi∥ ≤ l1 +∆l1, l2 –∆l2 ≤ ∥PD – PP′∥ ≤ l2 +∆l2	 (28)

Fig 10.  Distribution of measured points in the position workspace.

https://doi.org/10.1371/journal.pone.0330675.g010

https://doi.org/10.1371/journal.pone.0330675.g010
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where ΔEpi and ΔEri represent the Euclidean norms of the position and posture errors of the moving platform, respectively, 
as derived from the forward kinematics of each chain. The terms ϖ

1
 and ϖ

2
 are weighting factors that balance the contri-

bution of the position and posture errors. It is important to note that to address the issue of dimensional inconsistency, all 
three sub-terms within f(X) have been normalized using min-max scaling [32]. X represents variables such as manufac-
turing error and assembly error, initial pose deviation and pose offset of moving platform. θei  and θ IMU

i  indicate the actuator 
displacement measured by the encoder and obtained by substituting IMU data into the error mapping model. i denotes the 
branch number. U represents the basic space of decision variables, and R is a subset of U. The solution X satisfying the 
constraint condition is called the feasible solution, and the set R represents the set of feasible solutions. l

1
 and l

2
 denote 

the length of the fixed-length rod 1 and 2. Δl
1
 and Δl

2
 is the manufacturing error of the fixed-length rod 1 and 2 to be 

measured using a high-precision instrument. In the process of establishing the error model, only the vector position of the 

Fig 11.  Distribution of posture measured points at the fixed position.

https://doi.org/10.1371/journal.pone.0330675.g011

Fig 12.  5PUS-RPUR parallel robot system.

https://doi.org/10.1371/journal.pone.0330675.g012

https://doi.org/10.1371/journal.pone.0330675.g011
https://doi.org/10.1371/journal.pone.0330675.g012
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two ends of the fixed-length rod is described from the base and the moving platform, and the rod length error needs to be 
added to ensure the rationality of the model.

Genetic algorithm has the advantages of good generalization, strong robustness and global optimality in dealing with 
nonlinear constraints [33]. Due to it being time-consuming to deal with nonlinear constraints, Eq. (28) can be transformed 
into an unconstrained problem through a penalty function method.

	

fP(X) = f(X) +
5∑
i=1

G
{
max [∥PAi – PBi∥ – (l1 +∆l1) ,0] +max [(l1 –∆l1) – ∥PAi – PBi∥ ,0]

}

+H
{
max [∥PD – PP′∥ – (l2 +∆l2) ,0] +max [(l2 –∆l2) – ∥PD – PP′∥ ,0]

}
	 (29)

where G and H are penalty factors, which are typically set to large positive values. According to the evolutionary mecha-
nism of the genetic algorithm, the population will autonomously avoid solutions that do not satisfy the constraints during 
the evolutionary process. The optimal error parameters can be identified using genetic algorithms, and the errors of manu-
facturing, assembly and actuator initial positions can be compensated to improve the pose accuracy of the parallel robot.

The pose data of the moving platform and the displacement of the actuator measured by IMU and encoder are sub-
stituted into Eq. (30). The initialization parameters of genetic algorithm are as follows: population = 200, iteration num-
ber = 100, crossover probability = 0.8, mutation probability = 0.05. The optimization results are shown in Table 2 and Table 
3.

After performing the kinematic calibration, the identified parameters are embedded into the control model, replacing the 
nominal ones. To evaluate the kinematic calibration experiment, the pose accuracy is analyzed using the pose points of 
another 36 test poses points before and after kinematic calibration. The pose points consist of 9 uniformly selected posi-
tion points, with 4 posture points chosen at each position, corresponding to the maximum and minimum posture values. 
The corresponding data are presented in Table 4. The data processing for encoders and IMU sensors is embedded in the 
proprietary software, where the manufacturers have performed filtering, outlier removal, and smoothing of the measure-
ment data.

The error curves before calibration (BC) and after identification (AC) are obtained at the aforementioned measured 
points as shown in Fig 13.

It can be seen from Fig 13 that after the error compensation of manufacturing, assembly and actuator, the accuracy 
error is reduced from 3.41 mm, 4.18 mm, 2.97 mm, 1.11°and 0.84° to 0.53 mm, 0.88 mm, 0.42 mm, 0.43° and 0.34° in 

Table 2.  Optimization results of manufacturing and assembly errors in the PUS chain.

CN ∆ψ1i ∆ψ2i ∆λi ∆ri ∆di ∆ψUi1 ∆ψUi2 ∆ψSi1 ∆ψSi2 ∆ψSi3
PUS#1 −0.08 0.14 0.076 −0.98 −1.11 −0.04 0.04 0.01 0.04 0.06

PUS#2 −0.06 0.09 0.081 −0.89 −1.04 0.03 0.07 −0.02 0.01 −0.02

PUS#3 0.09 −0.21 −0.071 0.88 0.94 −0.06 −0.06 0.03 −0.03 0.01

PUS#4 0.12 −0.24 0.049 −1.02 −0.96 0.06 0.07 −0.01 −0.03 −0.03

PUS#5 −0.11 0.18 0.062 1.06 0.87 0.05 −0.04 0.02 0.02 0.04

Note: Angle unit: °, length unit: mm, Chain number (CN).

https://doi.org/10.1371/journal.pone.0330675.t002

Table 3.  Optimization results of manufacturing and assembly errors in the RPUR chain.

Chain ∆ψR1 ∆ψ16 ∆o6 ∆ψR2 ∆ψ26 ∆ψU21 ∆ψU22

RPUR 0.08 −0.06 0.16 −0.07 0.03 0.08 −0.06

Note: Angle unit: °, length unit: mm, Chain number (CN).

https://doi.org/10.1371/journal.pone.0330675.t003

https://doi.org/10.1371/journal.pone.0330675.t002
https://doi.org/10.1371/journal.pone.0330675.t003
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direction of the position x, y, z, angle α and β. The positioning accuracy of the five-degree-of-freedom direction of the 
parallel robot is improved by 84.4%, 78.9%, 85.8%, 61.2%, and 59.1%, respectively. The effectiveness of the calibration 
algorithm is verified through the experimental results.

A paired t-test [34] is employed to verify the statistical significance of the pose errors. Table 5 lists the p-values from the 
t-test for the errors in the five DOF before and after identification. The p-values from the paired t-test are all less than 0.05. 

Table 4.  Dataset of measurement poses and actuator displacements.

Measured point ∆x ∆y ∆z ∆α ∆β θe1 θe2 θe3 θe4 θe5

1 −131.18 335.3 760.33 −20.08 −21.50 233.96 −69.80 −221.88 −15.60 259.14

2 −131.20 335.3 760.36 −20.10 24.53 50.24 −122.26 −19.08 259.62 170.34

3 −131.14 335.1 760.40 21.98 −21.53 207.99 111.13 −143.52 −41.28 102.32

4 −131.12 335.1 760.36 21.88 24.53 76.52 15.74 123.86 85.40 74.24

5 −131.15 10.29 920.38 −20.97 −22.33 376.63 167.28 −6.60 82.35 421.46

6 −131.16 10.27 920.30 −20.93 25.39 153.53 104.11 247.87 534.20 281.99

7 −131.10 10.35 920.34 22.77 −22.28 373.81 382.05 86.79 −7.73 160.47

8 −131.07 10.36 920.37 22.69 25.39 155.84 269.92 494.51 250.83 91.03

9 −131.14 −314.64 760.42 −20.07 −21.66 208.30 108.93 −46.27 −149.05 140.26

10 −131.18 −314.62 760.31 −20.04 24.43 70.53 81.62 82.30 137.15 23.93

11 −131.18 −314.65 760.31 21.99 −21.60 230.52 242.87 −15.72 −224.92 −76.62

12 −131.15 −314.64 760.28 21.96 24.54 48.15 167.61 244.79 −18.86 −134.30

13 −1.14 −314.60 870.38 −22.40 −22.89 276.21 159.78 86.61 55.63 319.89

14 −1.12 −314.54 870.40 −22.27 26.99 62.52 119.61 243.10 398.26 142.93

15 −1.09 −314.62 870.40 23.73 −22.87 310.95 340.89 133.42 −53.23 −6.71

16 −1.11 −314.66 870.35 23.83 27.03 33.78 243.20 419.50 216.97 −88.72

17 −1.18 10.27 980.34 −17.67 −15.99 392.17 208.47 128.16 223.30 477.23

18 −1.19 10.27 980.37 −17.70 18.44 150.62 145.32 335.57 531.07 342.01

19 −1.12 10.12 980.40 16.57 −16.03 392.56 410.95 216.60 128.48 219.17

20 −1.09 10.11 980.37 16.48 18.43 150.40 306.45 498.95 351.80 142.71

21 −1.13 335.21 870.38 −22.17 −22.83 316.70 −0.99 −48.13 132.48 369.04

22 −1.16 335.28 870.29 −22.13 26.90 35.47 −74.39 215.56 435.53 250.94

23 −1.08 335.32 870.34 23.67 −22.77 276.35 259.43 61.16 89.33 154.93

24 −1.07 335.38 870.35 23.60 26.90 69.03 123.24 377.20 246.61 111.14

25 128.88 335.37 760.42 −20.27 −21.67 107.27 −145.35 −42.27 104.19 238.27

26 128.79 335.39 760.30 −20.23 24.63 −141.52 −200.57 136.70 313.90 135.60

27 128.82 335.34 760.29 21.99 −21.60 74.16 51.39 30.76 83.40 61.84

28 128.87 335.40 760.26 21.96 24.73 −113.15 −55.89 237.96 186.35 29.75

29 128.88 10.42 920.36 −21.20 −22.40 328.31 123.09 117.42 191.90 425.88

30 128.88 10.45 920.42 −21.06 25.50 −2.14 54.45 319.85 475.62 252.67

31 128.91 10.35 920.40 22.82 −22.36 324.25 372.08 196.54 114.75 118.27

32 128.93 10.32 920.35 22.93 25.54 0.68 237.55 461.95 320.03 41.48

33 128.82 −314.78 760.33 −19.87 −21.50 73.51 67.82 80.49 23.94 82.74

34 128.80 −314.74 760.38 −19.89 24.33 −119.69 36.82 184.44 244.00 −46.54

35 128.89 −314.87 760.41 22.17 −21.54 101.04 217.64 105.90 −47.03 −151.54

36 128.79 −315.10 760.23 22.00 24.27 −142.88 131.65 302.29 133.03 −211.36

Note: Angle unit: °, length unit: mm.

https://doi.org/10.1371/journal.pone.0330675.t004

https://doi.org/10.1371/journal.pone.0330675.t004
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It is concluded from Table 5 that considering the manufacturing and assembly errors of the components, the pose accu-
racy after kinematic calibration is acceptable.

To further validate the superiority of the proposed algorithm, a comparative study is conducted by performing kinematic 
calibration using artificial neural networks (ANN) [17], Levenberg-Marquardt algorithm (LMA) [16], and gradient-based 
optimizer (GBO) [35]. The identification parameters rather than the original parameters will be embedded into the control 
model. The mean and standard deviation of the errors are presented in Fig 14, where the scalar values for position and 
orientation errors are obtained via their Euclidean norms. It can be observed that the GA yields the lowest mean and 
standard deviation for both position and orientation errors, particularly in terms of position error. Although this superior 
accuracy is achieved at the expense of a higher computational cost, this is not a significant drawback, as offline calibration 
procedures are typically not subject to stringent time constraints.

The proposed self-calibration method is applicable to other parallel robots. The robot’s kinematic model is likewise 
established within the mathematical framework of screw theory, and an error model is constructed by means of the for-
ward kinematics. By mounting sensors on the moving platform and the actuators, motion data from the actuated joints and 
the moving platform can be acquired. These data are then used in conjunction with a heuristic algorithm to identify the 
error parameters.

Fig 13.  Errors of positions and postures before and after calibration compensation.

https://doi.org/10.1371/journal.pone.0330675.g013

Table 5.  p-values of the paired t-tests in the five DOF directions.

Freedom direction t p

x 63.2492123769993 5.56698869303580e-38

y 60.3073254364646 2.90529360520355e-37

z 49.6607674371379 2.41149451739672e-34

α 18.4220716298725 6.82735670364796e-20

β 41.3926351741914 1.27385246363205e-31

https://doi.org/10.1371/journal.pone.0330675.t005

https://doi.org/10.1371/journal.pone.0330675.g013
https://doi.org/10.1371/journal.pone.0330675.t005
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5.  Conclusions

In order to improve the pose accuracy of the 5PUS-RPUR parallel robot, a method of kinematic error analysis and identifi-
cation of the parallel robot is proposed. The main conclusions are as follows.

1)	Combined with the screw theory, PK subproblems and elimination method, the inverse displacement of the series chain 
is analyzed to obtain the analytical solution of the inverse kinematics of the parallel robot.

2)	The farthest point sampling algorithm is utilized to select measurement points uniformly throughout the robot’s work-
space. This strategy ensures a comprehensive coverage of global errors, which is beneficial for improving the precision 
of the identification process.

3)	By constructing an objective function that incorporates both the actuator displacement errors from each chain with the 
overall pose error of the moving platform, the coupling effects between chain parameters can be indirectly eliminated. 
This approach facilitates a globally optimal error identification result, thereby enhancing the pose accuracy of the paral-
lel manipulator in all directions.

Future work will address errors that arise under dynamic loading, taking into account non-geometric factors such as the 
robot’s elastic deformation, and vibration. This will be achieved by integrating real-time error estimation methods with the 
offline geometric error compensation framework established in the present study.

Supporting information

S1 Table.  This table presents the specific data for the pose error of the 5PUS-RPUR parallel robot, as depicted in 
Fig. 14. 
(XLSX)
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