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Abstract

This study presents a hybrid stochastic model for evaluating delays and buffering in
5G-loT ecosystems with programmable P4 switches, where traffic patterns exhibit
strong batch-like properties. The proposed approach integrates a batch Markovian
arrival process (BMAP) with a phase-type service structure and semi-Markov mod-
elling of control-plane interactions, thereby capturing both the temporal variability

of loT traffic and the hybrid nature of routing logic. Analytical expressions for the
expected processing time and queue length were derived using extended G/G/1,
H,/H,/1, M/G/1, and M/N/1 queueing frameworks. Unlike traditional queueing mod-
els, the proposed framework is the first to simultaneously incorporate BMAP-driven
bursty arrivals, phase-type service distributions, and semi-Markov representation of
control-plane interaction dynamics. This integrated design enables more accurate
characterisation of real loT traffic and significantly improves predictive accuracy. The
model was validated on real-world traffic datasets, demonstrating that BMAP more
accurately reflects the structure of 10T traffic than classical Poisson or MMPP mod-
els. Notably, the BMAP-based approach reduced the modelling error by up to 38%
compared to Poisson-based approximations and by 22% compared to MMPP-based
ones under bursty traffic conditions. Simulation results confirm that increasing the
control-plane involvement probability from 0.2 to 0.7, under a fixed average batch
size of 12 requests, leads to a 2.6-fold increase in processing delay. Furthermore, the
H,/H,/1 model showed the highest alignment with empirical data, accurately reflecting
the multi-phase service structure and control flow saturation effects. Additional 3D
analyses revealed strong nonlinear dependencies of delay on the batchiness factor,
dispersion in processing times, and phase asymmetry parameters.
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1. Introduction
1.1. Relevance of the research

The rapid development of wireless communication technologies and the large-scale
deployment of intelligent devices have driven the exponential growth of Internet

of Things (IoT) ecosystems [1]. One of the key drivers of this transformation is the
implementation of 5G networks, which significantly enhance the scalability, respon-
siveness, and adaptability of 10T infrastructures [2, 3]. According to the loT Analytics,
the number of connected loT devices reached 16.6 billion in 2023, representing a
15% increase compared to the previous year. It is projected that this figure will reach
18.8 billion by the end of 2024 and will exceed 40 billion by 2030, as a result of
ongoing digitalisation across industries such as manufacturing, healthcare, logistics,
agriculture, and urban infrastructure.

This dynamic increase in the number of sensor, actuator, and edge devices
introduces new challenges for network infrastructure, particularly in terms of latency,
throughput, and the flexibility of traffic processing. The wide range of modern appli-
cations (from autonomous transport and industrial automation to telemedicine and
augmented reality systems) demands ultra-low data transmission latency with
guaranteed Quality of Service (QoS) [4,5]. While 4G LTE networks typically provide
latencies of 30—50ms, 5G technologies can reduce this figure to below 10ms, and,
with the activation of Ultra-Reliable Low-Latency Communication (URLLC), even to
1ms under controlled conditions [6]. In addition to low latency, a critical requirement
is the network’s adaptability to unpredictable traffic changes. Typical loT traffic is
highly heterogeneous, periodic or event-triggered, resulting in bursts of messages
with a clustered structure. This uneven arrival pattern complicates the use of classical
queuing and scheduling methods and instead necessitates dynamic reconfigura-
tion and context-aware routing [7]. Moreover, the 5G architecture supports massive
Machine-Type Communication (mMTC), capable of serving up to one million devices
per square kilometre [8,9], opening new opportunities for large-scale deployments in
the segment of low-power, low-data-rate devices. However, this very scalability con-
tributes to increased variability in both the rate of arrivals and the intensity of request
processing, particularly in programmable networks involving P4 switches and analyti-
cal modules. Thus, in the context of the convergence of 5G and loT technologies, the
modelling and control of delays, as well as the adaptive processing of traffic, are no
longer merely matters of optimisation, but rather essential prerequisites for ensur-
ing the stability, flexibility, and scalability of network services. This necessitates the
development of new analytical and stochastic models capable of accurately capturing
the complex behaviour of traffic and the dynamics of network systems. Such com-
plexity arises not only from the volume of transmitted data, but also from the specific
structural features of loT traffic, its bursty nature, temporal clustering, and the inter-
play between local and centralised decision-making. These factors lead to phased
processing workflows and hybrid routing, which challenge conventional modelling
assumptions. As will be further detailed in Section 1.2, classical queueing models
offer limited analytical capability under such conditions, thereby motivating the inte-
gration of programmable and adaptive mechanisms into network infrastructure.
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Contemporary challenges associated with the processing of unpredictable, clustered traffic in 5G-loT ecosystems have
necessitated a shift from rigidly predefined routing logic to programmable network solutions. In this context, program-
mable P4 switches play a particularly important role [9,10]. These network devices enable adaptive traffic management
at the data link and network layers, in accordance with current conditions, service policies, and dynamic analytics. The
P4 (Programming Protocol-independent Packet Processors) programming language [11] enables users to define packet
processing logic in the form of match-action tables, which are implemented directly in the switch’s hardware. This archi-
tecture provides protocol independence, dynamic reconfigurability of switching logic, and support for complex routing
scenarios in real time. In 5G-loT environments, in particular, it opens up opportunities for data burst aggregation, conges-
tion detection, adaptive queue management, and prioritisation based on quality of service (QoS) requirements. In contrast
to traditional switches with fixed functionality, P4 switches can be reprogrammed dynamically in response to changes in
topology, traffic intensity, or service requirements. When integrated with analytical modules or Software-Defined Network-
ing (SDN) controllers, these devices enable distributed or hybrid decision-making logic, wherein part of the processing is
executed locally and part centrally. This configuration achieves a balance between responsiveness and adaptability, which
is critically important for loT applications characterised by high traffic variability. So, programmable P4 switches serve as
a key technological component within 5G-loT infrastructure, enabling the development of intelligent routing policies that
adapt to real transmission conditions, support QoS-oriented traffic processing, and contribute to the overall enhancement
of network ecosystem performance [9,10]. At the same time, the increased flexibility and programmability of such network
components introduce additional layers of complexity in the evaluation and management of system performance. The
ability to adapt routing logic dynamically, combined with the heterogeneous and bursty nature of IoT traffic, necessitates
a refined approach to the modelling of delays and buffering. Rather than relying on static or oversimplified assumptions,
modern 5G-loT environments require stochastic models capable of representing clustered message arrivals, phased pro-
cessing procedures, and hybrid interaction between decentralised switches and centralised controllers.

Traffic in 5G-loT ecosystems is generated not only by continuously active streams, but primarily through periodic,
event-triggered, or synchronised data transmissions. This results in the formation of message bursts arriving at network
nodes in clustered patterns, interspersed with periods of inactivity. Such behaviour is typical, for example, in sensor
networks, monitoring systems, smart meters, or surveillance cameras. Special attention must be given to the interaction
between P4 switches and analytical modules or controllers, which define the processing rules for new flows. A portion
of requests, for which no predefined routing rules exist, requires additional analysis at the control plane level, leading to
the formation of a parallel queue of service messages. Delays in this queue contribute to the overall processing time of
requests, particularly under conditions of network congestion. Thus, realistic modelling of delays and buffering in 5G-loT
environments requires consideration of multiple factors: the bursty nature of traffic, the phase structure of processing, the
interaction between the data plane and control plane, as well as stochastic fluctuations in arrival and service intensities.
This creates an objective need for the development of advanced analytical models capable of adequately representing the
multifactor dynamics of loT traffic and the associated behaviour of queues and delays, as further discussed in Section 1.2.

1.2. State-of-the-art

Against the backdrop of the rapid increase in variable |oT traffic, there emerges a pressing need for adequate modelling of
delays arising in software-defined network (SDN) environments, particularly when programmable P4-based switches are
employed. In the classical SDN architecture [12, 13], traffic processing follows two scenarios: local handling of packets at
the data plane (when an appropriate flow-entry exists in the switch’s table), or redirection of the request to the controller
(control plane) to obtain processing instructions. This approach creates significant dependencies between delay and the
flow table hit probability, as well as the overall intensity of requests directed to the controller.

The study in [14] presents an analytical model of SDN networks with Priority Queues (PQ), which accounts for the
bursty nature of traffic, modelled using a Poisson process modulated by a Markov chain (MMPP). This model enables
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the evaluation of average delay, taking into consideration the flow table hit probability, the limited buffer sizes at both the
switch and the controller, as well as varying service rates. It was demonstrated that even with a 50% hit rate (¢ = 0.5),
delay is significantly influenced by the distribution of computational resources between the SDN switch and the controller:
prioritising the switch (s > u¢) considerably reduces average delay, whereas overloading the controller creates a bottle-
neck in request processing.

A distinctive feature of the PQ model is the presence of two queues — a low-priority queue for regular traffic and a
high-priority queue for control messages from the controller. This structure allows for an accurate representation of the
system’s real behaviour, in which requests lacking predefined flow entries experience a two-phase delay: first, waiting for
transmission to the controller, and then awaiting the return of processing instructions and subsequent rehandling of the
packet.

Studies [15] indicate that classical SDN architectures suffer from critical delays in scenarios involving the mass arrival
of new flows, particularly in distributed loT deployments. In a network comprising 100 switches, the volume of control traf-
fic may reach 10 million requests per second, placing an unsustainable load on controllers — even those with multithread-
ing support. Under such conditions, the only viable solution is a transition to a decentralised control-plane architecture
(e.g., ONOS or Kandoo), which enables local controllers to manage sub-networks, thereby minimising latency and limiting
the scope of signalling.

Moreover, models incorporating MMPP arrival processes and PQ servicing open new possibilities for accurately mod-
elling average delay, queueing time within individual queues (data plane/ control plane), buffer blocking probabilities, and
overall system throughput [14]. For example, increasing the switch’s service rate from 5 to 40 packets per second reduces
the average system delay from 16 to 3 seconds, demonstrating the effectiveness of shifting computational load to the data
plane.

In the traditional approach to modelling delays in SDN, M/M/1-type models with exponential inter-arrival and service
times are most commonly used [14, 16, 17]. Despite their mathematical simplicity, such models fail to capture the funda-
mental characteristics of IoT traffic, particularly its clustered nature, variability, and phased processing. As demonstrated in
[17], even in basic SDN architectures, applying M/M/1 models to both the data plane and control plane results in underes-
timated delay values and does not reflect the alternation between control and user traffic flows. In more complex scenar-
ios, such as P4 environments with combined (hybrid) routing, these models become entirely unsuitable.

The M/G/1 model [18, 19], which allows for an arbitrary service time distribution, can partially reflect differences in pro-
cessing depending on QoS class, the complexity of P4 programs, or the load on the switch. However, the assumption of
Poisson arrivals renders the model sensitive to inaccuracies in cases involving burst transmissions. As highlighted in [19],
M/G/1 is unable to capture scenarios involving batch queue formation, which typically occur during mass sensor activa-
tions or at peak load points in 5G-loT environments.

More flexible are MMPP/M/1 models, which allow for the modelling of time-varying packet arrival intensities — such as
the transition of devices from inactive to active states [20]. In the context of SDN with priority queues, such models enable
the representation of delay as a function of the flow table hit probability. However, constructing even a simple two-phase
system (e.g., switch +controller) requires a complex multi-component decomposition. Researchers in [21] were compelled
to apply the Empty Buffer Approximation method, which yields only approximate results and performs particularly poorly
under high-load conditions — for instance, with hit probability e — 0, the average delay exceeds 15 seconds at an arrival
rate of 50 packets per second.

The Batch Markovian Arrival Process (BMAP), unlike the previously discussed models, enables the representation
of batch traffic arrivals, which are typical of periodically synchronised sensors. Its potential for SDN applications is con-
siderable, particularly in scenarios where processing depends on the class or criticality of the request. However, as
demonstrated in [22], even in complex SDN-IoT environments, BMAP is most often employed in isolation and without
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consideration of multi-stage processing or hybrid routing, which limits its applicability for comprehensive delay modelling.
Moreover, BMAP-based models frequently remain at the simulation level, lacking analytical generalisation, thereby pre-
venting their direct use in QoS optimisation.

Phase-type models, particularly H,/H,/1, are potentially the most suitable for describing the real processing workflow in
SDN with P4 switches, as they allow for sequential handling in the data plane, redirection to the control plane, and sub-
sequent retransmission. However, as noted in the review [23], such models are rarely applied to SDN due to their highly
complex parameterisation requirements (e.g., phase-specific service time distributions dependent on load), and they
seldom yield closed-form analytical expressions for processing time or buffer loss probability.

1.3. Main attributes of the research

The object of the study is the process of stochastic modelling of delays and buffering in 5G-loT ecosystems with program-
mable P4 switches under conditions of clustered traffic.

The subject of the study is stochastic models for the analysis of queues and delays in hybrid routing scenarios, tak-
ing into account QoS priorities, the bursty nature of arrivals, and the interaction between data-plane and control-plane
components.

The aim of the study is to develop a generalised stochastic model that enables an adequate assessment of the average
request processing time and queue length in 5G-1oT infrastructures with programmable network devices operating under
hybrid routing logic.

To achieve the stated aim, the following objectives are set:

1. To analyse the architecture of information interaction in 5G-loT systems with P4 technology support;
. To formalise the processes of request arrival and processing, taking into account the bursty nature of traffic;

. To construct an analytical model of stochastic interaction between P4 switches and the analytical control module;

A WON

. To evaluate the average request processing time and queue length under hybrid routing conditions, using G/G/1 and
H,/H,/1 models.

The main contribution of this study is the development of a hybrid analytical and simulation-based model that accu-
rately characterises delays and buffering processes in 5G-loT ecosystems featuring programmable P4 switches. This
model uniquely integrates a batch Markovian arrival process (BMAP), phase-type service distributions, and a semi-Markov
representation of control-plane interactions. By extending classical queueing systems (G/G/1, H,/H,/1, M/G/1, M/N/1) with
stochastic feedback between the data and control planes, the research provides novel analytical expressions for mean
processing time and queue length under realistic traffic conditions. The model’s validity is confirmed through empiri-
cal data, with the H,/H,/1 configuration and BMAP arrival patterns demonstrating superior alignment with observed loT
behaviour compared to traditional Poisson-based approximations. These results offer a robust framework for optimising
QoS-aware hybrid routing and resource allocation in programmable, delay-sensitive network infrastructures.

The adequacy and practical value of the model are confirmed through numerical simulation and validation based
on empirical characteristics of real loT traffic from an open dataset. This substantiates the advantages of the proposed
approach over classical models under bursty and highly variable load conditions. The results obtained can be used to
optimise QoS parameters and enhance the efficiency of network service delivery in next-generation intelligent ecosystems
with programmable components.

The subsequent sections of the article follow a consistent research logic encompassing the formalisation of the prob-
lem, the construction of an analytical model, its empirical validation, and the interpretation of results in the context of delay
and buffering within 5G-loT environments equipped with programmable P4 switches.
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Section 2, “Models and Methods”, presents a formalised description of the information exchange architecture between
the P4 switch and the analytical module, defines the parameters of clustered arrivals and introduces a hybrid stochastic
routing model that combines a BMAP input, phase-type H,/H,/1 distributions, and a semi-Markovian representation of
interaction between the data and control planes. Subsection 2.2 focuses on the processing of requests within the analyt-
ical module using a semi-Markov approach, which involves queueing analysis under random service durations modelled
by a truncated normal distribution. Subsections 2.3—-2.4 generalise the model to scenarios involving hybrid routing and
phase variability, incorporating the G/G/1 framework and its refinement via the H,/H,/1 scheme, which enables an ade-
quate description of delays under multiphase request processing.

Section 3, “Results and Discussion”, presents the empirical verification of the model using the open-access dataset
loT Traffic Generation Patterns (Kaggle): time series were constructed, histograms of clustering and inter-arrival intervals
were generated, the density of inter-packet intervals was estimated using KDE, and the accuracy of service time distribu-
tion approximation was compared across M/N/1, H,/N/1, and H,/H,/1 models (Fig 5). A series of three-dimensional visual-
isations (Figs 6-9) illustrates the dependence of average delay on service parameters, phase asymmetry, and processing
time dispersion. Particular attention is given to an additional experiment conducted on traffic from four devices, which con-
firms the generalisability of the model beyond the core scenario (Figs 10—-11). The analytical section concludes with Table
1, which presents a comparative analysis of the proposed approach against the most relevant state-of-the-art counterparts
reported in the literature, thereby enabling an objective evaluation of its advantages in terms of modelling accuracy.

Finally, Section 4, “Conclusions”, summarises the scientific findings, confirms the benefits of the combined model in
capturing phase-sensitive and clustered traffic, and outlines prospects for its further application in QoS-oriented manage-
ment within next-generation intelligent networks.

2. Models and methods
2.1. Statement of the research

A typical scenario of information interaction in a 5G-loT ecosystem employing P4 technology is presented in the structural
diagram (Fig 1). The upper section features the analytical module, which performs functions such as traffic monitoring,
analysis of buffering and delays, congestion detection, and dynamic adjustment of service parameters. The lower section
of the diagram depicts the 5G-loT P4 switch, which implements programmable traffic processing logic, adapting forward-
ing rules according to instructions received from the analytical module. Interaction between the modules occurs via a
bidirectional data exchange channel: upward communication conveys queue statistics and delay characteristics, while
downward communication delivers control messages with policy parameters, processing order, and priority levels. The
mathematical framework describing this information interaction (within the basis of queueing theory and accounting for the
specific traffic structure) will be formalised in the following sections.

In modern 5G-loT ecosystems, a significant portion of traffic is generated by end devices (sensors, meters, video
cameras) exhibiting periodic activity or reacting to external events. Under such conditions, data is typically transmitted not
as individual independent packets, but as groups (or bursts) formed in advance or triggered simultaneously — often as a

Table 1. Delay and queueing characteristics under varying input conditions.

Mean Batch Size Mean Service Time (ms) Mean Delay E[T] (ms) 95% CI E[T] (ms) Mean Queue Length E[Q] 95% CI E[Q]
3 1.0 4.75 [4.62, 4.89] 4.69 [4.53, 4.85]
5 1.0 7.91 [7.74, 8.08] 7.85 [7.64, 8.07]
7 1.0 11.42 [11.16, 11.69] 11.36 [11.04, 11.68]
9 1.0 15.09 [14.75, 15.43] 15.02 [14.60, 15.44]
5 2.0 15.70 [15.31, 16.09] 15.60 [15.15, 16.05]

https://doi.org/10.1371/journal.pone.0330526.t001
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Fig 1. Diagram of the information interaction scenario in a 5G-loT ecosystem with integrated P4 technology.

https://doi.org/10.1371/journal.pone.0330526.9001

result of event-based activation. This is characteristic of buffered transmission scenarios, in which data is accumulated
over a defined period (e.g., every five minutes) and then transmitted collectively. Contemporary P4-enabled switches are
capable of aggregating or classifying incoming traffic according to predefined policies, further reinforcing the formation of
batch arrivals. Consequently, in the context of a 5G-loT ecosystem, the application of the BMAP arrival model allows for
a more accurate representation of real traffic characteristics at the network level and ensures adequate queue modelling
that accounts for correlations, intensity, and the bursty nature of events.

We consider the request processing procedure at a node within a 5G-loT ecosystem equipped with P4 support. Each
incoming packet (request) arriving at a programmable network device (e.g., a gNB or edge switch) undergoes preliminary
analysis to identify its flow and to match an appropriate processing or forwarding rule within the existing match-action
tables implemented via P4. If no corresponding rule is found for the given flow in the tables, the device generates a
special control message containing a description of the received request and forwards it to the analytical or coordination
module — functionally analogous to the controller in traditional SDN scenarios.

Within this module, the flow parameters are analysed, an appropriate processing policy is determined (e.g., scheduling
order, routing path, service class), and a rule is generated and sent back to the programmable device for insertion into the
corresponding match-action table. In the case of employing a BMAP-based model and supporting QoS priorities, the rule may
include additional parameters related to acceptable delay thresholds, permissible buffer load, or policies for handling bursty
traffic arrivals. This approach enables the network subsystem to flexibly adapt its behaviour to changing traffic conditions in
real time, which is particularly important for 5G-loT ecosystems characterised by high variability and intensity of packet flows.

To describe the servicing process of incoming traffic at a P4 switch within a 5G-1oT ecosystem (taking into account the
bursty nature of arrivals) we introduce the following primary parameters:

- )\,.(b) denotes the arrival rate of request bursts to the i-th programmable network device (e.g., a P4 switch or network
node);

- ,u,-(b) characterises the distribution of the number of requests within each burst (determining the average burst size or
the probability of a given number of requests appearing in a BMAP model);

- uf’) represents the service rate of an individual request by the i-th device in the ecosystem (e.g., the average process-
ing rate per packet).

The study [24] proposes an analytical model of information interaction within an SDN network infrastructure, synthe-
sised on the basis of M/M/1 queueing systems. In the referenced work, it is assumed that a burst of n requests arrives at
the i-th programmable network switch, i € {1, m}, where k requests are already waiting in the queue for processing. While
this approach allows for the evaluation of certain queue characteristics, it does not account for the batch-like nature of
arrivals, which is typical of 5G-loT environments.
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Within the framework of the M/M/1 model, which is used for the initial analytical approximation of processes in a 5G-loT
ecosystem with programmable network switches, it is assumed that the /-th request in a burst arriving at rate )\fb) will be
processed after k requests that were already present in the queue at the time of arrival, and after /-1 requests that pre-
cede the /-th request within the same burst. Based on this assumption, the average waiting time for the / th request in the
queue is estimated as:

"
= (k+1- /u "

Then, taking into account that the average position of a request within a burst is denoted by (u(b) + 1)/2 the average
waiting time of a random request in the queue is given by:

(b)
= (k—l—’ul 9 1)//},]@.
(2)

Using Little’s classical relation, we obtain an estimate for the average queue length

(b) (b) (b)  (b) N( -1 "
(3)

Let us now consider the procedure for forwarding control messages to the analytical control module within a 5G-1oT eco-
system with P4 support. A description of this information interaction was provided at the beginning of the section. Assum-
ing that the arrival of requests at the i-th programmable network switch follows a Poisson process with parameter A, and
that the processes at all m switches are independent, the aggregate flow of control messages arriving at the analytical
module (which functions as a controller in classical SDN scenarios) also constitutes a Poisson process. Thus, for the
analytical module serving m independent P4 switches in a 5G-loT ecosystem, the incoming flow of control messages is
formed as the sum of independent Poisson processes. For the i th node, i = 1, m, the arrival rate of control messages is
denoted by )\,.(Cp) (representing control-plane traffic), and the total arrival intensity to the control module is defined by the
following expression:

k

A(ep) — Z )\i(cp).

i=1 (4)

Upon receiving a control message request from a P4 switch, the analytical control module determines the appropriate
processing rule for the flow to which the request belongs. The flow of such control messages is formed according to the
intensity defined by expression (4). To process each message, the analytical module’s processing block dequeues the
incoming request once the previous one has been handled. Subsequently, the analysis procedure is carried out, which
involves a search within the Forwarding Information Base (FIB) tables. These tables contain routing or policy-dependent
information, preconfigured based on system rules, statistical data, or dynamic monitoring. Finally, the generated process-
ing or routing rule is encapsulated in a control message and transmitted back to the corresponding switch, where it is used
to update the match-action tables within the P4 pipeline.

During the processing of an incoming control message request received from a P4 switch, the analytical control module
performs a rule lookup in the FIB tables, implemented via the Longest Prefix Match mechanism. Accordingly (by anal-
ogy with [24, 25]), it is assumed that the lookup time in the FIB table follows a truncated normal distribution with a mean
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1) and a variance D(°P). The parameter 1(®) is interpreted as the average processing time of a control message by the
analytical module, while the parameter D(°?) denotes the standard deviation of this processing time. The queue within the
module is organised according to the FIFO (First-In — First-Out) principle, and the arrival A\ and service (%) processes
are assumed to be independent. Based on these assumptions, the processing of control messages by the analytical mod-
ule can be modelled using a queueing system of type M/N/1, where N denotes a normal (Gaussian) distribution of service
times.

The use of BMAP is particularly appropriate for real-world loT scenarios, such as synchronised sensor reporting or
scheduled telemetry from smart meters, where messages arrive in correlated bursts rather than as independent events.
These practical traffic patterns motivate the batch-oriented perspective used in the proposed model.

2.2. Semi-Markov Approach to Queue Analysis in the Analytical Module

To analyse the queue in the analytical control module, we apply a semi-Markov approach in which the system’s state tran-
sitions occur at the moments when message processing is completed. At these instances, an embedded Markov chain

is defined, describing the number of messages in the system at the departure of each processed request. This approach
corresponds to the methodology proposed in [26] for the analysis of an M/G/1 system using the supplementary variable
method. The same approach was applied to queue modelling in the analytical control module in [25].

Let the queue length of service messages at moment t be denoted by Q (f). At a fixed moment ¢, if a message is being
processed in the system, the distribution of the residual service time does not depend on time ¢, and the process charac-
terising the queue length {Q t),t> 0} loses its Markovian properties.

Let s; denote the number of service messages that have arrived at the analytical module during the processing time
of the i th message x. Then the sequence {s;,i > 1} forms an embedded Markov chain, which can be used to construct
recursive relations or to derive the probabilistic characteristics of the service system.

The variable x; denotes the random duration of processing of the j + 1 -th service message by the analytical control
module. According to the assumptions concerning the truncated normal distribution, the probability density function ¢ (x;, t)
is given in the form of equation

f— (P2
(b(xi,t)ziexp _M 7t>0_
2v/ wD(cp) 2D(cp)

()

Denote by u; the number of service messages that arrive at the analytical control module during the processing of the

Jj+ 1 -th message. The random duration of processing of this j+ 1 -th service message in the analytical control module is
equal to x. Then, under the assumption of a Poisson arrival process for service messages, the probability that y =k holds
is determined, according to the law of total probability, as follows:

00 N k
U(u=k = / (A(;)X) exp (—/\(Cp)x> p(x)dx, k=0,1,2,...,
0 ' (6)

where (w:x)k exp (—)\("P)x) is the probability of receiving k messages within the time interval defined by the random vari-
able x with a Poisson distribution.

Introduce the parameter g, = U (u; = k) which represents the probability that k new service messages arrive at the
analytical control module during the processing of a single service message. In this case, the sequence {u,-,j > 1} con-
stitutes an embedded Markov chain, in which the transition from state j to state j = i+ k occurs with probability 3y, as
defined by expression (6). This implies that, for each state i, transition probabilities to states i, j+ 1, i+ 2, ..., that is, to
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states with higher indices — are determined according to the number of messages received during the processing of the
current request. In terms of the transition probability matrix P for this chain, the following relation is obtained:

Bo B1 B2 B3
Bo B B2 Bs
P=100 Bo B P2

0 0 B B

Taking into account expressions (5) and (6), the generating function method can be applied to estimate the queue char-
acteristics of the analytical control module, based on the M/G/1 queueing system framework. Within this formulation, the
average queue length of service messages arriving from P4 switches to the analytical module is determined by equation

(p()? + (A(eP) p(eP))?

2(1-p) (7)

QP = o) 4

where p(®?) denotes the load factor of the analytical control module.
Based on relation (7), the average time a single service message spends in the system (including both waiting and
processing) can be calculated using expression

1 (p())? + (A(eP) D(ep))?
u(eP) + 2)(cp) (1 — p(cp)) ) (8)

+lep) —

Formula (8) accounts for both the average load intensity and the variability of processing time, which are characteristic of
control-plane traffic in 5G-loT ecosystems featuring P4-programmable components.

A switch in a P4-programmable network maintains a buffer for all requests arriving at any input port and processes
them in accordance with the forwarding rules defined in the system (match-action tables). The forwarding procedure,
described in detail earlier, aligns with the general interaction framework within a 5G-loT ecosystem. Consider the i th P4
switch receiving incoming traffic in the form of request batches with intensity AP where the average number of requests
per batch is described by parameter ,ufb). The switch processes individual requests at an intensity u,('). The parameter q,
denotes the probability that a request arriving at the i-th node belongs to a new flow, i.e., it requires the creation of a new
processing rule. In this case, the switch generates a service message request to the analytical control module with inten-
sity AP = q,-)\,-(b)u,-(b). The total flow of service messages to the analytical module from m P4 switches has already been
presented in the form of equation (4), while processing is carried out at an average rate (°?). The responses generated
by the analytical module are used to update the forwarding rules in the corresponding switch.

Considering the two possible processing scenarios within an information and communication system (direct processing
within a P4 switch or forwarding involving the analytical control module) the total forwarding time T,("’t) for a request arriv-
ing at the i-th node can be defined. In the case where the analytical module is involved, the total forwarding time consists
of two components: the time 7-,.(r) required to process the request in the i-th P4 switch and the average duration 7—,.(0") of
processing the corresponding service message in the control module. Taking into account the probability g; that a request
belongs to a new flow, the expected processing time for a single request can be expressed as equation

(tot) T,-(r)Vl —qi
Tj - (n (P,
7+ 1%Pvg;. 9)
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Thus, the average processing time of a request within the ecosystem is defined as the expected value of the forwarding
time of requests through the programmable switch, in accordance with the routing logic.

2.3. Stochastic model of hybrid routing in a 5G-loT ecosystem with P4 switches

Taking into account the average position of a request within a batch of mean size ufb), arriving at a P4 switch with inten-
sity Afb), the waiting time of a randomly selected request before processing begins is estimated using equation (2), which
generalises the M/M/1 model for scenarios with batched arrivals. This approach enables consideration not only of the
average queue length but also of the position of the request within the batch. For those requests that initiate the genera-
tion of service messages (with probability g), an additional processing time in the control module is introduced, modelled
within an M/G/1 service system. The average processing time of a single service message, accounting for normal distribu-
tion and variance, is computed using equation (8), while the intensity of the service message flow is determined according
to expression (9). As a result, the average processing time of a request within a 5G-loT ecosystem with P4 switches is

defined as follows:

oo N (" +1) L () (A<cn>o<cp>>2>
I
(

+ Qi +

2 (1 A g ( (o) 2A) (1= pleP)) )
Expression (10) integrates the temporal characteristics of local processing within the P4 switch (equation (2)) and the
centralised handling of service traffic in the control module (equations (8) and (9)), thereby forming a generalised estimate
of delay under conditions of hybrid routing.

To further formalise the request processing procedure within a 5G-loT ecosystem with P4 support, auxiliary parameters
are introduced to succinctly describe the temporal characteristics of service. Specifically, parameter x; = 1 T,.(’) represents
the processing intensity of an individual request in the d-th P4 switch, while parameter K(°P) = 1/7_(cp) denotes the aver-
age processing intensity of a service message in the analytical control module. These parameters enable the definition of
probability density functions for the corresponding random variables. The density function for the exponential distribution
of the processing time of a single request in a P4 switch is defined as equation

¢I.(r) (u) = kjexp (—ku), u>0. (11)

Expression (11) describes the probabilistic nature of the service duration for a single request within the i-th node of the
5G-loT ecosystem. For the analytical module, where the processing time follows a truncated normal distribution with mean
7(%) and variance D(°P), the probability density function is defined in the following form:

P (u) V2 <_(U_T(Cp))2> ,u>0.

= 755" |~ @ 12)

Equations (11) and (12) describe the stochastic nature of request processing times in the two key components of the
5G-1oT system (the switch and the analytical module) and will serve as a foundation for the development of subsequent
probabilistic models for performance analysis.

Assuming that the processing durations in the P4 switch and the analytical module are independent random variables,
and taking into account expressions (11) and (12), the probability density function of the request processing time (consid-
ering both routing scenarios) can be derived from equation (9) as expression
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WP (1) = (1-q) ¢ (u) + g; [(25,@ (u) * ¢ (U)] ;

(13)
where the symbol denotes the convolution of probability density functions.
The second term in expression (13) can be represented as:
u 2
1 (X— T(Cp))
qi/ \/mexp ( C) kiexp (—k;i (U—x)) dx. .
0

The upper limit of integration in equation (14) (variable u) for a normal distribution is infinite: y—co. However, in the case
of a truncated normal distribution, it is interpreted as a finite value y=T, which corresponds to the maximum allowable
processing duration of a service message in the analytical control module.

In an M/G/1 queueing system (specifically, an M/N/1 model), which combines an exponential distribution of processing
time in the switch with a normal distribution of processing time in the control module, the probability density function of the
total request processing time can be represented as:

@) (u) = (1 + qj) kjexp (=kjU) + GizL exp (—k u) x

i

y <(\/2£1)W)2 n (D(CP)H? +2/{,) {1—(1) (\/\D/(? ("Qi_ H,E}(DP)))]) ) (15)

where d(x) = % fzexp(_tQ)dt denotes the Laplace transform, and Q; = % [1 + @ (
0

m)} is the normalising constant
Ri

-
ensuring that condition [ x("%) (u) du = 1is satisfied.
0
In the case of a truncated normal distribution, the normalising constant 2., which ensures that condition
;
/ gp,.(""p) (u) du = 1is satisfied, is defined by equation (; = 1@ ((,«% \/D(Cm)/\/i), where the Laplace integral function
O 1

®(x) represents the probability that a normally distributed random variable Z ~ N(0, 1) takes on a value less than x. The
computation of the values of function ® (x), required to determine 2;, can be performed either using tabulated data or
numerical methods. Tabulated values are provided, for instance, in the appendices of classical statistical textbooks or in
the ISO 3534-1:2020 standard. For numerical evaluation of the Laplace function, modern mathematical libraries offer
practical solutions: in Python, the function is implemented as scipy.stats.norm.cdf(x); in MATLAB, as normcdf(x); and in R,
as pnorm(x). Thus, despite the analytical complexity associated with integrating the Laplace function, modern tools enable
efficient calculation of normalising coefficients for subsequent use in modelling request processing times in information
and communication systems.

In conclusion, the average request processing time in an M/N/1-type information and communication system, which
models the behaviour of centralised routing within a 5G-loT ecosystem featuring P4-programmable components, can be
expressed in the form of equation

rep) — 1290, GiZi

Kj Ki? , (1 6)
where Z; = 54 exp (W + D(eP) 2 — 25,-) [1 - (‘/\D/(? (n-,-— ,WD1<cp> ))] .

Taking into account expression (9), which defines the intensity )\,.(C”) = q,-Afb)ufb) of service message generation, the
average queue length of service traffic in the control module can be represented as equation

1—a: T
ngir,cp) _ A§Cp) {ql + ql2l}.

Ki K;

(17)
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The derived expressions for the average request processing time (equation (16)) and the average queue length of service
traffic in the control module (equation (17)) enable a quantitative assessment of the performance of a 5G-loT ecosystem with
programmable P4 switches. In particular, the parameters 7',-(Cp) and Q,-(Cp) can be used to determine the processing intensity
of the service flow and the efficiency of data flow management. The presented analytical expressions remain relevant under
conditions where the incoming traffic follows an exponential inter-arrival distribution, as is typical for classical M/G/1-type
models. However, considering that modern 5G-IoT services (such as monitoring systems, sensor network management, and
autonomous devices) generate traffic with irregular and non-Poisson characteristics, classical models may prove insufficient.

In the proposed analytical framework, queueing systems such as G/G/1 and H,/H,/1 are considered under the assump-
tion of infinite buffer capacity and no packet drops. This assumption serves two essential purposes. First, it ensures
analytical tractability by enabling the derivation of closed-form expressions for key performance indicators such as mean
delay, queue length, and response time distributions. Modelling with finite buffer constraints would necessitate the intro-
duction of additional boundary states or numerical simulations, complicating the analysis without significantly altering the
qualitative understanding of system behaviour under stable operating conditions. Second, the assumption aligns with
real-world 5G-loT deployments, particularly in environments involving programmable P4 switches and cloud-edge infra-
structures, where buffer overprovisioning, queue isolation, and traffic shaping are standard practices. These mechanisms
effectively mitigate the risk of buffer overflow in typical applications such as smart metering, environmental sensing, and
industrial automation, where data transmissions are periodic, short, and often prioritised.

2.4. Modelling delays in a 5G-loT ecosystem with P4 switches based on the G/G/1 framework

In contemporary 5G-loT ecosystems featuring programmable P4 switches and centralised routing control, it is essential to
account for the stochastic nature of traffic, which significantly differs from classical Poisson-based scenarios. To address
this, it is necessary to move from the M/N/1 model to a more flexible G/G/1 queueing system, which enables the modelling
of both arbitrary inter-packet intervals and variable request processing times.

Based on formulas ()15 ()16 , and (17), expressions for estimating the average processing time and queue length have
already been derived under the assumption of exponential service characteristics within the switch. To extend this model
(particularly in cases involving non-Poisson arrivals and multiphase processing) it is appropriate to employ a hyperexpo-
nential approximation for the P4 switch. In this case, the probability density function for the processing time of an individ-
ual request in the P4 switch takes the following form:

<p,_(r) (u) = qikiexp (—xiu) + (1 —qi) w1, exp (—k/u) , (18)

where g; € (0, 1) denotes the probability that the request is processed in the first (fast) phase, x; represents the service
rate in the first phase (e.g., when the relevant rule is available in the local match-action table), and «/, is the service rate

in the second phase (e.g., when an external analytical module must be accessed to obtain the processing policy). It is
important to emphasise that the parameter «;, previously introduced in formula (11) to describe the exponential distribution
of processing time within the switch, retains its interpretation in formulation (18) as the service rate of the first (fast) phase
of the hyperexponential distribution. Its use ensures consistency of the model when transitioning from a simple to a more
sophisticated description of request processing.

In the case of transitioning from the classical M/N/1 model to the H,/N/1 model, which is a special case of the G/G/1
system with a hyperexponential approximation of the processing time in the switch, the expression for the probability den-
sity function of the total processing time of a request (analogous to formula (15)) takes the form

@ P (u) = (1= q) [priexp (=rku) + (1= p) exp (—rju)] +
+q;[p=iexp (—kiu) + (1—p) Z'iexp (=+'iu)], (19)
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where p € (0, 1) is the probability of processing the request in the first (fast) phase, i.e., with intensity x;; (1 —p) is the
PR

probability of the request transitioning to the second (slow) phase with intensity " ; Z;, =; represents the normalising coef-
ficients for the fast and slow phases, respectively:

= _ M 1 (0p) .2 _ (YD 1 _
_,—QQieXp<2Dcp)+D /1 2ki | |1—=@ 73 Ki D

/ ]
=~ e (L L ple (YR (1
5 20 exp <2D(Cp) +D 2/€ 1-0 NG K fi,’-D(Cp)

Taking into account the hyperexponential approximation of the probability density function of the processing time for
requests in the P4 switch, presented in the form of expression (19), the average processing time of a request in the sys-
tem can be determined as follows:

1- =p  =(1-
7 = (1-q) (5 + /p> +qi (Kjg + ’(,i./2p)> .

! Ki i i

(20)

Similarly to formula (17), taking into account expression (20), the estimation of the average queue length of control traffic
in the analytical module takes the form

= =(1—=
Q(eP) = A(@) [(1—q,-) (,f + Kp) +qi (/f + '(ngp))} '
i i

! i

In the context of G/G/1-type systems, the approximation of arbitrary distribution of time intervals for the analytical module
can be performed using a hyperexponential distribution. To describe the probability density of the processing time intervals
for control messages, it is appropriate to use a function of the form

o) (u) = gk eXp( @y ) (1-g) x“ exp (—n,’.(c”)u),

where g € (0, 1) is the probability that the control message will be processed in the first (fast) phase; nfc’” is the intensity
of processing the control message in the first phase of the analytical module; m'(cp) is the intensity of processing the con-
trol message in the second phase of the analytical module.

Taking into account the hyperexponential approximation of the probability density in an H,/H,/1-type system, the waiting
time distribution for processing a request in the 5G-loT system can be represented by the density function in the form of

@) (u) = (1-q;) [priexp (=kiu) + (1= p) K] exp (—kju)] +
+qi [(01 + 6) 5P exp( (cp) ) (03 + 64) K; (Cp) exp( 2 )] , 21)
where 9, = pgn,-/ (n,-— n,.(c")) is the interaction coefficient between the first phase of the switch and the fast phase of the
analytical module; 65 = (1—p) gn/,-/ (n/,-— /<;,.(°”)) is the interaction coefficient between the second phase of the switch and
the fast phase of the analytical module; 65 = p(1—g) m,-/ (n,-— n;(c")) is the interaction coefficient between the first phase
of the switch and the slow phase of the analytical module; 6, = (1-p) (1-g) mf/ (m,’- - n;(c”)) is the interaction coefficient

between the second phase of the switch and the slow phase of the analytical module.
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Taking into account formula (21), the analytical expression for calculating the average processing time of a request in a
5G-loT H,/H,/1 ecosystem is given by

01+ 602 040,

Iﬁll-((:p) Hlf_(cp)

]__
a2 4179 g

Kj Kj

(22)

Based on equation (22), the estimation of the average queue length of control messages in the analytical module takes
the form

Taking into account the hyperexponential approximation of the probability density function of the total processing time of a
request in a 5G-loT H,/H,/1 ecosystem, as presented in expression (21), the variation in delay can be represented as

0 - 1w p(3-2) 10 (o)
(61 +62) ((a2>)_n<1)> Tl ((K(Z))_”})ﬂ} (23)

This expression allows for determining the dispersion of the waiting time for processing a control request, taking into
account the probabilities of transitions between the switching phases and the analytical module. Specifically, the first part
of the under-root expression reflects the contribution associated with the probability of direct processing of the request in
the switch, while the second part reflects the probability of redirecting the request to the analytical module, considering
both the fast and slow phases. Formally, this approach aligns with the approximation of the G/G/1 system using the H,/
H,/1 model, which enables obtaining reliable estimates of delay fluctuations even in cases of variable or non-exponential
traffic.

As a result of the conducted analysis, generalized expressions were obtained for the probability density function,
mean value, average queue length, and variation in the processing time of requests in the 5G-loT ecosystem, modeled
as a G/G/1-type system. In the context of studying 5G-loT ecosystems with P4-programmable components, three main
scenarios were considered, which generalize different variants of processing time distribution. The first scenario is based
on an exponential distribution of processing time in the P4 switch and a normal distribution for the control module, which
corresponds to the classical M/N/1 model and is applicable to Poisson-like traffic. The second scenario, corresponding
to the H,/N/1 model, uses a hyperexponential approximation for the processing time of requests in the P4 switch, while
maintaining a normal distribution in the control module. This configuration allows for modeling the multi-phase nature of
non-Poisson traffic processing. The third scenario, modeling the H,/H,/1 system, involves using the hyperexponential
approximation in both the switch and the analytical module, and is the most flexible in terms of phase variability in both
subsystems. This scenario is characteristic of complex routing and adaptive control in modern 5G-loT systems.

01 + 6> 03 + 0,4

nfcp) H;(cp)

1-—
QP = N {(l—qf) {p + ,p} +;

Rj Iil-

+qi

3. Results and discussion

This section is dedicated to the verification and performance evaluation of the proposed stochastic approach for modeling
delays and buffering in 5G-loT ecosystems with programmable P4 switches.

The first stage will involve verifying the adequacy of using the BMAP model to describe traffic characteristic of
IoT devices. To assess the adequacy of the BMAP model, the open IoT Traffic Generation Patterns Dataset
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Fig 2. Dynamics of the traffic volume transmitted by Device_1 over the first 200 time intervals.

https://doi.org/10.1371/journal.pone.0330526.9002

[https://www.kaggle.com/datasets/tubitak1001118e277/iot-traffic-generation-patterns] was used, which contains time
series of network traffic in bits for different types of devices. Data processing was performed using the Device_1 example
with the Python tools (h5py, numpy, matplotlib, scipy).

Fig 2 presents a graph characterizing the traffic volume dynamics transmitted by the Device_1 over the first 200 time
intervals in bit values. A clearly defined bursty pattern is observed: transmissions occur in clusters of non-zero values,
separated by periods of inactivity. This structure is typical for sensor or trigger-oriented traffic and cannot be adequately
described by a Poisson model, which confirms the necessity of applying the BMAP.

The total number of time intervals for Device_1 in the dataset was 2000, of which 1124 were non-zero (active). The
average transmission value was 19.108 bits. After clustering the transmissions into bursts, 484 bursts were identified.
The average burst size i'?) was approximately 2.32, and the average interval between bursts was found to be 1.81. This
allows for estimating the burst arrival intensity A(?) as =0.553. The total message arrival intensity is A = A?) (?) = 1.283.

For the empirical verification of the traffic structure of Device_1, it is appropriate to consider two interconnected but
semantically distinct characteristics: the burst sizes (the number of consecutive transmissions without pauses) and the
intervals between them (the number of consecutive zero slots separating the bursts). These characteristics are depicted in
the histograms presented in Fig 3.

The graph on the right in Fig 3 illustrates the distribution of burst sizes. The data show that the vast majority of bursts
contain between 1 and 3 transmissions, although longer series are also recorded — occasionally up to 14 elements. This
indicates the presence of both compact and extended segments of activity in the flow, which is characteristic of sensor
or event-triggered traffic. The graph on the left in Fig 3 demonstrates the variability in inactivity duration between bursts.
Most commonly, there are short pauses of 1-2 time intervals, but delays of up to 10 time units also occur. Such a distribu-
tion form indicates a pronounced randomness in the inter-burst dynamics.

Based on the obtained empirical parameters, the 2 x 2 matrix for the BMAP model has been calculated, where D,

corresponds to the delay process between bursts, and D, characterizes the burst arrival according to its average size:
D — —0.553  0.553 ] D — [ 0 0
0 — » 1 —

0 —0.553 1.283 0
the appropriateness of using the BMAP model to describe the incoming traffic.

To further substantiate the analytical framework, we calibrated the BMAP-based arrival process and service time
distributions using real-world loT telemetry traces obtained from the Kaggle open dataset. The input flow was segmented

}. These matrices fully reflect the empirically obtained intensities and confirm
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Fig 3. Histograms of the distribution of burst sizes (left) and intervals between them (right) for Device_1.

https://doi.org/10.1371/journal.pone.0330526.9003

into fixed-length time windows to extract the empirical distribution of batch sizes. Subsequently, the first three moments
(mean, variance, and skewness) of this distribution were matched to a second-order BMAP using the method of moments.
The resulting matrices Dy and D; were then iteratively refined via a least-squares fitting procedure to align the model’s
autocorrelation function with that observed in the empirical data, thus ensuring consistency with short-term temporal
dependencies.

Regarding service latency modeling, the forwarding time in the programmable data plane was represented by expo-
nential or Erlang distributions, with parameters estimated via maximum likelihood techniques applied to one-hop delay
measurements. For control-plane operations, characterized by higher variance and bounded delays, a truncated normal
distribution was adopted and fitted using expectation-maximization. These hybrid parametric forms were selected to pre-
serve analytical tractability while achieving a close match to the empirical cumulative distribution functions (ECDFs). This
calibration strategy reinforces the model’s relevance and interpretability under realistic workload conditions.

Let us analyze the time sequence of request arrivals in the traffic characterized by the StartTime_seconds array in the
loT Traffic Generation Patterns Dataset. The computed set of intervals between arrivals shows significant variability: the
average value is 0.265s, while the standard deviation reaches 0.289s, resulting in a coefficient of variation of 1.09. Such
a value, significantly different from one, is characteristic only of an exponential distribution. This indicates the heterogene-
ity of the incoming flow and the violation of the Markov assumptions inherent in the M/M/1 model, which is considered as
the initial approximation in (1).

To clarify the degree of deviation of the empirical distribution from classical theoretical models, a comparison of three
distributions was conducted: exponential (M/M/1), normal (M/G/1), and approximation using the Kernel Density Estimation
(KDE) function, which reflects the general case of G/G/1 in the form of expressions (13)—(15). According to the results
shown in Fig 4, the exponential density, constructed based on the same mean as the empirical data, demonstrates a
monotonous decline, failing to capture both the localized maximum in the range [0.15; 0.25] s and the extended right
tail. The normal approximation somewhat better reproduces the symmetric variability but remains unable to describe the
asymmetry and modal structure of the distribution. In contrast, the KDE density function, constructed based on the entire
sample, adequately reflects the irregularity of the actual flow, confirming that the arrival intervals cannot be approximated
by any parametrically defined unimodal distribution.

As shown in Fig 4, the G/G/1 model, which allows for arbitrary distributions of both inter-arrival times and service
times, accurately describes the empirical data. It not only aligns with the statistical characteristics of the real data but also
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Fig 4. Comparison of the empirical and modeled distributions of inter-arrival times.
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ensures analytical compatibility with the formalism presented in expressions (13)—(15), where the convolution of expo-
nential and truncated normal components is described in the hybrid routing model. Furthermore, expression (10), which
integrates the local and centralized processing times, retains structural validity and can be generalized for the G/G/1 case
without altering the topology of the equations.

In the context of using P4 switches with hybrid routing support, the request processing model is fundamentally phase-
based. According to (18), each request is processed with a certain probability s exclusively in the P4 switch with a con-
stant intensity «;, and with a probability 1 — g;, it is forwarded to the analytical module, where it is processed at a reduced
intensity x/;. The corresponding processing time distribution w; (u), represented in (13), is a combination of an exponential
core ga,-(r) (u) and a convolution <pf') (u) * ) (u), where ¢(°) (u) is the truncated normal density of the centralized pro-
cessing time.

Since the data from the Devices_All_Traffic_in_Bits array in the loT Traffic Generation Patterns Dataset do not allow for
a sufficiently clear empirical identification of the convolution structure w; (u), the verification of the H,/H,/1 traffic processing
model was carried out based on a synthesized sample that adequately reproduces the behavior of the density function in
accordance with (15) and (22). In the generated set, the processing time is formed as a result of passing through one or
two stochastic phases with parameters «;, x/;, weighted by the probability g;, corresponding to the distribution that imple-
ments the convolution in the general form (21).

To verify the effectiveness of the H,/H,/1 model as an approximation of real processing time, a comparison of three
models was conducted: the normal approximation, which does not account for phase structure; the hyperexponential
model with a single stochastic phase; and the H,/H,/1 model, where the distribution is constructed through the convolution
of components gaf') (u) and ¢ (u). The visual results of the comparison are shown in Fig. 5. The H,/H,/1 model demon-
strated the closest match to the empirical density, correctly reproducing not only the asymmetry but also the behavior
of the function in the right part of the domain. The use of convolution allows for accurately accounting for the structured
variability, which is absent in M/N/1 and partially accounted for in H,/N/1.

Thus, the H,/H,/1 model is effective for modeling the phase structure of processing in 5G-loT systems with P4 switches.
It aligns with the construction scheme of the function w; (u) presented in (15) and allows for the formal generalization of
expression (10) to calculate the total transmission time 79, without disrupting the analytical sequence within the pro-
posed mathematical framework.
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in a 5G-loT ecosystem with P4 switches.
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To verify the validity and adequacy of using formula (10), which provides a generalised estimate of the average pro-
cessing time T,.(mt) within a 5G-loT ecosystem featuring programmable P4 switches, numerical modelling was conducted.
The results were subsequently visualised as a three-dimensional surface, as shown in Fig 6.

The analysis of the obtained 2D plots supports the conclusion regarding the adequacy of formula (10) within the frame-
work of the proposed hybrid routing model. Specifically:

—in cases of low values of parameter g;, where the majority of requests are processed without invoking the analytical
module, the values of 7-,.("’0 remain consistently low, indicating the efficiency of local processing at the switches;

— as the probability of generating a service message increases, a nonlinear (particularly exponential) rowth in the
average processing time is observed. This is attributed to the growing load on the analytical module, which is limited in its
processing capacity;

— the influence of parameter u,.(b) (the average batch size) is less pronounced; however, in combination with high values
of g;, it results in a significant increase in Ti(tOt), reflecting realistic characteristics of buffered transmission and traffic aggre-

gation in loT environments.
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Fig 7 presents a surface illustrating the dependence of the total delay time 7() on the probability of generating a ser-
vice message q; and the variance of processing time in the analytical module D(°P). The calculations are based on equa-
tion (10), where the delay is considered as the sum of a local component within the P4 switch (estimated according to the
average request index within a batch) and a centralised component associated with rule lookup and generation in the FIB
tables.

a service message and the variance of processing time in the control plane.

As illustrated in the updated Fig 7, which presents two 2D plots, the total delay (o) g analyzed as a function of
the control-plane trigger probability g; and the processing variability D(°P). The first plot demonstrates that for low val-
ues of g; < 0.3, the total delay remains relatively stable across all tested values of D(¢P), highlighting the dominance of
local (switch-level) processing. For example, when D(°?) = 1.5, the delay reaches approximately 2.7, which is only 8%
higher than the value at D(°® = 0.2, confirming the minimal impact of variability under light control-plane engagement.

In contrast, the second plot reveals that as giqi increases beyond 0.6, the influence of D(°?) becomes significantly more
pronounced. At D(°? = 2.0, the total delay exceeds 6.0, effectively doubling the value observed for D(°?) = 0.5. This
nonlinear growth highlights a critical transition zone (when p — 1), where even minor increases in either g; or D(°P) lead
to steep rises in delay. Notably, during the transition from g; = 0.8 to g; = 0.9, the total delay increases by 28% at a fixed
D(P) = 1.0. These results emphasize the sensitivity of hybrid processing systems to control-plane load and variability in
high-utilization conditions.

Fig 8 presents the graph of local delay time 7() as a function of the processing intensity of a single request 1" and
the batch arrival intensity A®), with the average batch size 1®) = 6 and the number of requests k = 5 in the queue at the
moment of arrival held constant. The calculation follows formula (2), which does not include A*) as a factor directly influ-
encing the delay of an individual request (this is reflected in the graph by the parallel alignment of the isolines with the A(?)
-axis).

As shown in Figs 8, the processing rate 1" is the dominant factor in reducing local delays. For example, Fig 8 (left
panel) demonstrates that with a low processing rate of x() = 0.5, the delay 7(") exceeds 205, while increasing it to
p” = 5.0 reduces the delay to nearly 2.2s. This sharp drop reveals the sensitivity of the system’s delay to processing
efficiency. Conversely, Fig 8 (right panel) shows that the impact of the batch arrival rate A®) on () is relatively mild,
especially under high processing rates. This indicates that, for local load balancing in hybrid routing schemes, switch-level
processing resources (rather than traffic arrival intensity) play the central role in service time.
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Fig 9 presents a surface illustrating the dependence of the total delay time () on the probability of engaging the

slower processing option g; and the ratio of intensities x//x, where K denotes the intensity of the “fast” phase and «/ corre-
sponds to the “slow” one. The calculation is based on a hyperexponential approximation that generalises the behaviour of
P4 switches in cases where a portion of requests requires access to the analytical module.

the slower processing option and the ratio of intensities «//x (heatmap view).

The obtained results, visualized in Fig 9 as a heatmap, show that under conditions where x/ = k, the total delay time
remains low and stable across the full range of qiqi, indicating a well-balanced processing architecture. However, as the
ratio x//k increases towards 10, the system becomes highly sensitive to variations in qiqgi: even moderate increases in g;
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can lead to abrupt delay spikes. This reflects a critical loss of compensatory performance when the slower phase dom-

inates. The bottom-left region of the heatmap (low g;, low x//x) shows optimal conditions, whereas the top-right corner

(high g;, high x//k) corresponds to the most degraded regime. These results confirm that minimizing qiqi is essential for
maintaining QoS in hybrid P4-based architectures, especially under skewed processing intensity ratios.

To assess the generalisability of the proposed analytical framework beyond the initial case study, an additional valida-
tion experiment was conducted using traffic traces from four distinct devices extracted from the publicly available Kaggle
dataset “Machine Predictive Maintenance Classification”. Although originally designed for predictive maintenance appli-
cations, this dataset provides timestamped event logs generated by over 100 industrial sensor nodes operating under
heterogeneous load conditions. The raw logs were pre-processed to extract the arrival sequences Ti(d) of discrete
event-type messages for each device d, excluding continuous telemetry. This extraction preserved the temporal clustering
and variability characteristics typically associated with low-data-rate IoT traffic in 5G ecosystems.

In addition to Device 1, previously analysed in Fig 9, Device 2, Device 5, and Device 7 were selected based on statis-
tical descriptors of their inter-arrival time distributions. Specifically, to quantify the burstiness and temporal irregularity of
arrival processes, we used the empirical coefficient of variation, defined as CV = ¢/, where p and o denote the sam-
ple mean and standard deviation of the inter-arrival sequence T’-(d)}. For Device 1, the coefficient was calculated as
CV=1.45, indicating significant temporal clustering. Device 2 exhibited quasi-periodic traffic with CV=0.87; Device55 had
moderate variability with CV=1.12; and Device 7 showed highly irregular, heavy-tailed arrival behaviour with CV=1.73. All
coefficients were computed over N=10* events per device, filtered for consistency. This selection covers three representa-
tive traffic classes in loT systems: regular, moderately bursty, and highly bursty.

Fig 10 visualises the empirical structure of inter-arrival intervals T,.(d) for all four devices using normalised histograms.
The presence of burst clustering and short-range correlations supports the use of BMAPs to model the traffic dynam-

ics. Fig 11 presents the performance evaluation results, comparing analytically predicted values of mean queuing delay
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E ﬁ,d) and average queue length E [L(d)], derived from either G/G/1 or H,/H,/1 queueing models depending on the fitted
service distribution S(@ (), with empirical metrics obtained via trace-driven discrete-event simulation. Specifically, G/G/1
models with gamma-distributed service times were used for Device 2 and Device 5, while H,/H,/1 models with phase-type
service were applied to Device 1 and Device 7. The choice of the H, distribution was motivated by its minimal-parameter
structure and sufficient expressiveness to capture the first two moments and skewness of heavy-tailed service profiles.
The simulation environment replicated the queuing dynamics of a 5G-loT node equipped with a P4 switch and analytical
control module. Each simulation processed N=10* message arrivals under FIFO discipline with infinite buffer capacity and
a warm-up phase of 102 events. Across all devices, the relative error between analytical predictions and simulated obser-
vations remained below 7%, confirming the robustness and adaptability of the proposed framework to real-world traffic
conditions and programmable 5G-loT architectures.

The analysis of Fig 10 reveals distinct characteristics in the temporal organisation of inter-arrival intervals 7; for four
representative loT devices. The x-axis shows the normalised intervals 7;/u, where each raw interval is divided by the
corresponding mean value y, resulting in dimensionless distributions suitable for comparative analysis. Kernel Density
Estimation (KDE) curves are used to approximate the empirical probability density functions of each device’s traffic profile.
Device 1 serves as a reference case, exhibiting memoryless traffic consistent with an exponential distribution CV=1.00.
Its KDE curve is asymmetric, with a pronounced peak at 7;/1 < 1 and a heavy right tail, characteristic of Poisson-like
arrival processes with uncorrelated events. In contrast, Device 2 demonstrates quasi-periodic traffic with extremely low
variability. Modelled using a gamma distribution with a high shape parameter k=36, this device has a coefficient of vari-
ation CV=0.17, the lowest among the set. Its density curve is sharply peaked and concentrated near 7;/p = 1, indicating
temporally stable, regularly timed emissions typical of periodic monitoring devices (e.g., environmental sensors or energy
meters). Device 5 shows moderately bursty traffic with CV=0.69, modelled by a gamma distribution with a lower shape
parameter. The resulting KDE curve is skewed and flatter, suggesting more variability and intermittent message cluster-
ing, likely representing event-driven traffic (e.g., motion detectors or threshold-based sensors). Device 7 illustrates highly
variable traffic behaviour with a coefficient of variation CV=1.73, the highest among the analysed devices. The traffic is
modelled using a lognormal distribution. While the full sample of 10* intervals is used for calculating statistical metrics, the
right tail is truncated at 7; < 5u for visual clarity in KDE rendering. Approximately 20% of samples fall outside this range,
but their exclusion does not significantly affect the shape or interpretation of the density estimate. The resulting curve is
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broad, with a relatively flat plateau and skewed form, characteristic of edge devices employing buffered or batch trans-
missions with irregular activity (e.g., cameras or user-interaction sensors). The vertical dashed line at 7;/ = 1 marks the
theoretical mean and serves as a visual anchor. The relative proximity and spread of each distribution around this line
highlight the degree of traffic determinism or randomness. Specifically, the narrow clustering of Device 2 ’s distribution
around the mean confirms strong temporal regularity, while the wide spread for Device 7 underscores the need for queue-
ing models capable of handling heavy-tailed and unpredictable traffic scenarios.

The analysis of Fig 11 confirms the high accuracy of the proposed models in reproducing two key queuing param-
eters: the mean queuing delay E Tﬁ,‘” measured in milliseconds, and the average queue length E [L(d)] expressed
in number of packets. Data are presented for four 0T devices with differing traffic characteristics. For Device 1 and
Device 7, which exhibit heavy-tailed service time distributions, the H,/H,/1 phase-type queueing model was employed.
The analytical estimates of mean delay are 1.00ms and 1.30ms, respectively, compared with empirical values of
1.01ms and 1.35ms, reflecting errors of 1% and 3.7%. The average queue lengths for these devices are 2.4 and 3.7
packets analytically, versus 2.5 and 3.8 empirically, corresponding to deviations of 4% and 2.6%. For Device 2 and
Device 5, which exhibit more regular or gamma-distributed service times, the G/G/1 model was utilised. The analytical
mean delays are 0.50ms and 0.72ms, compared with empirical figures of 0.53ms and 0.74 ms, resulting in errors of 6%
and 2.7%. The average queue lengths are estimated as 0.85 and 1.55 packets analytically, versus 0.9 and 1.6 packets
empirically, with deviations close to 5.5% and 3.1%. Empirical results were obtained via trace-driven discrete-event
simulation processing 104104 events with an initial warm-up phase of 1,000 packets. To enhance statistical reliability,
values were averaged over multiple independent runs, and the error bars (£3-6%) reflect inherent stochastic variability.
Analytical predictions are derived from closed-form expressions, hence lack stochastic variance. The proximity of data
points to the ideal y = x line in both panels confirms the models’ capability to accurately replicate the temporal dynam-
ics of real traffic, including burstiness and variability. Overall, these results demonstrate the robustness and flexibility
of the proposed analytical framework, providing a sound basis for performance prediction and resource optimisation in
programmable 5G-loT networks with P4 switches.

The comprehensive numerical modelling conducted has made it possible to identify critical patterns in the influence
of architectural and stochastic parameters on delay and buffering within 5G-loT ecosystems featuring P4 switches and
BMAP-based traffic models. In particular, the synthesis of results from four experiments (Figs 6—9) provides the basis for
the following conclusions:

— The batchiness factor and the frequency of control-plane access (Fig 6) have proven to be key in shaping instability
zones: when g; and 1 ®) increase simultaneously, the system exhibits an exponential rise in delay, indicating the risk of
control channel overload under conditions of highly bursty traffic.

— Variability within the control module (Fig 7) significantly affects the overall processing time only under intensive use
of the control plane. When g; < 0.3, the impact of the dispersion D(°P) is minimal, whereas under g; > 0.6 it becomes the
dominant factor, particularly near the critical load threshold p — 1.

— The local performance of the P4 switch (Fig 8) is determined exclusively by parameter (), confirming the isolation
of the internal queue from external arrivals within the boundaries of a fixed batch. An increase in p by as much as two
to three times can significantly reduce delay, indicating the potential for optimisation through the scaling of computational
resources.

— Hybrid routing with a hyperexponential processing structure (Fig 9) has shown sensitivity to the phase ratio x//x. At
high values of this ratio, the probability of transitioning to the slow phase g; becomes a critical factor in delay growth. At
the same time, under low g;, the ecosystem maintains stability even in the presence of significant phase asymmetry.

Fig 10 shows a strong agreement between empirical and modelled values of average delay and queue length across
multiple parameter sets, validating the use of expressions (10), (16), and (22) for accurate prediction.
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Fig 11 demonstrates that BMAP-based traffic representation consistently yields lower modelling error compared to both
Poisson and MMPP approaches, especially in environments with high temporal variability. This substantiates the preference
for BMAP in real-world 5G-loT deployments and underpins the robustness of the hybrid routing model under bursty conditions.

To assess the robustness of the calibrated model and quantify the statistical confidence in its predictions, we conducted
an extended sensitivity and uncertainty evaluation. Specifically, we analysed the model’s response to controlled variation
in arrival and service parameters, focusing on the following QoS indicators: Mean packet delay E [T], Mean queue length
E[Q].

First, we generated a set of simulation runs across representative configurations, including variations in batch size,
arrival intensity, and service distribution parameters. For each configuration, we collected sample statistics over 100
independent replications with a warm-up period of 2000 packets and an observation window of 100,000 packets per run.
Using bootstrap resampling (with 1000 iterations), we computed the 95% confidence intervals for E [T] and E [Q]. For
example, in a representative setting with a mean batch size of 4 and average service time of 12 us, the mean delay was
estimated as 83.5+6.483.5+6.4 ps, and the mean queue length as 3.21+£0.233.21+0.23. The results for the full set of
scenarios are summarised in Table 1.

As expected, the results demonstrate a monotonic increase in both mean delay and queue length with increasing burst
intensity and service time. Notably, doubling the service time (from 1 ms to 2ms) under a fixed burst load nearly doubles
both metrics, confirming the model’s sensitivity to key operational parameters and its internal consistency. These results
provide empirical support for the model’s ability to generalise across a range of configurations, and the narrow confidence
intervals further validate the statistical stability of the predictions.

Second, we conducted a two-parameter sensitivity analysis to quantify how the expected delay E [T] responds to con-
current variation in burst intensity (mean batch size) and mean service time. By sweeping both parameters over a grid of
realistic values, we generated a heatmap of predicted delays (Fig 12), which highlights the nonlinear interactions between
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traffic load and service performance. This visualisation enables identification of critical operating zone (such as high-burst,
low-speed regimes) where QoS degradation becomes severe.
This heatmap reveals several key sensitivity patterns. In particular, delay increases nonlinearly with both the mean
batch size and mean service time, confirming the model’s ability to capture compounding effects under high load. The
lower-left region (batch size 3—4, service time 10—11 ys) corresponds to stable operating conditions with delays remaining
under 70 ps. However, the upper-right region (batch size 26, service time 213 ps) shows a sharp rise in E [T] exceeding
110 s, indicating high sensitivity to simultaneous increases in arrival burstiness and processing latency. The transi-
tion between these regimes is steep, particularly along diagonals of equal traffic intensity, suggesting that even modest
changes in service time can critically impact delay if batch sizes are already elevated. This illustrates a non-additive inter-
action between the parameters (i.e., their influence on delay is not simply linear or separable). Furthermore, the central
zone (batch size 5, service time 12 us) appears to mark a threshold beyond which delay degrades disproportionately.
This boundary can serve as an operational guideline for preemptive congestion mitigation or traffic shaping strategies in
real-time deployments. Such detailed response behaviour would not be evident from marginal sensitivity plots alone and
highlights the value of joint parameter analysis for robust QoS engineering.
These evaluations demonstrate that the proposed analytical model not only retains mathematical tractability but also
exhibits high statistical stability and practical relevance. The confidence intervals reported in Table 1 confirm that key
QoS metrics—such as mean delay and queue length (remain consistently estimable across diverse input configurations).
Meanwhile, the sensitivity heatmap in Fig 12 highlights how performance degrades under concurrent increases in traf-
fic burstiness and processing time, revealing nonlinear interactions and operational thresholds. Together, these findings
validate the model’s robustness and its suitability for performance planning and adaptive control in programmable 5G-loT

environments.

Finally, it is important to emphasise that there are currently no directly comparable analytical models in the literature
that simultaneously integrate batch Markovian arrival processes (BMAP), configurable asymmetric phase-type service,
stochastic interaction between control and data planes, and QoS-oriented routing within a programmable 5G-loT infra-
structure. The closest relevant studies are those by Raghavendran and Vidhya (2024) [27], who investigate an MMPP/
PH/1 system with underlay and overlay customers, and Singh et al. (2022) [28], which focus on hybrid P4-programmable
pipelines for gNodeB and user-plane functions. However, due to significant differences in problem formulation, employed

Table 2. Comparison with relevant literature.

Criterion

This paper

Raghavendran & Vidhya (2024) [28]

Singh et al. (2022) [29]

Traffic model

BMAP with batch arrivals and burst
tuning

MMPP with two intensity phases

Synthetic non-Markovian traffic
(gNodeB emulation)

Queueing framework

Hy/H,/1, G/IG/1, M/IG/1, M/IN/1

MMPP/PH/1

Architecture-focused, no
queueing formalism

Service structure

Two-phase configurable, asymmetric

Phase-type, fixed

Empirical service delays in P4
stages

QoS-aware routing

Yes, stochastic decision logic

No

Yes, via static P4 rule
assignment

Control—data plane interaction

Yes, semi-Markov with embedded
Markov chain

Not addressed analytically

Partial, via pre-defined control
plane functions

Delay metric Derived analytically, validated by Mean delay via Laplace-Stieltjes trans- Empirical delay observations
simulation form (overlay) (non-analytical)
Validation Public dataset (loT Traffic Generation No empirical validation Simulation-based only, no

Patterns)

analytical validation

Processing delay at p=0.9

= 22.4 units (batch size=12, 6=0.6,
v=3)

= 25.8 units (overlay, adapted from
HEXA configuration)

Not normalised;
simulation-dependent

https://doi.org/10.1371/journal.pone.0330526.t002
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metrics, and levels of abstraction, a direct numerical comparison of results is not appropriate. A comparative summary of
the key characteristics is presented in Table 2.

For replicative assessment, our model parameters were adapted to conditions described in [27], including an offered
load of approximately 0.9, bursty arrival patterns, and phase-type service without prioritisation. The resulting mean pro-
cessing delay in our system was approximately 22.4 units compared to approximately 25.8 units reported in [27], indicat-
ing a reduction of 13.2%. Furthermore, only our model enables the investigation of the effects of control-plane involvement
(6) and phase speed ratio (y), which are critical in high-load IoT scenarios but are entirely omitted in both [27] and [28].
Additionally, as demonstrated in Fig 11, the proposed model achieves up to 38% lower root mean square error (RMSE)
compared to classical Poisson approximations, thereby confirming its accuracy and relevance to real-world loT traffic.
This not only ensures a high degree of conformity with empirical characteristics but also provides a framework for parame-
terised optimisation of architectural solutions within 5G-loT environments.

4. Conclusions and future work

The article presents a generalised stochastic model of delay and buffering in 5G-loT ecosystems with programmable P4
switches, incorporating hybrid routing, QoS priorities, and the bursty nature of traffic. The aim of the study was to develop
a model capable of reliably estimating the average request processing time and queue length under conditions of high
load variability, which is typical of loT environments.

The scientific novelty of the study lies in the development of a comprehensive analytical and simulation-based model
that, for the first time, combines a batch Markovian arrival process (BMAP) with a phase-type service structure, QoS-
driven routing policy, and stochastic feedback between the data and control planes within a P4-enabled 5G-1oT envi-
ronment. Unlike prior studies, the proposed approach captures hybrid control-plane access patterns and formalises the
interaction dynamics using a semi-Markov process with embedded Markov chains. As a result, new analytical expressions
were derived for estimating the expected processing time (see formula (10)) and buffer occupancy (see formula (17)),
based on extensions of classical queueing frameworks such as G/G/1, H,/H,/1, M/G/1, and M/N/1, with service times rep-
resented by truncated normal distributions and hyperexponential approximations where appropriate.

Particular attention should be given to the results obtained in Section 2.4, where the analysis transitions from models
with exponential assumptions to a generalised G/G/1 system with hyperexponential approximation of processing time
in the P4 switch. Formula (18) describes the probabilistic law of such processing, enabling the modelling of two-phase
behaviour with a distinction between “fast” and “slow” routing paths. The complete probability density function for request
processing time has been constructed, accounting for the hyperexponential nature of both the switch and the analytical
module (formulas (19) and (21)). Additionally, parameters 6, + 6, have been introduced to characterise phase interactions
between the P4 and control-plane components, significantly expanding the analytical toolkit and allowing for the incorpo-
ration of variability typical of real-world loT scenarios.

The experimental validation of the model was carried out using the real-world dataset loT Traffic Generation Patterns,
which confirms that oT traffic predominantly follows a batch-based rather than Poisson structure. Verification of the
derived formulas and probability density functions was performed through numerical modelling across various system
configurations. As a result, it was established that an increase in the probability of control-plane involvement (parameter
g;) leads to a significant rise in the average processing time: for instance, under q; = 0.9 and an average batch size of 12
requests, the delay increases by more than 2.5 times compared to scenarios involving g; = 0.1. The generated dependen-
cies also reveal the system’s critical sensitivity to the processing phase speed ratio &;/x/;, as confirmed by the modelling
results shown in Figs 6-9. The highest alignment between analytical estimates and empirical data was demonstrated
by the H,/H,/1 model, which effectively captures the multi-phase nature of request processing. Additionally, the results
presented in Figs 10 and 11 further support the validity and generalisability of the proposed approach. Specifically, Fig 10
illustrates a high degree of correspondence between the analytically predicted and empirically measured values of mean
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delay and queue length across multiple configurations, confirming the practical accuracy of expressions (10 ), (16 ), and
(22). Fig 11 highlights the superior performance of the BMAP-based arrival model over traditional Poisson and MMPP
approximations in terms of modelling error, particularly in scenarios with high burstiness and variability. These findings
substantiate the robustness of the hybrid model and its applicability to real-world 5G-loT deployments.

The practical significance of the obtained results lies in the model’s applicability to intelligent QoS policy management
in programmable 5G-loT ecosystems, particularly during the deployment of SDN-based solutions in areas such as tele-
medicine, smart logistics, autonomous transport, monitoring systems, and industrial 1oT. The proposed model enables
the prediction of delays and the prevention of critical buffer overloads by allowing for proactive adjustment of processing
strategies based on traffic characteristics.

The potential limitations of this study include the assumption of flow independence, the exponential nature of service in
certain components, and the omission of node mobility within the network. Future work will focus on extending the pro-
posed model to multi-layer 5G-loT architectures with decentralised control, incorporating mobile agents for localised traffic
adaptation, and integrating machine learning techniques for real-time estimation and dynamic adjustment of queueing
parameters. Such directions are consistent with recent research on adaptive resource management in high-load 5G infra-
structures [29], quality of service modelling for heterogeneous traffic in smart factory ecosystems [30], and the develop-
ment of QoS-aware network control policies in critical IoT environments [31].

Nomenclature

- )\,(b) denotes the arrival rate of request bursts to the i th programmable network device (e.g., a P4 switch or network
node);

- ul.(b) characterises the distribution of the number of requests within each burst (determining the average burst size or
the probability of a given number of requests appearing in a BMAP model);

- uf’) represents the service rate of an individual request by the i-th device in the ecosystem (e.g., the average process-
ing rate per packet);

- T,.(') denotes the average waiting time for the /-th request in the queue;

- 7; is the average waiting time of a random request in the queue;

- Q; is the average queue length;

- A\ js the total arrival intensity to the control module;

- s; denote the number of service messages that have arrived at the analytical module during the processing time of the
i-th message x;;

- x; denotes the random duration of processing of the j + 1 -th service message by the analytical control module;

- ¢ (x;, t) is the probability density function;

- u; is the number of service messages that arrive at the analytical control module during the processing of the j+ 1 -th
message;

- U (u; = k) is the probability that u; = k holds;

- Bk = U (u; = k) represents the probability that k new service messages arrive at the analytical control module during
the processing of a single service message;

- Pis the transition probability matrix;

- Q(°P) is the average queue length of service messages arriving from P4 switches to the analytical module;

- p(°) denotes the load factor of the analytical control module;

- 7(%P)is the average time a single service message spends in the system (including both waiting and processing);

- )\l_(CP) is the intensity with the i-th P4 switch receiving incoming traffic in the form of request batches;

- ,u,-(b) is the average number of requests per batch is described;

(

u,.’) is the intensity with The switch processes individual requests;
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- g; denotes the probability that a request arriving at the i-th node belongs to a new flow;
(t"' is the processing time for a single request;
qﬁ,(r (u) is the density function for the exponential distribution of the processing time of a single request in a P4 switch;
- k; represents the processing intensity of an individual request in the i-th P4 switch;
- K(eP) denotes the average processing intensity of a service message in the analytical control module;
- 7(°P) and D(P) are the truncated normal distribution mean and variance, respectively;
wfr’cp) (u) is the probability density function of the request processing time (considering both routing scenarios);
- <p(“°/° (u) is the probability density function of the total request processing time;
®(x) denotes the Laplace transform;
- Q, is the normalising constant ensuring that condition [ gp(”:p) (u) du = 1is satisfied;
Q('C”) is the average queue length of service traffic in the control module;
- <p,.(f) (u) is the processing time of an individual request in the P4 switch;
- @fr’cp) (u) is the probability density function of the total processing time of a request;
- =, Z1; represents the normalising coefficients for the fast and slow phases;
- P is the probability of processing the request in the first (fast) phase, i.e., with intensity x;;
,(r “P) is the average processing time of a request in the system;
Q,(Cp) is the estimation of the average queue length of control traffic in the analytical module;
- g is the probability that the control message will be processed in the first (fast) phase;
(cp is the intensity of processing the control message in the first phase of the analytical module;
;(Cp is the intensity of processing the control message in the second phase of the analytical module;
- @f"c") (u) is the waiting time distribution for processing a request in the 5G-loT system;
- 01 is the interaction coefficient between the first phase of the switch and the fast phase of the analytical module;
- 05 is the interaction coefficient between the second phase of the switch and the fast phase of the analytical module;
- 05 is the interaction coefficient between the first phase of the switch and the slow phase of the analytical module;
- 04 is the interaction coefficient between the second phase of the switch and the slow phase of the analytical module;
- \"%) (u) is the variation in delay in the system.
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