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Abstract 

Spatial access to care describes the ability of populations to travel to healthcare 

providers. Existing spatial access to care studies frequently utilize metrics con-

structed using car-specific travel to providers, potentially underestimating access in 

populations using other travel modalities (i.e., walking/transit). We present a novel 

multi-travel modality spatial access to care composite measure, a corresponding tem-

porally representative open-source data resource, and a stratified analysis of neigh-

borhood rural/urban and socioeconomic disparities. We utilized quarterly 2016–2020 

Centers for Medicare and Medicaid Services Doctors and Clinicians National Down-

loadable Files to compute temporally representative multi-modal spatial accessibility 

to 56 healthcare provider classifications in U.S. census tracts and block groups. 

We performed tract-level analyses stratified by 2010 Rural-Urban Commuting Area 

Codes and 2016 Area Deprivation Index for a subset of provider types. We found 

that 1) non-metropolitan areas have poorer multi-modal spatial access to primary 

(P < 0.001), specialty (P < 0.001), pulmonology (P < 0.001), nephrology (P < 0.001), and 

cancer care (P < 0.001) than metropolitan areas both cross-sectionally and over time 

and 2) multi-modal primary care access was substantially poorer than multi-modal 

specialty care access in 2016 and this trend did not improve over time. We also pro-

duced a data resource for many provider types and an interactive spatial access map 

for a subset of provider classifications. After stratifying, we found significant dispari-

ties in spatial access to primary care, specialty care, pulmonology, nephrology, and 

cancer care in non-metropolitan areas. Our multi-modal spatial access measure and 

corresponding data resource may be useful for population health and clinical studies, 

public health entities, community stakeholders, health systems, and policymakers.
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Introduction

Access to healthcare is a multifaceted phenomenon that includes dimensions of 
affordability, availability, accessibility, accommodation, and acceptability [1]. Many of 
these aspects are difficult to quantify at the population level. For example, accom-
modation relates to the ability of a provider’s office or hospital to meet the individual 
patients’ preferences and constraints. In contrast, geographic accessibility, or how 
easily patients can physically travel to their physicians, is more straightforward to 
measure. Geographic accessibility to healthcare, also known as spatial access 
to care, has been studied for over twenty years [2]. Yet, these studies have been 
primarily for primary care providers and other limited provider types [3,4]. The float-
ing catchment area (FCA) method and derivatives are commonly employed to study 
spatial access to care, which utilize a distance or travel time matrix, often by car, 
to create weighted provider-to-population (P2P) ratios for small areas [2,5–9]. We 
introduce an evolution in the form of a composite measure and corresponding open-
source dataset, which weights spatial access by how populations in small areas 
actually travel (e.g., by transit, walking, or driving). Multi-modal spatial access to care 
metrics have been formulated previously in the literature, but most 1) are for areas 
outside of the U.S. or limited U.S. states or regions, 2) have computed metrics for 
only limited provider types, or 3) do not publicly release data for the metrics [10–21]. 
We specifically target these shortcomings and also compute spatial access to care 
metrics nationally for block groups (BGs) in the contiguous U.S.

U.S. rural, suburban, and urban populations utilize different travel modes in daily 
life and accessing healthcare [22,23]. Rural residents specifically have considerable 
difficulty in accessing alternative transportation modalities (e.g., transit) [24], yet 
according to the Bureau of Transportation Statistics, over 1.5 million U.S. rural resi-
dents utilize non-car travel modalities for daily commuting [25]. Even within urbanized 
areas, access to transit routes and walkability can vary widely [26], potentially result-
ing in differences in how populations travel to both primary care providers and spe-
cialty care providers. Existing studies also suggest that walkability and public transit 
access in socioeconomically under-resourced areas vary by U.S. region [27–29], 
which could influence access to care for lower income communities since rates of 
car ownership are lower [30,31]. Rural residents have difficulty accessing healthcare 
providers for both preventive health services and treatment [6,7,32,33], which may 
be contributing to widening disease burden and mortality among rural populations 
[34–37]. Yet, to our knowledge, no studies examining rural/urban strata have utilized 
multi-modal spatial access metrics to account for various modes of travel and for 
different types of healthcare providers. Therefore, quantifying multi-modal spatial 
access to care across rural-urban and socioeconomic continuums is an important 
step towards better understanding of where improving access could have the stron-
gest benefit. Identifying neighborhoods with poor multi-modal access to primary and 
specialty care also would provide crucial information for lawmakers to target funding 
initiatives and programs, such as expansion of the Conrad 30 J-1 visa waiver pro-
gram for foreign medical graduates, to improve access to providers.
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Overarching objectives of our analyses were to create a neighborhood-level multi-modal spatial access to care metric, 
examine disparities by rurality and socioeconomic position, and produce a spatial access data resource useful for popula-
tion health and clinical studies, public health entities, community stakeholders, health systems, and policymakers.

Materials and methods

We used a comprehensive physician location dataset (estimated 98.9% physician coverage) [38] from the Centers for 
Medicare and Medicaid Services (CMS) to construct a new spatial accessibility measure for an expansive set of pro-
vider classifications in nationwide contiguous U.S. census tracts and BGs. We applied novel travel modality weighting to 
create the first open-source temporally representative spatial access to care dataset and performed analyses stratified 
by Rural-Urban Commuting Area (RUCA) codes and Area Deprivation Index (ADI) values. Our composite measure relies 
completely on publicly available data and utilizes a ‘realistic’ routing algorithm accounting for egress times (i.e., walking to/
from transit stations) [39]. Finally, we constructed an interactive map of census tract-level spatial access to care measures 
for primary care and specialty care providers.

Data sources

We obtained data from six sources to build our spatial access to care measures: 1) physician addresses from quarterly 
2016–2020 Doctors and Clinicians National Downloadable Files (NDFs) from CMS [40], 2) tract and BG population counts 
from 2016–2020 U.S. Census Bureau American Community Survey (ACS) 5-year estimates, 3) 2010/2020 tract and BG 
polygons from the U.S. Census Bureau’s TIGER/Line shapefiles database, 4) national car and walking network datasets 
from OpenStreetMap (OSM), 5) national transit network datasets collated from an open-source catalog of U.S. transit 
routes [41], and 6) 2016–2020 ACS tract and BG population commuting patterns for driving, walking, and transit. For the 
routing component, OpenStreetMap (OSM) is one of the largest free global map databases, where information needed for 
routing (e.g., road networks, speed limits, stop signs/lights) is sourced from surveys, satellite imagery, and other geodata 
sources [42]. BusMaps is an open-source database of global transit General Transit Feed Specification (GTFS) files, 
which derives its database from city, town, and other local level GTFS files [41]. NDF provider specialties were used to 
classify active providers, which is updated regularly for providers who practiced and billed Medicare or Medicaid in the 
previous year [40]. Details of provider geocoding can be found in the Appendix. CMS NDFs were selected over other 
potential sources due to consistent updates on practicing physicians, relative completeness owing to the ubiquity of Medi-
care/Medicaid billing, and previous studies using this data in the physician spatial access literature [40,43,44].

Travel matrices and spatial access measures

We computed “realistic” travel times given network datasets from OSM (car and walking) and the open-source transit net-
work catalog (transit) [39]. Specifications used in this operation can be found in the Appendix. We applied the enhanced 
two-step FCA (E2SFCA) method, used widely in the literature [6,8,9,45], to calculate spatial access for categories of 
providers for 2016–2020 quarterly time periods. E2SFCA computes a travel time step-weighted P2P ratio with an incorpo-
rated distance decay function, which helps to capture the notion that patient populations are more likely to visit providers 
nearer to their neighborhood (methodology in the Appendix) [5]. We categorized providers into 56 groups based on medi-
cal licensing board classifications with input from clinical providers at Cleveland Clinic. (classification data at https://github.
com/SpatialEpidemiology/SACData/tree/main/Physician%20Classifications).

Weighting

We used 2016–2020 ACS 5-year tract or BG-level population estimates of those that commute to work via driving, walk-
ing, and transit as a proxy for how patient populations travel to providers. Population sizes by travel modality were then 
converted to percentages, where the denominator was the sum of the populations commuting via car, transit, and walking. 

https://github.com/SpatialEpidemiology/SACData/tree/main/Physician%20Classifications
https://github.com/SpatialEpidemiology/SACData/tree/main/Physician%20Classifications
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We applied these commuting population percentages towards a proportional weighting scheme of car, transit, and walk-
ing P2P ratios to create composite car-transit-walking P2P ratios for each tract/BG and quarterly time period. For exam-
ple, if a given area had population commuting patterns of 85% driving, 10% transit, and 5% walking, then the resulting 
car-transit-walking P2P ratio was constructed from 85% of the car P2P ratio, 10% of the transit P2P ratio, and 5% of the 
walking P2P ratio (see equation in the Appendix).

Study area and stratified analyses

The study area encompasses tracts and BGs spanning the entire contiguous U.S. We created primary care, specialty 
care, pulmonology, nephrology, and cancer care access maps for tracts from different U.S. regions and differing pat-
terns of car commuting, including Washington, D.C.; Cleveland, OH; Houston, TX; San Francisco, CA; and Augusta, ME 
(supplementary maps at https://github.com/SpatialEpidemiology/SACData/tree/main/Figures). We performed stratified 
analyses comparing spatial access between classifications of 2010 U.S. Department of Agriculture RUCA codes and 2016 
ADI quartiles in addition to percent change in spatial access between December 2016 and December 2019 (end of year 
provider files). 2020 was not utilized for percent change due to changes in tract boundaries in the decennial 2020 Census. 
Quarterly spatial access to care datasets for 2016–2020 for all 56 provider classifications can be found at github.com/
SpatialEpidemiology/SACData. Finally, we produced a tract-level interactive map with 2016 and 2019 spatial access mea-
sures for primary care and specialty care providers, found at https://spatialepidemiology.github.io/SACData.

Results

There were 388,595 primary care, 626,825 specialty care, 23,448 pulmonology, 16,670 nephrology, and 34,713 cancer 
care providers included in our analysis of 2016 U.S. health care providers, where the total number of health care providers 
included in our analysis was 2,303,812 (excluding dentistry and providers with undefined specialty). These counts include 
individual provider duplicates, as all provider locations were included in the analysis (e.g., providers with separate hospital 
and clinic locations).

We tabulated composite P2P ratios for December 2016 in the contiguous U.S., which had medians of 105.8 primary 
care providers, 177.6 specialty care providers, 5.8 pulmonology providers, 4.2 nephrology providers, and 8.0 cancer care 
providers per 100,000 population (Table 1). Medians for car-specific P2P ratios for 2016 are shown in Table 1. Across 
all 5 physician classifications studied, stratified median composite and car-specific spatial access to care values were 
significantly lower in micropolitan, small town, and rural RUCA-classified tracts in comparison to metropolitan tracts. 
Median composite and car spatial access values were much more scattered across ADI quartiles without defined pat-
terns. Between 2016 and 2019, median composite spatial access to primary care providers increased by 15.0% nationally, 
while composite spatial access to specialty care, pulmonology, nephrology, and cancer care increased by 50.0%, 13.2%, 
16.4%, and 20.3%, respectively. Changes in medians were not consistent across RUCA strata, where micropolitan and 
rural strata had significantly lower percent increases in primary care composite spatial access in comparison to metro-
politan tracts, while micropolitan, small town, and rural strata had significantly lower percent increases in pulmonology, 
nephrology, and cancer care in comparison to metropolitan tracts. Notably, for primary care, rural tracts experienced 0% 
median increase in composite spatial access to care, while pulmonology, nephrology, and cancer care, micropolitan, small 
town, and rural tracts had 0% median increase in composite spatial access to care between 2016 and 2019.

For specialty care spatial access, micropolitan and small town RUCA strata had significantly larger median increases 
in composite spatial access in comparison to metropolitan-coded tracts between 2016 and 2019, while rural-coded tracts 
had significantly lower increases in composite access, suggesting a trend among health systems to increase specialty 
care providers outside of centralized urban locations.

As shown for the Washington, D.C. metro (Fig 1), car-specific spatial access to primary care providers (Panel B) likely 
underestimates access, as composite spatial access to primary care providers (Panel A), indicates substantially higher 

https://github.com/SpatialEpidemiology/SACData/tree/main/Figures
https://spatialepidemiology.github.io/SACData
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access where there are fewer people utilizing car travel (Panel C). There were no clear overlapping visual patterns when 
comparing primary care spatial access and area deprivation (ADI) in Washington, D.C. Both composite and car-specific 
access to specialty care providers were substantially higher than primary care provider access in 2016. In Washington 
D.C., composite and car access to specialty care providers followed similar geographic patterns to primary care access 
but was generally higher throughout the metro (Fig 2). Areas with the highest access (central D.C. and west of Arlington, 
VA) also had more sprawling access to specialty care providers than primary care providers. Given a considerable portion 

Fig 1.  December 2016 travel modality-weighted car-transit-walking composite spatial access to primary care providers (A), December 2016 
car-specific spatial access to primary care providers (B), 2016 car commuting percentage (C), and 2016 area deprivation index percentiles (D) 
in Washington D.C. metropolitan area census tracts. 

https://doi.org/10.1371/journal.pone.0330427.g001

https://doi.org/10.1371/journal.pone.0330427.g001
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of the population in D.C. area utilizes transit or walking for commuting, access to care via car measure likely underesti-
mated access in comparison to the composite measure.

The incongruities between access to specialty care and primary care continued to widen between 2016 and 2019, and 
these changes were particularly stark in non-metros. For example, in tracts coded as micropolitan, composite access to 
primary care providers increased by 17.1% from 2016 to 2019, while composite access to specialty care increased by 
59.6% (Fig 3). Kennebec County, ME (Augusta, ME and surrounding areas) is a useful exemplar for these temporal differ-
ences, as the U.S. Office of Management and Budget and the U.S. Census Bureau classifies Kennebec County as a rural 
county [46], while individual tracts in the county are largely RUCA-coded as micropolitan, with one central tract in Augusta, 
ME coded as metropolitan. In Fig 3, primary care and specialty care composite access were roughly similar throughout 
Kennebec County in December 2016 (Panels A and C). In contrast, composite access to primary care providers increased 
slightly yet incongruently by 2019 (Panel B), while composite access to specialty care providers strongly increased, includ-
ing in tracts further from the Augusta, ME urban core (Panel D).

Discussion

We produced a novel multi-modal neighborhood-level spatial access to care measure and created the first temporally 
representative spatial access dataset for a variety of provider classifications in U.S. tracts and BGs for 2016–2020. Our 
analytical findings indicate non-metropolitan tracts had significantly poorer spatial access to primary care, specialty care, 
pulmonology, nephrology, and cancer care in 2016 and this trend worsened over time. We also found that that multi-modal 
spatial access to primary care providers was substantially lower than specialty care access in 2016 and worsened over 
time. We did not identify clear spatial access disparities across area deprivation values. Our findings and produced data 
resource are likely to be useful for clinical and population health studies, public health entities, community stakeholders, 
health systems, and policymakers in studying the effects of geographic accessibility to healthcare on health conditions/
outcomes and targeting of community efforts, policy programs, and funding towards disparities in travel-related access. 

Fig 2.  December 2016 Travel modality-weighted car-transit-walking composite spatial access to specialty care providers (A) and December 
2016 car-specific spatial access to specialty care providers (B) in Washington D.C. metropolitan area census tracts.

https://doi.org/10.1371/journal.pone.0330427.g002

https://doi.org/10.1371/journal.pone.0330427.g002
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We expect to continually update this spatial access to care resource for subsequent time periods (e.g., 2021–2025), as 
provider data is consistently released by CMS.

One of our major findings was that access to primary care providers did not increase as much over time as specialty 
care providers. There is a myriad of potential reasons for this, such as lagging increases in the total number of primary 
care providers, continued urbanization patterns of providers and populations [47–49], and changes in travel patterns. 

Fig 3.  December 2016 travel modality-weighted car-transit-walking composite spatial access to primary care providers (A), December 2019 
travel modality-weighted car-transit-walking composite spatial access to primary care providers (B), December 2016 travel modality-weighted 
car-transit-walking composite spatial access to specialty care providers (C), and December 2019 travel modality-weighted car-transit-walking 
composite spatial access to specialty care providers (D) in Kennebec County, ME census tracts. 

https://doi.org/10.1371/journal.pone.0330427.g003

https://doi.org/10.1371/journal.pone.0330427.g003
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Lagging increases in the total number of primary care providers from 2016 to 2019 is likely the major contributor to 
reduced improvements in access in comparison to specialty care, as we found that the total number of primary care-
classified providers increased by 11.5% from 2016 to 2019 while the total number of specialty care-classified providers 
increased by 27.1% from 2016 to 2019. Urbanization of both providers and populations is also a plausible mechanism for 
the lagging increase in primary care provider access in comparison to specialty care, as Table 1 showed that rural areas 
had 0% increase in primary care access from 2016 to 2019, while rural specialty care access increased by 35.7%. Our 
data and analyses suggest that incentives and investment should be focused on both increasing the number of primary 
care providers overall and especially in rural areas. Between 2016 and 2019, the percentage of the population in contig-
uous U.S. census tracts utilizing car travel for commuting increased from 90.8% to 91.0%, while commuting via transit 
decreased from 5.9% to 5.8% and commuting via walking decreased from 3.3% to 3.2%. There are small variabilities by 
state in these changes. For example, among contiguous U.S. states, Massachusetts census tracts had the largest mean 
decrease in car commuting (0.41%) from 2016–2019 and also had the second largest mean increase in transit commuting 
(0.31%) and walk commuting (0.09%). These small changes, even in states with the largest increasing or decreasing del-
tas by travel modality, are unlikely to be the reason for lagging increases in primary care provider access. We also found 
that there are no consistent patterns in disparities across ADI quartiles, which is likely due to the fact that roughly 50% of 
U.S. population living in poverty resides in metropolitan areas [50], where there is stronger spatial access to providers. As 
spatial access is only capturing the availability and accessibility components of the broader access to care continuum, this 
does not necessarily indicate that metropolitan populations have affordable, accommodating, or acceptable care.

Improving access to healthcare is a vital component of efforts to reduce the high chronic disease burden and mortal-
ity in rural America [34–37,51]. Poor spatial access to care specifically has been linked to higher mortality from emer-
gency surgeries, reduced healthcare utilization, and increases in preventable hospitalizations [4,52–54], but more work 
is needed to expand analyses into other health outcomes. The data product resulting from our study will provide future 
research with crucial temporally representative spatial access measures for many different types of providers, which will 
allow for examination of relationships with a variety of health outcomes. Rural provider shortages due to hospital closures 
and other factors are worsening over time [55–57], and are likely one of the major contributors to the decreasing spatial 
access to providers we observed. To strengthen healthcare access in non-metropolitan areas, expansion of the Conrad 
30 J-1 visa waiver program may be a viable pathway for states to attract and retain international medical graduates in 
healthcare shortage areas [58]. The program is currently capped at a 30-waiver limit per state, but a congressional bill 
introduced in 2023 would increase this limit to 35, which remains lower than the 50 waivers supported by the American 
Medical Association [59,60]. Domestic medical graduate loan forgiveness programs may also be useful to reduce access 
disparities in non-metros, yet are often restricted to primary care providers practicing in healthcare shortage areas  
[61–63]. In our analyses of pulmonology, nephrology, and cancer care, there were zero providers per 100,000 population 
in small town and rural-coded tracts in 2016 with no increase by 2019. Thus, expanding loan forgiveness programs in 
shortage areas to include specialty care providers may further improve access to care for non-metropolitan populations 
[64]. As spatial access was lower both cross-sectionally and over time for non-metropolitan areas, the importance of 
telehealth in these areas may only be increasing going forward. Though the ‘digital divide’ between urban and rural areas 
of the U.S. is improving [65,66], access to computers, internet, and smart phones for rural residents remains poorer than 
in more urbanized areas [67–69], potentially complicating widespread rollout of rural telemedicine capabilities. Other 
specific barriers include the willingness of healthcare organizations to implement telemedicine in remote areas, the lack 
of hospital-side digital infrastructure to implement telemedicine, telemedicine reimbursements, provider knowledge of and 
training for telemedicine, and telemedicine quality assurance [70]. The U.S. Federal Government has recognized barriers 
and introduced grant programs through agencies to target telemedicine shortcomings, such as the Federal Communica-
tion Commission’s Rural Health Care Program and U.S. Department of Agriculture Rural Development’s Distance Learn-
ing and Telemedicine Grants program [71,72]. The 2021 congressional infrastructure law also contained provisions for 
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improving rural telemedicine access by narrowing the digital divide [73], but the real-world effects are not yet fully realized. 
Further local, state, or federal policy steps to tighten the digital divide may be warranted if telemedicine benchmarks are 
not met. In addition to telemedicine, mobile health clinics are another pathway to both improve access to care and serve 
as gateways for underserved populations to enter the broader healthcare system [74]. U.S. mobile health clinics are typ-
ically located in densely populated areas [74], so improving geographic equity (i.e., expanding clinics in non-metropolitan 
areas) may serve as one further avenue to improve access to care for rural populations.

Our study had several limitations. We utilized transit network files that are largely maintained by local municipalities 
with varying levels of completeness and update frequency. This could have resulted in underestimated transit availabil-
ity, particularly in rural and underfunded areas due to less frequent or incomplete transit network updates. We com-
bine or link a number of separate U.S. Federal Government databases including population, ADI, commuting patterns, 
and tract/BG boundaries from the U.S. Census Bureau, RUCA codes from USDA, and provider locations from CMS 
NDFs. Though the government datasets originate from three different agencies, they have geographic interoperability 
(i.e., all are geographically referenced) and these datasets have been used in conjunction in the literature for health 
services research [1,2]. Similarly, OSM data and GTFS files (transit files sourced from BusMaps) have been used in 
health services literature and in conjunction with Census Bureau population data [3]. All of our databases were able to 
be combined or linked via census tract and block group Federal Information Processing Standard (FIPS) codes. For 
OSM and GTFS files, utilization of other proprietary mapping or transit databases (e.g., Google Maps Routes API or 
Transitland API) would have been prohibitively expensive to perform the national routing procedures we undertook in 
this analysis. An important limitation of the CMS dataset we utilized is that certain providers in the dataset have multi-
ple specialties (i.e., primary and secondary specialties) and in order to be comprehensive, providers with any primary 
or secondary specialties that fit to a given provider classification category were retained in that category. For example, 
“internal medicine” is a specialty that is included under the umbrella term “primary care,” but these providers frequently 
have other primary or secondary specialties. There was no avenue to comprehensively determine in the CMS dataset 
whether these providers serve primarily as specialists or primarily as primary care providers or serve as specialty care 
providers but also perform primary care services in their role as internists. This could have resulted in overestimation 
of the number of primary care providers, but the exact overestimation was not possible to compute because we can-
not discern specific provider services available, or care rendered outside of specialties included in the CMS database. 
Nevertheless, the 2016 count of 388,595 primary care providers included in our analysis generally reflects estimates 
provided in the literature [75]. This overestimation could also apply to the specialist provider types we studied, as spe-
cialist providers with an “internal medicine” primary or secondary specialty may actually primarily serve as primary care 
providers or also perform primary care services in addition to services classified as specialist. One further limitation of 
the CMS data utilized is that duplicates of individual providers were required to be included in our analysis, as done in 
previous work using the CMS provider database [6,7], in order to capture all provider locations. This analytical decision 
was required because many providers have separate hospital and clinic locations, and the CMS data utilized has no 
information about how providers split their services between the separate locations in which they practice medicine. 
Therefore, spatial access to all provider types studied may also be overestimated through this avenue. We also used 
a maximum catchment area size of 30 minutes based on literature support [2,3,5]. A larger catchment size may be 
warranted for specialized care, as patients may be willing to travel further. There is a lack of empirical avenues to opti-
mize the maximum catchment size, which could be addressed in future methodological development. We also did not 
include bicycle travel in computing spatial access to care, as commuting by bicycle is relatively rare in the U.S. [76,77]. 
Within the vein of population travel preferences, we used a proxy measure, census commuting patterns, to capture how 
populations may travel to their providers. Commuting patterns may not fully capture how populations actually prefer to 
travel to providers, but because there are no national tract or BG-level measures of population travel preferences to 
providers, this was only nationally representative option for composite measure weighting of travel modalities. Despite 
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limitations, our study contributes new knowledge about rural disparities in multi-modal access to primary and specialty 
care and provides the first temporal spatial access to care dataset for multiple provider types in U.S. neighborhoods.
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