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Abstract 

Cadmium (Cd) pollution threatens agricultural productivity and food safety.  

O-acetylserine(thiol)lyase (OASTL) genes have been tied to plant responses to 

heavy metal stress, yet their roles in heterologous systems, particularly in Cd accu-

mulation and tolerance, remain unclear. Here, we isolated a novel OASTL gene, 

BnaOASTL, from the high-Cd-accumulating oilseed rape cultivar Brassica napus 

“Nanyou 868” and expressed it in tobacco (Nicotiana benthamiana). Transgenic lines 

were exposed to Cd stress, and Cd content, glutathione (GSH) level, and BnaOASTL 

expression were evaluated. The full-length BnaOASTL cDNA (969 bp) encoded a 

cytoplasmic/nuclear protein of 322 amino acids. Under Cd stress, Bn-OASTL expres-

sion was significantly upregulated in transgenic plants, particularly in roots. However, 

compared with wild-type, transgenic lines showed no improvement in Cd tolerance 

or accumulation and no significant changes in GSH levels. The findings suggest that 

although BnaOASTL is transcriptionally responsive to Cd stress, its overexpression 

alone does not confer altered Cd tolerance or accumulation in tobacco. The study 

highlights the complexity of Cd response mechanisms and suggests that BnaOASTL 

functions within a broader, species-specific regulatory network.

1.  Introduction

Cadmium (Cd) contamination in farmland soils is a pressing environmental problem, 
threatening crop production and human health due to its toxicity and high mobility 
in plants [1,2]. Mitigation strategies such as phytoremediation and the development 
of Cd-safe crops depend on understanding the molecular pathways governing Cd 
uptake, transport, and detoxification.

The O-acetylserine(thiol)lyase (OASTL) family is central to cysteine (Cys) bio-
synthesis, which underpins production of glutathione (GSH), a key metabolite in 
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heavy metal detoxification [3–5]. In Arabidopsis thaliana, depletion of AtOASTL-A1 
reduces intracellular Cys and GSH contents, increasing Cd sensitivity [6]. Since the 
first OASTL was identified in A. thaliana [7–10], homologs have been isolated from 
spinach [11], Brassica juncea L. [12], vetch (Vicia sativa L.) [13], Glycine max (L.) [4], 
Leucaena leucocephala [14], Sorghum bicolor [3], Solanum lycopersicum L. [15], and 
Cardamine hupingshanensis [16]. Functional analyses have confirmed that some 
OASTL genes enhance heavy metal resistance when overexpressed in transgenic 
plants [4].

OASTL exists in multiple isoforms localized to the cytoplasm, mitochondria, and 
chloroplasts [5,17]. These proteins are highly conserved across species, particularly 
in the diphosphate (PLP)-binding site (PXXSVKDR), substrate-binding site (TSGNT), 
and serine acetyltransferase (SAT) interaction site (KPGPHK) [15,18–20], underscor-
ing their essential metabolic role. Their involvement in Cd stress is well documented. 
For example, overexpression of GmOASTL4 in tobacco enhances Cd tolerance [4]. 
Conversely, disruption of AtOASTL-A1, a key factor in the final step in Cys biosynthe-
sis [9], reduces GSH levels, increases oxidative stress, and heightens Cd sensitivity 
[5,6,21], highlighting the link between OASTL activity and Cd detoxification.

Despite extensive studies in other species, OASTL genes from high-Cd-
accumulating Brassica napus genotypes remain poorly characterized. Recent work 
examined OASTL in selenium metabolism in Cardamine hupingshanensis [16] and in 
tomato under heavy metal stress [3], but the function of OASTL from Cd-accumulating  
rapeseed cultivars and its role in heterologous systems has not been thoroughly 
investigated. It is not yet known whether overexpression can confer Cd tolerance or 
alter accumulation patterns in a heterologous system. Here, we cloned the BnaOASTL 
gene from the high-Cd-accumulating oilseed rape cultivar “Nanyou 868” and evalu-
ated its role in Cd stress response through heterologous expression in tobacco. This 
work provides functional insight into BnaOASTL in a heterologous context and contrib-
utes to understanding the molecular basis of Cd response mechanisms, with potential 
implications for developing Cd-tolerant crops via molecular breeding.

2.  Materials and methods

2.1.  Plants and treatment

The high Cd-accumulating B. napus cultivar ‘Nanyou 868’ (2n = 4x = 38, AACC) [22] 
was used as the gene source. Nicotiana benthamiana was selected for transgenic 
plant (TP) development. Surface-sterilized seeds were placed on half-strength 
Murashige and Skoog (MS) medium for germination at 25°C under a 12 h/12 h 
light/dark cycle in a greenhouse. For Cd treatment, five-leaf-stage seedlings were 
exposed to 5 mg·L−1 CdCl

2
·5H

2
O for 72 h, after which leaves were harvested, 

snap-frozen in liquid nitrogen, and kept at −80°C.

2.2.  Cloning of BnaOASTL cDNA

Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen, Germany, Cat. No. 
74904) and converted into cDNA using SuperScript III Reverse Transcriptase (Invit-
rogen USA, Cat. No. 18080093). Two OASTL fragments were amplified with primers 
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designed specifically for OASTL sequence (accession no. GQ996586.1), namely, N6-OASTL-1 (DPsen): cagtGGTCTCa-
caacatggcatctcgaattgctaaag, N6-OASTL-1 (DPantisen): cagtGGTCTCaattccatacagcttaacgttag; N6-OASTL-2 (DPsen): 
cagtGGTCTCagaatggagccaattgaaagtg, and N6-OASTL-2 (DPantisen): cagtGGTCTCatacaagcctggaaggtcattgattc using 
KOD FX Neo (Toyobo, Japan, Cat. No. KFX-201) on a T100 Thermal Cycler (Bio-Rad, USA). Each reaction contained 1.0 
µL cDNA (50 ng), 1.0 µL each primer (10 µM), 5 μL buffer, 10 µL dNTP mix, 1 µL KOD, and 31 µL ddH₂O. Amplification 
conditions were 94°C for 5 min; 30 cycles of 30 s at 94°C, 45 s at 55°C, and 58 s at 72°C, and 10 min at 72°C. The prod-
ucts were purified and cloned into a custom vector via the “Golden Gate” method and subsequently sequenced [23].

2.3.  Identification and characterization of BnaOASTL

The open reading frame (ORF) of BnaOASTL was identified using NCBI ORF Finder (https://www.ncbi.nlm.nih.gov/
orffinder/). Subcellular localization was predicted with PSORT (http://psort.ims.u-tokyo.ac.jp/). The isoelectric point (pI) 
and molecular weight (MW), and other physicochemical properties were obtained using the Expert Protein Analysis 
System (ExPASy) (http://cn.expasy.org/). Multiple sequences were aligned using ClustalX and visualized in GenDoc. A 
phylogenetic tree was generated in MEGA7.0 utilizing the neighbor-joining (NJ) method.

2.4.  Vector construction and tobacco transformation

The BnaOASTL ORF was cloned into vector pBWA(V)HS-ccdb-osgfp (BioRun, Wuhan, China) via Golden Gate assembly 
(Fig 1). Sequence-verified plasmids were introduced into Agrobacterium tumefaciens strain EHA105. Transgenic tobacco 
plants were established via the leaf-disc method and screened on MS medium with 20 mg/L hygromycin B.

2.5.  Subcellular localization

pBWA(V)HS-BnaOASTL-osgfp and empty control vectors were introduced into A. tumefaciens strain GV3101 and tran-
siently expressed in N. benthamiana leaves via agroinfiltration. GFP signals were observed 48 h post-infiltration under a 
confocal microscope (OLYMPUS IX71, Japan) at 488 nm excitation and 510 nm emission.

2.6.  Molecular characterization of transgenic plants

DNA from T
3
 transgenic and control plants (untransformed and vector control) was extracted by the CTAB method and 

screened for BnaOASTL transgene using PCR with primers FP (5′-ttcatttggagagaacacgggggac-3′) and RP  
(5′-gttctcaaactgttggagcatg-3′) in triplicate with a 58 °C annealing temperature. Products were resolved on a 1.0% agarose 
gel, yielding a ~ 500 bp fragment from the positive plants.

2.7.  Cd tolerance in transgenic plants

Cd stress was applied following [24] with slight modifications. T
3
 transgenic and wild-type (WT) tobacco seeds were ger-

minated on 1/2 MS medium at 25°C with a 16 h/8 h light/ dark cycle for 10 days. Five-leaf-stage T
3
 seedlings were trans-

ferred to 9-cm pots containing perlite and vermiculite (1:1) and treated with 5 mg· kg−1 Cd (CdCl
2
·2.5 H

2
O) in basal nutrient 

solution (pH 5.5) or 400 ml distilled water. Each treatment included three replicates, with one plant per pot, and seedling 
growth was monitored for one week.

2.8.  Measurement of Cd and GCH content

After 20 days of Cd exposure, roots were immersed in 20 mmol·L−1 Na
2
-EDTA for 30 min, then washed three times with 

deionized water to remove surface-bound Cd. Samples were then separated into roots and shoots. Half of each sample 
was immediately frozen in liquid nitrogen for fresh tissue analysis, while the remainder was oven-dried at 75°C for Cd 
determination. Cd content was measured following the Chinese National Standard HJ786–2016 in China [25,26]. Dried 
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roots and shoots were weighed, pulverized, decomposed at 550°C for 8 h, and digested in 30% HNO
3
. Cd concentrations 

were measured using flame atomic absorption spectrometry (Shimadzu AA-6300, Japan). Data represent the mean of 
three replicates. GSH was extracted from shoots of Cd-treated and control plants and quantified using a reduced glutathi-
one (GSH) kit (Visible light spectrophotometer, Shanghai Jinghua 721).

2.9.  Quantitative real-time PCR (qRT-PCR)

qRT-PCR was executed on a StepOnePLUS Real-Time PCR system (Applied Biosystems, USA) using 2 × SG Green qPCR 
Mix with ROX (SinoGene, China, Cat. No. SG011) using primers QRT-BnaOASTL-F (5’-ACCCTGCCAACCCAAAGATA-3’) 

Fig 1.  Schematic of the recombinant vector. RB and LB, right and left T-DNA borders; 35S, CaMV 35S poly A; HYG, hygromycin B; osgfp, the 
BnaOASTL-GFP fusion gene; Tnos, nopaline synthase terminator.

https://doi.org/10.1371/journal.pone.0329885.g001

https://doi.org/10.1371/journal.pone.0329885.g001
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and QRT-BnaOASTL-R (5’-ACCACCAGTACCAATCCCAG-3’). Actin served as the internal control and amplified using 
Actin-F (5’-tttcctggcattgcagatcg-3’) and Actin-R (5’-tccagacactgtacttgcgt-3’). Reactions (20 µL) included 2 µL cDNA, 0.4 µL of 
each primer (10 µM), 10 µL 2 × SG Green Mix, and 7.2 µL ddH₂O. Cycling was run at 95°C for 3 min, then 40 cycles of 95°C 
for 10 s and 60°C for 30 s. Relative expression was quantified using the 2-ΔΔCt method with three biological and three techni-
cal replicates.

2.10.  Statistical analysis

All results are shown as mean ± standard deviation (SD) ≥3 independent replicates. Data were compared using one-way 
ANOVA with Tukey’s HSD post hoc test (SPSS 22.0, IBM, USA), with P < 0.05 considered significant.

3.  Results

3.1.  Sequence and phylogenetic analysis of BnaOASTL

Gene structure analysis revealed that the BnaOASTL ORF is 969 bp long and encodes a 322-amino acid protein 
(S1 Fig). The mature protein has an estimated molecular weight of 33.9 kDa, a calculated pI of 5.50, and three 
conserved domains: TSGNT (substrate-binding site), KPGPHK (SAT1-binding site), and PXXSVKDR (PLP-binding 
site) (S2 Fig). Alignment with cysteine synthases from Brassica rapa, Raphanus sativus, Hirschfeldia incana, and 
Eutrema salsugineum showed amino acid sequence identities of 99.69%, 98.45%, 98.14%, and 97.52%, respectively. 
Phylogenetic analysis of the BnaOASTL protein with other 21 representative species (Fig 2) divided the 22 OASTL 
proteins into two subcategories. Subcategory I includes XP_049374434.1, NP_001274978.2, NP_001308271.1, 
XP_015088117.1, XP_059289749.1, KAJ8543230.1, KAF3681890.1, XP_012069631.1, XP_021593925.1, 
KAJ0233058.1, PWA95687.1 and GEV11055.1. Subcategory II includes XP_010532551.1, XP_020886714.1, 
XP_010488274.1, XP_006284124.1, NP_001190732.1, OASTL_NY868, O23733.1, KAJ0442914.1, XP_009148046.1 
and CDY29778.1, with OASTL_NY868 closely related to O23733.1. Subcellular localization analysis indicated that 
BnaOASTL is cytoplasmic and nuclear, lacks transmembrane domains, and belongs to the PLP-dependent,  
β-substituted alanine synthase superfamily.

3.2.  Subcellular localization of BnaOASTL

BnaOASTL-GFP was predominantly localized to the cytoplasm and nucleus (Fig 3), suggesting that BnaOASTL likely 
performs its functions in these subcellular compartments.

3.3.  Molecular characterization of transgenic lines

Eight independent transgenic tobacco lines expressing the BnaOASTL gene were generated. Plants transformed with 
empty vector pBWA(V)HS-osgfp served as controls. Integration of the BnaOASTL in T3 plants was validated by PCR 
using gene-specific primers (Fig 4).

3.4.  Phenotypic response to Cd stress

Tobacco plants were treated with 5 mg· kg−1 Cd (CdCl
2
·2.5 H

2
O). After 7 days, transgenic and WT plants showed similar 

phenotypes under Cd stress, except for the slower growth of WT (Fig 5).
Panels a and g represent WT plants, and panels b–f and h–l represent transgenic lines.

3.5.  BnaOASTL expression under Cd stress

qRT-PCR results (Fig 6) indicated that Cd stress significantly elevates BnaOASTL transcript abundance in roots and 
shoots, with levels in roots substantially exceeding those in shoots.
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3.6.  Cd and GSH contents

The expression of BnaOASTL in transgenic lines was further investigated by analyzing Cd contents in T3 transgenic and 
WT tobacco plants before and during Cd stress (Fig 7). Under both control and stress conditions, Cd levels were similar 
between BnaOASTL overexpression lines and wild-type plants. Similarly, GSH contents showed no significant differences 
between transgenic lines and WT under either normal or Cd-stress conditions (Fig 8).

Fig 2.  Phylogenetic tree of OASTL proteins from B. napus and other species based on amino acid sequences. Bootstrap values (>50%) 
from 1000 replicates are demonstrated at branch nodes. The scale bar represents a distance of 0.05. The B. napus OASTL sequence is 
marked with a blue symbol. Other sequences were obtained from XP_049374434.1, NP_001274978.2, NP_001308271.1, XP_015088117.1, 
XP_059289749.1, KAJ8543230.1, KAF3681890.1, PWA95687.1, GEV11055.1, KAJ0442914.1, XP_012069631.1, XP_021593925.1, OASTL_
NY868, O23733.1, XP_009148046.1, CDY29778.1, KAJ0233058.1, XP_006284124.1, NP_001190732.1, XP_020886714.1, XP_010488274.1 and 
XP_010532551.1.

https://doi.org/10.1371/journal.pone.0329885.g002

https://doi.org/10.1371/journal.pone.0329885.g002
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Fig 3.  Subcellular localization of BnaOASTL-GFP in tobacco epidermal cells. Scale bar = 10 µm.

https://doi.org/10.1371/journal.pone.0329885.g003

Fig 4.  Confirmation of BnaOASTL integration in tobacco lines by PCR, showing amplified BnaOASTL bands from 10 tobacco lines. M, DL2000 
DNA marker; 1–6 and 8: transgenic lines; 9, positive control (plasmid); and 10, negative control (WT).

https://doi.org/10.1371/journal.pone.0329885.g004

Fig 5.  Images of WT and transgenic plants before (a–f) and after (g–l) cadmium treatment.

https://doi.org/10.1371/journal.pone.0329885.g005

https://doi.org/10.1371/journal.pone.0329885.g003
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Fig 6.  BnaOASTL expression by qRT-PCR in roots and leaves of seedlings after 24 h treatment with 0 or 5 mg· kg−1 Cd. Data are shown as 
means ± SD (n = 3) with different letters indicating significant differences (P < 0.05, one-way ANOVA, Tukey’s test).

https://doi.org/10.1371/journal.pone.0329885.g006

Fig 7.  Cadmium accumulation in shoots and roots of transgenic (T1-T4) and WT plants under 0 or 5 mg· kg−1 Cd (CdCl2·2.5 H2O) treatment. 
Values represent mean ± SD (n = 4), with different letters indicating significant differences (P < 0.05).

https://doi.org/10.1371/journal.pone.0329885.g007

https://doi.org/10.1371/journal.pone.0329885.g006
https://doi.org/10.1371/journal.pone.0329885.g007
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4.  Discussion

4.1.  Sequence and structure analysis of BnaOASTL

Different OASTL isoenzymes perform diverse functions [16], and several family members contribute to plant responses 
to heavy metals and oxidative stress [5]. Recently, OASTLs have gained attention for their role in Cd stress responses 
[3]. In this study, a putative OASTL gene, designated BnaOASTL, was isolated from the high Cd-accumulating B. napus 
L. (‘Nanyou 868’). Sequence analysis unveiled that BnaOASTL cDNA contains a 969 bp ORF encoding a 322-amino 
acid protein with a predicted MW of 33.9 kDa and a PI of 5.50. These features are consistent with OASTL proteins from 
Arabidopsis, Sorghum, and Cardamine hupingshanensis, which typically range from 305 to 433 amino acids and exhibit 
acidic values (<7) characteristic of cytoplasmic OASTLs [3,16]. The deduced BnaOASTL protein contains three conserved 
domains, i.e., TSGNT (substrate-binding site), KPGPHK (SAT1-binding site), and PXXSVKDR (PLP-binding site), indi-
cating it likely uses pyridoxal monohydrate 5’-phosphate as a cofactor and belongs to the PLP-dependent β-substituted 
alanine synthase superfamily. The subcellular localization analysis predicts that BnaOASTL may exist in the cytoplasm, 
chloroplast, and mitochondrion. Confocal imaging of BnaOASTL-GFP in tobacco confirmed predominant localization in the 
cytoplasm and nucleus, consistent with previous reports highlighting cytoplasmic OASTL function [5,16]. These findings 
indicate that BnsOASTL belongs to the OASTLA1 type. Multiple sequence alignment unveiled highly conserved C-termini 
but more variable N-termini among OASTL proteins, suggesting both conserved function and potential for regulatory diver-
sity. Phylogenetic analysis showed that BnaOASTL is most related to OASTL from B. cretica and B. rapa, confirming it as 
a genuine member of the OASTL family and representing a novel variant within this group.

4.2.  Expression of BnaOASTL in transgenic lines in response to Cd

Morphological and physiological responses are key indicators of metal toxicity. To assess the functional role of BnaOASTL 
in Cd stress, transgenic tobacco overexpressing BnaOASTL was generated. Under Cd stress, no significant phenotypic 

Fig 8.  Glutathione content in shoots. Data are mean ± SD; no significant differences were found.

https://doi.org/10.1371/journal.pone.0329885.g008

https://doi.org/10.1371/journal.pone.0329885.g008
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differences, such as chlorosis or leaf abscission, were observed between transgenic and wild-type seedlings, suggest-
ing that tobacco inherently tolerates Cd at the applied concentration. qRT-PCR unveiled that BnaOASTL expression 
was dramatically induced in roots but only slightly in shoots of transgenic plants under Cd stress, consistent with pat-
terns observed in other species [3,4]. This upregulation indicates that BnaOASTL is responsive to Cd stress and may 
participate in Cd-responsive pathways. However, despite the elevated transcript levels, transgenic plants did not exhibit 
enhanced Cd tolerance or accumulation compared to WT. Moreover, glutathione (GSH) content remained unchanged. 
These results suggest that overexpression of BnaOASTL alone is insufficient to alter Cd detoxification or accumulation in 
tobacco. This lack of phenotypic effect may be explained by several factors: (1) functional redundancy and compartmen-
talization of OASTL isoforms in different subcellular compartments (cytosol, chloroplasts, mitochondria), limiting changes 
in overall cysteine or GSH pools [15,18–20]; (2) post-translational regulation of OASTL via interaction with serine acetyl-
transferase (SAT) and feedback inhibition, which may prevent increased cysteine production without concomitant pathway 
activation; (3) species-specific context, as tobacco may lack regulatory elements or interacting partners present in B. 
napus, and (4) the complex of Cd detoxification networks, including phytochelatin synthesis, metal transporters, and the 
antioxidant systems [27], which cannot be significantly altered by overexpression of a single gene. These findings high-
light the complexity of Cd stress responses and suggest that BnaOASTL likely functions within a broader metabolic and 
regulatory network rather than acting in isolation. However, these hypothesis needs a more in-depth study.

5.  Conclusions

In summary, this study provides functional characterization of BnaOASTL from a high-Cd-accumulating rapeseed culti-
var in a heterologous system. Although its overexpression in tobacco did not enhance Cd tolerance or accumulation, the 
gene’s response to Cd stress underscores its involvement in Cd-responsive pathways. These findings highlight the com-
plexity of Cd stress responses and suggest that BnaOASTL may function within a broader regulatory network.

Supporting information

S1 Fig. The complete cDNA sequence of BnaOASTL and its deduced protein sequence, with amino acids shown 
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served domains: TSGNT (substrate-binding site), KPGPHK (SAT1-binding site), and PXXSVKDR (PLP-binding site), 
are boxed. The BnaOASTL sequence was obtained from B. napus, and other sequences from XP_018470163.1, 
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