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Abstract
Using three-dimensional scans of human faces has become an emerging technique in
studies of human variation, where the quantitative assessment of facial similarity com-
plements the measurement of other somatic traits. While the algorithms for automated
registration (geometrical alignment) and similarity measurement of two facial scans are
well-known and used in practice, their direct application for batch processing is limited
due to computational requirements. The batch N:N analysis, where all pairs of scans in
a dataset must be mutually registered and compared, introduces quadratic complexity
with computation times reaching hours even for relatively small datasets, making it practi-
cally unusable. This paper presents a rapid and accurate approach with nearly linear time
complexity. Our solution utilizes properties of facial scan geometry to optimize individual
steps. Moreover, the algorithm deals with possible holes and other artifacts in polygonal
meshes automatically. Experiments demonstrate that the proposed solution is very fast
and sufficiently accurate compared to a precise quadratic-time baseline approach.

Introduction
Identification and allocation of individuals into groups are fundamental methods in biological
and physical anthropology used to explore and understand human biological variation across
and within populations [1]. It typically involves the quantitative assessment of similarities and
dissimilarities in somatic traits (anthropometric characteristics, physical appearance, cranial
and dental features, trait frequencies, etc.).

The number of (dis)similarities determines biological distance or biodistance. In the past,
it was assumed that biodistances were underlying reflections of genetic relationships [2].
However, contemporary understanding reveals that these assumptions are more intricate.
Nonetheless, biological distance analysis has proven valuable in illuminating evolutionary
processes [3], migration patterns [4], population diversity [5], and historical factors influenc-
ing human variation over time and across regions [6,7].

Biological distance can be expressed in multiple ways. Following rapid development over
the past two decades, 3D faces can now be created easily using a variety of three-dimensional
imaging modalities, ranging from medical imaging to laboratory equipment to personal
devices such as tablets or cellphones. However, as the data samples differ in quality and
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format of geometry encoding, e.g., depth images, point clouds, or meshes, they are not equally
suitable for biological anthropology [8].

This paper deals with biodistances computed for stereophotogrammetry data. Devices
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based on stereophotogrammetry are widely used for capturing the physical appearance of a
person. The data consists of a 3D facial geometry in the form of a 3D mesh and facial colors in
the form of a texture (2D image). Both components have been subject to a variety of compar-
ison and/or identification efforts separately [9]. Still, it is the combination of facial image and
3D shape that makes facial analysis more feasible and efficient [10], making this kind of data
popular in the respective application domains. Although our method strictly relies only on
the geometrical component, information taken from photo textures can be used for further
improvements in the future, e.g., to involve the color of eyes in the similarity measurement.

Techniques of quantitative description and comparison of mesh models can be divided
into two categories. Descriptor-based biodistance approaches utilize local features, e.g., curva-
ture, to deal with special cases like pose-invariant 3D face recognition, expression—invariant
recognition, or incomplete data [11,12]. These methods are independent of the position of 3D
models in space. In contrast, registration-based methods rely on the position of faces in space.
The similarity methods assume that the analyzed 3D models are mutually aligned – so-called
registered.

Despite the fact that the registration is computationally intensive and prone to imper-
fections that can affect the measurement, registration-based methods remain popular
among anthropologists due to their high precision and the explainability of expert decisions
supported by a data-driven approach. Therefore, our method uses results achieved in the
registration-based biodistance measurement of 3D facial pairs to accelerate the similarity
measurement of all faces in a population.

Problem statement
For a single pair of faces, registration-based similarity measurement consists of two key steps
suggested in Fig 1. First, the two faces A and B are registered (precisely aligned in space with
each other (preview C in Fig 1). Then, the distance between their surfaces is measured, with
the distances shown as color heatmaps in views E and F.

Given a set of 3D facial scans, our goal is to register and measure all pairs in the dataset,
aiming to compute the mutual (dis)similarity of all faces. We use the terms N:N or batch in

Fig 1. Registration and distance measurement of two faces. Views A and B capture original 3D scans with holes, view C faces after reg-
istration, view D relative distance from the first face to the second one, and view E vice versa. Black areas denote automatically detected
non-overlapping surfaces that are omitted from the measurement.

https://doi.org/10.1371/journal.pone.0329489.g001
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the remainder of the paper to express these bulk operations, e.g., N:N registration means the
mutual registration of all faces.

The precision of registration can significantly affect the results of the similarity mea-
surement. Therefore, the best results can be achieved if all pairs of faces are registered and
measured independently of other faces in the dataset. However, such a pairwise approach is
extremely inefficient due to the quadratic complexity. Computation times exceed hours or
days in the case of hundreds of faces, making this approach precise but impractical. However,
to the best of our knowledge, this time-consuming approach was the only method used so far
by anthropologists to analyze dissimilarities in a collection of 3D facial scans.

The idea of accelerating the registration phase lies in aligning all faces at once, i.e., to opti-
mize the position of all faces relative to all other faces in the dataset. However, the price we
pay for this optimization may be lower accuracy because the position of any two faces can be
considered a compromise reflecting not only the second face but the shape of all other faces
from the dataset.

Generalized Procrustes Analysis (GPA) [13] represents a popular method often used in
robotics and image reconstruction to mutually register many 3D objects at once in linear
time. However, GPA suffers from a strong assumption – the existence of an explicit pairing
between corresponding points from analyzed objects. Facial scans obtained from stereopho-
togrammetry consist of polygonal meshes, and, therefore, they provide no such correspon-
dence, making the GPA directly unusable.

In the anthropological domain, the correspondence of analyzed subjects could be deter-
mined through a process of landmark detection, where discrete anthropometric points, i.e.,
landmarks with an established biological or geometric meaning like the inner eye corner,
are often used in facial analysis [14]. However, their extraction from 3D models with suffi-
cient accuracy is laborious and difficult to automate. This is why many existing auto-detection
techniques deal with only a few selected landmarks that are easy to detect [15–18]. Using GPA
with only this limited selection of automatically extracted landmarks would essentially priori-
tize corresponding facial areas at the expense of areas for which landmarks were not detected.
For these reasons, we aim to find a solution to batch registration that deals with polygonal
meshes directly.

Popular ICP-based registration methods [19–21] overcome the correspondence require-
ment by computing 3D transformations that directly minimize the distance between vertices
of 3D meshes. However, they only address the pairwise problem. Its direct usage leads to the
already mentioned suboptimal pairwise registration running in quadratic time.

Based on these observations, we formulate the first research question:

• RQ1: How can a set of polygonal 3D facial scans be registered efficiently, yet precisely?
A possible solution is to combine GPA and ICP principles appropriately, carefully address-
ing robustness and precision.

Processing large polygonal meshes, as to be expected in biodistance analyses, is limited
due to low efficiency, regardless of which method is used. Therefore, sub-sampling strategies
have to be used in practice to reduce the number of vertices of original objects. However, the
strength of sub-sampling can negatively affect the precision of results [22]. Also, the strategy
of selecting vertex samples from original 3D models, e.g., random or uniform distribution of
samples, can affect both efficiency and precision. These facts lead to the following research
question:
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• RQ2: How do the sub-sampling methods affect the efficiency and precision of batch
registration? The goal is to find the best sub-sampling methods and their parameters that
provide efficient registration while preserving high precision.

Assuming that 3D models are mutually registered, the computation of the similarity of all
pairs of faces in the dataset introduces, again, quadratic complexity. Moreover, the algorithms
are computationally intensive. Surfaces must be sufficiently sampled into dense meshes to
compute a surface-to-surface deviation precisely. Despite using space partitioning techniques
to accelerate face-to-face measurement [23,24], the need to compare all pairs of faces in the
dataset prolongs the computation unacceptably. The time requirements are similar to the
sub-optimal pairwise registration. The need for the radical optimization of this step leads to
the following research question:

• RQ3: How to measure a mutual similarity of a set of registered 3D facial models effi-
ciently? Similarly to efficient batch registration, the goal is to achieve linear time complexity
of the measurement without losing the precision of measurement.

The results of 3D image acquisition modalities are often prone to errors, such as holes,
defective polygons, or smudged textures. The presence of reflective, moist, and hairy areas
(such as scalp, body or facial hair, and eyeballs) has been singled out as troublesome for
photogrammetry-based 3D reconstructive algorithms [25]. This either leads to gaps and blank
regions in the meshes, as the data preprocessing skips the creation of a mesh in sensitive areas
to avoid an imperfect result, or a flawed, unreliable geometry is built.

Moreover, unlike many other 3D objects, 3D scans of human faces do not form closed
shapes. They resemble a surface shell with scrappy edges into which data errors and noise
are inserted during 3D scanning. ICP-based approaches have been shown to perform well in
face identification when only processing two similar and uniformly cropped 3D scans [22].
Erroneous bordering parts can significantly affect results when comparing two or more facial
scans. Therefore, these areas must be removed during preprocessing, either automatically or
manually, which leads to the following research question:

• RQ4: How to deal with holes and scrappy edges? The goal is to make the batch registra-
tion and similarity measurement robust for the real data. The algorithms have to deal with
preprocessing artifacts, i.e., holes, and simultaneously minimize the impact of boundary
areas by automatically removing them from the calculations. All that without significantly
decreasing efficiency.

Related work
Many articles are devoted to 3D face identification, i.e., establishing a person’s identity by
comparing their physical characteristics with samples stored in a database. Although the
identification task differs from the N:N similarity measurement, both research directions
share certain principles and geometric approaches. In the latest overview papers related to 3D
face recognition [26,27], the authors review 3D face recognition techniques developed in the
past decades. Both conventional and deep learning-based methods are discussed.

Zhou et al. [11] also provide a comprehensive survey on 3D face recognition techniques,
data types, and obstacles. Considering their description of the research field, our solution is
limited to dealing with reasonably complete polygonal meshes. Moreover, challenges related
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to occlusion, head poses, or different facial expressions are beyond the scope of this paper. Li
et al. [12] categorize 3D face recognition methods using a classification tree. According to this
classification, our registration-based algorithmic solution fits the global feature-based category
and, especially, the spatial-based and geometry domain sub-categories.

The registration-based similarity of two 3D objects is extensively discussed in the litera-
ture. In [28], Castellani and Bartoli summarize key steps, challenges, and optimization tech-
niques. According to them, the precision of registration and distance measurement strongly
depends on the ability to filter out noisy parts and outliers. As eliminating non-overlapping
surfaces has been shown to increase the accuracy [29,30] of ICP registration in general, we
use this technique to prioritize anthropometry-significant facial areas by automatically elim-
inating noisy marginal parts of 3D facial scans. This technique improves both the precision of
the registration and the similarity measurement of two faces.

Jurda and Urbanová [31] utilized root mean square and other descriptive statistical param-
eters to quantify dissimilarities while categorizing cranial 3D models into sex and ancestral
groups. Similarly, Jandová and Urbanová [32] employed identical distance measures to cluster
3D facial shell scans based on the degree of facial deformation linked to archetypal emotions
and simulated facial expressions.

When it comes to efficiency, many sub-sampling studies can be found in the literature
evaluating the impact of sub-sampling on the acceleration of ICP-based registration [22,33,
34]. They cover a random selection of points, uniform space sampling approaches [30], or the
selection of significant points based on local features, e.g., curvature [35]. Since the shapes of
3D facial scans exhibit specific geometric properties, we evaluate three selected techniques to
determine the optimal balance between efficiency and precision in N:N registration.

The precision and efficiency of the pairwise registration and similarity measurement can be
improved by many other techniques, e.g., using 3D shape descriptors [36–38]. However, while
these methods enhance face-to-face analysis, they still do not resolve the quadratic complexity
of the N:N analysis.

Our approach to addressing the quadratic complexity of batch registration is based on the
combination of GPA and ICP. This idea is not new. Toldo et al. [39] combine GPA with ICP in
their multi-view registration, aiming to automatically reconstruct an object’s shape from 3D
scans captured from different angles. Podimor et al. [40] describe the registration and similar-
ity measurement of a set of 3D skulls. Their method uses a special cost function and modified
Procrustes Distance Metric to tackle the asymmetry of distance computation and achieve the
best results. Both papers deal with point clouds. On the contrary, our algorithm benefits from
the mesh topology included in the stereophotogrammetry data and the specific geometry of
3D facial scans to combine GPA and standard non-symmetric ICP efficiently yet precisely.
Moreover, to the best of our knowledge, our solution that uses the average face produced by
the registration step as a gauge for fast indirect distance measurement of individual pairs is
unique.

Methods
The project was approved by the Research Ethics Committee of the Faculty of Science,
Masaryk University. All participants involved in the face scanning process provided informed
consent. Adult participants signed the consent form themselves, while for minors, consent
was obtained from their parents or legal guardians.
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Formal definitions
Nearest neighbors of a point. Given a point in 3D space v∈ R3, we define its nearest

neighbors from face f as the set of points w∈ f with the smallest Euclidean distance to v:

near(v, f) = {w∈ f ∣ ∀u∈ f ∶ ||v –w||≤ ||v – u||} (1)

If the geometry of face f is represented by independent 3D points (i.e., a point cloud), then
the set includes the closest points from f, as shown in Fig 2. However, if triangular meshes
are used, then the nearest points can lie anywhere on the polygonal surface of f, including the
edges and inner parts of triangles.

Reduced surface. Similarity of two faces is computed by inspecting all vertices of one
face and finding their nearest neighbors on another face. However, Eq 1 is not deterministic
because multiple nearest neighbors can exist (lying at the same distance, as shown in Fig 2,
distance d3). Therefore, we define

̄fi(fj) = {v∈ fi ∶ |near(v, fj)| = 1} (2)

̄fi(fj) is reduced surface of fi consisting of vertices with only one nearest neighbor from fj. We
use ̄fi(fj) instead of fi in further calculations as this reduction makes the computation a partial
function ̄fi(fj)→ fj, then deterministic. For the sake of simplicity, we shorten the notation to

̄fi ∶= ̄fi(fj) (3)

whenever the context of fj is clear. It should be noted that excluding vertices with multiple
nearest neighbors does not impact the results of the registration or similarity measurement
algorithms discussed later. This is due to the negligible probability of encountering multiple
nearest neighbors in real 3D facial scans. Our analysis of 500 faces showed that only 0.01% of

Fig 2. Nearest neighbors. The goal is to find the closest points laying on face f2 for all vertices of face f1 laying on
f2. Distance d1 is obtained if only vertices from f2 are considered. More precise distance d2 takes the whole surface
of f2 into account, aiming to find the closest point lying anywhere on the polygonal surface. Distances d3 capture
a rare situation when two nearest neighbors exist. In this case, the corresponding vertex at f1 is removed from the
calculations.

https://doi.org/10.1371/journal.pone.0329489.g002
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vertices had multiple nearest neighbors. Therefore, these cases can be considered noise, which
is tackled by the approximate registration and measurement anyway.

Similarity of one face to another. The distance-based similarity of face fi to face fj is
estimated by measuring Euclidean distances between all vertices of ̄fi and their nearest neigh-
bors from fj.

Mutual similarity of two faces. For many practical applications, including our batch
similarity measurement, a single-value distance indicator is required. It can be obtained by
properly combining individual values obtained from the similarity of one face to another.
However, the measurement has to be performed in both directions, i.e., ̄fi → fj and ̄fj → fi
because the operation is asymmetric. Traditional Hausdorff distance (HD) measurement [41]
adopts this principle by finding the maximum gap between two surfaces. However, it makes
the measurement sensitive to noise and outliers. In this paper, we use a modified HD function
that provides better results for object-matching tasks [42]. This modification averages dis-
tances of nearest neighbors instead of finding their supremum. Formally, we define a distance
function dist of two faces fi and fj as:

dist(fi, fj) =max(davg(fi, fj),davg(fj, fi)) (4)

where davg, referred to as distance cost function, computes the average distance of vertices
from fi to their nearest neighbors from fj, excluding vertices with multiple nearest neighbors:

davg(fi, fj) =
1
| ̄fi|

∑
v∈ ̄fi
∥v – near(v, fj)∥ (5)

Registration of one face to another. Denote T(f ) a face transformed by an affine trans-
formation matrix T. ICP-based registration aims to find transformation T that aligns a face
fi onto fj by minimizing the residual distances between T(fi) and their nearest neighbors
from fj:

icp(fi, fj) =min
T

davg(T(fi), fj) (6)

Mutual registration of two faces. The icp calculation is also asymmetric. Therefore, the
registration of two faces fi, fj aims to find the best transformation in both directions. More
formally, it can be considered a minimization function that uses icp to find an affine transfor-
mation T of fi to fj or vice versa so that the distance cost function davg of two faces fi and fj is
minimized.

Solution to batch registration
Traditional GPA-based registration of objects with explicit pairing consists of four basic steps.
Our solution addresses RQ1 by adopting this process but replacing Procrustes superimposi-
tion with ICP.

Step 1 – selection of a template face. First, a face from the data set must be chosen and
cloned. This face then metamorphoses into an average face and serves as the reference shape
to which other faces are registered. The selection of the template face depends on the anthro-
pologist’s decision and can affect the results of the analysis. This is because the average face
calculated in step 3 by adapting the vertices of the template face can produce slightly different
surfaces for different initial faces, as shown in Fig 3. However, studying this impact on overall
results is beyond the scope of this paper. We rely on the expertise of the analyst.
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Fig 3. Average faces. They are obtained by transmuting a template face with respect to a collection of 100 other faces (they are not shown).
Two different template faces (on the left for each pair) selected from the same data set can produce slightly different average faces (on the
right for each pair)).

https://doi.org/10.1371/journal.pone.0329489.g003

Step 2 – ICP-based superimposition. All faces from the dataset are aligned with the
template face using transformation matrices computed by the ICP function (Eq 6). This
step replaces standard Procrustes superimposition that requires correspondence between
points from surfaces, which is not available for 3D meshes. However, such replacement is not
straightforward. The primary limitation is the asymmetry of ICP. In the case of registering
only two faces, both directions can be calculated, and the better one is selected. However, in
GPA, the registered face is always transformed towards the template face, while the location
of the template face remains unchanged. This limitation can introduce a significant error if
the asymmetry of ICP is substantial. Podimor et al. [40] solve this issue by using a special cost
function and modified Procrustes Distance Metric in the GPA algorithm. We show that one-
directional registration can be effectively used for 3D facial scans without significant loss of
precision if the primary source of asymmetry is mitigated at the geometric level.

Step 3 – averaging faces. This step transforms the template face into the average face,
considering the new positions of other faces. Geometrically, the template face metamorphoses
into the average of all other faces by moving its vertices toward the centroids of nearest neigh-
bors. Formally, consider a vertex v∈ ft, where ft is the current template face. We define its
average position va within the set of faces f∈ F as

va(v,F) = v + 1
|F|

∑
f∈F

v – near(v, f) (7)

Similarly to the distance cost function defined in Eq 5, faces f∈ F for which the
|near(v, f)| > 0 can be skipped. Then, the average face fa computed from the template face ft
with respect to all faces from F is defined as

fa = {va(v,F) ∣ v∈ ft} (8)

Step 4: – next iteration. If the shape of the average face fa significantly differs from the
template face ft, then the template face is replaced with the average face, and the algorithm
returns to step 2. Iterative repetition of steps 2 and 3 continuously transmutes the template
face selected in step 1 into the average of faces from the dataset that are simultaneously
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aligned with the average face. The calculation ends when the system stabilizes, i.e., when the
change in distances dist(fa, ft) across iterations falls below a predefined threshold.

Our experiments revealed that three iterations are usually sufficient to get optimal align-
ment. This observation is consistent with the results published in [40]. Therefore, the entire
N:N registration process can be considered to run in linear time with respect to the number
of faces.

Solution to batch measurement
Once the faces are registered with the average face, their mutual similarity could be
measured by comparing all pairs of faces from the dataset using the distance function from
Eq 4. However, the time requirements are, again, quadratic.

The idea of reducing the complexity of the pairwise approach (and then addressing RQ3)
lies in measuring the distance between two faces indirectly, involving the already computed
average face as a gauge.

A generic formula for the discrete average indirect distance measure of faces fi, fj ∈ F via
the average face fa adapts Eqs 4 and 5 as follows:

distind(fa, fi, fj) =
1
| ̄fa|

∑
v∈ ̄fa

dind(v, fi, fj) (9)

where ̄fa denotes for fa restricted to only vertices with exactly one nearest neighbor from fi
and fj.

The aim of the dind function is to approximate the computation of distances between
nearest neighbors of vertex v. We propose two different approaches to this approximation,
hereafter referred to as dind_e and dind_r. Their principles are schematically shown in Fig 4.

Euclidean distance of nearest neighbors dind_e takes the closest points of the vertex v∈ fa
from fi and fj, and computes their Euclidean distance:

dind_e(v, fi, fj) = ∥near(v, fi) – near(v, fj)∥ (10)

Relative distance of nearest neighbors dind_r does not use the exact location of the closest
points but utilizes their relative direction from v∈ fa. Relative direction means that either a
positive or negative value is used depending on whether the measured surface is in front of

Fig 4. Indirect measurements visualized in 2D. Euclidean distance of nearest neighbors (left) vs. subtraction of their
relative distances from the template vertex v (right).

https://doi.org/10.1371/journal.pone.0329489.g004
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or behind the average surface. Being “in front of ” or “behind” is delimited by normal vectors
assigned to vertices of fa that have to be properly oriented. If the nearest neighbor is located
in the half-space delimited by the normal vector, then the nearest neighbor is considered “in
front of ” and has a positive distance. And vice versa. Formally,

dind_r(v, fi, fj) = ∣dr(v, fi) – dr(v, fj)∣ (11)

where the relative distance dr(v, f) of the vertex v to the face f is defined as:

dr(v, f) =
⎧⎪⎪⎨⎪⎪⎩

+∥v⃗∥ if v⃗ ⋅ n⃗v ≥ 0
–∥v⃗∥ if v⃗ ⋅ n⃗v < 0

(12)

where v⃗ = near(v, f) – v. n⃗v denotes for a surface normal at mesh vertex v, i.e., the vector inter-
polating normals of adjacent triangles.

Regardless of the approximation used, the average face fa serves as a cache that stores
precomputed data – either the closest neighbors or their distances. Filling the cache requires
searching for the nearest neighbors between the vertices of the average face and all other
faces. Therefore, this step is linear with respect to the number of faces in the dataset. Using
the cache, i.e., calculating the distances between all pairs of faces via the average face records,
remains quadratic. However, this task is very simple and highly parallelizable – the compu-
tation of the Euclidean distance in dind_e or the relative distance subtraction in dind_r can be
computed concurrently for all v∈ fa.

The two approaches differ in specific aspects that may influence computational require-
ments. The relative distance dind_r saves memory because only distances, i.e., single values, are
stored for each vertex of the average face. Additionally, it may be faster because the distances
to the nearest neighbors are already known from their search. The final distance calculation
simply subtracts the values.

In contrast, the dind_e method must store the entire 3D coordinates of the closest points.
Although the difference in size may seem subtle, comparing an average face consisting of tens
of thousands of vertices to hundreds of other faces can lead to high memory demands. More-
over, the final Euclidean distance between two cached nearest neighbors must be computed
from scratch, making it slower than simply subtracting two precomputed distances in dind_r.

Although the relative distance method may seem favorable, its main limitation is that it
relies on properly oriented normal vectors of the average face. Moreover, tests performed on
real data have shown only negligible differences in speed and precision.

Auto-cropping
In contrast to point clouds, triangular meshes allow us to easily detect non-overlapping areas
by determining whether the found nearest neighbor near(v, fj) lies on the boundary edge of
the surface. If so, the source point v∈ fi lies in the area that does not overlap the other surface
and can then be omitted from the computation. This principle is illustrated schematically in
Fig 5 showing a cross-section of faces fi and fj. Also, the black parts of faces D and E in Fig 1
highlight such automatically detected non-overlapping areas of two registered faces.

Omitting non-overlapping areas from the computation helps us tackle two major issues
in our approach (RQ4). First, it makes the similarity measurement more meaningful.
Non-overlapping areas appear predominantly on the boundaries of facial scans that are not
important for identification or face similarity analysis. Even worse, their inclusion in the mea-
surement distorts the results. In contrast, the primary parts of faces, i.e., cheeks, nose, mouth,
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Fig 5. Auto-cropping principle shown in 2D. Dashed lines connect vertices from fi with their nearest neighbors on
fj. The vertex v4 of face fi is detected as lying in the non-overlapping area of fi since its nearest neighbor is located on
the edge of the fj mesh.

https://doi.org/10.1371/journal.pone.0329489.g005

etc., do overlap. Holes caused by eliminating possibly problematic areas like the beard or folds
of the nose also represent non-overlapping surfaces. These areas can then be filtered out using
the same auto-cropping mechanism. Therefore, restricting the computation of the distance
cost function davg (Eq 5) or the indirect distance measure function dind (Eq 9) to overlapping
surfaces ensures that only matching areas are measured, which increases the comparability of
obtained distance values.

The second issue is related to the registration phase. As discussed in batch registration, the
ICP function suffers from the fact that it is not symmetric. Transforming one face to another
can produce different results than inverse superimposition. Therefore, a better direction
should be selected to achieve the best precision. However, if ICP is integrated into GPA, then
the registration direction is fixed, i.e., faces are always registered onto the template face.

Unfortunately, the asymmetry of the facial stereophotogrammetry data is significant, as
shown on the left scatter plot in Fig 6. All pairs from the set of 100 randomly selected faces
were registered by ICP in both directions (fi→ fj and fj→ fi) using the original distance cost
function (Eq 5). Then, their similarity was measured by applying Eq 4. Each point in the
scatter plot corresponds to the similarity measurement of one pair. The x coordinate shows
one direction, while the y coordinate shows the inverse direction. The diagonal dashed line
delimits perfect symmetry in both directions.

As can be seen in Fig 6, the similarity values deviate significantly from perfect symmetry.
The standard deviation between both directions, i.e., the variation of the points on the plot
around the dashed line, is 0.65 with a maximum of 7.83.

Podimor et al. [40] address the issue of ICP asymmetry by adapting the cost function.
Their approach takes into account the nearest neighbors from both surfaces and weights them
appropriately so that the pairing is symmetric. However, this solution has a negative impact
on efficiency because nearest neighbors in both directions, from fi to ft and vice-versa, must
be found.

We show that standard ICP can be used for 3D facial scans if the primary source of
asymmetry is mitigated at the geometric level, i.e., using a fast auto-cropping function. The
right-hand side scatter plot in Fig 6 demonstrates results of the same measurements adapted
so that the distance cost function (Eq 5) ignores non-overlapping areas. The standard devia-
tion decreased to 0.07 (maximum 0.96). The Pearson coefficient, which determines the linear
correlation between the results from both registration directions, also increased from 0.8143
to 0.9947, proving the significant improvement in the symmetry. Moreover, the average dis-
tance of all pairs decreased from 2.37 to 2.34, proving the generic assumption that omitting
non-overlapping areas can increase the overall accuracy of ICP [29,30].

These results confirm that the asymmetry in registration and similarity measurement of 3D
facial scans is predominantly caused just by the non-overlapping facial areas. Besides possible
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Fig 6. The impact of auto-cropping on the registration. Each cross represents a single pair of faces. The distance function
dist is computed after registering the first face to the second one (the x axis) and vice versa (the y axis).

https://doi.org/10.1371/journal.pone.0329489.g006

holes in 3D models, these non-overlapping areas are primarily located on the boundary parts
of facial scans. Omitting them makes the computation almost symmetric and then usable for
ICP integrated into GPA.

However, limiting ICP to only overlapping parts may not work properly in all situations.
For instance, if two faces are positioned so that they overlap only minimally or not at all. In
this case, ICP can rely on only limited (or neither) vertices from the overlapping areas and
then either converge very slowly or completely fail. Therefore, at least the first ICP iteration
should be performed without auto-cropping. However, it is known that ICP is sensitive to
the initial position of the surfaces anyway, and some kind of pre-alignment is assumed to get
optimal results.

Optimal sub-sampling
ICP is iterative, taking into account the pairing of many vertices, and is therefore computa-
tionally very intensive. As a result, various acceleration techniques are used to reduce com-
putational time. In addition to using space-partitioning structures like k-d trees to search
vertices optimally, reducing the number of vertices involved in the computation is another
widely used tactic [22,33,34].

Being aware of the specific features of 3D facial scans, where the geometry resembles a
shell with scrappy edges rather than obvious enclosed objects, we aimed to research how
different sub-sampling methods affect the speed and accuracy of registration (RQ2). We
tested three sub-sampling algorithms. The random sampling strategy selects N random ver-
tices from the original mesh. Uniform sub-sampling uses a 3D uniform grid to cluster mesh
vertices into approximately N non-empty cells, from which a random vertex is selected.
This method ensures a better uniform distribution of selected points. The last method was
Gaussian curvature sub-sampling, which takes N vertices with the highest Gaussian curva-
ture. They represent significant points on human faces.
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The evaluation was performed on a set of 100 randomly selected faces, using the same
dataset as for the final evaluation discussed later in this paper. For each face in the set, all
other faces were registered towards the face, leading to 4950 face-to-face registrations in total.
Each registration was repeated with different sub-sampling strengths, progressively reducing
the transformed face from full resolution (approximately 60k vertices) to 50 samples. The first
ICP iteration was performed without auto-cropping to ensure sufficient initial alignment. The
remaining iterations were done with auto-cropping enabled to get the best matching.

The left graph in Fig 7 shows the impact of sub-sampling strategies on accuracy, as mea-
sured by the distance function (Eq 4). The X-axis captures the number of samples, and the Y-
axis captures the average distance of the 4950 face-to-face distance measurements. The graph
focuses only on the most relevant range, from 50 to 1500 samples, which shows significant
trends and correlations between the charts.

Random sampling yields highly precise results, even with extreme sub-sampling down
to just a few hundred points. The difference between the full-resolution distance measure-
ment and the 1000-sample measurement was only 0.038 mm.The uniform space sampling
performed a little worse and needed thousands of samples to achieve similar accuracy. The
results of Gaussian curvature sampling proved unacceptable for our purposes.

The right-hand side efficiency graph in Fig 7 exhibits almost linear acceleration for all
algorithms. The fastest registration can be achieved with random sampling, which acceler-
ates the computation from 3000 sec to 0.5 sec (for 1000 samples). The relative slowness of
Gaussian curvature sub-sampling is due to the runtime curvature calculation, which can be
precomputed. Otherwise, all these methods can be considered similarly efficient for tens or a
few thousand samples.

Based on these results, random sampling to 1000 vertices appears to be the optimal setting
for batch registration.

Implementation
The Java implementation of the algorithm can be found in the FIDENTIS Analyst II project
https://gitlab.fi.muni.cz/grp-fidentis/analyst2 – an open-source application being developed
at Masaryk University for forensic anthropologists. A pseudo-code in Algorithm 1 summa-
rizes all computational phases and optimization tactics. Parameter settings mentioned in the
following description were also used for the evaluation.

The algorithm takes a set of faces (meshes) as input. One of them is chosen as the template
face.

Fig 7. The effect of sub-sampling strategies on registration. The impact on accuracy (left) and efficiency (right) are shown.

https://doi.org/10.1371/journal.pone.0329489.g007
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Algorithm 1. Algorithmization of the N:N analysis.

input : A set of faces F.
A template face ft ∈ F.

output: A matrix of distances between {fi, fj} ⊆ F
1
2 fa ← clone(ft)
3 repeat
4 foreach fi ∈ F do
5 kda ← createKdTree(fa)
6 repeat
7 fx ← downsample(fi)
8 pairing← findNearNeighbors(fx, kda)
9 T← getIcpTranformation(pairing)

10 fi ← transform(fi,T)
11 until ICP stop criteria are met
12 kdi ← createKdTree(fi)
13 pairing← findNearNeighbors(fa, kdi)
14 ̄fa ← clone(fa)
15 fa ← updateAvgFace(fa, pairing)
16 end
17 until dist(f′a, fa) > threshold
18 foreach fi ∈ F do
19 pairing← findNearNeighbors(fa, kdi)
20 foreach vk ∈ fa do
21 cache[fi][vk]← getNeighborhood(pairing)
22 end
23 end
24 do in parallel
25 for i ∶= 0 to |F| – 1 do
26 for j ∶= i to |F| – 1 do
27 dist[i][j]← distind(cache[fi], cache[fj])
28 dist[j][i]← dist[i][j]
29 end
30 end
31 end

The average face is initialized by cloning the template face (line 2 of the algorithm). The
faces are then repeatedly registered against the average face until the average face stabilizes
(lines 3–17). We use the Procrustes Surface Metric, as defined in [40], with a threshold of 0.3
as the termination criterion for the GPA on line 17.

As a stopping criterion for ICP iterations on line 11, we use the combination of a maximal
number of iterations (set to 100) and accuracy change. The latter checks the difference
between distances davg(fa, fi) computed in two consecutive iterations. If the difference is less
than 0.05, then the ICP registration of the face terminates. We observed that 3–9 iterations are
typically required to reach this threshold.

K-d trees are used to accelerate the search for the nearest neighbors in the ICP [23,24].
The construction of a k-d tree for a specific face is suggested by the createKdTree function in
the pseudo-code. The utilization of the k-d tree for the nearest neighbor search is provided
by the findNearNeighbor invocation, which takes a mesh of a source face as the first argu-
ment and the mesh stored in a k-d tree as the second argument. For each vertex of the source
face, the function finds the closest point on the second face using a fast k-d tree search. The
pairing output encodes the final mapping – for each vertex of the first face, we know its clos-
est point from the second face. The obtained pairing is then used for the computation of the
transformation matrix and to update the shape of the average face by the updateAvgFace()
function. In accordance with Eq 2, vertices with multiple nearest neighbors are excluded from
the pairing. Moreover, except for the very first ICP iteration, vertices from non-overlapping
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areas are also excluded. The first iteration uses all vertices to ensure correct superimposition
for faces with minimal or no initial overlapping.

We use random sub-sampling with 1000 vertices to implement the downsample() function
on line 7.

The N:N distance measurement is divided into two parts. First, the closest neighborhood
of all faces is computed for each vertex of the average face (lines 18–23 of the algorithm) and
stored in the cache. What data is stored depends on the preferred indirect distance (Eq 9). The
cached values are then used to compute the real distance between all pairs of faces from the
dataset (lines 24–31). This is the only part with quadratic complexity (concerning the number
of faces). However, as the final computations (lines 27–28) are simple and independent, they
can be solved quickly in parallel.

Results
While the evaluation of the effect of cropping and sub-sampling on the registration and mea-
surement was made as part of the algorithm’s design decisions, this section focuses on proving
the usability of the final proposed algorithm for fast yet precise N:N analysis.

Data
3D facial scans used for the evaluation were obtained from the FIDENTIS 3D Face
Database [43]. Faces were recorded with a stereophotogrammetric-based Vectra M1 3D facial
scanner. The acquired 3D images were subsequently processed in accordance with the proto-
col as stated in [43]. We used the _ECA version of models for the evaluation, i.e., edited uni-
formly trimmed facial scans encompassing frontal ear-less parts of the face and possibly holes
as the result of data preprocessing occasionally.

We used three datasets consisting of 100, 500, and 1000 faces, hereafter referred to as D1,
D2, and D3. D3 included the first 1000 faces from the database and covered different genders
and ages. The smaller dataset D2 was created as a subset of randomly selected faces from D3.
Both D3 and D2 were used only for efficiency tests. Faces for the D1 dataset were selected
randomly from D2 and used for time-demanding computations, especially the accuracy eval-
uation. The variability of mesh resolutions (number of vertices) in all datasets is summarized
in Table 1.

Test configurations
To evaluate the efficiency and accuracy of our solution, we compared four different variants
of N:N registration and similarity measurements. They reflect different levels of efficiency
optimization, allowing us to assess the potential errors introduced by our solution.

Baseline (BL) algorithm provides a slow but highly precise computation, which can be
considered a standard anthropologist approach. It follows the routine analytical workflow,
in which standard IPC-based registration and face-to-face measurements are applied to all

Table 1. Size of datasets (number of faces) and the resolution of scans (min/max/avg/median number of
vertices).
dataset # faces min. max. avg. median
D1 100 29,205 75,841 56,680 58,184
D2 500 17,240 212,945 54,468 57,861
D3 1000 14,382 212,945 54,087 57,778

https://doi.org/10.1371/journal.pone.0329489.t001
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pairs in the dataset to achieve the highest level of precision. Each pair of faces is registered
individually in both directions (Fi→ Fj and Fj→ Fi), considering only the best result (i.e., the
direction with a smaller distance). Faces are registered at full resolution (i.e., without sub-
sampling) using the auto-cropping functionality after the first ICP iteration. Also, the simi-
larity measurement is conducted precisely by computing the direct distances davg between all
pairs individually, using auto-cropping. This method serves as the baseline solution for the
comparison with other (faster) methods as it ensures the most precise measurement with no
optimizations.

Fast registration (FR) algorithm combines our fast linear-time registration with the slow
but precise pairwise measurement used in BL. The adapted Procrustes approach with ICP reg-
istration and random sub-sampling to 1000 vertices is used to align all the faces towards an
averaged template face iteratively. Subsequent similarity measurement is conducted for each
pair individually, as in the BL approach. Auto-cropping is used for both registration and dis-
tance measurement. This configuration aims to assess the impact of our fast but approximate
batch registration on the overall time requirements and, in particular, on accuracy.

Indirect vector distance (IVD) approach represents a complete implementation of the
Algorithm 1. Euclidean distance dind_e is used for distance caching and similarity measure-
ment. Therefore, this algorithm functions similarly to the FR version. However, instead of
comparing all pairs of registered faces, the average face is used as a gauge for indirect distance
calculation.

Indirect relative distance (IRD) algorithm operates similarly to IVD, but relative distance
dind_r is used for distance caching and measurement.

Efficiency
That the goal of reducing quadratic complexity has been achieved is evident from the algo-
rithmization. Table 2 demonstrates the impact of nearly linear time computation on practical
usability. The times for the baseline BL method should be considered informative only as the
goal of this configuration was to achieve the highest precision regardless of efficiency. Never-
theless, the results of the Fast Registration method indicate that accelerating the registration
phase solely by combining the Procrustes method with ICP and sub-sampling does not yield
significant improvements, as the pairwise measurement still poses a significant bottleneck.
Only the combination of fast registration with indirect measurement tackles time complexity
and enhances scalability.

Another important observation from efficiency tests is that the difference in speed between
the IRD and IVD methods is negligible. The choice of the indirect method does not signifi-
cantly affect overall efficiency.

The evaluation was conducted on a laptop with 4 CPU cores, 1.8 GHz, and 16 GB of RAM.
Long-lasting experiments were terminated after 24 hours of computation. Due to the time
requirements of experiments, methods dealing with an average face, i.e., FR, IVD, and IRD,
were performed with five different initial template faces, and then the time was averaged.

Table 2. Time requirements (hh:mm) of N:N processing methods.
dataset # faces BL FR IVD IRD
D1 100 13:07 03:05 00:11 00:11
D2 500 >24h >24h 00:55 00:54
D3 1000 >24h >24h 02:03 02:02

https://doi.org/10.1371/journal.pone.0329489.t002
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Hereafter, these faces are denoted as A,B,C,D,E. Although they were selected randomly, they
included different genders and ages to cover different shapes and sizes of mesh models.

Accuracy of registration
Our fast registration is approximate, which introduces a certain degree of imprecision. In
particular, the imprecision arises from three factors: all faces are superimposed towards a
single common average face, the standard cost function is used inside ICP with auto-
cropping, and faces are sub-sampled. This evaluation aims to study errors introduced by these
three factors by assessing how precisely the results of our approximate registration oscillate
around the values produced by the baseline method.

Fig 8 compares the accuracy of BL and FR utilizing five distinct template faces A,B,C,D,E.
The X axis represents errors computed as the difference between the similarity measurements
returned by the FR and BL methods. Zero means identical measurements. Positive num-
bers indicate imprecision introduced by FR. Negative values increase precision introduced by
FR. Errors were calculated for all pairs of faces in the D1 dataset. The distribution of errors is
captured by the box plot for 2nd–25th–75th–98th percentiles. It means that the rectangular
parts cover 50% of samples (from 25% to 75%), thin lines the lower and upper 23% (96% of all
samples), and the remaining upper and lower 2% of outliers (4% at all) are depicted explicitly
as crosses.

The box plots show that the majority of faces are registered very closely to the results
obtained by the baseline algorithm. The maximal error of 50% of face pairs (the rectangular
parts on the box plot) is less than 0.07 mm, and the maximal error of 96% of pairs (the thin
lines including the rectangular parts) is less than 0.3 mm.

An in-depth analysis of the data revealed that facial similarities computed by the baseline
method range from 0.72 to 6.22 mm, with an average of 2.34, where zero indicates perfectly
identical facial scans and larger values indicate greater dissimilarity between faces. Taking into
account this distribution, the error introduced by the FR method, i.e., up to 0.07 mm in 50%
of cases and 0.3 mm in 96% of cases, can be considered marginal. Moreover, the results do not
vary significantly between template faces A–E. Nevertheless, the face B demonstrates that the
selection of an inappropriate template face can have a certain negative effect on results and
that appropriate expertise in anthropometry is required when selecting the initial template
face.

Fig 8. Accuracy of fast registration. Distribution of distance errors introduced by our fast registration (FR) to the baseline algorithm (BL).
Results of five different template faces A–E are shown. 0 = the same results, positive error = BL registered more precisely, negative error =
FR registered more precisely.

https://doi.org/10.1371/journal.pone.0329489.g008
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Accuracy of similarity measurement
Indirect similarity measurement can introduce another degree of imprecision into the N:N
analytical workflow. In particular, the imprecision arises from replacing two-directional
vertex-to-nearest-neighbor distance measurements with approximate dind_e or dind_r methods.

To analyze the possible errors introduced by the measuring optimizations, we compare
IRD and IVD with FR. However, we must account for the different surface areas involved
in the calculation of IRD/IVD and FR due to auto-cropping. The problem is illustrated in
2D in Fig 9. The solid lines represent cross-sections of two faces fi and fj that are to be mea-
sured, and the dashed line is the average face fa. The cutting edge a demonstrates the situation
when there is no difference between overlapping areas of fa, fi, and fj used by IRD/IVD, and
fi, fj used by FR. However, if fi, fj extends beyond the fa, then the overlapping areas used by
IRD/IVD and FR differ (cutting edges b and c).

As the FR and IRD/IVD measure different surfaces, their direct comparison is mislead-
ing. Therefore, we adapted FR for this evaluation so that the surfaces are cropped to the aver-
age surface, even though the average surface is not involved in the distance computation
itself. The experiments were conducted on the same dataset and with the same template faces
(A,B,C,D,E) used in the registration accuracy evaluation.

The scatter plot in Fig 10 shows the difference between the adapted FR and IRD. Each
cross represents a pair of faces. The results of the adapted FR measurement are captured
on the X axis, while the Y axis captures the results of fast IRD. The closer the cross is to the
diagonal, the smaller the difference is. Face A was used as the template face for this graph.
However, other template faces exhibit very similar distributions.

The standard deviation of error between both methods is only 0.15 mm with a maximum
of 0.92 mm.The Pearson correlation coefficient of 0.9629 further confirms a substantial sim-
ilarity between both approaches, indicating that direct FR-based measurement and indirect
IRD-based measurements generate very similar values. We also observed that the differences
between IRD and IVD are negligible.

Accuracy of the whole algorithm
The previous experiments aimed to analyze errors that may have been introduced separately
in the registration and measurement processes. They provide insight into the accuracy of the
two steps, which are related but relatively independent. However, these isolated results do not

Fig 9. The impact of auto-cropping on direct and indirect surface measurement. The overlapping area cropped to
all three faces (defined by cutting edges a and b) is smaller than the combined area of faces fi, fj excluding the average
face fa (cutting edges a and c).

https://doi.org/10.1371/journal.pone.0329489.g009
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Fig 10. Correlation of the direct and indirect measurement. The scatter plot captures the differences between slow
pairwise distance measurement (the x axis) and fast indirect relative distance measurement (the y axis).

https://doi.org/10.1371/journal.pone.0329489.g010

fully reflect the overall accuracy of our entire algorithm, as the applied simplifications could
influence each other either positively (suppressing the error) or negatively (increasing the
error).

Unfortunately, directly comparing the absolute values produced by the baseline and our
optimized methods is misleading due to the different (auto-cropped) surfaces involved in
the computation. This issue of comparing BL with IRD/IVD is similar to the FR vs. IRD/IVD
comparison discussed in the previous section. Auto-cropping used in BL often involves larger
areas, as only two faces are always registered and measured at a time. In contrast, IRD/IVD
involves smaller areas as all faces are cropped to the common average face. However, in this
case, it is impossible to unify the result by cropping faces to the average face because the base-
line method does not use the average face at all. It is also difficult to decide whether dealing
with the larger or smaller areas is better or worse from the perspective of anthropometry. A
smaller area focuses on important central parts of a face, possibly omitting some significant
peripheral areas like ears. Conversely, larger areas may involve undesirable peripheral noisy
parts in calculations.

Therefore, instead of comparing absolute similarity values produced by respective meth-
ods for each facial pair, we focus on the higher-level analysis – the ability of the methods to
identify the same clusters of (dis)similar faces. Clustering represents a key use case of the N:N
analysis and is crucial for studying human variations by anthropologists.
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Statistical analysis of BL and IRD/IVD methods applied to the D1 dataset proved a signif-
icant correlation. The Pearson coefficient of 0.9997 for face A proves that both methods have
the same overall ability to distinguish similar and dissimilar faces.

A comprehensive assessment of clustering abilities would require defining specific anthro-
pological scenarios, hypotheses, and clustering methods, which is beyond the scope of this
paper. However, since humans excel at recognizing visual patterns, we conducted a simple
qualitative experiment. We transformed the distance values measured by BL and IRD/IVD
into heatmaps – a widely used visual analysis technique employed by domain experts for
interactive exploration of clusters [44,45].

Heatmaps for the dataset D1 are depicted in Fig 11. Each cell in the color half-matrix rep-
resents a distance of two faces transformed to a color scale. The darker colors encode smaller
distance values (more similar faces) and vice versa. The left heatmap encodes the precise
BL-based pairwise measurement, while the right heatmap is for IRD using the face A as a
template face.

Both heatmaps are visually almost identical, with the same color patterns recognizable
by the analysts. Note that the goal of this experiment was not to evaluate the correctness of
visual patterns, only their similarity. The ability to present the same similarity patterns in
the heatmap confirms the strong correlation results of both methods and that the clustering
capabilities of IRD/IVD have been preserved. The comparison of heatmaps for template faces
B – E produced the same results.

Both heatmaps appear visually almost identical, with the same color patterns recognizable
by sight. It is important to note that the goal of this experiment was not to assess the
correctness of the visual patterns but rather their similarity. The ability to present consistent
patterns with no evident discrepancies confirms that the clustering capabilities of IRD/IVD
have been preserved. A comparison of heatmaps generated for template faces B–E yielded the
same results.

Fig 11. Comparison of distance heatmaps. Visually similar heatmaps with almost identical color patterns indicate similar
clustering abilities of both approaches. The saturation of each cell reflects the measured distance between the face pairs. The
left heatmap was generated by the baseline algorithm, while the right one was produced by our fast IRD algorithm.

https://doi.org/10.1371/journal.pone.0329489.g011
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Conclusions
Our algorithm advances the field by providing a fast and accurate solution to a scenario where
an expert requests a large-scale preliminary search of the 3D dataset of polygonal facial scans
to find and/or group the most suitable candidates, which can then be subjected to more in-
depth testing and quantification of the degree of similarity or differences. Our approach
will register facial scans and provide a simple quantification of (dis)similarity for compari-
son/grouping.

Addressing the research questions
This paper aimed to answer four research questions.

RQ1: How can a set of polygonal 3D facial scans be registered efficiently, yet precisely?
The linear complexity of batch registration was achieved by carefully combining exist-
ing approaches and utilizing features of facial 3D scans. We have shown that generalized
Procrustes superimposition can be combined with one-directional ICP if the asymmetry is
suppressed by automatically cutting out non-overlapping parts of meshes. Sub-sampling can
further accelerate the process without decreasing accuracy.

RQ2: How do the sub-sampling methods affect the efficiency and precision of batch registra-
tion? We evaluated the impact of three distinct sub-sampling strategies on the registration.
Random sampling appears to enable us to reduce the number of points radically, from tens
of thousands to hundreds, still preserving sufficient speed and precision. Therefore, we used
random sampling with a reduction of 1000 samples during evaluation experiments. However,
other sub-sampling strategies could be used as well. Their impact on the overall performance
should be rather subtle if they are reasonably adjusted.

RQ3: How to measure a mutual similarity of a set of registered 3D facial models effi-
ciently? By reusing the computed average face as a gauge with pre-cached values, we reduced
quadratic complexity to near-linear time. We have shown that the possible error introduced
by approximate indirect measurement is marginal.

RQ4: How to deal with holes and scrappy edges? Polygonal meshes enable us to detect
non-overlapping surfaces very quickly. We have shown that both the registration and mea-
surement phases can benefit from the introduced auto-cropping mechanism without the loss
of efficiency.

Limitations
Our solution was developed and tested on facial scans. Other 3D models often used in studies
of human biological distances, such as crania, might not produce sufficiently precise results
with the presented parameters due to their more complex geometry. Although our algo-
rithm is designed to be generic, further research is needed to determine its applicability to
geometries with significantly different characteristics.

Occlusion, different head poses, or facial expressions that pose challenging issues in 3D
facial identification are not addressed by our approach, either. However, the presented algo-
rithm can serve as a generic framework in which the cropping and distance measurement
steps can be replaced with more advanced methods tailored to handle these issues.

The proposed algorithm strongly depends on polygonal meshes. 3D scans captured
as point clouds must be converted into meshes in preprocessing, which can be laborious.
Also, we suppose reasonably dense and uniformly distributed mesh vertices. Significant
differences in densities of mesh models or significantly uneven distribution of vertices can
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introduce asymmetry into the registration and measurement, possibly negatively affecting the
precision of results. In this case, the registration would have to use a more expensive bidirec-
tional measurement like in [40]. In general, the impact of the mesh properties on the indirect
measurement remains an open question.

Future work
Our research aimed to propose an efficient yet generic algorithm for the clustering of facial
scans. However, the intentions of anthropologists are usually specific, e.g., assessing simi-
larities and dissimilarities between facial features in order to assess their biological distance.
However, it appears that various data collections can differ in the ability to identify clusters at
all, e.g., collections of adults vs. children. Therefore, the usability of our generic approach for
the pre-selection of faces from such specific datasets and for specific analytical intents will be
researched in the future.

Currently, the selection of a template face for alignment and gauge-based measurement is
left to the expertise of biological anthropologists. A fully automated process would select (or
at least advise) a face that is most similar to all other faces in the dataset. Unfortunately, this
computation again introduces quadratic complexity. Addressing this challenge will be a key
focus of our future research.

The registration phase can produce insufficient results if the faces are not pre-aligned.
Although this is the generic drawback of the ICP algorithm, which is not specific to our solu-
tion, fast pre-alignment strategies for batch processing have to be invented and integrated into
the batch process to make it more robust. For 3D facial scans, bounding boxes or symmetry
planes [46] could be used for this purpose. Another solution would be to utilize AI to estimate
significant landmarks quickly, though not reliably, and superimpose them approximately
using the standard fast Procrustes approach.

Acknowledgments
The authors would like to thank all participants who agreed to volunteer in the data collection
and the FIDENTIS 3D Face Database.

Author contributions
Conceptualization: Radek Ošlejšek, Petra Urbanová, Jiří Sochor.

Data curation: Radek Ošlejšek.

Formal analysis: Radek Ošlejšek.

Funding acquisition: Petra Urbanová.

Investigation: Radek Ošlejšek, Petra Urbanová, Jiří Sochor.

Methodology: Radek Ošlejšek, Petra Urbanová.

Project administration: Petra Urbanová.

Resources: Petra Urbanová.

Software: Radek Ošlejšek.

Supervision: Petra Urbanová, Jiří Sochor.

Validation: Radek Ošlejšek.

PLOS One https://doi.org/10.1371/journal.pone.0329489 August 4, 2025 22/ 24

https://doi.org/10.1371/journal.pone.0329489


ID: pone.0329489 — 2025/7/31 — page 23 — #23

PLOS One Computing mutual similarity of 3D human faces in nearly linear time

Visualization: Radek Ošlejšek.

Writing – original draft: Radek Ošlejšek, Petra Urbanová, Jiří Sochor.

References
1. Pilloud MA, Hefner JT. Biological distance analysis: forensic and bioarchaeological perspectives.

Academic Press; 2016.
2. Broca P. Instructions craniologiques et craniometriques. Mem de la Soc Anthrop de Paris.

1875;2:1–203.
3. Urbanová P, Ross AH. Advanced methods in 3-D craniofacial morphological analysis. Biological

Distance Analysis. Elsevier; 2016. p. 61–90.
4. Ross AH, Juarez CA, Urbanová P. Complexity of assessing migrant death place of origin. Biological

Distance Analysis. Elsevier; 2016. p. 265–83.
5. Urbanová P, Ross AH, Jurda M, Nogueira M-I. Testing the reliability of software tools in sex and

ancestry estimation in a multi-ancestral Brazilian sample. Leg Med (Tokyo). 2014;16(5):264–73.
https://doi.org/10.1016/j.legalmed.2014.06.002 PMID: 25037446

6. Sokal RR, Uytterschaut H, Rösing FW, Schwidetzky I. A classification of European skulls from three
time periods. Am J Phys Anthropol. 1987;74(1):1–20. https://doi.org/10.1002/ajpa.1330740102
PMID: 3318488

7. Sokal RR, Uytterschaut H. Cranial variation in European populations: a spatial autocorrelation study
at three time periods. Am J Phys Anthropol. 1987;74(1):21–38.
https://doi.org/10.1002/ajpa.1330740103 PMID: 3318489

8. Eliasova H, Dostalova T, Urbanova P. A comparison of the precision of 3D images of facial tissues
from the forensic point of view. Forensic Imaging. 2022;28:200471.
https://doi.org/10.1016/j.fri.2021.200471

9. Atsuchi M, Tsuji A, Usumoto Y, Yoshino M, Ikeda N. Assessment of some problematic factors in
facial image identification using a 2D/3D superimposition technique. Leg Med (Tokyo).
2013;15(5):244–8. https://doi.org/10.1016/j.legalmed.2013.06.002 PMID: 23886899

10. Aeria G, Claes P, Vandermeulen D, Clement JG. Targeting specific facial variation for different
identification tasks. Forens Sci Int. 2010;201(1–3):118–24.
https://doi.org/10.1016/j.forsciint.2010.03.005 PMID: 20359838

11. Zhou S, Xiao S. 3D face recognition: a survey. Hum-Centric Comput Inf Sci. 2018;8(1):1–27.
12. Li M, Huang B, Tian G. A comprehensive survey on 3D face recognition methods. Eng Appl Artif

Intell. 2022;110:104669.
13. Goodall C. Procrustes methods in the statistical analysis of shape. J Roy Statist Soc: Ser B

(Methodol). 1991;53(2):285–321.
14. Porter G, Doran G. An anatomical and photographic technique for forensic facial identification.

Forens Sci Int. 2000;114(2):97–105. https://doi.org/10.1016/s0379-0738(00)00290-5 PMID:
10967250

15. Ferková Z. Multimodal landmark detection for anthropology. Brno: Masaryk University, Faculty of
Informatics; 2021.

16. Vezzetti E, Marcolin F, Tornincasa S, Ulrich L, Dagnes N. 3D geometry-based automatic landmark
localization in presence of facial occlusions. Multimed Tools Appl. 2017;77(11):14177–205.
https://doi.org/10.1007/s11042-017-5025-y

17. Paulsen RR, Juhl KA, Haspang TM, Hansen T, Ganz M, Einarsson G. Multi-view consensus CNN
for 3D facial landmark placement. In: Asian Conference on Computer Vision. Springer; 2018. p.
706–19.

18. Wang Y, Cao M, Fan Z, Peng S. Learning to detect 3D facial landmarks via heatmap regression
with graph convolutional network. In: Proceedings of the AAAI Conference on Artificial Intelligence.
2022. p. 2595–603.

19. Besl PJ, McKay ND. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell.
1992;14(2):239–56. https://doi.org/10.1109/34.121791

20. Granger S, Pennec X. Multi-scale EM-ICP: A fast and robust approach for surface registration. In:
European conference on computer vision. Springer; 2002. p. 418–32.

21. Li J, Hu Q, Zhang Y, Ai M. Robust symmetric iterative closest point. ISPRS J Photogram Remote
Sens. 2022;185:219–31. https://doi.org/10.1016/j.isprsjprs.2022.01.019

22. Urbanová P. Performance of distance-based matching algorithms in 3D facial identification. Egypt J
Forens Sci. 2016;6(2):135–51. https://doi.org/10.1016/j.ejfs.2016.04.004

PLOS One https://doi.org/10.1371/journal.pone.0329489 August 4, 2025 23/ 24

https://doi.org/10.1016/j.legalmed.2014.06.002
http://www.ncbi.nlm.nih.gov/pubmed/25037446
https://doi.org/10.1002/ajpa.1330740102
http://www.ncbi.nlm.nih.gov/pubmed/3318488
https://doi.org/10.1002/ajpa.1330740103
http://www.ncbi.nlm.nih.gov/pubmed/3318489
https://doi.org/10.1016/j.fri.2021.200471
https://doi.org/10.1016/j.legalmed.2013.06.002
http://www.ncbi.nlm.nih.gov/pubmed/23886899
https://doi.org/10.1016/j.forsciint.2010.03.005
http://www.ncbi.nlm.nih.gov/pubmed/20359838
https://doi.org/10.1016/s0379-0738(00)00290-5
http://www.ncbi.nlm.nih.gov/pubmed/10967250
https://doi.org/10.1007/s11042-017-5025-y
https://doi.org/10.1109/34.121791
https://doi.org/10.1016/j.isprsjprs.2022.01.019
https://doi.org/10.1016/j.ejfs.2016.04.004
https://doi.org/10.1371/journal.pone.0329489


ID: pone.0329489 — 2025/7/31 — page 24 — #24

PLOS One Computing mutual similarity of 3D human faces in nearly linear time

23. He K, Sun J. Computing nearest-neighbor fields via propagation-assisted kd-trees. In: 2012 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE; 2012. p. 111–8.

24. Ram P, Sinha K. Revisiting kd-tree for nearest neighbor search. In:Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining; 2019. p. 1378–88.

25. Urbanová P, Hejna P, Jurda M. Testing photogrammetry-based techniques for three-dimensional
surface documentation in forensic pathology. Forens Sci Int. 2015;250:77–86.
https://doi.org/10.1016/j.forsciint.2015.03.005 PMID: 25818581

26. Jing Y, Lu X, Gao S. 3D face recognition: a comprehensive survey in 2022. Comput Visual Media.
2023;9(4):657–85.

27. Guo Y, Wang H, Wang L, Lei Y, Liu L, Bennamoun M. 3D face recognition: two decades of progress
and prospects. ACM Comput Surv. 2023;56(3):1–39.

28. Castellani U, Bartoli A. 3d shape registration. 3D Imaging, Analysis and Applications. 2020. p.
353–411.

29. Turk G, Levoy M. Zippered polygon meshes from range images. In: Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques. 1994. p. 311–8.

30. Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm. In: Proceedings Third International
Conference on 3-D Digital Imaging and Modeling. 2001. p. 145–52.

31. Jurda M, Urbanová P. Sex and ancestry assessment of Brazilian crania using semi-automatic mesh
processing tools. Leg Med (Tokyo). 2016;23:34–43. https://doi.org/10.1016/j.legalmed.2016.09.004
PMID: 27890100

32. Jandová M, Urbanová P. Sexual dimorphism in human facial expressions by 3D surface processing.
Homo. 2018;69(3):98–109. https://doi.org/10.1016/j.jchb.2018.06.002 PMID: 30029775

33. Schnabel R, Klein R. Octree-based point-cloud compression. In: Proceedings of the 3rd
Eurographics/IEEE VGTC Conference on Point-Based Graphics. 2006. p. 111–21.

34. Rusu RB, Cousins S. 3D is here: Point Cloud Library (PCL). In: 2011 IEEE International Conference
on Robotics and Automation; 2011. p. 1–4.

35. Rodolà E, Albarelli A, Cremers D, Torsello A. A simple and effective relevance-based point sampling
for 3D shapes. Pattern Recogn Lett. 2015;59:41–7.

36. Tombari F, Salti S, Di Stefano L. Performance evaluation of 3D keypoint detectors. Int J Comput
Vision. 2013;102(1):198–220.

37. Yulan Guo, Bennamoun M, Sohel F, Min Lu, Wan J. 3D object recognition in cluttered scenes with
local surface features: a survey. IEEE Trans Pattern Anal Mach Intell. 2014;36(11):2270–87.
https://doi.org/10.1109/TPAMI.2014.2316828 PMID: 26353066

38. Guo Y, Bennamoun M, Sohel F, Lu M, Wan J, Kwok NM. A comprehensive performance evaluation
of 3D local feature descriptors. Int J Comput Vision. 2016;116:66–89.

39. Toldo R, Beinat A, Crosilla F. Global registration of multiple point clouds embedding the generalized
procrustes analysis into an ICP framework. In: 5th International Symposium 3D Data Processing,
Visualization and Transmission. 2010. p. 5.

40. Pomidor BJ, Makedonska J, Slice DE. A landmark-free method for three-dimensional shape
analysis. PLoS One. 2016;11(3):e0150368. https://doi.org/10.1371/journal.pone.0150368 PMID:
26953573

41. Aspert N, Santa-Cruz D, Ebrahimi T. MESH: measuring errors between surfaces using the
Hausdorff distance. In: Proceedings. IEEE International Conference on Multimedia and Expo. 2002.
p. 705–8.

42. Dubuisson MP, Jain AK. A modified Hausdorff distance for object matching. In: Proceedings of 12th
International Conference on Pattern Recognition. 1994. p. 566–8.

43. Urbanová P, Ferková Z, Jandová M, Jurda M, Černý D, Sochor J. Introducing the FIDENTIS 3D
face database. Anthropol Rev. 2018;81(2):202–23.

44. Cavallo M, Demiralp Ç. Clustrophile 2: guided visual clustering analysis. IEEE Trans Visualiz
Comput Graph. 2018;25(1):267–76.

45. Gu Z. Complex heatmap visualization. Imeta. 2022;1(3):e43. https://doi.org/10.1002/imt2.43 PMID:
38868715

46. Hruda L, Kolingerová I, Váša L. Robust, fast and flexible symmetry plane detection based on
differentiable symmetry measure. Visual Comput. 2022;38(2):555–71.

PLOS One https://doi.org/10.1371/journal.pone.0329489 August 4, 2025 24/ 24

https://doi.org/10.1016/j.forsciint.2015.03.005
http://www.ncbi.nlm.nih.gov/pubmed/25818581
https://doi.org/10.1016/j.legalmed.2016.09.004
http://www.ncbi.nlm.nih.gov/pubmed/27890100
https://doi.org/10.1016/j.jchb.2018.06.002
http://www.ncbi.nlm.nih.gov/pubmed/30029775
https://doi.org/10.1109/TPAMI.2014.2316828
http://www.ncbi.nlm.nih.gov/pubmed/26353066
https://doi.org/10.1371/journal.pone.0150368
http://www.ncbi.nlm.nih.gov/pubmed/26953573
https://doi.org/10.1002/imt2.43
http://www.ncbi.nlm.nih.gov/pubmed/38868715
https://doi.org/10.1371/journal.pone.0329489

	Computing mutual similarity of 3D human faces in nearly linear time
	References


