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Abstract

Objective

Genome-wide non-invasive prenatal testing (GW-NIPT) for prenatal screening has
been widely implemented. However, the related clinical data is still insufficient. Here,
we evaluated the clinical performance of GW-NIPT as a first-tier screening test for
detecting fetal aneuploidy and copy number variation (CNV).

Methods

The study included 59,877 pregnant women who underwent GW-NIPT at Shenzhen
Baoan Women’s and Children’s Hospital, China, from November 2017 to May 2021.
NIPT was performed on the BGISEQ-500 platform. Fetal karyotype analysis, chromo-
somal microarray analysis (CMA) and fluorescence in situ hybridization were used for
invasive diagnostic procedures, and postnatal outcomes were collected.

Results

Among 59,877 pregnant women who underwent GW-NIPT, 59,771 were successfully
tested. Of these, 499 (0.83%) were identified with 504 high-risk fetal chromosomal
abnormalities, including 5 cases each carrying two distinct abnormalities. Follow-up
analysis demonstrated that GW-NIPT sensitivity exceeded 97% for fetal aneuploidies
and was 63.6% for CNV (25Mb). The positive predictive values for T21, T18, T13,
sex chromosome aneuploidy, rare autosomal aneuploidy, and CNV (=25Mb) were
calculated as 83.1%, 25.8%, 10.3%, 51.9%, 2.0%, and 33.9%, respectively. For con-
firmed fetal mosaicism, the detection rate of NIPT was 70.6%, which was consistent
with that of CMA (70.6%).
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Conclusions

GW-NIPT has high sensitivity in screening fetal aneuploidy and moderate clinical util-
ity in detecting CNV and fetal mosaicism, demonstrating that GW-NIPT holds signifi-
cant application value in current and future prenatal screening procedures.

Introduction

The emergence of non-invasive prenatal testing (NIPT) for cell-free fetal DNA
(cffDNA) in maternal peripheral blood has greatly improved the convenience of
prenatal testing for women, avoiding some pregnant women from directly undergoing
invasive procedures that may increase the risk of miscarriage [1,2]. Since the dis-
covery of cffDNA in maternal blood in 1997 [3], noninvasive prenatal diagnosis has
been developed and introduced into clinical practice in 2011 [4]. At present, NIPT

is becoming increasingly mature and widely used for antenatal screening of fetal
trisomy 21 (Down syndrome), trisomy 18 (Edwards syndrome) and trisomy 13 (Patau
syndrome). In addition, the additional findings, comprising fetal sex chromosome
aneuploidy (SCA), rare autosomal aneuploidy (RAA) and copy number variation
(CNV), can be detected by NIPT based on whole-genome sequencing [1,5-7].

Previous studies reported that NIPT had high sensitivities and low misdiagnosis
rates for T21, T18 and T13 [5-8]. Introducing NIPT after combined first-trimester
screening can significantly increased the screening specificity of T21, T18 and T13
at no loss of sensitivity, that will greatly reduce the number of invasive tests [9]. For
additional finding of NIPT, SCA commonly includes 45, X (Turner syndrome), 47, XXY
(Klinefelter syndrome), 47, XXX, and 47, XYY (Jacob’s syndrome). Compared with
monomer X, it has a higher positive predictive value (PPV) in predicting trisomy of
sex chromosomes [10,11]. However, the detection performance of NIPT for RAAis
not good enough, and van Prooyen Schuurman L et al. found that 91.3% of rare auto-
somal trisomy (RAT) originated from confined placental mosaicism (CPM) [12]. As for
CNV, the accuracy of NIPT may vary according to the mutated fragments or classic
microdeletion/microduplication syndrome (MMS) [13,14].

Fetal/placental mosaicisms are the major factors contributing to false-positive and
false-negative results of NIPT [1,8]. CffDNA originates from placental trophoblast
cells, which facilitates the detection of CPM, and further invasive testing is needed
to distinguish between CPM and fetal mosaicisms. Both CPM and fetal mosaicisms
have adverse effects on fetal growth. CPM cases are significantly associated with
adverse pregnancy outcomes such as fetal growth restriction, pre-eclampsia, and
low birth weight [12,15]. In fetal mosaicisms, unbalanced chromosome anomalies
may pose a risk of developmental disorders and potential mental handicap, leading to
termination of pregnancy [16].

American College of Medical Genetics and Genomics (ACMG) strongly recom-
mends NIPT for all pregnant women with singleton and twin gestations for fetal
common trisomies and SCA [17]. In 2017, the prenatal high-throughput genetic
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screening projects for T21, T18 and T13 have been subsumed in the public welfare projects in Shenzhen City, China,
facilitating the uptake of NIPT among local pregnant women. However, clinical research on genome-wide non-invasive
prenatal testing (GW-NIPT) remains insufficient, with limited evidence available to establish clear clinical guidelines
for additional findings beyond common trisomies [6,17,18]. And the studies on additional findings of NIPT often relies
on increased sequencing depth for analysis [13,14,19,20], which expands the cost of testing. Besides, there are few
reports on GW-NIPT detection of fetal mosaicisms, and more evidence is needed to explore the performance of NIPT
screening for fetal mosaicisms.

In this study, we conducted a retrospective analysis on 59,771 pregnancies who underwent GW-NIPT, and evaluated
the performance of the test as a first-tier prenatal screening method for common chromosomal trisomies and additional
findings. We also analyzed the potential significance of the test in indicating fetal mosaicisms, aiming to further expand the
clinical value of GW-NIPT in prenatal screening.

Subjects and methods
Study subjects

The retrospective study enrolled 59,877 singleton or twin pregnant women opting for GW-NIPT as a first-tier prenatal test
from November 2017 to May 2021 at Shenzhen Baoan Women’s and Children’s Hospital in China. Among these, 59,771
women were included in the subsequent analysis due to 106 test failures. The exclusion criteria for NIPT were gestational
age <12 weeks, couples with clear chromosomal abnormality, women who had a malignancy during pregnancy and had
received allogeneic blood transfusions, transplantation surgery, or allogeneic cell therapy within 1 year. Before the test, all
participants received clinical counselling, including the content, requirements, advantages, and limitations of the test. The
results of NIPT were interpreted by professional clinical doctors and provided patients with corresponding recommenda-
tions. All methods were performed according to the relevant guidelines or regulations.

Ethics statement

The study was approved by the Ethics Committee of Shenzhen Baoan Women’s and Children’s Hospital (LLSC-2021-04-
01-10-KS). Written informed consent was obtained from individual participants or their guardians. Records were accessed
on 20" March 2022 and subsequently anonymized to protect the personal privacy of all pregnant women.

Laboratory analysis of GW-NIPT

5mL of maternal peripheral blood was collected in an EDTA tube and kept standing at room temperature for 30 minutes.
Plasma was extracted from each blood sample using the following two-step centrifugation protocol. Firstly, the whole-
blood specimens were centrifuged for 10 minutes at 1600g at 4°C to separate plasma from blood cells. Subsequently, the
supernatant was transferred into a new tube and centrifuged at 160009 for 10 minutes at 4°C to precipitate the remaining
cells. The prepared plasma was stored at — 70°C.

DNA extraction, concentration detection, and DNA library construction were performed on plasma samples
using fetal chromosome aneuploidy detection kit package (BGI, Shenzhen, China) in the method of combinato-
rial probe-anchor synthesis. After libraries pooling, single stranded formation and cyclization of the samples, DNA
Nanoball (DNB) was prepared and quantified using Qubit ssDNA Assay kits (Thermo Fisher, Waltham, USA). DNB
concentrations in the range of 8-40 ng/ul was considered qualified. Sequencing was performed on the BGISEQ-500
platform (BGI, Shenzhen, China) with average sequencing depth of 0.17 x. These sequencing data were ana-
lyzed using BGl’'s automated analysis and interpretation platform, BGI HALOS. The minimum detectable fraction of
cffDNA was 3.5%. Based on the Z-score (normal range, —3<Z<3), all chromosomes were evaluated to determine
the fetal aneuploidy status.
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Invasive prenatal diagnosis and postnatal outcomes

Pregnant women who required further examination would have amniocentesis for karyotyping, chromosomal microarray
analysis (CMA), or fluorescence in situ hybridization (FISH), following the results of NIPT, ultrasound examination and
other medical history. A small number of cases underwent diagnostic testing using chorionic villus sampling (CVS), umbili-
cal cord blood, and fetal tissue.

30ml of amniotic fluid was obtained between 16 ~24 weeks of pregnancy for karyotype testing and CMA. After standard
metaphase conversion of cultured fetal cells, chromosome analysis was performed on at least 20 metaphase cells of each
specimen, while each mosaic specimen was counted in more than 30 metaphase cells. It was also confirmed that mosa-
icism were detected in both two bottles of cultured cells. The G-bands level in this laboratory was 320 ~400.

CMA was conducted using comparative genomic hybridization (CGH) technology. QIAamp® DNA Blood Mini Kit (QIA-
GEN, Hilden, Germany) was used to extract DNA from samples. Then, the samples were subjected to thermal cracking,
purification, and hybridization using the Oligo CGH Microarray Kit (Agilent, California, USA) with Fetal DNA Chip Version
1.2. Finally, SureScan Microarray Scanner (Agilent, California, USA) was used for scanning the result. The Derivative Log
Ratio Standard Deviation was ensured to be less than 0.2. Data analysis was referred to the human genome hg19 refer-
ence sequence and the pathogenic significance of CNV was evaluated according to the ACMG guidelines [21]. Based on
the evaluation of the pathogenicity of genetic variants referring to Population, Disease-Specific, and Sequence Databases,
as well as published literature, CNVs were categorized into two groups: “pathogenic/likely pathogenic (P/LP)” and “variant
of uncertain significance (VUS)”. FISH experiments were conducted using the FISH detection kit (Jinpujia, Beijing, China).

For postnatal outcomes, we included information on the types of delivery (live birth vs. stillbirth), the presence of any
birth defects, and the clinical evaluation of birth defects. When postnatal outcomes was not recorded, potential reasons
included termination of pregnancy (TOP) or delivery at another hospital, which we did not differentiate in this study.

We classified NIPT results into true positive (TP), false positive (FP), true negative (TN) and false negative (FN)
according to invasive testing results or the postnatal outcomes. The criteria for judgment of NIPT results are as follows: (1)
T21, T18, T13 and RAA can be comfirmed via invasive testing (karyotyping, CMA or FISH) or postnatal outcomes due to
their distinct clinical features, such as atelencephalia in common trisomies and cardiovascular defects in RAA [22,23]. (2)
SCA was comfirmed by invasive testing of karyotyping, CMA or FISH. (3) CNV (25Mb) was comfirmed by invasive testing
of CMA.

Statistical analysis

IBM SPSS statistics 27.0.1 (SPSS Inc., Chicago, IL, USA) was used to analyse the data. Continuous variables were pre-
sented in the form of mean + standard deviation, median, or range for uptake, while categorical variables were expressed
as proportions. Sensitivity, specificity and PPV were calculated using 2 x 2 tables with following formula: sensitivity=TP/
(TP+FN), specificity=TN/(TN+FP) and PPV=TP/(TP +FP). On the bases of a standard normal distribution, 95% confi-
dence intervals (Cl) were calculated by Normal Approximation method and Wilson method.

Results
Study population characteristics and GW-NIPT results

Demographic characteristics of the study population were summarized in Table 1. The average maternal age was 29.5
(x4.1) years which is slightly higher than the national average age of pregnant women of 28.8 (+5.1) years from 2016 to
2020 [24], and 11.6% (6946/59771) of pregnant women were in the advanced maternal age (235). The mean body mass
index (BMI) was 21.7 (£3.0) kg/m? and the median gestational age was 17 weeks (range: 12—-39.3).

A total of 59,877 pregnancies who underwent GW-NIPT from November 2017 to May 2021 were accessioned for this
study and 106 were tested failure (fetal fraction <3.5%). The test failure rate was 0.18% (106/59877) and 59,771 cases
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Table 1. Demographic characteristics of the the study cohort.

Maternal characteristics n (%)
Maternal age (years)
<35 52825 (88.4)
>35 6946 (11.6)
BMI (kg/m?)
<18.5 6469 (10.8)
18.5-23.9 41179 (68.9)
24.0-27.9 10001 (16.7)
>28.0 2109 (3.5)
Unrecorded 13 (0.0)
Gestation age (weeks)
<28 58928 (98.6)
228 835 (1.4)
Unrecorded 8 (0.0)
Pregnancy types
Singleton pregnancy 58342 (97.6)
Twin pregnancy 1421 (2.4)
Unrecorded 8 (0.0)

n, number; BMI, body mass index.

https://doi.org/10.1371/journal.pone.0329463.t001

were enrolled in further analysis (Fig 1). In the results of GW-NIPT, 499 (0.8%) patients were suspected to be high risk,

of which 5 carried two types of abnormal high risk. Among 504 high-risk cases, 367 cases were confirmed by follow-up
diagnosis, and 137 cases were lost to follow-up. 59,272 cases showed low-risk results for all of the detected chromosomal
abnormalities, of which 1,402 cases underwent invasive CMA and 1,349 cases conducted invasive karyotype analysis
based on other clinical evaluations, including 1,315 cases that underwent both CMA and karyotyping. Among the remain-
ing low-risk cases of NIPT, 43,413 have recorded postnatal outcomes and 14,423 cases lost to follow-up.

Performance of GW-NIPT for screening common trisomies

In the 89 cases of trisomy 21 high risk of NIPT, 24 cases were lost without confirmation and 65 cases were followed up

by cytogenetic testing and clinical diagnosis (Table 2). Among them, NIPT results were confrmed in 54 cases, including

53 were confrmed by cytogenetic testing using amniotic fluid or fetal tissue and one was identified by clinical diagnosis
after intrauterine fetal demise. Eleven cases were false positives of NIPT, comprising six were confirmed by cytoge-

netic testing of amniocytes and five healthy neonates without cytogenetic confirmation (S1 Table). Among the 59,684
cases with low risk of T21 indicated by NIPT, one case of false negative of NIPT was confirmed as trisomy 21 mosaic
(47,XN, +21[5]/46,XN[95]) by karyotyping of amniocytes (S2 Table), and 45,208 cases were comfirmed as true negative of
NIPT. In summary, the sensitivity, specificity and PPV of NIPT for trisomy 21 were 98.2%, 100% and 83.1%, respectively
(Table 2).

For trisomy 18, 36 cases were considered positive by NIPT. In these cases, five were missing and 31 had undergone
cytogenetic testing and/or clinical diagnosis. NIPT results were confrmed in eight cases by cytogenetic testing in amniotic
fluid, of which one case was confirmed as mosaic trisomy 18 (47,XN, + 18[21]/46,XN[79]). 23 cases were discordant pos-
itives of NIPT, including 19 were detected by cytogenetic testing using amniotic fluid or cord blood and four were healthy
births without cytogenetic confirmation (S1 Table). In cases where NIPT indicated low risk of T18, no false negative case
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T21 (n=65) TI18 (n=31)

T13 (n=29) RAA (n=51)
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or FISH
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|| Comfirmed by CMA

(n=1402)*
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(n=14423)

Fig 1. Flowchart of the NIPT results and outcomes of pregnant women. NIPT, non-invasive prenatal test; n, number; T, trisomy; SCA, sex chromo-
some aneuploidy; RAA, rare autosomal aneuploidy; CNV, copy number variation; CMA, chromosomal microarray analysis; FISH, fluorescence in situ
hybridization. ‘Include 1,315 cases that underwent both karyotyping and CMA.

https://doi.org/10.1371/journal.pone.0329463.9001

Table 2. NIPT performance for common trisomies, SCA, RAA and CNV.

Abnormal types NIPT high risk NIPT low risk Sensitivity, % Specificity, % PPV, %
(95% ClI) (95% ClI) (95% CI)

n lost TP FP n lost FN TN
T21 89 24 54 11 59684 14475 1" 45208 98.2 (94.6-100) 100 (99.9-100) 83.1(74.0-92.2)
T18 36 5 8 23 59735 14494 45243 100 (67.6-100) 99.9 (99.9-100) 25.8 (10.4-41.2)
T13 33 4 3 26 59738 14495 45245 100 (43.8-100) 99.9 (99.9-100) 10.3 (0-21.4)
SCA 194 65 67 62 59577 57942 28 1633 97.1 (93.1-100) 96.3 (95.4-97.2) 51.9 (43.3-60.6)
RAA 61 10 1 50 59710 14489 0 45223 100 (20.6-100) 99.9 (99.8-99.9) 2.0 (0-5.8)
CNV 91 29 21 41 59680 58032 12 1636 63.6 (47.2-80.0) 97.6 (96.8-98.3) 33.9 (22.1-45.6)

NIPT, non-invasive prenatal test; n, number; TP, true positive; FP, false positive; FN, false negative; TN, ture negative; Cl, confidence interval; PPV,
positive predictive value; T, trisomy; SCA, sex chromosome aneuploidy; RAA, rare autosomal aneuploid; CNV, copy number variation. * Confirmed as
trisomy 21 mosaicism. $Confirmed as SCA mosaicisms.

https://doi.org/10.1371/journal.pone.0329463.t002
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and 45,245 ture negative cases were reported. Thus, the sensitivity, specificity and PPV of NIPT for trisomy 18 were
100%, 99.9% and 25.8%, respectively (Table 2).

As for trisomy 13, 33 cases were identified by NIPT as high-risk cases. Four cases were lost without confirmation and
29 cases were followed up by cytogenetic testing and/or clinical diagnosis. For three of the 29 cases, the NIPT result was
confirmed by cytogenetic testing in amniocytes. The remaining 26 cases were false positives of NIPT, which involved 18
were confirmed as normal by cytogenetic testing of amniocytes or cord blood and eight were healthy births without cyto-
genetic confirmation (S1 Table). In summary, the sensitivity, specificity and PPV of NIPT for trisomy 13 were 100%, 99.9%
and 10.3%, respectively (Table 2).

Performance of GW-NIPT for screening SCAs, RAAs and CNVs (25Mb)

A total of SCA detected by NIPT were 194 cases (Table 2). The results were confrmed in 67 cases by cytogenetic testing
using amniotic fluid or cord blood, including ten confirmed as mosaic SCA and two diagnosed in other hospitals as XXY
and XXX respectively. In 62 cases of discordant positive of NIPT, one case was XXY high risk but confirmed as XXYY by
karyotyping with amniocytes (S3 Table). Of the 129 diagnosed cases, 17 were reported as XXX by NIPT with 10 (58.8%)
true positives, 33 were detected as XXY with 30 (90.9%) true positives, 18 were detected as XYY by NIPT with three
discordant positives (83.3%) and 61 were reported as X with 12 (19.7%) true positives (Fig 2). Among 59,577cases of
SCA low risk of NIPT, 1,635 underwent invasive testing, of which two cases were false negative of NIPT and confirmed as
mosaic SCA by karyotyping with amniocytes (S2 Table). In summary, the overall sensitivity, specificity and PPV of NIPT for
SCA were 97.1%, 96.3% and 51.9%, respectively (Table 2).

For RAA, 61 cases were considered positive by NIPT. Of these, 10 cases were lost and 51 cases had cytogenetic test-
ing and/or pregnancy outcome (Table 2, S4 Table). Ture positive were confirmed in one case with 47, XN, +2[7]/46,XN[93]
by karyotyping. 50 cases were confirmed as false positives of NIPT, which included 34 cases with diagnostic test in amni-
otic fluid or cord blood and 16 healthy births without cytogenetic confirmation. No false negative cases were reported. As a
result, the sensitivity, specificity and PPV for RAA was 100%, 99.9% and 2.0%, respectively.

Finally, 91 cases were identified by NIPT as CNV (25Mb) high-risk with 29 missing cases and 62 cases diagnosed by
CMA (Table 2, S5 Table). In the 62 cases, 21 were confirmed to be consistent with NIPT results, including 3 MMSs (S5
Table), and 41 were confirmed as discordant positive using amniotic fluid or cord blood. Among a total of 1,648 low-risk
cases of CNV (25Mb) conducted follow-up diagnosis, 12 cases were comfirmed as false negative of NIPT by CMA of
amniotic fluid, cord blood or fetal tissue (S2 Table). Thus, the sensitivity, specificity and PPV of NIPT for CNV were 63.6%,
97.6% and 33.9%, respectively. Furthermore, we classified CNV into three categories according to abnormal fragment

80
FP O TP
= mEr O 19.7%
2 60
>
o
=}
E 40 90.9%
E oL sesv 83.3%
L _
XXX XXY XYY X
SCA category

Fig 2. Distribution of diagnosed cases of SCA high risk of NIPT. The number at the top of the pillar represents the PPV for each SCA category.
NIPT, non-invasive prenatal test; FP, false positive; TP, true positive; SCA, sex chromosome aneuploidy.

https://doi.org/10.1371/journal.pone.0329463.9002
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sizes: 5—~10Mb, 10—20Mb and >20Mb. Of the 62 diagnosed cases, 30 were in 5-10Mb group comprising 13 (43.3%)
cases of true positive, 17 cases were in 10-20 Mb group with six (35.3%) true positives and 15 were in >20Mb group with
two (13.3%) true-positive cases (Fig 3). Regarding comfirmed CNV, more adverse postnatal outcomes occurred in cases
with P/LP variants compared to cases with VUS variants, including premature birth, stillbirth or possible TOP (S2 and S5
Table).

Fetal mosaicism

Through amniotic fluid karyotype analysis, a total of 17 cases were diagnosed as mosaics (Table 3), among which 12
cases (70.6%) were consistently identified by NIPT and 12 cases (70.6%) were detected by CMA. Two cases were
identified as low-risk by NIPT, while karyotype analysis revealed SCA mosaic and chromosome 18 deletion mosaicism,
which were consistent with the CMA results. One case indicating trisomy 2 by NIPT was consistent in both karyotype
and CMA results. One case with high-risk trisomy 8 detected by NIPT showed a karyotype of 47,XN, +21[5]/46,XN[95],
while its CMA result was negative. In addition, NIPT identified two cases with high-risk trisomy 18. One was diagnosed
by karyotype analysis as 47,XN, +18[21]/46,XN[79], which was consistent with the CMA result. The other one was
47,XYY[6]/46,XY[94] diagnosed by karyotype, but its result of CMA was negative. Nine cases with high-risk monosomy
X and one case with XXX identified by NIPT were all confirmed by karyotype analysis, however, three cases were not
detected by CMA. The last case had a karyotype result of 46,XN,t(5;7)(p10;p10)[13]/46,XN[87], indicating an isochro-
mosome translocation between the short arms of chromosomes 5 and 7, which is beyond the detection range of NIPT
and CMA. Thus, the CMA result was normal, meaning that it was consistent with the result of karyotyping, and the NIPT
finding of a microdeletion in chromosome 15 was a false positive result.

Discussion

NIPT is a screening test in the second trimester, detecting cffDNA in maternal peripheral blood. Compared with traditional
maternal serum screening, NIPT has higher sensitivity and specificity [1,17]. At present, more than 27 countries have
implemented NIPT, reducing the proportion of women who choose invasive prenatal diagnosis after high-risk biochemical
screening from 75% to 43% [25], optimizing the prenatal testing process and better preventing disabilities. More clinical
data is still needed to evaluate the screening performance of NIPT for additional findings beyond common chromosomal
trisomy. In this study, we investigated 59,771 pregnant women who underwent genome-wide NIPT to evaluate the screen-
ing performance of the test for common chromosomal trisomy, SCA, RAA, CNV (=25Mb) and fetal mosaicism.

20
v 35.3% WmFP OTP
%]
2 15
(]
s
= 10 | 33.3% 22.2%
=
E
z T
0

5-10Mb 10-20Mb >20Mb
CNYV category

Fig 3. Distribution of diagnosed cases of CNV high risk of NIPT. The number at the top of the pillar represents the PPV for each CNV category.
NIPT, non-invasive prenatal test; FP, false positive; TP, true positive; CNV, copy number variation; Mb, megabyte.

https://doi.org/10.1371/journal.pone.0329463.9003
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Table 3. Overview of fetal mosaicisms.

NIPT result MA (y) GA (w) BMI Karyotyping (in AF) CMA (in AF) Pregnancy outcome
low-risk 39 12+6 24.0 45,X[58]/46,X,idic(X)(p11.2)[42] Xp22.33p11.22x1 Premature birth and stillbirth
low-risk 36 20+5 20.0 46,XN,del(18)(q21.3)[19]/46,XN[81] 18921.31923
x1~2
T2 34 12+4 211 47 XN, +2[7]/46,XN[93] 2p25.3q37.3
x2~3
T8 29 12+5 19.2 47,XN, +21[5]/46,XN[95] Normal
T18 29 12+4 18.1 47,XN, +18[21]/46,XN[79] 18 p11.32-g23x2~3
T18 32 13+3 20.1 47,XYY[6]/46,XY[94] Normal Healthy live born
45, X 26 12+3 17.7 45,X[8]/46,XX[92] Normal Live born with congenital
anomalies
45, X 30 13+4 215 45,X[12]/46,XX[88] X p22.33-g28
x1~2
45, X 25 13+2 17.9 45,X[12]/46,XX[88] Normal Healthy live born
45, X 31 13+3 18.0 45,X[60]/47,XXX[40] X p22.33-928
x1~2
45, X 31 13 23.5 45,X[8]/46,XX[92] Normal
45, X 35 14+1 22.7 45,X[93)/46,X,idic(X)(p11.2)[7] X p22.33-928
x1
45, X 30 13+3 15.8 45,X[67]/47 XXX[33] X p22.33-g28
x1~2
45, X 30 12+0 19.6 45,X[10]/46,XX[90] Xp22.33q28
x1~2
45, X 30 17+6 22.6 45,X,16gh+[55]/46,X,mar,16gh+[45] Xp22.33p11.4x1
47, XXX 28 23+2 22.8 47, XXX[75]/46,XX[25] X p22.3-928
x3
Del 27 12+2 19.6 46,XN,t(5;7)(p10;p10)[13]/46,XN[87] Normal Healthy live born
15911.2-q13.3

NIPT, non-invasive prenatal test; MA, maternal age (years); GA, gestational age (weeks); BMI, body mass index; AF, amniotic fluid; CMA, chromosomal
microarray analysis; T, trisomy; del, deletion; Mb, megabyte.

https://doi.org/10.1371/journal.pone.0329463.t003

We used next-generation sequencing technology for NIPT. In the research cohort, a total of 499 patients (0.83%)
were indicated to have a high risk of chromosomal abnormalities. This result is similar to previous studies that found a
positive rate of 0.75% (without SCA) for NIPT screening in the general obstetric population [5], while the positive rate of
NIPT screening was 2.0% in the women with high-risk and intermediate-risk results of traditional combined first-trimester
screening (cFTS), including blood screening combined with an ultrasound examination [7]. Compared with traditional
cFTS, NIPT has higher reliability. The follow-up diagnosis confirmed that there were 213 (0.4%) false positive cases of
T21, T18, T13 and additional findings of NIPT, however, the false positive rate of traditional cFTS for common chromo-
somal trisomies was 4.7% [26].

Follow-up diagnostic testing confirmed that NIPT demonstrated high sensitivity for T21, T18 and T13, with respective
values of 98.2%, 100%, and 100%. Only one false negative case was confirmed as trisomy 21 mosaicism, while NIPT
indicated trisomy 8 high risk. This aligned with a meta-analysis of previous studies reporting high sensitivity for common
chromosomal trisomies in fetus, with T21 at 98.8%, T18 at 98.8%, and T13 at 100% [27]. In this study, PPVs of NIPT for
T21, T18 and T13 were 83.1%, 25.8%, and 10.3%, respectively, highlight the need for further diagnostic confirmation
following a positive NIPT result. The PPVs reported by van der Meij KRM et al. of NIPT for T21, T18 and T13 were 96%,
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98%, and 53%, respectively [5], which were higher than our results. However, the corresponding sensitivities in their study
were slightly lower, at 98%, 91% and 100%, respectively, resulting in more false-negative cases. These variations high-
lighted that the balance between PPVs and sensitivities could be influenced by the specific NIPT platforms used. In the
other hand, several factors can also affect these two parameters, such as sample size, fetal or placental mosaicism, the
‘vanishing twin’ phenomenon, and maternal copy number variations [1,8,28]. For instance, CPM can lead to false-positive
results, as the cffDNA may originate from the placenta rather than the fetus [28]. Additionally, maternal copy number vari-
ations can affect the accuracy of NIPT results by introducing additional genetic signals that may be misinterpreted as fetal
abnormalities.

In this study, the sensitivity and PPV of SCA detected by NIPT were 97.1% and 51.9%, respectively. Kim H et al.
reported comparable NIPT PPV for SCA (51.4% overall), with subtype-specific values of 88.9% (47,XXX), 71.4%
(47,XXY), 60.0% (47,XYY), and 18.8% (45,X) [11]. Our results demonstrated similar trends: 58.8% (47,XXX), 90.9%
(47,XXY), 83.3% (47,XYY), and 19.7% (45,X), indicating that NIPT performed better in predicting sex chromosome triso-
mies compared with monosomy X [10,11,13,19]. The reason for the low accuracy of NIPT in predicting monomer X might
be: (i) CPM, as mentioned above; (ii) The sequencing length of NIPT is 35 bases, and the pseudoautosomal regions at
both ends of the X and Y chromosomes are highly homologous, making it prone to read error during sequencing these
locations [10,24]; (iii) Low content of GC bases on the X chromosome leads to increased variability in amplification effi-
ciency and difficulty in detection [29]; (iv) As the mother’s age increases, the chromosomal karyotype of some female cells
changes from XX to X0/XX mosaicism [30]. In additon, we found a case which was detected as XXY high risk by NIPT,
was revealed as a 48, XXYY karyotype through the analysis of amniocytes. Thus, combining NIPT screening with prenatal
diagnosis is beneficial for the discovery and diagnosis of rare fetal chromosomal abnormalities.

We also analyzed the high-risk cases of RAA of NIPT, with the sensitivity and PPV of 100% and 2.0%, respectively. In
previous large-scale obstetric population studies, the incidence rates of RAT were 0.014% (15/110739) [12] and 0.015%
(14/94085) [13], and the corresponding PPVs were 7.6% and 28.6% respectively. However, there was only one case of
RAT in our cohort, which indicated its incidence rate was 0.0017% (1/59771). Routine follow-up on pregnancy outcomes
of RAA high risk of NIPT were conducted, including 39 live-born cases with no significant abnormalities at birth, 2 cases
with congenital disease, 3 stillbirths and the rest without registration. The outcomes of RAA of fetus are mostly early mis-
carriage and death, expecially in trisomy 16, 22, and 15 fetus [31,32]. Thus, even without diagnostic testing, cases with
normal birth can exclude RAA. Fetus who borned with congenital disease did not have diagnostic testing. However, all of
three stillbirth cases had negative results of diagnostic test in amniotic fluid, and the cause of death may be due to pla-
cental mosaicism, malnutrition during pregnancy or premature birth. Therefore, if conditions permit, cases with high risk of
RAA of NIPT should be performed ultrasound, to monitor fetal growth and avoid potentially structural abnormalities in fetus
and unnecessary invasive testing [5,33].

The overall sensitivity of NIPT in detecting high risk CNV (25 Mb) was 63.6%. Previous studies reported that the sen-
sitivities of NIPT screening for CNV were >90% [13,20,34], and the main reason is that generally CNVs have inapparent
clinical manifestations in fetus, resulting in some of potential false negatives of NIPT without diagnosis. In this study,
patients with low-risk CNV (=5Mb) of NIPT would take diagnostic tests based on abnormal ultrasound results, medical
history or personal intention. Besides, the PPV of NIPT for CNV (25Mb) was 33.9%, meaning that NIPT had a certain
screening advantage for chromosomal fragment abnormalities. Other studies reported an overall PPV ranging from 38.1%
to 50% for CNV by NIPT-Plus with deeper sequencing depth than ours [13,14,19,20]. Schwartz S et al. reported an PPV
of 9.2% in 349 patients screened for 1p, 4p, 5p, 15q, or 22q microdeletions of NIPT, and their research data were obtained
from seven different laboratories [35].

Additionally, among 91 cases with high-risk CNV (=5 Mb) indications by NIPT, we identified 17 cases of MMSs.
Among these cases, three were confirmed as true positives, including one case each of Wolf-Hirschhorn syndrome,
18q deletion syndrome, and Cri-du-Chat syndrome (CDC). This indicates that GW-NIPT is capable of detecting
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pathogenic MMS, albeit with a low true-positive rate. Studies report variable PPVs of NIPT for specific MMS.For exam-
ple, Xue H et al. found PPVs of 50%, 50% and 0% for CDC, PWS/AS and 1p36 deletion, respectively [14] and Petersen
et al. reported corresponding PPVs of 0%, 0% and 14% [36].These may be influenced by factors such as CNVs car-
ried by pregnant woman, sequencing coverage, bioinformatics algorithms, fetal DNA fraction, etc. [37]. Furthermore,
our results demonstrate that fetuses with P/LP CNVs were more likely to result in TOP or adverse postnatal outcomes
compared to those with VUS CNVs. Besides, long-term follow-up and monitoring should be implemented for cases with
high-risk CNVs who continue to live birth.

17 cases of fetal mosaicisms were confirmed by karyotyping of amniocytes, which both underwent NIPT and CMA.

We found that the detection rate of fetal mosaicism by NIPT was 70.6% (12/17), which was consistent with that of CMA
(70.6%, 12/17). At present, researches on the detection of fetal mosaicisms are mainly focused on karyotype analysis and
CMA [16,38,39], both of which have their own advantages and disadvantages. The former mainly evaluates mosaicisms
with balanced translocation or mosaic with constant total gene dosage, while the latter has more advantages in detecting
mosaicisms with short fragment of chromosomal abnormalities [39]. Our results revealed that NIPT had certain detection
efficacy for fetal mosaics, especially in mosaicism with chromosomal aneuploidy.

Based on targeted array CGH using Fetal DNA Chip Version 1.2, CMA can detect all common aneuploidy diseases
and over 100 types of MMSs of known gene sequence, yet has limitations like missing some small chromosomal abnor-
malities, copy number polymorphisms, mosaicism, and rearrangements. GW-NIPT enables detection of a broader range
of genomic variations and is capable of identifying atypical, rare, or subchromosomal CNVs that would not be identified
by targeted assays. The Algorithms of GW-NIPT developed by BGI-Shenzhen were used to detect CNV and the reads
were aligned to the human genome (hg19). After raw data processing, GC correction, intra-batch correction and Principal
Component Analysis (PCA), Hidden Markov Model (HMM) was used to infer the hidden states of each window (normal,
deletion and duplication) [40]. Concurrently, GW-NIPT identified 2 cases of SCA mosaicism (comfirmed by karyotyping)
that were undetected by CMA. These findings underscore the clinical necessity of implementing GW-NIPT. This study
has several limitations: (1) Incomplete postnatal outcomes, without distinguishing between TOP and lost to follow-up
cases. (2) Long-term follow-up was not performed, and no data were collected on the long-term impact of NIPT results on
neonatal outcomes or childhood health. (3) In-depth analysis on high-risk pregnancies—particularly those with maternal
morbidity or negative neonatal outcomes—was insufficiently conducted. These methodological gaps should be prioritized
in subsequent research to enhance the robustness of future studies.

Conclusions

The clinical study of 59,771 pregnant women in the general obstetric population substantiated that GW-NIPT had high
sensitivity in screening for fetal trisomy 21, 18, and 13 with PPV of 83.1%, 25.8%, and 10.3%, respectively. For additional
findings, GW-NIPT showed good screening performance in detecting SCA with PPVs of 51.9%. The incidence rate of
RAA was very low in this study, at 0.002% (1/59771), and the PPV of NIPT for RAA was 2%. For CNV, the overall PPV of
NIPT was 33.9%. In addition, we found that NIPT had potential ability in screening fetal mosaicism. Compared to CMA,
GW-NIPT has certain advantages in detecting mosaicism of fetal chromosomal aneuploidy. Based on the support of the
policies, we suggest that GW-NIPT should be analyzed in conjunction with traditional serum screening, ultrasound testing
and parents’ medical history, which can optimize the prenatal testing process, as well as provide timely and comprehen-
sive genetic counseling for patients.
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