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Abstract
In this paper, two conclusive three-party cyclic assisted cloning protocols in amplitude
damping (AD) channel are put forward that, respectively clone three arbitrary unknown
single-qubit states and single-qutrit states with the help of a state preparer. Each of our
protocols includes three consecutive stages: quantum channel preparation, cyclic quan-
tum teleportation (CQT), and multi-party assisted cloning. The first stage of each pro-
tocol proposes the detailed processes of sharing a pure entangled quantum state as
a component of a quantum channel in AD channel via entanglement compensation. In
second stage, a three-party CQT is presented where three unknown single-qubit states
(or single-qutrit states) are reconstructed simultaneously in three different places, respec-
tively, by introducing auxiliary qubits and performing appropriate operations. In the third
stage, the state preparer Victor performs one multi-qubit measurement (or one unitary
transformation and one multi-qutrit measurement) and informs the three communica-
tors of his outcome, three distinct unknown single-qubit states or their orthogonal com-
plement states (or single-qutrit states) are cloned simultaneously and with probability at
three separate locations,respectively. Furthermore, we extend the above protocols from
two aspects: (i) the extension to the case of (N + 1) participants; (ii) extension to the case
of d-dimensional unknown single-qudit state cycle-assisted cloning.

1 Introduction
The fundamental principles of quantum mechanics, such as quantum parallelism, quantum
state superposition, quantum entanglement, and quantum coherence—features with no clas-
sical counterparts—demonstrate revolutionary advantages in computing and communica-
tion. With shared quantum entanglement and local operation as well as classical communi-
cation, in 1993 Bennett et al. [1] first proposed the concept of quantum teleportation (QT),
a clever application of quantum mechanics in the field of information, which has attracted
great attention because it provides unconditional security in the communication process.
Since the seminal work of Bennett et al. [1] was reported, the vast majority of quantum com-
munication branches have developed rapidly, such as quantum key distribution (QKD) [2,3],
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quantum secure direct communication (QSDC) [4,5], quantum dialogue (QD) [6,7], QT [8–Competing interests: The authors have
declared that no competing interests exist. 10], quantum secret sharing (QSS) [11,12], remote state preparation (RSP) [13–16], remote

implementation of quantum operation (RIQO) [17,18], and so on.
The no-cloning theorem, as another important principle of quantum mechanics, states that

it is impossible to perfectly replicate any unknown quantum state in quantum mechanics. This
conclusion is proven through the linear superposition property of quantum states using proof
by contradiction, and it has profoundly influenced the development of quantum information
science [19]. The theoretical breakthroughs and technological innovations addressing this
limitation have always been one of the core topics in quantum information science: Bužek and
Hillery, by constructing a theoretical model for a universal quantum cloning machine [20–22]
first systematically explained the inevitability of errors in the approximate cloning of non-
orthogonal states and their quantification, laying the key theoretical foundation for subse-
quent research. Within this framework, Gisin and Massar [23] and Bruß et al. [24] proposed
optimal state-dependent cloning schemes and established theoretical limits on the cloning
fidelity of specific quantum state families. Later, Duan and Guo pioneered the probabilistic
cloning paradigm [25,26], introducing a measurement-feedback mechanism that success-
fully enabled the limited-probability exact replication of non-orthogonal quantum states. This
breakthrough redefined the impossibility of cloning operations from the deterministic to the
probabilistic domain, providing a new methodology for quantum state manipulation. As the
theoretical system improved, researchers expanded the application boundaries of cloning pro-
tocols from multiple dimensions. In 1999, Murao et al. [27] combined quantum teleportation
with the optimal cloning framework to construct a remote cloning protocol with one input
and multiple outputs. This work led to the design of specialized quantum cloning machines
for different physical constraints [28–31]. In 2000, Pati proposed a state preparer-assisted
cloning scheme [32] that uses a two-stage protocol to probabilistically generate both the orig-
inal state and its orthogonal complement copies(OCC). The core idea was later extended by
Zhan [33] to the cloning of two-particle entangled states. Han’s team [34] further improved
the protocol’s efficiency by employing generalized quantum measurements, and the robust-
ness of the scheme based on cluster states [35,36] and GHZ-class states [37] provided new
ideas for cloning operations in noisy environments. In terms of system dimension expan-
sion, research has progressed from single qubits to multi-particle entangled states [38]and
high-dimensional quantum dit systems [39–41]. The works of Chen et al. [40] and the Xue-
Jiang team [41] have systematically established a universal framework for cloning multi-qudit
states. The current frontier of research focuses on the design of practical cloning protocols
under noisy channels. Recent progress includes Maihemuti et al.’s [42] proposal of a con-
trolled cloning scheme for multi-qubit states and Zhai’s team’s [43] single-quantum dit state
assisted cloning framework. These achievements present three major development trends:
optimizing resource consumption through measurement strategies, expanding system dimen-
sions to higher degrees of freedom, and adaptive designs to address decoherence effects. It is
worth noting that although the existing theoretical frameworks have verified the feasibility
of cloning protocols under ideal conditions, the dynamic evolution characteristics in practi-
cal noisy channels (such as the AD channel) have not been fully revealed. This presents a key
innovative entry point for this study’s development of cyclic-assisted cloning mechanisms.
The entanglement resource optimization methods [35–37] and measurement feedback tech-
niques [25,26,34] developed in prior work provide the necessary technological foundation for
exploring robust cloning protocols in noisy environments.

However, almost all the existing quantum assisted cloning schemes are unidirectional (i.e.,
the copy or OCC of original unknown state appears only at the sender’s location), and they
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only focus on the case of an ideal environment . Until now,there has been a lack of a multi-
directional cloning scheme in a noisy environment, i.e., a scheme that is valid for open sys-
tems and simultaneously clones different unknown states at the positions of multiple par-
ticipants, separately. Recent innovations in quantum communication protocol architectures
have shown a significant trend of multidirectional expansion. Researchers are continuously
breaking the performance boundaries of traditional schemes by optimizing entanglement
resources and measurement strategies. Yang et al. [44] constructed a bidirectional quantum
teleportation protocol for three-particle GHZ states based on controlled-NOT(CNOT) oper-
ations and single-qubit projective measurements, and extended it to multi-qubit GHZ states.
Notably, they effectively suppressed the deterioration of teleportation fidelity caused by quan-
tum noise using weak measurements and their inverse operations, providing an important
example for managing entanglement resources in noisy channels. In the field of state prepa-
ration, Ref. [45] established a bidirectional RSP framework for two arbitrary single-particle
states in an ideal environment, further extending it to multi-particle states and verifying the
enhancement mechanism of weak measurement techniques for fidelity in noisy environments.
In response to complex quantum operation transmission requirements, Ref. [46] designed a
remote implementation (RI) protocol for unknown operations with multiple controllers, suc-
cessfully achieving distributed collaborative execution of multiple partially unknown opera-
tions (PUOs). Notably, a series of breakthroughs have been made in the construction of cyclic
quantum communication architectures: the Sun-Zhang team [47] implemented a four-node
controlled CQT (CCQT) protocol using multi-particle partially entangled states, and their
design concept, which can be extended to N-node quantum networks, provides a key archi-
tectural reference for future distributed quantum systems. The Peng and Lei scheme [48] built
a cyclic remote state preparation protocol using a six-particle entangled channel and achieved
bidirectional cyclic operations for N communication nodes through channel reconstruction.
Refs. [49,50] proposed bidirectional quantum communication protocols based on a thirteen-
particle entangled channel and achieved collaborative architectures for cyclic quantum state
transmission and remote execution of PUOs under controlled conditions. In the area of noise
adaptability, Ref. [51] innovatively constructed a multiparty quantum state sharing proto-
col under AD channels, achieving controllable distribution of single-qubit and single-qutrit
states, and the noise compensation strategy it employed provides a new methodology for
the design of open quantum system communication protocols. These advances collectively
highlight the enhancement of channel robustness through the introduction of noise sup-
pression technologies such as weak measurement, the scalability of protocols utilizing high-
dimensional entanglement resources [47–49], and the development of collaborative cyclic
operation architectures with multiple participants [47–50]. However, existing cyclic commu-
nication protocols largely focus on the basic functions of state transmission and operation
execution, while the collaborative mechanism for cyclic-assisted cloning in noisy channels
remains to be solved. This provides a key innovative idea for this study to construct a cyclic-
assisted cloning protocol for arbitrary single-particle states under AD channels, with the
weak measurement compensation techniques, multi-particle entanglement channel optimiza-
tion methods, and noise-adaptive architectures developed in prior work laying the necessary
technical foundation for the protocol design in this paper.

Based on the theoretical foundation and technical insights from the multi-party cyclic
communication architecture [47–51], this study investigates the controlled cyclic cloning
of arbitrary unknown single-particle states with the assistance of a state preparer in the AD
channel.In order to achieve this, we first propose two conclusive three-party cyclic schemes,
respectively cloning three different unknown single-qubit and single-qutrit states with the
help of a state preparer. The entire procedure mainly consists of three stages, in order: first,
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sharing a pure entangled state (PES) among the three communicators via entanglement com-
pensation; second, performing three-party CQT;third, requiring an assisted cloning with
three outputs. We then generalize these schemes in two aspects: first, extending them to the
case of an arbitrary multi-party cyclic scenario; and second, extending them to the case of
cyclic cloning of arbitrary high-dimensional quantum states.

The structure of this article is organized as follows. In Sect 2, we provide a brief review of
the concepts closely related to this study. Sect 3 presents a three-party cyclic protocol for the
assisted cloning of three different single-particle states in an AD channel and extends it to the
case of N-party (N>3) cyclic assisted cloning. In Sects 4 and 5, we focus on the three-party
cyclic schemes in the AD channel, where the cloning of arbitrary unknown three-dimensional
quantum states and d-dimensional quantum states, respectively. Finally, Sect 6 offers a brief
discussion, followed by the conclusions.

2 Preliminaries
This section systematically outlines the foundational knowledge relied upon in the quan-
tum state cyclic-assisted cloning protocol. In a two-level quantum system, any single-qubit
state can be expressed as a linear superposition of the computational basis vectors |0⟩ and |1⟩,
which can be written as:

|𝜑⟩ = 𝛼|0⟩ + 𝛽|1⟩, (1)

where the complex numbers 𝛼 and 𝛽 satisfy |𝛼|2 + |𝛽|2 = 1, and its orthogonal complement
state is |𝜑⊥⟩ = 𝛼∗|1⟩ – 𝛽∗|0⟩.

The foundational operations of quantum computing are built upon the strict mathe-
matical representation of quantum basis vectors and unitary transformations. The com-
putational basis for a single-qubit, |0⟩, |1⟩ is called the Z-basis, while the X-basis is {|+ ⟩ =
(|0⟩+ |1⟩)/

√
2, |–⟩ = (|0⟩– |1⟩)/

√
2}. In the context of entangled state operations, the complete

measurement basis for a two-qubit system is usually the Bell basis

|Bkl⟩ =
1√
2
[(–1)k|k, l⟩+ |1⊕ k, 1⊕ l⟩], k, l∈ {0, 1} (2)

where the modulo 2 addition⊕ ensures the orthonormality of the basis vectors.
The core operation set for single-qubit unitary transformations includes the parameterized

Pauli operators

𝜎(s,t) = |0⟩⟨s⊕ t|+ (–1)s|t⟩⟨1⊕ s⊕ t|, s, t = 0, 1. (3)

Special instances of these operators include: the identity operator I = 𝜎(0,0), the bit-flip
operator 𝜎x = 𝜎(0,1), the joint phase-bit-flip operator i𝜎y = 𝜎(1,0), and the phase-flip operator
𝜎z = 𝜎(1,1).

Basis vector transformation operations are implemented through the Hadamard gate

H = 1√
2
(|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0| – |1⟩⟨1|), (4)

which maps the Z-basis to the X-basis, thereby constructing the quantum state superposition
property.
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At the level of two-qubit operations, the CNOT gateNuv, which is defined as follows

Nuv|st⟩uv = |s⟩|s⊕ t⟩, (5)

serves as the standard implementation of a conditional logic gate, where particle u is the con-
trol particle and particle v is the target particle. This operation provides the foundational
support for entanglement state preparation by establishing correlations between quantum
bits.

Similarly, quantum trit (qutrit) in a a three-level quantum system is a superposition state of
states |0⟩, |1⟩ and |2⟩:

|𝜓⟩ = y0|0⟩+ y1ei𝜃1 |1⟩+ y2ei𝜃2 |2⟩, (6)

where all real numbers y0, y1 and y2 satisfy |y0|2 + |y1|2 + |y2|2 = 1, and 𝜃1, 𝜃2 are arbitrary real
numbers.

The orthogonal bases {|0⟩, |1⟩, |2⟩} and {|𝜉j⟩ = (|0⟩+ e2𝜋ij/3|1⟩+ e4𝜋ij/3|2⟩)/
√

3|j = 0, 1, 2}
are two mutually unbiased measurement bases in a three-level quantum system, where are
also called the Z-basis and X-basis of this quantum system, respectively. A special class of
maximally entangled states composed of two qutrits is collectively referred to as generalized
Bell states, which are defined as [51]:

|GBst⟩ =
1√
3

2
∑
l=0

e2𝜋isl/3|l, (l+ t)mod3⟩, s, t∈ {0, 1, 2}. (7)

The important unitary transformation in a three-level quantum system called a generalized
CNOT (GCNOT) gate is defined as [51]:

GCNOT(|m⟩, |n⟩) = |m⟩|m⃗+n⟩, m,n∈ {0, 1, 2} (8)

and the inverse GCNOT (IGCNOT) gate is expressed as:

IGCNOT(|m⟩, |n⟩) = |m⟩|m⃖ – n⟩, m,n∈ {0, 1, 2}, (9)

here, the first qutrit acts as the control, and the second as the target. and the expressions
‘m⃗+n’ and ‘m⃖ – n’ represent the addition operation of module 3 and subtraction of modulo
3, respectively.

An arbitrary single-qudit state in a d-dimensional quantum system can be written as |𝜑⟩ =
∑d–1

j=0 𝛼j|j⟩, where the real numbers 𝛼j, j = 0, 1,⋯,d – i, satisfy∑d–1
j=0 𝛼2

j = 1, while 𝜃0 = 0 and 𝜃j is
arbitrary real number for any j∈ {0, 1,⋯,d – 1}. The d-Bell states of d-dimensional system is
represented as [52]

|DBmn⟩ =
1√
d

d–1
∑
k=0

exp{2πi
d

km}|k⟩|(k+n)modd⟩, (10)

where m,n = 0, 1,⋯,d–1 index the d2 orthogonal Bell stats. The computational basis Zd =
{|k⟩}d – 1

k=0 is the standard orthonormal basis, and the states |0⟩, |1⟩,⋯, and |d–1⟩ are eigenvec-
tors of Zd . In addition to the computational basis, we can define the complementary Fourier
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basis Xd = {|r⟩x}d – 1
r=0 ,whose eigenvectors are given by:

|r⟩x = 1√
d

d – 1
∑
k=0

exp{2πi
d

kr}|k⟩, (11)

where r = 0, 1,⋯,d–1. These bases are related by the condition |⟨k|r⟩x| = 1/
√
d,meaning they

are unbiased.This formulation highlights the essential properties of the computational and
Fourier bases, and their use in the construction of the Bell states, ensuring the fidelity of
quantum information transmission.

In 2002, Karimipour and Bahraminasab [52] proposed a GCNOT gate tailored for d-
dimensional quantum systems,given by:

DCNOT(|k⟩, |l⟩) = |k⟩|(k+ l)modd⟩, k, l∈ {0, 1,⋯,d–1} (12)

and the inverse DCNOT (IDCNOT) gate can be expressed as:

IDCNOT(|k⟩, |l⟩) = |k⟩|(k – l)modd⟩, k, l∈ {0, 1,⋯,d–1}, (13)

where the first qudit and the second qudit are the control qudit and the target qudit respec-
tively.This family of operations provides fundamental tools for the preparation of high-
dimensional entangled states, and their modular arithmetic properties are directly related to
the phase synchronization mechanism in cyclic cloning protocols.

In practical quantum systems, noise interference is inevitably present, with AD noise being
a typical non-unitary disturbance source that can effectively model energy dissipation, spon-
taneous photon emission, and other processes in quantum computing [52]. Under the Born-
Markov approximation, the Kraus operators for single-qubit AD noise are represented as

K0 = (
1 0
0
√

1–𝛾 ) , K1 = (
0 √𝛾
0 0

) , (14)

where 𝛾 = 1– e–𝜏t ∈ [0, 1] (𝜏 > 0) is the noise strength parameter. It is worth noting that the
extension of this noise model to d-dimensional systems introduces more complex dissi-
pation paths, posing special challenges for the fidelity analysis of high-dimensional cyclic
cloning protocols. Similarly, the corresponding Kraus operators of AD noise about the single
qutrit [54] can be expressed as:

F0 =
⎛
⎜
⎝

1 0 0
0
√

1–𝛾 0
0 0

√
1–𝛾

⎞
⎟
⎠
, F1 =

⎛
⎜
⎝

0 √𝛾 0
0 0 0
0 0 0

⎞
⎟
⎠
, F2 =

⎛
⎜
⎝

0 0 √𝛾
0 0 0
0 0 0

⎞
⎟
⎠
. (15)

In Ref. [52], a high-dimensional generalization of AD noise was established, and the corre-
sponding Kraus operators can be expressed as:

E0 = |0⟩⟨0|+
√

1–𝛾
d – 1
∑
j=1

|j⟩⟨j| (16)

and

Ej =
√𝛾|0⟩⟨j| (j = 1, 2,⋯,d–1) (17)
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This noise can be interpreted as follows: when a d-level quantum system is coupled to its
environment, particles in the excited states |j⟩ (1≤ j≤ d–1) undergo non-radiative transi-
tions with probability 𝛾, leading to a collective relaxation process where the system transitions
from the excited state levels to the ground state |0⟩. Specifically, the operator E0 represents the
probability amplitude for the system to either remain in its original state or undergo partial
dissipation, while Ej describes the complete de-excitation process from the j-th excited state
to the ground state |0⟩.

3 Cyclic assisted cloning of arbitrary unknown single-qubit states
in amplitude damping channel
In this section, we explore the conclusive results of cyclic assisted cloning in a two-
dimensional quantum system, specifically focusing on the cloning of arbitrary unknown
single-qubit states within the AD channel. To simplify our analysis, we assume that all qubits
transmitted through the quantum channel experience the same independent AD strength.
Meanwhile, the qubits that remain local are unaffected by this process. This setup allows us to
isolate the effects of the AD channel on the transmitted qubits, while maintaining the integrity
of those qubits that are kept in a controlled local environment.

3.1 Three-party cyclic assisted cloning in amplitude damping channel
In this scenario, four legitimate participants are considered: Alice, Bob, Charlie, and Victor.
Victor is a state preparer who has prepared three pure quantum states, denoted as |𝜉⟩A′ , |𝜂⟩B′ ,
and |𝛾⟩C′ , for Alice, Bob, and Charlie, respectively. These states can be written as

|𝜉⟩A′ = (𝛼|0⟩+𝛽|1⟩)A′ ,
|𝜂⟩B′ = (a|0⟩+ b|1⟩)B′ ,
|𝛾⟩C′ = (x|0⟩+ y|1⟩)C′ ,

(18)

where 𝛼, a, and x are real numbers, while 𝛽, b, and y are complex numbers. These coefficients
satisfy the normalization conditions |𝛼|2 + |𝛽|2 = 1, |a|2 + |b|2 = 1, and |x|2 + |y|2 = 1. Victor
knows these coefficients, but they remain unknown to the other participants. Once Victor
sends the particles A′, B′, and C′ to Alice, Bob, and Charlie respectively, they each use the
received states as their respective input states. Importantly, except for Victor, the other par-
ticipants are unaware of the nature of these input states. The objective for Alice, Bob, and
Charlie is to sequentially teleport their individual input states to the next participant in the
sequence: Alice aims to teleport her state to Bob, Bob to Charlie, and Charlie to Alice. With
Victor’s assistance, the participants aim to generate copies or OCC of their respective input
states at their respective locations.To better illustrate the process, we have provided S1 Fig,
which shows the relationships among the four legitimate participants—Alice, Bob, Charlie,
and Victor. The diagram clearly depicts the quantum state interactions among the partici-
pants, making the overall workflow more intuitive and significantly enhancing the readability
of the content. This scheme consists of three stages: preparation of quantum channels, cyclic
quantum teleportation, and assisted cloning, with a total of ten steps, which are described as:

Stage 1 Preparation of quantum channels.
(a1) To begin the process, Alice prepares a Bell state |B00⟩ = 1√

2
(|00⟩+ |11⟩)AA1 . She then

sends qubit A1 to Bob through an AD channel.
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(a2) Upon receiving qubit A1, Bob introduces an ancillary qubit B initialized to |0⟩B. He
then performs a CNOT operation on the qubit pair (A1,B), with qubit A1 as the control and
qubit B as the target. Afterward, Bob sends qubit A1 back to Alice through an AD channel.

(a3) Once Alice receives qubit A1, she applies another CNOT transformation on the qubit
pair (A,A1), where qubit A serves as the control qubit and qubit A1 as the target. She then
performs a single-qubit projective measurement on A1 in the computational basis {|0⟩, |1⟩}.
If the outcome is |0⟩A1 , the process continues to Stage 2, step (b1); otherwise, the process is
aborted and restarted until Alice obtains a successful outcome of |0⟩A1 .

It is important to note that, when Alice successfully obtains the outcome |0⟩A1 in step (a3),
the two qubits (A,B) are transformed into a PES:

|H⟩AB =
1√

1+ (1–𝛾)2
[|00⟩+ (1–𝛾)|11⟩]AB, (19)

which detailed proof is given in S1 Appendix . That is, Alice and Bob successfully share this
PES.

Similar to the above approach, Bob and Charlie can successfully share the PES

|H⟩B1C =
1√

1+ (1–𝛾)2
[|00⟩+ (1–𝛾)|11⟩]B1C, (20)

and Charlie and Alice can also successfully share the PES

|H⟩C1A2 =
1√

1+ (1–𝛾)2
[|00⟩+ (1–𝛾)|11⟩]C1A2 . (21)

Therefore, the composite system of the states |H⟩AB, |H⟩B1C and |H⟩C1A2 as well as the
input states |𝜉⟩A, |𝜂⟩B and |𝛾⟩C is

|G⟩ = |𝜉⟩A′ ⊗ |𝜂⟩B′ ⊗ |𝛾⟩C′ ⊗ |H⟩AB ⊗ |H⟩B1C ⊗ |H⟩C1A2 . (22)

Stage 2 Cyclic quantum teleportation (CQT).
(b1)Alice and Bob each perform a Bell state measurement on the particle pairs (A,A′) and

(B1,B′), respectively. Meanwhile, Charlie carries out a Bell state measurement on the parti-
cle pair (C1,C′). After completing these measurements, Alice, Bob, and Charlie share their
results through classical communication channels. Using these Bell states, the state |G⟩ of the
composite system can be rewritten as

|G⟩ = 1√
[2+ 2(1–𝛾)2]3

{
1
∑
s,t=0

|Bst⟩AA′[𝛼s⊕t⊕1𝛽s⊕t|0⟩+ (–1)s(1–𝛾)𝛼s⊕t𝛽s⊕t⊕1|1⟩]B}

⊗ {
1
∑

m,n=0
|Bmn⟩B1B′[a

m⊕n⊕1bm⊕n|0⟩+ (–1)m(1–𝛾)am⊕nbm⊕n⊕1|1⟩]C}

⊗ {
1
∑
j,k=0

|Bjk⟩C1C′[x
j⊕k⊕1yj⊕k|0⟩+ (–1)j(1–𝛾)xj⊕kyj⊕k⊕1|1⟩]A2}.

(23)

From Eq (23) it is straightforward to calculate the probability of Alice’s outcome |Bst⟩AA′ ,
which is [|𝛼s⊕t⊕1𝛽s⊕t|2 + (1–𝛾)2|𝛼s⊕t𝛽s⊕t⊕1|2]/2[1+ (1–𝛾)2]. The probability of Bob or
Charlie’s measurement is similar. In general, if the measurement results for Alice, Bob, and
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Charlie are |Bst⟩AA′ , |Bmn⟩B1B′ and |Bjk⟩C1C′ , respectively. Then the state of the qubits B, C and
A2 collapses into

|G′⟩ = [𝛼s⊕t⊕1𝛽s⊕t|0⟩+ (–1)s(1–𝛾)𝛼s⊕t𝛽s⊕t⊕1|1⟩]B
⊗ [am⊕n⊕1bm⊕n|0⟩+ (–1)m(1–𝛾)am⊕nbm⊕n⊕1|1⟩]C
⊗ [xj⊕k⊕1yj⊕k|0⟩+ (–1)j(1–𝛾)xj⊕kyj⊕k⊕1|1⟩]A2 .

(24)

(b2) According to measurement information, Alice, Bob and Charlie perform Pauli gates
𝜎(j,j), 𝜎(m,m) and 𝜎(s,s) on A2, B and C, respectively. Therefore, the state |G′⟩ as represented in
Eq (24), is modified to

|G′′⟩ = [𝛼s⊕t⊕1𝛽s⊕t|0⟩+ (1–𝛾)𝛼s⊕t𝛽s⊕t⊕1|1⟩]B
⊗ [am⊕n⊕1bm⊕n|0⟩+ (1–𝛾)am⊕nbm⊕n⊕1|1⟩]C
⊗ [xj⊕k⊕1yj⊕k|0⟩+ (1–𝛾)xj⊕kyj⊕k⊕1|1⟩]A2 .

(25)

(b3) Bob prepares an auxiliary qubit B2 initialized in the state |0⟩B2 , and subsequently
applies a unitary operation UB on the joint system comprising qubits B and B2. In the com-
putational basis {|00⟩BB2 , |01⟩BB2 , |10⟩BB2 , |00⟩BB2}, the operation UB can be represented by the
following 4× 4 unitary matrix:

UB =

⎛
⎜⎜⎜⎜
⎝

1–𝛾
√

1 – (1–𝛾)2 0 0√
1 – (1–𝛾)2 𝛾 – 1 1 1

0 0 1 0
0 0 0 0

⎞
⎟⎟⎟⎟
⎠

. (26)

After Bob’s unitary transformation UB, the state [𝛼s⊕t⊕1𝛽s⊕t|0⟩+ (1–𝛾)𝛼s⊕t𝛽s⊕t⊕1|1⟩]B|0⟩B2

of qubits B and B2 is transformed into

UB{
1√

1+ (1–𝛾)2
[𝛼s⊕t⊕1𝛽s⊕t|0⟩+ (1–𝛾)𝛼s⊕t𝛽s⊕t⊕1|1⟩]B|0⟩B2}

= 1–𝛾√
1+ (1–𝛾)2

[𝛼s⊕t⊕1𝛽s⊕t|0⟩+𝛼s⊕t𝛽s⊕t⊕1|1⟩]B|0⟩B2

+
√

1 – (1–𝛾)2
√

1+ (1–𝛾)2
𝛼s⊕t⊕1𝛽s⊕t|0⟩B|1⟩B2 .

(27)

Subsequently, Bob measures the auxiliary qubit B2 in Z-basis. If his measurement result
is |0⟩B2 , Bob gets the state [𝛼s⊕t⊕1𝛽s⊕t|0⟩+𝛼s⊕t𝛽s⊕t⊕1|1⟩]B, and then Bob applies Pauli gate
𝜎(0,s⊕t) to his qubit B:

𝜎(0,s⊕t)[𝛼s⊕t⊕1𝛽s⊕t|0⟩+𝛼s⊕t𝛽s⊕t⊕1|1⟩]B = (𝛼|0⟩+𝛽|1⟩)B,

which means that Bob successfully recovers Alice’s original state |𝜉⟩A′ on his qubit B when the
outcome of the auxiliary qubit B2 is |0⟩. However, if the measurement result of B2 is |1⟩, the
scheme fails.

According to Eq (27), the probability that Bob obtains the result |0⟩B2 is given by
(1–𝛾)2/[|𝛼s⊕t⊕1𝛽s⊕t|2 + (1–𝛾)2|𝛼s⊕t𝛽s⊕t⊕1|2]. Form the above derivation, assuming Alice’s
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measurement result is |Bst⟩AA′ , it follows that the probability for Bob to successfully recon-
struct Alice’s original state equals (1–𝛾)2/[|𝛼s⊕t⊕1𝛽s⊕t|2 + (1–𝛾)2|𝛼s⊕t𝛽s⊕t⊕1|2]× [|𝛼s⊕t⊕1

𝛽s⊕t|2 + (1–𝛾)2|𝛼s⊕t𝛽s⊕t⊕1|2]/2[1+ (1–𝛾)2] = (1–𝛾)2/2[1+ (1–𝛾)2].
Similar to what Bob did in (b3),as indicated by Eq (25) that Charlie can recover Bob’s

state |𝜂⟩B′ on qubit C with probability (1–𝛾)2/2[1+ (1–𝛾)2], and Alice can also recon-
struct Charlie’s state |𝛾⟩C′ on her qubit A2 with probability (1–𝛾)2/2[1+ (1–𝛾)2]. There-
fore, the probability that Alice, Bob, and Charlie can successfully reconstruct the origi-
nal states |𝛾⟩, |𝜉⟩ and |𝜂⟩ when the measurement results |Bst⟩AA′ , |Bmn⟩B1B′ and |Bjk⟩C1C′

occur simultaneously is (1–𝛾)6/8[1+ (1–𝛾)2]3 i.e., for a fixed joint measurement outcome
|Bst⟩AA′ |Bmn⟩B1B′ |Bjk⟩C1C′ , the success probability of the cyclic QT is (1–𝛾)6/8[1+ (1–𝛾)2]3.
From the former analysis, s, t,m,n, j, k∈ {0, 1}, that is, Alice, Bob and Charlie each
have 4 measurement outcomes. It means that the joint measurement outcomes they
constitute have a total of 64, so the total probability of our scheme is 8(1–𝛾)6/[1+
(1–𝛾)2]3.

Note that when the noise strength of AD channel is zero (i.e., 𝛾 = 0, there is no noise), then
the states as shown in Eqs (19), (20), and (21) are all the same Bell state |B00⟩, and the prob-
ability of our scheme is 8(1–𝛾)6/[1+ (1–𝛾)2]3 = 1. In this case our scheme is the standard
cyclic QT. In other words, the cyclic QT here is a generalization of the standard cyclic QT.

Stage 3 Assisted cloning.
(c1) In the third phase of the protocol, if Alice, Bob, and Charlie each intend to obtain

either a replica or an orthogonal complement of an unknown single-qubit state—denoted
as |𝜉⟩A′ , |𝜂⟩B′ , and |𝛾⟩C′ , respectively—they must rely on the assistance of a state preparer,
Victor. At first glance, this may appear infeasible due to the well-known no-cloning theo-
rem in quantum mechanics, which forbids the duplication of arbitrary unknown quantum
states. In particular, the application of Bell-state measurements could be thought to disturb
the quantum correlations between the entangled pairs (A,A′), (B1,B′), and (C1,C′). How-
ever, from the perspective of quantum measurement theory, performing bipartite projective
measurements—such as Bell-state projections—does not inherently violate the no-cloning
principle. In physical implementations, such as those involving photons, Bell-state analy-
sis typically constitutes a non-degenerate measurement, meaning that the process does not
necessarily destroy the original quantum information [17].Therefore, the Bell-state measure-
ments |Bst⟩AA′, |Bmn⟩B1B′, and |Bjk⟩C1C′ can be performed without disturbing the original
quantum states.

(c2) To accomplish the cloning operation, each of the three parties sends one particle
from their entangled pair to Victor. Specifically, Alice sends particle A′ to Victor while
retaining particle A; Bob transfers B′ to Victor and keeps B1; Charlie transmits C′ to Vic-
tor and retains C1. A central question arises: given that the input states are unknown, can
Victor assist the three parties in simultaneously reconstructing their respective original
quantum states or their orthogonal complements? We will demonstrate that this is theo-
retically achievable. Suppose Alice, Bob, and Charlie each apply the projection operator
|B00⟩⟨B00| on the entangled state |G⟩ (see Eq (23)); then the six-particle system comprising
A,A′,B1,B′,C1,C′ collapses to the state |B00⟩AA′ |B00⟩B1B′ |B00⟩C1C′ , forming three pairs of
perfect entanglement.

(c3) Since Victor has complete prior knowledge of the input states |𝜉⟩A′ , |𝜂⟩B′ , and |𝛾⟩C′ ,
he can perform a joint measurement on the three-particle system (A′,B′,C′) using an
orthonormal and complete basis {|𝜀j⟩A′B′C′ ∶ j = 1,… , 8}. These measurement basis states are
related to the computational basis of three qubits via the following transformation:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

|𝜀1⟩
|𝜀2⟩
|𝜀3⟩
|𝜀4⟩
|𝜀5⟩
|𝜀6⟩
|𝜀7⟩
|𝜀8⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=W

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

|000⟩
|001⟩
|010⟩
|011⟩
|100⟩
|101⟩
|110⟩
|111⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (28)

where

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛼ax 𝛼ay 𝛼bx 𝛼by 𝛽ax 𝛽ay 𝛽bx 𝛽by
–𝛼ay∗ 𝛼ax –𝛼by∗ 𝛼bx –𝛽ay∗ 𝛽ax –𝛽by∗ 𝛽bx
–𝛼b∗x –𝛼b∗y 𝛼ax 𝛼ay –𝛽b∗x –𝛽b∗y 𝛽ax 𝛽ay
𝛼b∗y∗ –𝛼b∗x –𝛼ay∗ 𝛼ax 𝛽b∗y∗ –𝛽b∗x 𝛽ay∗ 𝛽ax
–𝛽∗ax –𝛽∗ay –𝛽∗bx –𝛽∗by 𝛼ax 𝛼ay 𝛼bx 𝛼by
𝛽∗ay∗ –𝛽∗ax 𝛽∗by∗ –𝛽∗bx –𝛼ay∗ 𝛼ax –𝛼by∗ 𝛼bx
𝛽∗b∗x 𝛽∗b∗y –𝛽∗ax –𝛽∗ay –𝛼b∗x –𝛼b∗y 𝛼ax 𝛼ay

–𝛽∗b∗y∗ 𝛽∗b∗x 𝛽∗ay∗ –𝛽∗ax 𝛼b∗y∗ –𝛼b∗x –𝛼ay∗ 𝛼ax

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (29)

It is evident that the vectors defined in Eqs (28) and (29) constitute a complete and mutu-
ally orthogonal basis in the 8-dimensional Hilbert space. Once Victor performs a projective
measurement on qubits A′, B′, and C′, he communicates the result to Alice, Bob, and Charlie
through classical channels.

Now writing the state |B00⟩AA′ |B00⟩B1B′ |B00⟩C1C′ of qubits A,A′,B1,B′,C1 and C′ in the
basis {|𝜀j⟩A′B′C′ ∶ j = 1, 2,⋯, 8} yields

|B00⟩AA′ |B00⟩B1B′ |B00⟩C1C′

= 1
2
√

2
[|𝜀1⟩A′B′C′(𝛼|0⟩+𝛽∗|1⟩)A(a|0⟩+ b∗|1⟩)B1(x|0⟩+ y

∗|1⟩)C1

+ |𝜀2⟩A′B′C′(𝛼|0⟩+𝛽∗|1⟩)A(a|0⟩+ b∗|1⟩)B1(x|1⟩ – y|0⟩)C1

+ |𝜀3⟩A′B′C′(𝛼|0⟩+𝛽∗|1⟩)A(a|1⟩ – b|0⟩)B1(x|0⟩+ y
∗|1⟩)C1

+ |𝜀4⟩A′B′C′(𝛼|0⟩+𝛽∗|1⟩)A(a|1⟩ – b|0⟩)B1(x|1⟩ – y|0⟩)C1

+ |𝜀5⟩A′B′C′(𝛼|1⟩ – 𝛽|0⟩)A(a|0⟩+ b∗|1⟩)B1(x|0⟩+ y
∗|1⟩)C1

+ |𝜀6⟩A′B′C′(𝛼|1⟩ – 𝛽|0⟩)A(a|0⟩+ b∗|1⟩)B1(x|1⟩ – y|0⟩)C1

+ |𝜀7⟩A′B′C′(𝛼|1⟩ – 𝛽|0⟩)A(a|1⟩ – b|0⟩)B1(x|0⟩+ y
∗|1⟩)C1

+ |𝜀8⟩A′B′C′(𝛼|1⟩ – 𝛽|0⟩)A(a|1⟩ – b|0⟩)B1(x|1⟩ – y|0⟩)C1 .

(30)

According to Eq (30), it is clear that each measurement basis vector is associated with its
corresponding collapsed state. This indicates that, upon receiving Victor’s measurement out-
come, Alice, Bob, and Charlie can each infer the precise quantum state of their respective
particle based on Victor’s announcement.

(c4)After receiving Victor’s measurement result, Alice, Bob, and Charlie can each
apply suitable Pauli operations to recover their respective target quantum states. To bet-
ter visualize this process, the entangled state |B00⟩AA′ |B00⟩B1B′ |B00⟩C1C′ can be expanded
as
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|B00⟩AA′ |B00⟩B1B′ |B00⟩C1C′

= 1
2
√

2
[–|𝜀1⟩A′BC′(i𝜎y|𝜉⟂⟩A)(i𝜎y|𝜂⟂⟩B1)(i𝜎y|𝛾⟂⟩C1)

+ |𝜀2⟩A′B′C′(i𝜎y|𝜉⟂⟩A)(i𝜎y|𝜂⟂⟩B1)(i𝜎y|𝛾⟩C1)
+ |𝜀3⟩A′B′C′(i𝜎y|𝜉⟂⟩A)(i𝜎y|𝜂⟩B1)(i𝜎y|𝛾⟂⟩C1)
– |𝜀4⟩A′B′C′(i𝜎y|𝜉⟂⟩A)(i𝜎y|𝜂⟩B1)(i𝜎y|𝛾⟩C1)
+ |𝜀5⟩A′B′C′(i𝜎y|𝜉⟩A)(i𝜎y|𝜂⟂⟩B1)(i𝜎y|𝛾⟂⟩C1)
– |𝜀6⟩A′B′C′(i𝜎y|𝜉⟩A)(i𝜎y|𝜂⟂⟩B1)(i𝜎y|𝛾⟩C1)
– |𝜀7⟩A′B′C′(i𝜎y|𝜉⟩A)(i𝜎y|𝜂⟩B1)(i𝜎y|𝛾⟂⟩C1)
+ |𝜀8⟩A′B′C′(i𝜎y|𝜉⟩A)(i𝜎y|𝜂⟩B1)(i𝜎y|𝛾⟩C1).

(31)

From Eq (31), it is apparent that Victor’s projective measurement on qubits A′, B′, and
C′ causes the remaining system, comprising A, B1, and C1, to collapse into a product state.
Each of these resulting states corresponds to a single-qubit clone of the original input or its
orthogonal complement, modified by the rotation 𝜎(1,0) = i𝜎y.

Remarkably, irrespective of the measurement outcome, if Alice, Bob, and Charlie each
apply the same local operation i𝜎y to their qubits, they can individually and concurrently
obtain clones of either their original state or its orthogonal complement. Specifically: If Vic-
tor measures |𝜀1⟩A′B′C′ , all three parties receive copies of their respective orthogonal com-
plement states. For outcome |𝜀2⟩A′B′C′ , Alice and Bob obtain orthogonal complements, while
Charlie recovers his original state. If the result is |𝜀3⟩A′B′C′ , Alice and Charlie receive orthog-
onal complements, and Bob retrieves his initial state. In the case of |𝜀4⟩A′B′C′ , Bob and Char-
lie obtain their original states, while Alice gets her orthogonal complement. With |𝜀5⟩A′B′C′ ,
Alice receives her original state, while Bob and Charlie obtain orthogonal complements. If
the measurement yields |𝜀6⟩A′B′C′ , Alice and Charlie reconstruct their original states, and Bob
retrieves his orthogonal complement. For |𝜀7⟩A′B′C′ , Alice and Bob obtain their original states,
and Charlie gets the orthogonal complement. Finally, if the outcome is |𝜀8⟩A′B′C′ , all three
parties retrieve exact copies of their original unknown quantum states.

Extending this analysis to other 63 product Bell states listed in Eq (23), a similar conclu-
sion holds. Regardless of which product Bell basis is observed, the same procedure allows
each party to acquire either an exact replica or the orthogonal counterpart of their target state
with perfect fidelity.

Remark: The 8× 8 transformation matrix in Eq (29) can be decomposed as the tensor
product of three 2× 2 matrices

( 𝛼 𝛽
–𝛽∗ 𝛼 ) , (

a b
–b∗ a

) , ( x y
–y∗ x

) . (32)

This implies that Victor utilizes the basis |𝜀j⟩A′B′C′ ∶ j = 1, 2,⋯, 8 for simultaneous mea-
surements on qubits A′, B′, and C′. This is equivalent to measuring each qubit sepa-
rately with the bases 𝛼|0⟩+𝛽|1⟩,𝛼|1⟩ – 𝛽∗|0⟩ for A′, a|0⟩+ b|1⟩, a|1⟩ – b∗|0⟩ for B′, and
x|0⟩+ y|1⟩, x|1⟩ – y∗|0⟩ for C′.

3.2 Multiparty cyclic assisted cloning of arbitrary unknown single-qubit
states in amplitude damping channel
The previous section presented a three-party cyclic-assisted cloning protocol, supported by a
designated state preparer. In this section, we extend the framework to a generalized scenario
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involving an N-party loop. Suppose there are N+ 1 authorized participants distributed across
different spatial locations: Victor, Bob, and Alice1 through AliceN. As the state preparer, Victor
generates N arbitrary single-qubit states given by

|𝜉(j)⟩Aj = 𝛼j|0⟩Aj +𝛽j|1⟩Aj , (33)

where j∈ 1, 2,⋯,N, with each 𝛼j being a real number and 𝛽j a complex number satisfying the
normalization condition |𝛼j|2 + |𝛽j|2 = 1. These coefficients are completely known to Victor
but entirely hidden from the remaining participants. Victor then distributes each qubit Aj to
the corresponding Alicej, who treats it as her input state. Thus, apart from Victor, all other
parties handle quantum states whose details are unknown to them. Each Alicej aims to obtain
either a faithful clone or an OCC of her input state, with Victor’s assistance. S2 Fig illustrates
the cyclic assisted cloning relationship established among N Alices with the assistance of the
quantum state preparer, Victor. The diagram clearly presents the complete workflow, signifi-
cantly enhancing the readability and comprehensibility of the content.

Similar to Stage 1 of Sect 3.1, Alicej shares a pure entangled state |H⟩A′j A′′j+ 1
= 1√

1+ (1 –𝛾)2
[|00⟩+ (1–𝛾)|11⟩]A′j A′′j+ 1

with Alicej+ 1, j = 1, 2,⋯,N, where N+ 1 ∶≡ 1 and A′′
N+ 1 ∶≡A′′

1 . The

composite system of the states |H⟩A′j A′′j+ 1
, and the input states |𝜉(j)⟩Aj (j = 1, 2,⋯,N) can be

written as

|Ġ⟩ =⊗N
j=1|𝜉(j)⟩Aj ⊗N

j=1 |H⟩A′j A′′j+ 1
. (34)

The protocol proceeds in two main phases: cyclic quantum teleportation and assisted
cloning. In the first phase, each Alicej performs a sequence of operations:

Step 1 Each Alicej (j = 1, 2,⋯,N) performs a Bell-state measurement on her local qubit pair
(Aj,A′

j).This measurement projects the global system into a new entangled configuration, and
as a result, the overall system collapses into a corresponding post-measurement state

|Ġ⟩ = 1√
[2+ 2(1–𝛾)2]N

⊗N
j=1 {

1
∑
sj ,tj=0

|Bsjtj⟩A′j Aj
[𝛼sj⊕tj⊕1

j 𝛽sj⊕tj
j |0⟩

+ (–1)sj(1–𝛾)𝛼sj⊕tj
j 𝛽sj⊕tj⊕1

j |1⟩]A′′j+ 1
},

(35)

where sj, tj ∈ {0, 1}. From Eq (35) that the probability of Alicej’s measurement result |Bsjtj⟩A′j Aj

is [|𝛼sj⊕tj⊕1
j 𝛽sj⊕tj

j |2 + (1–𝛾)2|𝛼sj⊕tj
j 𝛽sj⊕tj⊕1

j |2]/2[1+ (1–𝛾)2]. After completing their respec-
tive measurements, each Alicej broadcasts her result via classical communication channels.
Suppose, in general, that Alicej obtains the Bell state |Bsjtj⟩A′

jAj as her outcome for every
j∈ 1, 2,⋯,N. Under the influence of these measurement outcomes,the collapsed state of the
remaining particles is

|G̈⟩ = 1√
[2+ 2(1–𝛾)2]N

⊗N
j=1 [𝛼

sj⊕tj⊕1
j 𝛽sj⊕tj

j |0⟩

+ (–1)sj(1–𝛾)𝛼sj⊕tj
j 𝛽sj⊕tj⊕1

j |1⟩]A′′j+ 1
.

(36)

Step 2 According to the Alicej’s measurement outcome, Alicej+ 1 (j = 1, 2,⋯,N) per-
forms the Pauli operation 𝜎(sj ,sj) (sj = 0, 1) on her qubit A′′

j+ 1, which changes the state |G̈⟩
into
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|G̈′⟩ =⊗N
j=1[𝛼

sj⊕tj⊕1
j 𝛽sj⊕tj

j |0⟩+ (1–𝛾)𝛼sj⊕tj
j 𝛽sj⊕tj⊕1

j |1⟩]A′′j+ 1
. (37)

Step 3 For each Alicej (j = 1, 2,⋯,N), an auxiliary qubit Ãj is introduced in the initial state
|0⟩Ãj , followed by the application of the unitary operation UÃj to the qubits A′′

j+ 1 and Ãj.
Under the basis {|00⟩A′′j+ 1Ãj

, |01⟩A′′j+ 1Ãj
, |10⟩A′′j+ 1Ãj

, |00⟩A′′j+ 1Ãj
}, the unitary transformation UÃj

can be expressed as the following 4× 4 matrix:

UÃj =

⎛
⎜⎜⎜⎜
⎝

1–𝛾
√

1 – (1–𝛾)2 0 0√
1 – (1–𝛾)2 𝛾 – 1 1 1

0 0 1 0
0 0 0 0

⎞
⎟⎟⎟⎟
⎠

. (38)

After Alicej’s unitary transformation UÃj , the state [𝛼sj⊕tj⊕1
j 𝛽sj⊕tj

j |0⟩+ (1–𝛾)𝛼sj⊕tj
j 𝛽sj⊕tj⊕1

j

|1⟩]A′′j+ 1
|0⟩Ãj of qubits A

′′
j+ 1 and Ãj is transformed into

UÃj{
1√

1+ (1–𝛾)2
[𝛼sj⊕tj⊕1

j 𝛽sj⊕tj
j |0⟩+ (1–𝛾)𝛼sj⊕tj

j 𝛽sj⊕tj⊕1
j |1⟩]A′′j+ 1

|0⟩Ãj}

= 1–𝛾√
1+ (1–𝛾)2

[𝛼sj⊕tj⊕1
j 𝛽sj⊕tj

j |0⟩+𝛼s⊕t
j 𝛽s⊕t⊕1

j |1⟩]A′′j+ 1
|0⟩Ãj

+
√

1 – (1–𝛾)2
√

1+ (1–𝛾)2
𝛼sj⊕tj⊕1
j 𝛽sj⊕tj

j |0⟩A′′j+ 1
|1⟩Ãj .

(39)

After that, Alicej measures the auxiliary qubit Ãj in the computational basis. If the outcome
of his measurement is |0⟩Ãj , Alicej obtains the state [𝛼sj⊕tj⊕1

j 𝛽sj⊕tj
j |0⟩+𝛼sj⊕tj

j 𝛽sj⊕tj⊕1
j |1⟩]A′′j+ 1

,

and then Alicej perform Pauli gate 𝜎(0,sj⊕tj) to his qubit A′′
j+ 1:

𝜎(0,sj⊕tj)[𝛼sj⊕tj⊕1
j 𝛽sj⊕tj

j |0⟩+𝛼sj⊕tj
j 𝛽sj⊕tj⊕1

j |1⟩]A′′j+ 1
= (𝛼j|0⟩+𝛽j|1⟩)A′′j+ 1

,

which means that Alicej has already successfully reconstructed the Alicej–1’s original state
|𝜉(j–1)⟩Aj–1 on her qubit A′′

j+ 1, where j = 1, 2,⋯,N and 0 = 1– 1 ∶≡N. While Alicej’s result is
|1⟩Ãj , the scheme is failed.

After all the Alices have performed the above series of operations, we have

⊗N
j=1UÃj |G̈

′⟩ =⊗N
j=1{UÃj[𝛼

sj⊕tj⊕1
j 𝛽sj⊕tj

j |0⟩+ (1–𝛾)𝛼sj⊕tj
j 𝛽sj⊕tj⊕1

j |1⟩]A′′j+ 1
}

=⊗N
j=1(𝛼j|0⟩+𝛽j|1⟩)A′′j+ 1

,
(40)

which means that for joint measurement result⊗N
j=1|Bsjtj⟩A′j Aj

come from Alice1, ALice2,⋯,
AliceN, cyclic quantum teleportation is completed.

According to Eq (39), we can compute the probability of Alicej obtaining the result
|0⟩Ãj ,which is given by (1–𝛾)2/[|𝛼sj⊕tj⊕1

j 𝛽sj⊕tj
j |2 + (1–𝛾)2|𝛼sj⊕tj

j 𝛽sj⊕tj⊕1
j |2]. From this anal-

ysis, assuming Alice j’s result is |Bsjtj⟩A′j Aj
, it can be concluded that the success probability

for Alice j to reconstruct Alice j–1’s original state is (1–𝛾)2/[|𝛼sj⊕tj⊕1
j 𝛽sj⊕tj

j |2 + (1–𝛾)2|𝛼sj⊕tj
j

𝛽sj⊕tj⊕1
j |2]× [|𝛼sj⊕tj⊕1

j 𝛽sj⊕tj
j |2 + (1–𝛾)2|𝛼sj⊕tj

j 𝛽sj⊕tj⊕1
j |2]/2[1+ (1–𝛾)2] = (1–𝛾)2/2[1+ (1–𝛾)2].

From the former analysis, sj, tj ∈ {0, 1} and j∈ {1, 2,⋯,N}, so the total probability of our
scheme is
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pN = {2× 2× (1–𝛾)2
2[1+ (1–𝛾)2]}

N = 2N(1–𝛾)2N
[1+ (1–𝛾)2]N . (41)

Obviously, when 𝛾 = 0, the cyclic QT scheme here is also a generalization of the standard
cyclic QT scheme [36].

Now, we turn to the discussion of the last stage of our scheme, i.e., the assisted cloning
stage. To create a copies for each of the unknown single-qubit states, all the Alices require
assistance from the state preparer Victor. According to the projection postulate of quantum
mechanics, if each Alice applies Bell state measurement onto the |Ġ⟩ as shown in Eq (34), the
state of qubit pairs (A′

1,A1), (A′
2,A2),⋯, (A′

N,AN) will collapse into some product states of
Bell states. Without loss of generality, we only consider the collapsed state⊗N

j=1|B00⟩A′j Aj
. Each

Alicej sends her qubit Aj to Victor and keeps qubit A′
j in her possession, where j = 1, 2,⋯,N.

To accomplish the assisted cloning task, we begin by defining the fundamental mutually
orthogonal basis vectors wN–1,N as follows:

wN–1,N =

⎛
⎜⎜⎜⎜
⎝

𝛼N–1𝛼N 𝛼N–1𝛽N 𝛽N–1𝛼N 𝛽N–1𝛽N
–𝛼N–1𝛽∗N 𝛼N–1𝛼N –𝛽N–1𝛽∗N 𝛽N–1𝛼N
–𝛽∗N–1𝛼N –𝛽∗N–1𝛽N 𝛼N–1𝛼N 𝛼N–1𝛽N
𝛽∗N–1𝛽∗N –𝛽∗N–1𝛼N –𝛼N–1𝛽∗N 𝛼N–1𝛼N

⎞
⎟⎟⎟⎟
⎠

, (42)

and then the general basis vector Wn can be expressed as

WN =
N–2

⨂
j=1

wj ⊗wN–1,N, (43)

where

wj = (
𝛼j 𝛽j
–𝛽∗j 𝛼j

) (j = 1, 2,⋯,N – 2). (44)

Then, the set of mutually orthogonal basis vectors {|𝜀j⟩A1A2⋯AN ∶ j = 1, 2,⋯, 2N} can be
written as

(|𝜀1⟩, |𝜀2⟩,⋯, |𝜀2N⟩)T =WNST, (45)

where S = (|00⋯00⟩, |00⋯01⟩,⋯, |11⋯11⟩) represents the standard orthogonal basis of the
dN-dimensional Hilbert space,and ST is its transpose.Accordingly, the state⊗N

j=1|B00⟩A′j Aj
can

be rewritten in the basis {|𝜀j⟩A1A2⋯AN ∶ j = 1, 2,⋯, 2N} as

⊗N
j=1 |B00⟩A′j Aj

= 1√
2N
[|𝜀1⟩A1A2⋯AN(𝛼1|0⟩+𝛽∗1 |1⟩)A′1(𝛼2|0⟩+𝛽∗2 |1⟩)A′2⋯(𝛼N|0⟩+𝛽

∗
N|1⟩)A′N

+ |𝜀2⟩A1A2⋯AN(𝛼1|0⟩+𝛽∗1 |1⟩)A′1(𝛼2|0⟩+𝛽∗2 |1⟩)A′2⋯(𝛼N|1⟩ – 𝛽N|0⟩)A′N
+⋯
+ |𝜀2N–1⟩A1A2⋯AN(𝛼1|1⟩ – 𝛽A′1 |0⟩)1(𝛼2|1⟩ – 𝛽2|0⟩)A′2⋯(𝛼N|0⟩+𝛽

∗
N|1⟩)A′N

+ |𝜀2N⟩A1A2⋯AN(𝛼1|1⟩ – 𝛽A′1 |0⟩)1(𝛼2|1⟩ – 𝛽2|1⟩)A′2⋯(𝛼N|1⟩ – 𝛽N|0⟩)A′N .

(46)
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Because Victor knows the quantum states as shown in Eq (33) completely, he is capable
of performing a projective measurement on the qubits A1,A2,⋯,AN using a set of mutually
orthogonal basis vectors denoted by {|𝜀j⟩A1A2⋯AN ∶ j = 1, 2,⋯, 2N} . As evident from Eq (46),
each basis vector corresponds uniquely to a specific collapsed quantum state. This implies
that, once Victor announces his measurement outcome via classical communication, each
participant Alicej can independently determine the resulting state of her own qubit.

Based on Victor’s broadcasted outcome, every Alicej can apply an appropriate Pauli oper-
ator to reconstruct her target state. To illustrate this process more clearly, we can rewrite the
entangled state⊗N

j=1|B00⟩A′j Aj
in the following form:

⊗N
j=1 |B00⟩A′j Aj

= 1√
2N
[(–1)N|𝜀1⟩A1A2⋯AN(i𝜎y|𝜉

(1)
⟂ ⟩A′1)(i𝜎y|𝜉

(2)
⟂ ⟩A′2)⋯(i𝜎y|𝜉

(N)
⟂ ⟩A′N)

+ (–1)N–1|𝜀2⟩A1A2⋯AN(i𝜎y|𝜉
(1)
⟂ ⟩A′1)(i𝜎y|𝜉

(2)
⟂ ⟩A′2)⋯(i𝜎y|𝜉

(N)⟩A′N)

+⋯

– |𝜀2N–1⟩A1A2⋯AN(i𝜎y|𝜉(1)⟩A′1)(i𝜎y|𝜉
(2)⟩A′2)⋯(i𝜎y|𝜉

(N)
⟂ ⟩A′N)

+ |𝜀2N⟩A1A2⋯AN(i𝜎y|𝜉(1)⟩A′1)(i𝜎y|𝜉
(2)⟩A′2)⋯(i𝜎y|𝜉

(N)⟩A′N).

(47)

As shown in Eq (47), once Victor projects the joint system of all qubit pairs (A′
j ,Aj) onto a

specific measurement basis, the resulting state is a tensor product of the output states across
qubits A′

1,A′
2,⋯,A′

N, where each output corresponds to a transformed version—either a per-
fect clone or an orthogonal complement—of the original unknown state. Notably, regard-
less of which basis vector |𝜀j⟩ is observed, if all Alicej parties apply the same Pauli operator
𝜎(1,0) = i𝜎y to their respective qubits, they can simultaneously generate the corresponding
states. For example, if Victor’s measurement result is |𝜀1⟩A1A2⋯AN , each Alicej will obtain the
OCC of her unknown input state. If the outcome is |𝜀2⟩A1A2⋯AN , then the first N–1 Alices
receive OCCs of their respective states, while the last Alice recovers an exact replica of her ini-
tial unknown state. This pattern continues: if Victor observes |𝜀2N–1⟩A1A2⋯AN , then the first N–
1 Alices obtain perfect clones, while the final Alice gets the OCC; in the case of |𝜀2N⟩A1A2⋯AN ,
all Alices receive exact copies of their original unknown states.

Using an analogous approach, in the process of CCQT, if the measurement outcomes of all
Alicej correspond to any of the remaining 4N–1 product Bell states defined in Eq (35), then
following the same reasoning, each Alicej is still able to reconstruct either an exact replica or
the orthogonal complement of her initial unknown single-qubit state.

4 Cyclic assisted cloning of arbitrary unknown single-qutrit
states in amplitude damping channel
In this section, we present a multiparty cyclic-assisted cloning scheme for arbitrary unknown
single-qutrit states in an AD channel, using a similar approach. We assume that the trans-
mitted qutrits are affected by identical and independent AD noise, whereas the qutrits held
locally remain unaffected by any noise.

We begin by focusing on a three-party cyclic-assisted cloning protocol involving four
legitimate participants: Alice, Bob, Charlie, and Victor. In this setup, Victor acts as the state
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preparer and initially prepares three unknown pure qutrit states |𝜉⟩A, |𝜂⟩B and |𝛾⟩C,as follows:

|𝜉⟩A = (𝛼0|0⟩+𝛼1ei𝜃1 |1⟩+𝛼2ei𝜃2 |2⟩)A,

|𝜂⟩B = (𝛽0|0⟩+𝛽1ei𝜗1 |1⟩+𝛽2ei𝜗2 |2⟩)B,
|𝜁⟩C = (𝜆0|0⟩+𝜆1ei𝜏1 |1⟩+𝜆2ei𝜏2 |2⟩)C,

(48)

where 𝛼j, 𝛽j and 𝜆j (j = 0, 1, 2)are real numbers that satisfy the normalization conditions
∑2

j=0 𝛼2
j = 1,∑2

j=0 𝛽2
j = 1 and∑2

j=0 𝜆2
j = 1.The phase parameters 𝜃j, 𝜗j, 𝜏j (j = 1, 2)are arbi-

trary real numbers. It is important to note that all of these parameters are known only to Vic-
tor and remain unknown to the other participants. After preparing the three qutrits, Vic-
tor sends qutrits A, B and C to Alice, Bob, and Charlie respectively. Each participant regards
the received qutrit as their own input state. However, since the state parameters are hidden
from them, they cannot determine the exact form of their respective quantum states. The pri-
mary objective of Alice, Bob, and Charlie is to teleport their unknown input states in a cyclic
order—Alice to Bob, Bob to Charlie, and Charlie to Alice. With Victor’s assistance, they aim
to generate either perfect clones or OCC of their original quantum states at their own loca-
tions.The schematic diagram of the cyclic assisted cloning scheme for arbitrary unknown
single-qutrit states in the amplitude damping channel is very similar to that of the scheme in
Sect 3. The main difference lies in the quantum states being transmitted. However, since the
cyclic transmission method and Victor’s assistance mechanism remain unchanged, we will
not add additional diagrammatic explanations here to ensure clarity and avoid redundancy.
This scheme mainly includes three stages: preparation of quantum channels, cyclic quantum
teleportation and assisted cloning, with a total of ten steps, which are described as follows:

Stage 1 Preparation of quantum channels.
( ̃a1) To begin, Alice generates a Bell state |GB00⟩ = 1√

3
(|00⟩+ |11⟩+ |22⟩)A′A′1 .She then

transmits the qutrit A′
1 to Bob through the AD channel.

( ̃a2) Upon reception of qutrit A′
1, Bob initializes an ancillary qutrit B1 in the state |0⟩B1 . He

applies a GCNOT operation on the qutrit pair (A′
1,B1), where A′

1 acts as the control and B1 as
the target. After completing this operation, Bob sends the qutrit A′

1 back to Alice via the AD
channel.

( ̃a3) Once Alice receives A′
1, she first carries out IGCNOT transformation on qutrit pair

(A′,A′
1), with A′ acting as the control and A′

1 as the target . Subsequently, she implements a
single-qutrit projective measurement in computational basis {|0⟩, |1⟩, |2⟩} on qutrit A′

1. If the
measurement outcome is |0⟩A′1 , then the scheme continues to (b̃1) in Stage 2; If not, the pro-
cess restarts from the beginning until Alice successfully obtains the measurement outcome
|0⟩A′1 .

Noticing that in above ( ̃a3) when Alice gets the outcome |0⟩A′1 successfully, two qutrits
(A′,B1) is transformed into a PES:

|H⟩A′B1 =
1√

1+ 2(1–𝛾)2
[|00⟩+ (1–𝛾)|11⟩+ (1–𝛾)|22⟩]A′B1 , (49)

which detailed proof is given in S2 Appendix. That is, Alice and Bob successfully share this
PES.

Similar to the above approach, Bob and Charlie can successfully share the PES

|H⟩B′C1 =
1√

1+ 2(1–𝛾)2
[|00⟩+ (1–𝛾)|11⟩+ (1–𝛾)|22⟩]B′C1 , (50)
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and Charlie and Alice can also successfully share the pure ent state

|H⟩C′A1 =
1√

1+ 2(1–𝛾)2
[|00⟩+ (1–𝛾)|11⟩+ (1–𝛾)|22⟩]C′A1 . (51)

Therefore, the composite system consisting of the states |H⟩A′B1 , |H⟩B′C1 and |H⟩C′A1 ,along
with the input states |𝜉⟩A, |𝜂⟩B and |𝜁⟩C is

|Q⟩ = |𝜉⟩A ⊗ |𝜂⟩B ⊗ |𝜁⟩C ⊗ |H⟩A′B1 ⊗ |H⟩B′C1 ⊗ |H⟩C′A1 . (52)

Stage 2 Circularly teleport quantum states
(b̃1) Alice and Bob each perform measurements on their respective qutrit pairs (A,A′) and

(B,B′) using the generalized Bell-state basis (as shown in Eq (7)). Simultaneously, Charlie
conducts a generalized Bell-state measurement on the qutrit pair (C,C′). After completing
the measurements, Alice, Bob, and Charlie each communicate their outcomes via classical
channels, sending the results to Bob, Charlie, and Alice, respectively. Based on these gener-
alized Bell-state projections, the overall state |Q⟩ of the composite system can be expressed
as:

|Q⟩ = 1√
[3+ 6(1–𝛾)2]3

×{
2
∑
s,t=0

|GBst⟩AA′
2
∑
j=0
𝛼j(1–𝛾)min[1,(j+ t)mod3]ei(𝜃j–2𝜋sj/3)|(j+ t)mod3⟩B1}

⊗ {
2
∑

m,n=0
|GBmn⟩BB′

2
∑
l=0
𝛽l(1–𝛾)min[1,(l+ n)mod3]ei(𝜗l–2𝜋ml/3)|(l+n)mod3⟩C1}

⊗ {
2
∑
u,v=0

|GBuv⟩CC′
2
∑
k=0

𝜆k(1–𝛾)min[1,(k+ v)mod3]ei(𝜏j–2𝜋uk/3)|(k+ v)mod3⟩A1},

(53)

where 𝜃0 = 0,𝜗0 = 0 and 𝜏0 = 0.
As observed from Eq (53), the probability that Alice obtains the outcome |GBst⟩AA′ can

be written as [∑2
j=0 𝛼2

j (1–𝛾)2min[1,(j+ t)mod3]]/3[1+ 2(1–𝛾)2]. Bob and Charlie’s measure-
ment probabilities take on a similar form. Once all the measurements are performed, Alice,
Bob, and Charlie share their individual results through classical communication. For general-
ity, suppose the outcomes are given by |GBst⟩AA′ , |GBmn⟩BB′ and |GBuv⟩CC′ , corresponding to
Alice, Bob, and Charlie, respectively. Then the state of the qutrits B1, C1 and A1 collapses into

|Q′⟩ = {
2
∑
j=0
𝛼j(1–𝛾)min[1,(j+ t)mod3]ei(𝜃j–2𝜋sj/3)|(j+ t)mod3⟩B1}

⊗ {
2
∑
l=0
𝛽l(1–𝛾)min[1,(l+ n)mod3]ei(𝜗l–2𝜋ml/3)|(l+n)mod3⟩C1}

⊗ {
2
∑
k=0

𝜆k(1–𝛾)min[1,(k+ v)mod3]ei(𝜏j–2𝜋uk/3)|(k+ v)mod3⟩A1}.

(54)

(b̃2) After hearing the measurement information, Alice, Bob and Charlie perform unitary
operations UA, Ub and qutrits UC on A1, B1 and C1, respectively, which are given by

PLOS One https://doi.org/10.1371/journal.pone.0329370 September 2, 2025 18/ 34

https://doi.org/10.1371/journal.pone.0329370


ID: pone.0329370 — 2025/8/28 — page 19 — #19

PLOS One Cyclic assisted cloning of single-particle states in AD channel

UA =
2
∑
k=0

e2𝜋iuk/3|k⟩⟨(k+ v)mod3|,

UB =
2
∑
j=0

e2𝜋isj/3|j⟩⟨(j+ t)mod3|,

UC =
2
∑
l=0

e2𝜋iml/3|l⟩⟨(l+n)mod3|.

(55)

Then the state |Q′⟩ as shown in Eq (54) changed to

|Q′′⟩ = (UB ⊗UC ⊗UA)|Q′⟩

= {
2
∑
j=0
𝛼j(1–𝛾)min[1,(j+ t)mod3]ei𝜃j |j⟩B1}

⊗ {
2
∑
l=0
𝛽l(1–𝛾)min[1,(l+ n)mod3]ei𝜗l |l⟩C1}

⊗ {
2
∑
k=0

𝜆k(1–𝛾)min[1,(k+ v)mod3]ei𝜏j |k⟩A1}.

(56)

(b̃3) To proceed, Bob initializes an auxiliary qutrit B2 in the state |0⟩B2 . He then applies a
unitary operation U′

B to the joint system composed of qutrit B1 and the auxiliary qutrit B2.
When expressed in the computational basis {|00⟩B1B2 , |01⟩B1B2 , |10⟩B1B2 , |11⟩B1B2 , |20⟩B1B2 ,
|21⟩B1B2}, the unitary operator U′

B corresponds to a 6× 6 matrix. In the specific case where
t = 0, the matrix form of U′

B is given by:

U′
B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1–𝛾
√

1 – (1–𝛾)2 0 0 0 0√
1 – (1–𝛾)2 𝛾 – 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

; (57)

if t = 1,

U′
B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1–𝛾

√
1 – (1–𝛾)2

0 0 0 0
√

1 – (1–𝛾)2 𝛾 – 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

; (58)

if t = 2,

U′
B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1–𝛾

√
1 – (1–𝛾)2 0 0

0 0
√

1 – (1–𝛾)2 𝛾 – 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (59)
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After Bob’s unitary transformation U′
B, the state [∑2

j=0 𝛼j(1–𝛾)min[1,(j+ t)mod3]ei𝜃j |j⟩]B1 |0⟩B2

of qutrits B1 and B2 is transformed into

U′
B{

1√
1+ 2(1–𝛾)2

[
2
∑
j=0
𝛼j(1–𝛾)min[1,(j+ t)mod3]ei𝜃j |j⟩]B1 |0⟩B2}

= 1–𝛾√
1+ 2(1–𝛾)2

[𝛼0|0⟩+𝛼1ei𝜃1 |1⟩+𝛼2ei𝜃2 |2⟩]B1 |0⟩B2

+
√

1 – (1–𝛾)2
√

1+ 2(1–𝛾)2
𝛼0|0⟩B1 |1⟩B2

(60)

or

U′
B{

1√
1+ 2(1–𝛾)2

[
2
∑
j=0
𝛼j(1–𝛾)min[1,(j+ t)mod3]ei𝜃j |j⟩]B1 |0⟩B2}

= 1–𝛾√
1+ 2(1–𝛾)2

[𝛼0|0⟩+𝛼1ei𝜃1 |1⟩+𝛼2ei𝜃2 |2⟩]B1 |0⟩B2

+
√

1 – (1–𝛾)2
√

1+ 2(1–𝛾)2
𝛼2ei𝜃2 |2⟩B1 |1⟩B2

(61)

or

U′
B{

1√
1+ 2(1–𝛾)2

[
2
∑
j=0
𝛼j(1–𝛾)min[1,(j+ t)mod3]ei𝜃j |j⟩]B1 |0⟩B2}

= 1–𝛾√
1+ 2(1–𝛾)2

[𝛼0|0⟩+𝛼1ei𝜃1 |1⟩+𝛼2ei𝜃2 |2⟩]B1 |0⟩B2

+
√

1 – (1–𝛾)2
√

1+ 2(1–𝛾)2
𝛼1ei𝜃1 |1⟩B1 |1⟩B2 .

(62)

Subsequently, Bob performs a projective measurement on the auxiliary qutrit B2 in Z-basis.
If the outcome is |0⟩B2 , it indicates that the CQT is successful, and Bob’s qutrit B1 collapses to
Alice’s original unknown state |𝜉⟩A. On the other hand, if the measurement result is |1⟩B2 , the
cyclic QT is failed.

Based on Eqs (60), (61) and (62), we can determine the probability of Bob obtaining the
outcome |0⟩B2 as (1–𝛾)2/[∑2

j=0 𝛼2
j (1–𝛾)2min[1,(j+ t)mod3]]. Based on this, when Alice’s result

is |Bst⟩AA′ , the probability that Bob successfully reconstructs Alice’s original state can be
expressed as (1–𝛾)2/[∑2

j=0 𝛼2
j (1–𝛾)2min[1,(j+ t)mod3]]× [∑2

j=0 𝛼2
j (1–𝛾)2min[1,(j+ t)mod3]]/

3[1+ 2(1–𝛾)2] = (1–𝛾)2/3[1+ 2(1–𝛾)2].
Similar to what Bob did in (b̃3), it is easy to see form Eq (54) that Charlie can recon-

struct Bob’s original state |𝜂⟩B on his qubit C1 with probability (1–𝛾)2/2[1+ 2(1–𝛾)2],
and Alice can also reconstruct Charlie’s state |𝜁⟩C on her qubit A1 with probability
(1–𝛾)2/3[1+ 2(1–𝛾)2]. Therefore, the probability that Alice, Bob, and Charlie can success-
fully reconstruct the original states |𝜁⟩, |𝜉⟩ and |𝜂⟩ when the measurement results |GBst⟩AA′ ,
|GBmn⟩BB′ and |GBuv⟩CC′ occur simultaneously is (1–𝛾)6/27[1+ 2(1–𝛾)2]3 i.e., for a fixed
joint measurement outcome |GBst⟩AA′ |GBmn⟩BB′ |GBuv⟩CC′ , the success probability of the
cyclic QT is (1–𝛾)6/27[1+ 2(1–𝛾)2]3. From the former analysis, s, t,m,n,u, v∈ {0, 1, 2}, that
is, Alice, Bob and Charlie each have 9 measurement outcomes. It means that the joint mea-
surement outcomes they constitute have a total of 729, so the total probability of our CQT is
27(1–𝛾)6/[1+ 2(1–𝛾)2]3.
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Note that when the noise strength of AD channel is zero (i.e., 𝛾 = 0, there is no noise), then
the states as shown in Eqs (49), (50) and (51) are all the same generalized Bell state |GB00⟩,
and the probability of our scheme is 27(1–𝛾)6/[1+ 2(1–𝛾)2]3 = 1. It means that our scheme
is the standard cyclic QT in three-dimensional quantum systems. In this sense, our CQT here
is a generalization of the standard CQT.

Stage 3 Clone unknown quantum states.
( ̃c1) In the third stage, Alice, Bob, and Charlie aim to independently create copies of arbi-

trary unknown single-qutrit states |𝜉⟩A, |𝜂⟩B and |𝜁⟩C, respectively. To achieve this, they all
require the assistance of the state preparer Victor.According to the projection assumption in
quantum mechanics,if Alice, Bob and Charlie apply the generalized Bell-state measurement
into |Q⟩ as shown in Eq (46), the state of qutrit pair (A,A′), (B,B′) and (C,C′) will collapse
into some Bell states. For simplicity, we consider the collapsed state |GB00⟩AA′ , |GB00⟩B1B′ and
|GB00⟩CC′ . Following this collapse, each party sends one qutrit to Victor while retaining the
other: Alice sends qutrit A to Victor and keeps A′; Bob delivers B and retains B′; and Charlie
transmits C while keeping C′. Given this setup, a natural question arises: can Victor, without
any prior knowledge of the original input states, perform operations in the third stage that
enable Alice, Bob, and Charlie to simultaneously recover copies of their respective unknown
single-qutrit states? In what follows, we provide a detailed argument that such a process is
indeed theoretically feasible.

( ̃c2) Notice that Victor completely knows the quantum state |𝜉⟩A, |𝜂⟩B and |𝜁⟩C, so he can
introduce three auxiliary qutrits V0,V1 and V2, which are initially in the states |0⟩V0 , |0⟩V1 and
|0⟩V2 , respectively. Then, the composite system consisting of qutrits A,A′,B,B′,C,C′, V0,V1

and V2 is

|Q⟩ = |GB00⟩AA′ |GB00⟩BB′ |GB00⟩CC′ |0⟩V0 |0⟩V1 |0⟩V2 . (63)

Then he executes three unitary transformations U0,U1 and U2, which are based on the
bases {|00⟩AV0 , |01⟩AV0 , |10⟩AV0 , |11⟩AV0 , |20⟩AV0 , |21⟩AV0}, {|00⟩BV1 , |01⟩BV1 , |10⟩BV1 , |11⟩BV1 ,
|20⟩BV1 , |21⟩BV1} and {|00⟩CV2 , |01⟩CV2 , |10⟩CV2 , |11⟩CV2 , |20⟩CV2 , |21⟩CV2}, respectively, and
have the following forms

U0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛼0
√

1 – 𝛼2
0 0 0 0 0√

1 – 𝛼2
0 –𝛼0 0 0 0 0

0 0 𝛼1
√

1 – 𝛼2
1 0 0

0 0
√

1 – 𝛼2
1 –𝛼1 0 0

0 0 0 0 𝛼2
√

1 – 𝛼2
2

0 0 0 0
√

1 – 𝛼2
1 –𝛼2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (64)

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛽0
√

1 – 𝛽2
0 0 0 0 0√

1 – 𝛽2
0 –𝛽0 0 0 0 0

0 0 𝛽1
√

1 – 𝛽2
1 0 0

0 0
√

1 – 𝛽2
1 –𝛽1 0 0

0 0 0 0 𝛽2
√

1 – 𝛽2
2

0 0 0 0
√

1 – 𝛽2
1 –𝛽2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (65)
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U3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜆0
√

1 – 𝜆2
0 0 0 0 0√

1 – 𝜆2
0 –𝜆0 0 0 0 0

0 0 𝜆1
√

1 – 𝜆2
1 0 0

0 0
√

1 – 𝜆2
1 –𝜆1 0 0

0 0 0 0 𝜆2
√

1 – 𝜆2
2

0 0 0 0
√

1 – 𝜆2
1 –𝜆2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (66)

After these unitary transformations, the state |Q⟩ becomes

|Q′⟩ = (U0 ⊗U1 ⊗U2)|Q⟩

= 1
3
√

3
[(𝛼0|00⟩+𝛼1|11⟩+𝛼2|22⟩)AA′ |0⟩V0

+ (
√

1 – 𝛼2
0 |00⟩+

√
1 – 𝛼2

1 |11⟩+
√

1 – 𝛼2
2 |22⟩)AA′ |1⟩V0]

⊗ [(𝛽0|00⟩+𝛽1|11⟩+𝛽2|22⟩)BB′ |0⟩V1

+ (
√

1 – 𝛽2
0 |00⟩+

√
1 – 𝛽2

1 |11⟩+
√

1 – 𝛽2
2 |22⟩)BB′ |1⟩V1]

⊗ [(𝜆0|00⟩+𝜆1|11⟩+𝜆2|22⟩)CC′ |0⟩V2

+ (
√

1 – 𝜆2
0|00⟩+

√
1 – 𝜆2

1|11⟩+
√

1 – 𝜆2
2|22⟩)CC′ |1⟩V2].

(67)

Now, Victor performs projective measurements on the auxiliary qutrits V0,V1 and V2,
respectively, under the basis {|0⟩, |1⟩}. If the joint result is |0⟩V0 |0⟩V1 |0⟩V2 with the probability
of 1/9, the state of the system composed of qutrits A,A′,B,B′,C and C′ collapses into

|Q′′⟩ = (𝛼0|00⟩+𝛼1|11⟩+𝛼2|22⟩)AA′
⊗ (𝛽0|00⟩+𝛽1|11⟩+𝛽2|22⟩)BB′
⊗ (𝜆0|00⟩+𝜆1|11⟩+𝜆2|22⟩)CC′ .

(68)

Otherwise it fail.
( ̃c3) Let us introduce the following notations:

W1 =
1√
3

⎛
⎜⎜
⎝

1 e–i𝜃1 e–i𝜃2

1 ei(2𝜋/3–𝜃1) ei(4𝜋/3–𝜃2)

1 ei(4𝜋/3–𝜃1) ei(2𝜋/3–𝜃2)

⎞
⎟⎟
⎠
,

W2 =
1√
3

⎛
⎜⎜
⎝

1 e–i𝜗1 e–i𝜗2

1 ei(2𝜋/3–𝜗1) ei(4𝜋/3–𝜗2)

1 ei(4𝜋/3–𝜗1) ei(2𝜋/3–𝜗2)

⎞
⎟⎟
⎠
,

W3 =
1√
3

⎛
⎜
⎝

1 e–i𝜏1 e–i𝜏2

1 ei(2𝜋/3–𝜏1) ei(4𝜋/3–𝜏2)

1 ei(4𝜋/3–𝜏1) ei(2𝜋/3–𝜏2)

⎞
⎟
⎠
.

(69)

Obviously, the vectors in each group in Eq (69) form a complete orthogonal basis within a
3-dimensional Hilbert space.

Given that Victor has full knowledge of the unknown states |𝜉⟩A, |𝜂⟩B and |𝜁⟩C,he per-
forms a measurement on qutrits A, B, and C using a specially constructed basis denoted by
{|𝜀rst⟩ABC ∣ r, s, t = 0, 1, 2}.This measurement basis is related to the standard three-qutrit com-
putational basis through the following transformation:
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⎛
⎜⎜⎜⎜
⎝

|𝜀000⟩
|𝜀001⟩
⋮

|𝜀222⟩

⎞
⎟⎟⎟⎟
⎠

= (W1 ⊗W2 ⊗W3)

⎛
⎜⎜⎜⎜
⎝

|000⟩
|001⟩
⋮

|222⟩

⎞
⎟⎟⎟⎟
⎠

, (70)

Generally, if Victor’s measurement outcome is |𝜀rst⟩ABC, the collapsed state of qutrits A′, B′

and C′ is

ABC⟨𝜀rst|Q′′⟩ = 1
3
√

3
(𝛼0|0⟩+ e–2𝜋r/3𝛼1ei𝜃1 |1⟩+ e–4𝜋r/3𝛼2ei𝜃2 |2⟩)A′

⊗ (𝛽0|0⟩+ e–2𝜋s/3𝛼1ei𝜗1 |1⟩+ e–4𝜋s/3𝛽2ei𝜗2 |2⟩)B′
⊗ (𝜆0|0⟩+ e–2𝜋t/3𝜆1ei𝜏1 |1⟩+ e–4𝜋t/3𝜆2ei𝜏2 |2⟩)C′ .

(71)

After conducting a projective measurement on qutrits A,B and C, Victor subsequently
communicates the measurement outcome to Alice, Bob, and Charlie through classical com-
munication channels.

( ̃c4) Upon receiving the measurement information from Victor, each of Alice, Bob, and
Charlie is able to apply a corresponding local unitary transformation to recover their respec-
tive target states. Specifically, for the above general measurement result |𝜀rst⟩ABC, Alice, Bob
and Charlie perform unitary transformations ŪA, ŪB and ŪC on their respective qutrits, which
given as follows

ŪA = |0⟨0|+ e2𝜋r/3|1⟩⟨1|+ e4𝜋r/3|2⟩⟨2|,
ŪB = |0⟨0|+ e2𝜋s/3|1⟩⟨1|+ e4𝜋s/3|2⟩⟨2|,
ŪC = |0⟨0|+ e2𝜋t/3|1⟩⟨1|+ e4𝜋t/3|2⟩⟨2|,

(72)

i.e.,

(ŪA ⊗ ŪB ⊗ ŪC)(ABC⟨𝜀rst|Q′′⟩) = 1
3
√

3
(𝛼0|0⟩+𝛼1ei𝜃1 |1⟩+𝛼2ei𝜃2 |2⟩)A′

⊗ (𝛽0|0⟩+𝛼1ei𝜗1 |1⟩+𝛽2ei𝜗2 |2⟩)B′
⊗ (𝜆0|0⟩+𝜆1ei𝜏1 |1⟩+𝜆2ei𝜏2 |2⟩)C′ ,

= 1
3
√

3
|𝜉⟩A′ ⊗ |𝜂⟩B′ ⊗ |𝜁⟩C′ ,

(73)

completing the cloning task.
By combining the method presented in Sect 3.2 with the three-party cyclic-assisted cloning

scheme proposed in this section, we can further extend the protocol to accommodate N-party
cyclic-assisted cloning, where N>3.

5 Cyclic assisted cloning of arbitrary unknown single-qudit states
in amplitude damping channel
In this section, we extend the schemes from the previous two sections to the prob-
lem of cyclic-assisted cloning of high-dimensional unknown single-particle states in
the AD channel. Firstly, we still consider the three-party assisted cloning: suppose
that there are four participants, Alice, Bob, Charlie, and Victor, spatially separated.
The state preparer Victor has prepared three single-qudit states |𝜙⟩A, |𝜑⟩B and |𝜓⟩C, as
follows
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|𝜙⟩A =
d – 1
∑
j=0

𝛼jei𝜃j |j⟩A, |𝜑⟩B =
d – 1
∑
j=0

𝛽jei𝜗j |j⟩B, |𝜓⟩C =
d – 1
∑
j=0

𝜆jei𝜏j |j⟩C, (74)

where 𝛼j, 𝛽j and 𝜆j (j = 0, 1,⋯,d–1) are real numbers with∑d – 1
j=0 𝛼2

j = 1,∑d – 1
j=0 𝛽2

j = 1 and

∑d – 1
j=0 𝜆2

j = 1, while 𝜃j, 𝜗j, 𝜏j are arbitrary real numbers for any j∈ {1, 2,⋯,d–1} and 𝜃0 = 𝜗0 =
𝜏0 = 0. All the parameters of the states in Eq (74) are completely known to Victor and com-
pletely unknown to the other participants. Victor distributes the quantum states A, B, and C
to Alice, Bob, and Charlie, respectively. Upon receiving these states, each of them treats the
received state as their own input. Importantly, none of the participants,except for Victor,has
any knowledge of these input states. The goal of Alice, Bob, and Charlie is to sequentially tele-
port their individual input states to Bob, Charlie, and Alice, respectively. With assistance from
Victor, they aim to reproduce the original input states at their own locations, thereby gen-
erating copies of these states.The schematic diagram of the scheme presented in this section
is highly similar to that of the scheme in Sect 3. The protocol in Sect 3 involves the cyclic
assisted cloning of arbitrary unknown single-qubit states in an amplitude damping channel,
while this section explores the cyclic assisted cloning of arbitrary unknown single-qudit states
in the same channel. This represents an extension of the protocol in Sect 3 to the scenario of
cyclic assisted cloning for d-dimensional unknown quantum states. The main difference lies
in the type of quantum states being transmitted (single-qubit states vs. single-qudit states),
while the cyclic transmission method and Victor’s assistance mechanism remain unchanged.
To avoid redundancy, no additional diagrams are included here to enhance the clarity of the
content. This scheme mainly includes three stages: preparation of quantum channels, CQT
and assisted cloning.

In the preparation stage of the quantum channels, in a similar method to that in Sects 3.1
and 4, Alice and Bob share a d-dimensional two-particle PES

|H⟩A′B1 =
1√

1+ (d–1)(1–𝛾)2
[|00⟩+ (1–𝛾)|11⟩+⋯+ (1–𝛾)|d–1,d–1⟩]A′B1 , (75)

Bob and Charlie share a two-qudit PES

|H⟩B′C1 =
1√

1+ (d–1)(1–𝛾)2
[|00⟩+ (1–𝛾)|11⟩+⋯+ (1–𝛾)|d–1,d–1⟩]B′C1 , (76)

and Charlie and Alice share a two-qudit PES

|H⟩C′A1 =
1√

1+ (d–1)(1–𝛾)2
[|00⟩+ (1–𝛾)|11⟩+⋯+ (1–𝛾)|d–1,d–1⟩]C′A1 . (77)

Therefore, the state of the composite system of qudits A,A′,A1,B,B′,B1,C,C′ and C1 is

|T ⟩ = |𝜙⟩A ⊗ |𝜑⟩B ⊗ |𝜓⟩C ⊗ |H⟩A′B1 ⊗ |H⟩B′C1 ⊗ |H⟩C′A1 . (78)

Now consider the cyclic QT: Alice, Bob and Charlie perform d-dimensional Bell measure-
ments on qudit pairs (A,A′), (B,B′),and (C,C′), and communicate the results |DBst⟩AA′ ,
|DBmn⟩BB′ and |DBuv⟩CC′ to Bob, Charlie and Alice in order via the classical channels. After
these measurements, the state of B1,C1 and A1 will collapse into
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CC′⟨DBuv|BB′⟨DBmn|AA′⟨DBst|T ⟩

= 1√
[d+d(d–1)(1–𝛾)2]3

d – 1
∑
j=0

𝛼jei𝜃j–2𝜋ijs/d(1–𝛾)min[1,(j+ t)modd]|(j+ t)modd⟩B1

⊗
d – 1
∑
l=0

𝛽lei𝜗l–2𝜋ilm/d(1–𝛾)min[1,(l+ n)modd]|(l+n)modd⟩C1

⊗
d – 1
∑
k=0

𝜆kei𝜏k–2𝜋iku/d(1–𝛾)min[1,(k+ v)modd]|(k+ v)modd⟩A1 .

(79)

According to the measurement information, Bob, Charlie and Alice apply the local unitary
operations UB, UC and UA on qudits B1,C1 and A1, respectively, which are given by

UB =
d – 1
∑
j=0

e2𝜋ijs/d|j⟩⟨(j+ t)modd⟩,

UC =
d – 1
∑
l=0

e2𝜋ilm/d|l⟩⟨(l+n)modd⟩,

UA =
d – 1
∑
k=0

e2𝜋iku/d|k⟩⟨(k+ v)modd⟩.

(80)

These local unitary operations change the state CC′⟨DBuv|BB′⟨DBmn|AA′⟨DBst|T ⟩ into

|T ′⟩ = 1√
[d+d(d–1)(1–𝛾)2]3

d – 1
∑
j=0

𝛼jei𝜃j(1–𝛾)min[1,(j+ t)modd]|j⟩B1

⊗
d – 1
∑
l=0

𝛽lei𝜗l(1–𝛾)min[1,(l+ n)modd]|l⟩C1

⊗
d – 1
∑
k=0

𝜆kei𝜏k(1–𝛾)min[1,(k+ v)modd]|k⟩A1 .

(81)

To proceed, Alice prepares an auxiliary qubit A2 initialized in the state |0⟩A2 . She then
applies a unitary transformation, denoted as U ′A, which operates in the basis {|j0⟩A1A2 ,
|j1⟩A1A2 | j = 0, 1,… ,d–1}, which is given by

U ′A = diag(E,⋯,E
´¹¹¹¹¸¹¹¹¹¹¶

d–v

,Wv,E,⋯,E
´¹¹¹¹¸¹¹¹¹¹¶

v–1

), v = 1, 2,⋯,d–1 (82)

and when v = 0,

U ′A = diag(W0,E,⋯,E
´¹¹¹¹¸¹¹¹¹¹¶
d – 1

), (83)

where E represents the 2× 2 identity matrix, and

Wv ≡ (
1–𝛾

√
1 – (1–𝛾)2√

1 – (1–𝛾)2 𝛾 – 1
) (84)
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for any v∈ {0, 1,⋯,d–1}. Then,it is straightforward to deduce that

U ′A[
1√

d+d(d–1)(1–𝛾)2
d – 1
∑
k=0

𝜆kei𝜏k(1–𝛾)min[1,(k+ v)modd]|k⟩A1 |0⟩A2]

= 1–𝛾√
d+d(d–1)(1–𝛾)2

[
d – 1
∑
k=0

𝜆kei𝜏k |k⟩A1]|0⟩A2

+
√

1 – (1–𝛾)2
√
d+d(d–1)(1–𝛾)2

𝜆(d–v)moddei𝜏(d–v)modd |(d – v)modd⟩A1 |1⟩A2

(85)

for any v∈ {0, 1,⋯,d–1}. Now Alice performs a projective measurement on the auxiliary
qubit A2 in the basis {|0⟩, |1⟩}. If theresult of Alice’s measurement is |0⟩A2 , she successfully
retrieves Charlie’s state |𝜓⟩C on her qudit A1. Otherwise, the teleportation fails.

Clearly, the probability of obtaining the measurement result |0⟩A2 is given by

(1–𝛾)2/[
d – 1
∑
k=0

𝜆2
k(1–𝛾)2min[1,(k+ v)modd]].

Form the above analysis, on condition that Charlie’s result is |DBuv⟩CC′ with the
probability of∑d – 1

k=0 𝜆2
k(1–𝛾)2min[1,(k+ v)modd]/d[1+ (d–1)(1–𝛾)2], it can be observed

that the probability of Alice successfully recovering Charlie’s original state is given by
(1–𝛾)2/[∑d – 1

k=0 𝜆2
k(1–𝛾)2min[1,(k+ v)modd]]× ∑d – 1

k=0 𝜆2
k(1–𝛾)2min[1,(k+ v)modd]/d[1+ (d–1)

(1–𝛾)2] = (1–𝛾)2/d[1+ (d–1)(1–𝛾)2].
Similar to Alice’s approach, Bob and Charlie independently reconstruct the original states

of Alice and Bob, respectively, with the probability of (1–𝛾)2/d[1+ (d–1)(1–𝛾)2]. Since
s, t,m,n,u, v = 0, 1,⋯,d–1, the overall success probability of the cyclic quantum teleportation
is d3(1–𝛾)6/[1+ (d–1)(1–𝛾)2]3.

In the assisted cloning stage, based on the projection postulate of quantum mechanics, if
Alice, Bob and Charlie apply the d-dimensional Bell state measurements onto the combined
state |T ⟩, the state of qudit pairs pair (A,A′), pair (B,B′) and pair (C,C′) will collapse into
some d-dimensional Bell states. Without loss of generality, we consider the following three
collapsed Bell states |DB00⟩AA′ , |DB00⟩BB′ and |DB00⟩CC′ . Alice transmits qudit A to Victor
while retaining qudit A′ herself; similarly, Bob sends qudit B to Victor and keeps qudit B′ in
his possession; likewise, Charlie forwards qudit C to Victor and holds onto qudit C′.

Since Victor knows exactly the three quantum states indicated in Eq (74), he introduces
three auxiliary qubits V′,V′′ and V′′′ in initial states |0⟩V′ , |0⟩V′′ and |0⟩V′′′ , respectively.
Then, the composite system consisting of qudits A,A′,B,B′,C,C′, V′,V′′ and V′′′ is

|T⟩ = |DB00⟩AA′ |DB00⟩BB′ |DB00⟩CC′ |0⟩V′ |0⟩V′′ |0⟩V′′′ , (86)

and then, he performs three unitary transformations U(0),U(1) and U(2), which are based on
the bases {|j0⟩AV′ , |j1⟩AV′ ∶ j = 0, 1,⋯,d–1}, {|l0⟩BV′′ , |l1⟩BV′′ ∶ l = 0, 1,⋯,d–1} and {|k0⟩CV′′′ ,
|k1⟩CV′′′ ∶ k = 0, 1,⋯,d–1}, respectively,and are expressed as follows

U(0) = diag(U(0)0,0 ,U(0)0,1 ,⋯,U(0)0,j ,⋯,U(0)0,d – 1),

U(1) = diag(U(1)0,0 ,U(1)0,1 ,⋯,U(1)0,l ,⋯,U(1)0,d – 1),

U(2) = diag(U(2)0,0 ,U(2)0,1 ,⋯,U(2)0,k ,⋯,U(2)0,d – 1),

(87)
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where

U(0)0,j =
⎛
⎜
⎝

𝛼j
√

1 – 𝛼2
j√

1 – 𝛼2
j –𝛼j

⎞
⎟
⎠
,

U(1)0,l = (
𝛽l

√
1 – 𝛽2

l√
1 – 𝛽2

l –𝛽l
) ,

U(2)0,k = (
𝜆k

√
1 – 𝜆2

k√
1 – 𝜆2

k –𝛼k
) .

(88)

After these unitary transformations, the state |T⟩ becomes

|T′⟩ = (U(0)⊗U(1)⊗U(2))|T⟩

= 1
d
√
d
[
d – 1
∑
j=0

𝛼j|jj⟩AA′ |0⟩V′ +
d – 1
∑
j=0

√
1 – 𝛼2

j |jj⟩AA′ |1⟩V′]

⊗ [
d – 1
∑
l=0

𝛽l|ll⟩BB′ |0⟩V′′ +
d – 1
∑
l=0

√
1 – 𝛽2

l |ll⟩BB′ |1⟩V′′]

⊗ [
d – 1
∑
k=0

𝜆k|kk⟩CC′ |0⟩V′′′ +
d – 1
∑
k=0

√
1 – 𝜆2

k|kk⟩CC′ |1⟩V′′′].

(89)

Subsequently, Victor respectively measures the auxiliary qubits V′,V′′ and V′′′ in the com-
putational basis {|0⟩, |1⟩}. If the collective measurement outcome is |0⟩V′ |0⟩V′′ |0⟩V′′′ , then the
state of qudits A,A′,B,B′,C and C′ collapses accordingly
into

|T′′⟩ = 1
d
√
d
[
d – 1
∑
j=0

𝛼j|jj⟩AA′]⊗ [
d – 1
∑
l=0

𝛽l|ll⟩BB′]⊗ [
d – 1
∑
k=0

𝜆k|kk⟩CC′]. (90)

Let us introduces the Matrix notation

W(𝜃1,𝜃2,⋯,𝜃d – 1)

= 1√
d

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 e–i𝜃1 e–i𝜃2 ⋯ e–i𝜃d – 1

1 ei(2𝜋/d–𝜃1) ei(4𝜋/d–𝜃2) ⋯ ei[2(d – 1)𝜋/d–𝜃d – 1]

1 ei(4𝜋/d–𝜃1) ei(8𝜋/d–𝜃2) ⋯ ei[4(d – 1)𝜋/d–𝜃d – 1]

⋯ ⋯ ⋯ ⋯ ⋯
1 ei[2(d – 1)𝜋/d–𝜃1] ei[4(d – 1)𝜋/d–𝜃2] ⋯ ei[2(d – 1)2𝜋/d–𝜃d – 1]

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.
(91)

Since Victor has complete knowledge of the states |𝜙⟩A, |𝜑⟩B, and |𝜓⟩C, he performs a
measurement on qudits A, B, and C using the basis {|𝜀rst⟩ABC ∶ r, s, t = 0, 1,⋯,d–1}.The cor-
respondence between this measurement basis and the standard computational basis of the
three-qudit system is defined as follows
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⎛
⎜⎜⎜⎜
⎝

|𝜀000⟩
|𝜀001⟩
⋮

|𝜀d – 1,d – 1,d – 1⟩

⎞
⎟⎟⎟⎟
⎠

=W(𝜃1,𝜃2,⋯,𝜃d – 1)⊗W(𝜗1,𝜗2,⋯,𝜗d – 1)

⊗W(𝜏1, 𝜏2,⋯, 𝜏d – 1)

⎛
⎜⎜⎜⎜
⎝

|000⟩
|001⟩
⋮

|d–1,d–1,d–1⟩

⎞
⎟⎟⎟⎟
⎠

.

(92)

In general, if Victor’s measurement results in the outcome |𝜀rst⟩ABC, the corresponding
post-measurement state of qutrits A′, B′, and C′ is given by the following expression

ABC⟨𝜀rst|T′′⟩ =
1

d
√
d
[
d – 1
∑
j=0

𝛼jei(𝜃j–2𝜋jr/d)|j⟩A′]

⊗ [
d – 1
∑
l=0

𝛽lei(𝜗l–2𝜋ls/d)|l⟩B′]

⊗ [
d – 1
∑
k=0

𝜆kei(𝜏k–2𝜋kt/d)|k⟩C′].

(93)

Following a projective measurement performed by Victor on the qutrits A, B, and C, he
communicates the measurement result to Alice, Bob, and Charlie through classical commu-
nication channels. Based on the information received from Victor, each of them can apply a
suitable local unitary operation to retrieve their respective intended quantum states. Specifi-
cally,for the above general measurement result |𝜀rst⟩ABC, Alice, Bob, and Charlie apply the uni-
tary operators U̇A, U̇B, and U̇C to their corresponding qudits. These operations are defined as
follows:

U̇A =
d – 1
∑
j=0

e2𝜋ijr/d|j⟩⟨j|A′ , U̇B =
d – 1
∑
l=0

e2𝜋ils/d|l⟩⟨l|B′ , U̇C =
d – 1
∑
k=0

e2𝜋ikt/d|k⟩⟨k|C′ , (94)

i.e.,

(U̇A ⊗ U̇B ⊗ U̇C)(ABC⟨𝜀rst|T′′⟩)

= 1
d
√
d
(
d – 1
∑
j=0

𝛼jei𝜃j |j⟩A′)⊗ (
d – 1
∑
l=0

𝛽lei𝜗l |l⟩B′)⊗ (
d – 1
∑
k=0

𝜆kei𝜏k |k⟩C′)

= 1
d
√
d
|𝜙⟩A′ ⊗ |𝜑⟩B′ ⊗ |𝜓⟩C′ .

(95)

This means that arbitrary unknown single-qudit states |𝜙⟩A, |𝜑⟩B and |𝜓⟩C are perfectly
copied at the locations where Alice, Bob, and Charlie are, respectively, with the assistance of
the state preparer Victor, completing the cloning task.

By integrating the concept introduced in Sect 3.2 with the cyclic-assisted cloning strategy
involving three participants presented in this section, the proposed scheme can be naturally
extended to accommodate a cyclic-assisted cloning protocol among N parties, where N>3.
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6 Discussion and conclusion
It is clear that each of the proposed schemes can be divided into three distinct phases:preparing
quantum channels, QT and the process of assisted quantum cloning. In our schemes, quan-
tum channels prepared by entanglement compensation in AD noise are all PESs.In CQT, all
participants, except for the state preparer, act as both transmitters and receivers of quantum
information. During the cloning phase, however, these participants function solely as recip-
ients of the replicated states. This structure ensures that the entire process follows a cyclical
and synchronized pattern. Previous studies have found that: the fidelity and probability of
quantum communication in a noisy environment are both less than 1 and decrease with the
increase in noise. However, each of the protocols that we present in this paper demonstrates
that the fidelity remains a constant 1, regardless of how the noise intensity of AD changes.
Note that the success probabilities of the CQTs in the three-party schemes in Sects 3, 4 and 5
have the following relation:

8(1–𝛾)6
[1+ (1–𝛾)2]3 >

27(1–𝛾)6
[1+ 2(1–𝛾)2]3 >

d3(1–𝛾)6
[1+ (d1)(1–𝛾)2]3 . (96)

This means that the probability of success for the cyclic QT decreases as the dimensionality
of the transmitted quantum states increases. Moreover, it can be known from the probability
8(1–𝛾)6/[1+ (1–𝛾)2]3 of CQT in Sect 3.1 and the probability 2N(1–𝛾)2N/[1+ (1–𝛾)2]N
of CQT in Sect 3.2 that the more people involved in the communication, the smaller the
probability of success of the CQT.

Introducing ancillary particles, implementing special unitary transformations, and per-
forming single-particle Z-basis measurements in the CQTs of Sects 2, 4 and 5. A natural ques-
tion is: Can positive-operator-valued measurement (POVM) be adopted? The answer is yes.
To illustrate the problem we take the re-examination of Sect 3.1 (b3) as an example of apply-
ing the POVM method. For convenience of expression, let us define s⊕ t = 0. Then the state
[𝛼s⊕t⊕1𝛽s⊕t|0⟩+ (1–𝛾)𝛼s⊕t𝛽s⊕t⊕1|1⟩]B = [𝛼|0⟩+ (1–𝛾)𝛽|1⟩]B. After Bob introduces an
auxiliary qubit B2 in initial state |0⟩B2 , he executes a CNOT gate

|G′′′⟩ =NBB2([𝛼|0⟩+ (1–𝛾)𝛽|1⟩]B|0⟩B2)/
√

1+ (1–𝛾)2

= (𝛼|00⟩+ (1–𝛾)𝛽|11⟩)BB2 /
√

1+ (1–𝛾)2

= 1
2
√

1+ (1–𝛾)2
(|E⟩B ⊗ |F⟩B2 + |G⟩B ⊗ |H⟩B4),

(97)

where |E⟩B = (𝛼|0⟩+𝛽|1⟩)B, |F⟩B2 = [|0⟩+ (1–𝛾)|1⟩]B2 /
√

1+ (1–𝛾)2, |G⟩B = (𝛼|0⟩–𝛽|1⟩)B
and |H⟩B2 = [|0⟩ – (1–𝛾)|1⟩)B2 /

√
1+ (1–𝛾)2.

In order to identify the states |E⟩B and |G⟩B, Bob is required to perform a positive POVM
on the auxiliary qubit B2. The corresponding POVM elements are constructed in the follow-
ing form:

P1 =
1
𝜐 |O1⟩⟨O1|, P2 =

1
𝜐 |O2⟩⟨O2|, P3 = I –

1
𝜐Σ

2
j=1|Oj⟩⟨Oj|, (98)

here, the states are defined as |O1⟩ = 1√𝜍 [
√

1+ (1–𝛾)2|0⟩+
√

1+ (1 –𝛾)2
1 –𝛾 |1⟩]B2 and |O2⟩ =

1√𝜍 [
√

1+ (1–𝛾)2|0⟩ –
√

1+ (1 –𝛾)2
1 –𝛾 |1⟩]B2, where the normalization factor is given by
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𝜍 = [1+ (1 –𝛾)2]2
(1 –𝛾)2 . I denotes the identity operator. Additionally, the real parameter 𝜐, which

depends on 𝛾, must be appropriately chosen to ensure that P3 is a positive operator.
In order to determine 𝜐, we can rewrite P1,P2 and P3 in the following matrix form

P1 =
1
𝜐𝜍
⎛
⎜
⎝

1+ (1–𝛾)2 1+ (1 –𝛾)2
1 –𝛾

1+ (1 –𝛾)2
1 –𝛾

1+ (1 –𝛾)2
(1 –𝛾)2

⎞
⎟
⎠
,

P2 =
1
𝜐𝜍
⎛
⎜
⎝

1+ (1–𝛾)2 – 1+ (1 –𝛾)2
1 –𝛾

– 1+ (1 –𝛾)2
1 –𝛾

1+ (1 –𝛾)2
(1 –𝛾)2

⎞
⎟
⎠
,

P3 =
⎛
⎝

1 – 2(1 –𝛾)2
𝜐[1+ (1 –𝛾)2] 0

0 1 – 2
𝜐[1+ (1 –𝛾)2]

⎞
⎠
.

(99)

In order for P3 to be a positive operator, the parameter 𝜐 must satisfy the condition 𝜐 ≥
2

1+ (1–𝛾)2 . Upon performing the POVM, Bob can obtain the measurement outcomes corre-
sponding to P1 and P2 with the following probability:

p = ⟨T′2|P1|T′2⟩ = ⟨T′2|P2|T′2⟩ =
1
𝜐𝜍 =

(1–𝛾)2
𝜐[1+ (1–𝛾)2]2 , (100)

and can infer the state of qubit B2 based on the POVM outcome.However, Bob is able
to obtain the measurement outcome corresponding to the operator P3 with probability
1 – 2(1 –𝛾)2

𝜐[1+ (1 –𝛾)2]2 , in which case he is unable to determine the specific state of the auxiliary
particle B2. Conversely, if Bob successfully identifies that B2 is in the state |F⟩B2 or |H⟩B2 ,
this implies that he knows the state of particle B is |E⟩B or |G⟩B, respectively. Accordingly, he
can apply the unitary operation 𝜎(0,0) or 𝜎(1,1) on qubit B to reconstruct the target state |𝜉⟩A
on qubit B with a maximum success probability of (1–𝛾)2/2[1+ (1–𝛾)2]. Obviously, both
Charlie and Alice can reach the same conclusion.

A natural and critical question is whether similar probabilistic exact cloning protocols
(with fidelity equal to 1) can be constructed under different noise environments, such as bit-
flip or depolarizing noise. Here, we must emphasize that the protocol proposed in this paper
is specifically designed for the AD noise model. The irreversible nature of AD noise, where
the system spontaneously decays to its ground state, leads to directional evolution in quan-
tum systems. This characteristic is crucial because the Kraus operator structure of AD noise
enables selective measurement of the quantum system and post-projection onto the cloneable
subspace. Based on this physical mechanism, our probabilistic post-selection cloning strategy
is theorized, allowing us to construct a probabilistic cloning scheme with fidelity equal to 1.
However, for most other types of noise models, such as bit-flip noise, the method proposed
in this paper is not applicable, and the fidelity usually cannot reach 1. Similarly, in depolar-
izing noise environments, it is also difficult to achieve exact cloning. To determine whether
our method is still feasible under a certain noise model, we provide a systematic verification
method in the appendix. Specifically, the appendix presents the proof processes of two theo-
rems, serving as the basis for judging different dimensional systems: Theorem 1 is designed
for low-dimensional systems (such as single-qubit cases), and Theorem 2 extends to higher-
dimensional systems (such as multi-level quantum systems). These theorems not only provide
sufficient conditions for achieving perfect cloning but also offer a practical method to verify
whether a specific noise model supports our protocol. Particularly, in the case of AD noise,
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both theorems are fully satisfied, thus proving the feasibility of our method in this environ-
ment. However, for most other models, these conditions are usually not met, rendering our
method inapplicable. Future work could explore improved protocols for other noise channels.

Security is always a crucial consideration when choosing communication protocols. Below,
we briefly discuss the security of the proposed scheme. In fact, the security of our scheme
mainly depends on whether the quantum state, as a quantum communication channel, is
securely shared by legitimate participants beforehand. In other words, the key is whether the
entanglement is maintained securely during the distribution process. By employing exist-
ing, mature, and widely used entanglement detection methods [53,54] to preprocess the
quantum entanglement distribution required in our scheme, we can effectively identify and
defend against malicious attacks from external sources and fraudulent behaviors from inter-
nal sources. The specific detection process will not be elaborated on in this paper. This indi-
cates that the safety of our scheme can be effectively guaranteed. Furthermore, the inclusion
of a controller in the scheme enhances the overall security, ensuring that the proposed pro-
tocol is both secure and controllable.In conclusion, the proposed scheme is controllable and
secure.

In summary, this paper explores the issue of conclusive cyclic assisted cloning of arbitrary
unknown single-particle states within an AD channel, leveraging the technologies of QT and
RSP. We focus on the scenario where the particles transmitted through the quantum chan-
nel experience the same independent AD strength, while the particles remaining locally are
unaffected. The main contributions are as follows.

(i) The detailed process of sharing pure entangled single-qubit (single-qutrit) state among
three communicators in AD channel is provided via CNOT gates (GCNOT gates). The
method of sharing is easy generalize to the case of sharing an arbitrary d-dimensional pure
single-qudit state.

(ii) Utilizing these shared pure single-particle states as the components of quantum chan-
nels, we present two three-party cyclic-assisted cloning protocols.Each protocol requires stan-
dard CQT and multi-output assisted cloning. In its CQT, the sender Alice teleports an arbi-
trary unknown single-qubit state (single-qutrit state) to Bob, Bob transmits an unknown
single-qubit (single-qutrit) state to Charlie, and at the same time, Charlie also transmits an
unknown single-qubit (single-qutrit) state to Alice. The probabilistic reconstruction of each
of the three unknown quantum states is achieved by introducing an auxiliary qubit and per-
forming suitable quantum operations. The success rate of this process depends solely on
the smaller modulus of the coefficients that describe a particular shared PES. In the multi-
output assisted cloning, after the special multi-particle measurement (unitary transforma-
tion and multi-particle equatorial state measurement) by the state preparer, the three original
unknown are simultaneously cloned at three different locations with respective probabilities.

(iii) In the above two three-party cyclic-assisted cloning protocols, the analytical expres-
sions of the operations of the participants we provided are as general as possible. This not only
reveals the general rules more clearly and simplifies the cumbersome expressions, but also are
easy to generalize to more general complex communication scenarios.

(iv) We have made general extensions of the above two three-party protocols from the
two perspectives: the number of people participating in the circular communication and the
dimension of the quantum system, which will be greatly beneficial to the future high-capacity
quantum network communication.

(v) Although our scheme is based on the AD environment, its fidelities are all equal to
1, whereas almost all existing protocols cannot achieve such fidelity. Furthermore, a careful
analysis of the scheme shows that in our protocols, complex multi-particle unitary matri-
ces can be decomposed into simple 2× 2 matrices, and that multi-particle measurements
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can be decomposed into single-particle projection measurements. Therefore, our proto-
col is closer to real life and has the potential to be experimentally realized as technology
advances.
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