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Abstract
An operon refers to a group of neighbouring genes belonging to one or more overlap-
ping transcription units that are transcribed in the same direction and have at least one
gene in common. Operons are a characteristic of prokaryotic genomes. Identifying which
genes belong to the same operon facilitates understanding of gene function and reg-
ulation. There are several computational approaches for operon detection; however,
many of these computational approaches have been developed for a specific target bac-
terium or require information only available for a restricted number of bacterial species.
Here, we introduce a general method, OpDetect, that directly utilizes RNA-sequencing
(RNA-seq) reads as a signal over nucleotide bases in the genome. This representa-
tion enabled us to employ a convolutional and recurrent deep neural network architec-
ture which demonstrated superior performance in terms of recall, F1-score and Area
under the Receiver-Operating characteristic Curve (AUROC) compared to previous
approaches. Additionally, OpDetect showcases species-agnostic capabilities, success-
fully detecting operons in a wide range of bacterial species and even in Caenorhabditis
elegans, one of few eukaryotic organisms known to have operons. OpDetect is available
at https://github.com/BioinformaticsLabAtMUN/OpDetect.

Introduction
Bacteria are involved in the survival and functioning of all plants and animals, including
humans [1]. Understanding bacterial gene function and regulation is essential to decipher
how bacteria interact with other organisms and the environment. Operons, fundamental to
bacterial genome organization and gene regulation, play a critical role in bacterial molecu-
lar functions. An operon refers to a group of neighbouring genes that are regulated by one
or more overlapping transcription units [2]. These overlapping transcription units are tran-
scribed in the same direction and have at least one gene in common. Transcription units are
DNA regions that encompass the area from a promoter, where transcription is initiated, to a
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terminator, which marks the end of transcription [2]. Thus, genes in a transcription unit areare provided within the manuscript. All code
written in support of this publication is publicly
available at https://github.com/Bioinformatics
LabAtMUN/OpDetect and we have archived our
code on Zenodo (DOI: 10.5281/zenodo.
15186253).

Funding: This research was partially funded by
a Natural Sciences and Engineering Research
Council of Canada (NSERC, https://www.nserc-
crsng.gc.ca/index_eng.asp) Discovery Grant
(#2019-05247) to L.P.-C., and a graduate
fellowship from Memorial University School of
Graduate Studies (www.mun.ca/sgs/) to to R.K.
The funders did not play any role in the study
design, data collection and analysis, decision to
publish or preparation of the manuscript.

Competing interests: The authors have
declared that no competing interests exist.

transcribed as a single mRNA. Genes belonging to the same operon are typically, but not nec-
essarily, functionally related or involved in the same metabolic pathways [2–5]. Operon detec-
tion is the task of identifying genes belonging to the same operon, which contributes to the
mapping of regulatory networks. This will lead to a better understanding of gene functionality
and regulation in bacterial genomes [4,6].

Several machine learning-based tools have recently been developed for operon detec-
tion in bacterial genomes. These tools utilize various computational approaches. Operon-
mapper [7] utilizes computational algorithms grounded in the Prokaryotic Operon Database
(ProOpDB) [8,9]. It employs a two-layer neural network that incorporates intergenic dis-
tances and gene functional relationship scores from STRING [10]. Its training and evalua-
tion was done in Escherichia coli and Bacillus subtilis. For RNA-seq data analysis and bacterial
operon prediction, Rockhopper [11] adopts a Naïve Bayes model that integrates intergenic
distances and gene expression levels from RNA-seq data. The training and evaluation of Rock-
hopper’s model was done on E. coli, B. subtilis, and Helicobacter pylori. Operon Finder [12]
is a web service that builds upon Operon Hunter [4]. Operon Hunter introduces a distinct
approach by adapting, using transfer learning, ResNet18 [13] on visual comparative genome
representations of six species with experimentally confirmed operons in the Operon DataBase
(ODB) [14]. Comparative genomic images were obtained via the Compare Region Viewer ser-
vice from PATRIC [15]. OperonSEQer [16] uses a voting system that combines six machine
learning algorithms. Based on RNA-seq reads, OperonSEQer extracts Kruskal-Wallis statis-
tics and p-values to evaluate gene pairs and intergenic regions for differences in read cover-
age. OperonSEQer is trained on computationally-obtained operon labels fromMicrobesOn-
line [17] for eight different organisms.

While all these computational techniques have significantly advanced operon detection,
there are still some opportunities for improvement. First, some of these tools rely on features
from external sources, these features are often available only for extensively studied organ-
isms. This affects the applicability of such models to lesser-studied bacterial genomes, which
comprise the vast majority of bacteria [18]. Second, some models have been trained on com-
putationally derived labels, potentially leading to mimicry of another algorithm’s decisions.
Third, some models have been trained and evaluated in the same organisms, which could lead
to data leakage. These last two issues might cause that reported performances are overesti-
mated. In this work, we have developed a tool to address these issues. Our approach, OpDe-
tect, relies solely on RNA-seq data, which are available for a broad range of bacteria. It was
trained on experimentally verified operon labels, and evaluated on an independent set of
organisms not used for training. Additionally, we focus on creating an organism-agnostic
operon detection model capable of adapting to different species and effectively identifying
operons across various conditions. We comparatively assessed the performance of OpDe-
tect with that of Operon-mapper, OperonFinder, OperonSEQer and Rockhopper. Our results
show that OpDetect outperforms these other four approaches in terms of recall, F1-score and
AUROC.

Materials and methods
Data
This study utilizes genome sequences, RNA-seq data, and operon annotations as primary
data sources. Thus, we collected data for organisms that have operon annotations in Oper-
onDB and RNA-seq data publicly available. The genome sequence and annotation files are
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obtained from the RefSeq [19] database. RNA-seq data for up to six samples of each organ-
ism are sourced from the Sequence Read Archive (SRA) [20] and the European Nucleotide
Archive (ENA) [21]. Operon annotations are obtained from OperonDB version 4 (ODB) [14].
This curated database, available at https://operondb.jp/, contains experimentally known oper-
ons. Detailed information on organisms and their accession codes for genome sequences and
RNA-seq data is available in Table 1. We selected seven bacterial organisms to be used for
training purposes and another seven organisms for independent validation (six bacteria and
one eukaryote). This selection was based on data availability: Those bacterial organisms with
more annotated gene pairs were used for training.

Data preparation commands
The initial steps in processing the data involve trimming and filtering the raw sequencing data
in FASTQ format. This process is performed using Fastp (version 0.23.1) [34]. The trimmed
and filtered FastQ files are then aligned to the reference genomes using HISAT2 (version

Table 1. Data used in this study.
Training
Organism RNA-seq
Name (Phylum) Genome Study Samples Ref
B. subtilis subsp. subtilis str. 168
(Bacillota)

NC_000964.3 GSE179533 SRR15049591 SRR15049592 SRR15049593 [22]

E-MTAB-10658 ERR6156944 ERR6156945 ERR6156946 [23]
Corynebacterium glutamicum ATCC
13032 (Actinomycetota)

NC_006958.1 GSE120924 SRR7977557 SRR7977561 SRR7977565 [24]

E-MTAB-8070 ERR3380462 ERR3380465 ERR3380468 [25]
E. coli K-12 substr. MG1655
(Pseudomonadota)

NC_000913.2 GSE65642 SRR1787590 SRR1787592 SRR1787594 [26]

GSE114917 SRR7217927 SRR7217928 SRR7217929 [27]
Helicobacter pylori 26695
(Campylobacterota)

GCA_000008525GSE94268 SRR5217496 [28]

Legionella pneumophila str. Paris
(Pseudomonadota)

NC_006368.1 E-MTAB-4095 ERR1157043 ERR1157044 ERR1157045 [29]

Listeria monocytogenes EDG-e
(Bacillota)

NC_003210.1 GSE152295 SRR11998208 SRR11998211 SRR11998214 [30]

SRR11998217 SRR11998220 SRR11998223
Mycoplasmoides pneumoniaeM129
(Mycoplasmatota)

NC_000912.1 E-MTAB-8537 ERR3672190 ERR3672191 ERR3672192 [31]

ERR3672193
Validation
Organism RNA-seq
Photobacterium profundum SS9
(Pseudomonadota)

NC_006370.1,
NC_006371.1

GSE38259 SRR500950 SRR500951 [32]

Agrobacterium fabrum str. C58
(Pseudomonadota)

NC_003062,
NC_003063

GSE173921 SRR14432343 SRR14432344 SRR14432345 NA

Borreliella burgdorferi B31
(Spirochaetota)

NC_001318.1 GSE152295 SRR11997800 SRR11997801 SRR11997802 [30]

Bradyrhizobium diazoefficiens USDA
110 (Pseudomonadota)

NC_004463.1 GSE163004 SRR13238987 SRR13238988 SRR13238989 [33]

Pseudomonas aeruginosa PAO1
(Pseudomonadota)

NC_002516.2 GSE152295 SRR11998427 SRR11998428 SRR11998429 [30]

Yersinia pestis CO92 (Pseudomon-
adota)

NC_003143.1 PRJNA384395 SRR5489122 SRR5489125 NA

C. elegans (Nematoda) GCF_000002985.6GSE149300 SRR11605370 SRR11605378 SRR11605385 NA

https://doi.org/10.1371/journal.pone.0329355.t001
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2.2.1) [35], and the read coverage for each genome base is extracted using SAMtools (ver-
sion 1.17) [36] and BEDtools (version 2.30.0) [37]. Complete commands for these steps are
provided in OpDetect’s GitHub repository.

Feature representation
The feature representation used in this study draws inspiration from signal processing tech-
niques, particularly the work of [38] in classifying human activities using signals from wear-
able sensors. However, instead of analyzing signals over time, we focus on the RNA-seq read
counts across nucleotide bases in a genome. In our case, the different sensors correspond to
multiple RNA-seq samples of the same organism. This perspective allows us to leverage signal
processing advancements for our task, operon detection.

By adopting this representation, we aim to maximize the utilization of information from
RNA-seq data. Previous approaches such as OperonSEQer often relied on statistical analy-
ses of RNA-seq data, which by summarizing the data with statistics removed potential infor-
mative patterns from the input data. Our feature representation enables us not only to use
nucleotide-level signals but also to combine them with primary sequence features, such as
gene length, gene borders, and intergenic distances. Another advantage of our feature repre-
sentation is the compatibility of the final dataset’s shape with convolutional neural network
architectures.

The features in our model are derived from read counts per genome base, paired with
operon labels obtained from ODB.The read counts for each gene are grouped based on
genome annotations, allowing the extraction of gene-specific vectors. These vectors are then
paired for same-strand consecutive genes. Read counts in each pair of genes together with
their intergenic region read counts are assembled into a single vector. The process is repeated
for up to six samples for each organism. All vectors are resampled to a fixed size of 150 (Fig 1).
Following resampling, scaling transforms the read counts to a range of 0 to 1, akin to treat-
ing gene pairs as images. Separate channels are constructed for each part of the gene pairs: the
first gene, intergenic region (IGR), and the second gene (Fig 1). This approach, reminiscent of
RGB channels in images, allows the treatment of each vector as an independent entity within
the feature representation. Additionally, this representation naturally encodes the length and
borders of each segment (i.e., gene, intergenic region, gene). Visualizations of the features

Fig 1. Feature generation process.The read counts per nucleotide (nt) for Gene 1, intergenic region (IGR) and Gene
2 are proportionally sampled into a 150-feature vector. This vector is separated into three channels, one for each
region. On each separated vector, the features outside the corresponding region are zeroed. If there is not IGR, the
corresponding channel will be all zeros.

https://doi.org/10.1371/journal.pone.0329355.g001
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generated for an operon and a non-operon are provided in S1 File. The final shape of each
gene pair’s vector is (150, 6, 3), reflecting the fixed size input vector, number of samples, and
number of channels. Note that these six vectors contain the only features used to train our
model. That is, the genome sequence and annotation are only used to map the reads to the
corresponding genome and generate these feature vectors.

Operon labels, assigned based on ODB annotations, distinguish gene pairs within the same
operon (label 1) or not (label 0), with label 2 indicating insufficient experimental evidence for
operon relationship determination. As ODB contains only experimentally validated operons,
we labelled contiguous genes listed in ODB as belonging to different operons as non-operons
(label 0). To avoid introducing false negatives in the training data, we introduced label 2 to
account for the fact that lack of annotation is not the same as knowing that two genes are not
within the same operon. Label 2 is given to pairs of genes absent from the ODB annotations.
The reason for this is that if two contiguous genes have been studied and found to be in dif-
ferent operons, then it is more likely that they do not belong to the same operon (these pairs
of genes are given label 0) than two contiguous genes for which their operon is unknown
(these pairs of genes are given label 2). Gene pairs labeled as 2 are excluded from the train-
ing data. The number of instances (gene pairs) for each label in our training data is provided
in Table 2.

Machine learning model
CNN-LSTM is the deep learning architecture we adapted from [38]. It combines Convolu-
tional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) recurrent neural net-
works [39] to capture spatial and sequential dependencies in the data. The CNN-LSTM archi-
tecture that is utilized in this study includes a CNN, a Lambda, an LSTM, an Attention, and
a Dense layer, respectively (Table 3). The CNN layer acts as a feature detector, extracting spa-
tial patterns from the input data. A Lambda layer facilitates a smooth transition to the LSTM
layer by reshaping the CNN layer output. The LSTM layer captures sequential dependencies,
utilizing its memory to predict downstream transcription levels. An Attention layer enhances
focus on relevant data regions. To prevent overfitting, dropout regularization is applied. The
Dense layer processes information for the final binary output. OpDetect is an ensemble of ten
of these CNN-LSTM networks and outputs as the probability of a pair of genes being in the
same operon the average probability of this ensemble.

Software and packages
The feature representation pipeline and machine learning model in this study were developed
using Python (version 3.10.13). The list of used packages along with their versions is included
in S1 File. OpDetect code is available at https://github.com/BioinformaticsLabAtMUN/
OpDetect.

Table 2.The number of instances (gene pairs) per label class in our training data. Labels 0 and 1 are used to train
the model, making the final size of training data 10375 gene pairs.
Label Operon(1) Non-operon(0) Unknown(2)
Number of gene pairs 6345 4030 9828

https://doi.org/10.1371/journal.pone.0329355.t002
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Table 3. CNN-LSTM architecture. (None, 150, 6, 3) in the input layer specifies that the CNNmodel can accept
input data with variable batch sizes (None), where each sample has a length of 150 elements (fixed size input
vector), a height of 6 rows (number of samples), and a width of 3 columns (number of channels). The Lambda
layer is used to adjust the shape of the output from the CNN layer to input for the LSTM layer.
Layer Output Shape No. parameters
Input Layer (None, 150, 6, 3) 0
Conv2D (None, 146, 1, 64) 5,824
Lambda (None, 146, 64) 0
LSTM [(None, 146, 64), (None, 64), (None, 64)] 33,024
Self Attention [(None, 1024), (None, 6, 146)] 2,560
Lambda (None, 1024) 0
Dense (None, 2) 2,050

https://doi.org/10.1371/journal.pone.0329355.t003

Training the model
We trained our model using the data shown in Table 2. To prevent overfitting when optimiz-
ing the hyperparameters, 10-fold grid-search cross-validation was employed, averaging results
across folds. The hyperparameters listed in Table 4 were selected to achieve a high AUROC.
AUROC is a metric used to evaluate the performance of binary classification models. The
AUROC can be interpreted as an estimate of the probability that a random positive instance
will be predicted to have a higher likelihood to belong to the positive class (operon) than a
random negative instance. The specifications for the attention layer are exactly as defined
in [38]. We use the default confidence threshold of 0.5 to classify gene pairs as operons. This
threshold is applied on the probabilities output by OpDetect. To support the reproducibility of
the machine learning method of this study, the machine learning summary table is included
in S1 File as per DOME recommendations [40].

Evaluation metrics
To evaluate our model’s effectiveness in operon detection, we consider the F1-score. The
F1-score is defined as:

F1-score = 2 × Precision× Recall
Precision + Recall

(1)

where recall is the proportion of positive instances predicted to be positive, and precision is
the proportion of predicted positive instances which are actually positive. However, due to
limited 0-label instances in five of the seven validation organisms, F1-score calculation can be
based on very few (less than 10) negative instances and hence unreliable. To overcome this,
we also assessed the performance of our model using recall. In the cases where there were
more than 10 negative instances, we also utilized the AUROC, and visualized the ROC curve
to observe the trade-off between the True Positive Rate (TPR) or recall, and the False Positive
Rate (FPR) at various classification thresholds.

Table 4. Hyperparameters used in our final CNN-LSTMmodel.
Hyperparameter Value Hyperparameter Value Hyperparameter Value
Batch size 32 Epoch 100 Dropout rate 0.3
Kernel size (5, 6) CNN filters 64 LSTM units 64
Optimizer Adam Learning rate 0.001
Loss function Categorical Early stopping Early stopping

cross entropy Metric AUROC patience 10

https://doi.org/10.1371/journal.pone.0329355.t004
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Results and discussion
Cross-validation results
For the aggregated training data of seven organisms (Table 1, top half), the performance of
OpDetect over 10-fold cross-validation is shown in Table 5. Additionally, we evaluated the
performance of a CNN architecture with a GlobalMaxPooling2D layer (instead of the LSTM
layer) and a CNN-LSTM architecture without an attention layer (results provided in S1 File),
these two architectures were outperformed by OpDetect’s final architecture. The number of
potential alternative network architectures is combinatorial and exploring all of them is out-
side the scope of this work. Thus, we cannot be certain that OpDetect’s final architecture is the
optimal one for this task. Further investigation is needed to assert this.

Comparative assessment
We evaluated the performance of OpDetect on identifying pairs of genes belonging to the
same operon on seven organims (Table 1, bottom half) and compared its performance with
that of Operon-mapper, OperonFinder, OperonSEQer and Rockhopper. The number of oper-
ons and non-operons collected for these seven organisms is provided in Table 6. Collected
data are incomplete, as we only used experimentally-confirmed operons in ODB and we
implemented a strict approach to label gene pairs as non-operons. In other words, there are
actual operons and also non-operons missing from our data. This has implications during the
evaluation of the methods; for example, a predicted operon might in fact be an operon (i.e.,
the prediction is correct) but it will be considered a false positive because that operon has not
been experimentally-confirmed. To test the generalizability of OpDetect, we included in our
validation data B. burgdorferi’s data and C. elegans’s data. B. burgdorferi belongs to a phylum
(Spirochaetota) not present in our training data and C. elegans is one of the few eukaryotes
known to have operons [41].

During the comparative assessment, we faced some challenges with some of the meth-
ods included in the evaluation. These challenges were: i) Due to their size, we were unable
to load the genome of C. elegans to the Operon-mapper website for prediction. As a result,

Table 5. OpDetect’s 10-fold cross-validation results. The 90% confidence interval suggests that the model’s
performance metric is 90% probable to be within this range.
Performance metric Mean value 90% Confidence interval
Recall 89.17% [88.41%, 89.92%]
F1-score 89.71% [88.98%, 90.43%]
Accuracy 90.37% [89.70%, 91.04%]
AUROC 0.892 [0.884, 0.899]

https://doi.org/10.1371/journal.pone.0329355.t005

Table 6. Number of gene pairs belonging to the same operon (P) and not belonging to the same operon (N) per
organism in our validation data.
Organism No. of Operons (P) No. of Non-operons (N)
C. elegans 1184 56
P. profundum 676 87
P. aeruginosa 67 3
B. diazoefficiens 15 2
B. burgdorferi 20 0
A. fabrum 14 0
Y. pestis 6 0

https://doi.org/10.1371/journal.pone.0329355.t006
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we do not possess predictions of C. elegans operons from Operon-mapper. ii) Due to the
reliance of Operon Finder on external data sources, the predictions generated by this method
are restricted to the organisms that are available within those specific sources. Consequently,
we were unable to obtain predictions from Operon Finder for Y. pestis CO92, B. diazoeffi-
ciens USDA 110, and C. elegans. iii) OperonSEQer predicted as belonging to the same operon
gene pairs from different strands, whereas it is known that genes within the same operon must
be located on the same strand [42]. iv) OperonSEQer and Operon Finder did not provide a
prediction for each gene pair.

In the comparative assessment when a method failed to make a prediction for a pair of
genes, we considered this as predicting that the gene pair was a non-operon and assigned a
probability of 0.49 so that the performance metrics were calculated on the same number of
gene pairs for all methods. We decided to do this as we argue that failing to make a prediction
for a consecutive gene pair on the same strand should be penalized. Assigning a probability
of 0.49 indicates that this data point is on the decision boundary of the classifier (i.e., both
labels are almost equiprobable) and should have less impact on the calculation of the AUROC
than assigning a different probability value. To calculate the AUROC, when possible, we used
probabilities. For OperonSEQer, we used as probabilities the average over its six models’ pre-
dictions. For Operon Finder which predicts a probability per gene instead of per gene pair we
used as probability for a gene pair the average of the probabilities of the individual genes. In
the case of Rockhopper, we used the predictions (i.e., 0s and 1s) to draw the ROC curves and
calculate the AUROCs. The results of our comparative assessment are provided in Table 7.
Fig 2 shows the ROC curves for C. elegans and P. profundum.

These results indicate that OpDetect can reliably identify operons even in an eukaryote
(C. elegans) while Rockhopper and OperonSEQer, the two other tools which can predict
C. elegans’s operons, are close to or below the random classifier’s performance (Fig 2 left).

Table 7. F1-scores for the two validation organisms with more than 10 non-operon labels, C. elegans and P. profundum
SS9, and recalls for all seven validation organisms.The highlighted numbers in the tables represent the best perfor-
mance per organism.Themean recall for Operon-mapper and Operon Finder was calculated excluding the missing
values. ∗indicates that the target organism is included in the training data of the corresponding method.
F1-score
Organism Operon-mapper Rockhopper Operon Finder OperonSEQer OpDetect

C. elegans NA 11% NA 32% 79%

P. profundum SS9 58% 40% 91%∗ 96% 95%

Recall
Organism Operon-mapper Rockhopper Operon Finder OperonSEQer OpDetect

C. elegans NA 6% NA 19% 66%

P. profundum SS9 42% 25% 89%∗ 99% 96%

P. aeruginosa PAO1 60% 52% 94% 91% 100%

B. diazoefficiens USDA 110 67% 20% NA 73% 100%

B. burgdorferi B31 25% 30% 85% 75% 100%

A. fabrum str. C58. 14% 36% 93% 86% 100%

Y. pestis CO92 100% 100% NA 100% 100%

Average ± s.d. 51.3± 31.2 38.4± 30.6 90.2± 4.1 77.6± 27.9 94.6± 12.7

https://doi.org/10.1371/journal.pone.0329355.t007
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Fig 2. ROC curve for C. elegans (left) and P. profundum SS9 (right). Diagonal dotted line indicates a random classifier and top dashed line indicates a perfect classifier.

https://doi.org/10.1371/journal.pone.0329355.g002

For P. profundum, the predictive performance of OperonSEQer and OpDetect is compara-
ble, with OperonSEQer achieving the highest F1-score (96% vs 95%, Table 7) and OpDetect
obtaining the highest AUROC (0.83 vs 0.78, Fig 2 right). Additionally, OpDetect achieves the
highest average recall with the second-smallest standard deviation, suggesting that OpDetect’s
recall is consistent for a wide range of organisms.

To further explore OpDetect prediction of C. elegans’s operons, we generated predictions
for all C. elegans’s consecutive gene pairs transcribed on the same strand. OpDetect predicts
19.8% of the gene pairs as being part of an operon. This corresponds to 33.8% of C. elegans
genes predicted as being part of an operon. It has been reported that at least 15 to 17% of C.
elegans genes are in operons [43,44]. The number of genes predicted by OpDetect as being in
an operon is consistent with this lower bound and can be considered an upper bound. This
warrants further investigation.

Assessing the effect of data leakage. When we performed our comparative assessment,
we noticed that, in one case, one of the methods included in the comparative assessment
had data from the corresponding validation organism in its training data (Table 7). This is a
form of data leakage in the context of claiming that an approach can predict operons in an
unseen organism. Data leakage refers to the introduction of information in the training data
(about the target function or about the test data) that should not be legitimately available
to learn from. Data leakage usually causes an overestimation of a model’s predictive perfor-
mance. Data leakage is a widespread problem in machine learning applications [45], includ-
ing machine learning-based bioinformatics [46]. Thus, we decided to quantify the effect of
having the target organism in the training data. To do this, we evaluated all the methods in
the training data and included two versions of OpDetect: i) one where we trained OpDetect
and assessed its performance using cross-validation on data that included the target organism
(data leakage-affected version). In this version, gene pairs of the target organism were ran-
domly partitioned into training and testing. Thus, individual gene pairs were not in the train-
ing and testing data simultaneously; and ii) another version we retrained excluding all gene
pairs of the target organism (data leakage-free version). This means that we re-trained OpDe-
tect for each of the training organisms so that we could have a data leakage-free version for
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each organism in our training data. Note that excluding the target organism from the training
of the other methods was not possible since we used their pre-trained models.

Table 8 presents the F1-scores and AUROCs for each method on the training organisms.
“OpDetect NE” refers to OpDetect without excluding the examined organism from the train-
ing process (i.e., affected by data leakage). The ROC curves for these organisms can be found
in S1 File. For OpDetect, data leakage on average inflates by 2.5% both performance metrics,
and this overestimation of predictive performance can be as high as 5%. This highlights the
need to ensure a strict separation of training and testing/validation data when assessing the
generalizability of machine learning-based models.

OpDetect outperforms all other methods in terms of average F1-score and average
AUROC and, considering only data leakage-free methods per organism, OpDetect is the
method that achieves the highest F1-score and AUROC in all seven bacteria (Table 8).

OpDetect achieves stable and accurate operon prediction for a wide range of organ-
isms. Figs 3 and 4 show the distribution of F1-scores and AUROCs achieved by the five
methods in the seven training organisms and the two validation organisms with more than 10
non-operon labels (Tables 1 and 6). For these analyses, we used the OpDetect data leakage-
free result (Table 8). OpDetect has less spread in its performance in terms of F1-score and

Table 8. F1-scores and AUROCs achieved on the training organisms. ∗ indicates that the target organism is included
in the training data of the corresponding method (i.e., data leakage has occurred).“OpDetect NE” refers to OpDetect
without excluding the examined organism from the training process (i.e., affected by data leakage). The highlighted
numbers in the tables represent the best performance per organism achieved without data leakage.
F1-scores
Organism Operon-mapper Rockhopper Operon Finder OperonSEQer OpDetect OpDetect NE

E. coli 49%∗ 73%∗ 86%∗ 88%∗ 85% 90%∗

C. glutamicum 50% 12% 79%∗ 81% 86% 89%∗

L. monocytogenes 57% 20% 92%∗ 65% 97% 98%∗

L. pneumophila 56% 28% 86%∗ 89% 93% 96%∗

H. pylori 59% 14%∗ 90% 93% 97% 97%∗

B. subtilis 57%∗ 74%∗ 90%∗ 87%∗ 93% 95%∗

M. pneumoniae 63% 42% 48% 87% 89% 90%∗

Average ± s.d. 56± 5% 38± 26% 82± 15% 84± 9% 91± 5% 94± 4%

AUROC
Organism Operon-mapper Rockhopper Operon Finder OperonSEQer OpDetect OpDetect NE

E. coli 0.68∗ 0.78∗ 0.91∗ 0.88∗ 0.95 0.97∗

C. glutamicum 0.65 0.53 0.82∗ 0.77 0.92 0.95∗

L. monocytogenes 0.74 0.56 0.90∗ 0.69 0.97 0.98∗

L. pneumophila 0.66 0.57 0.79∗ 0.78 0.86 0.87∗

H. pylori 0.74 0.54∗ 0.89 0.86 0.97 0.98∗

B. subtilis 0.73∗ 0.79∗ 0.89∗ 0.86∗ 0.94 0.97∗

M. pneumoniae 0.72 0.62 0.64 0.80 0.90 0.92∗

Average ± s.d. 0.70± 0.04 0.63± 0.11 0.83± 0.1 0.81± 0.07 0.93± 0.04 0.95± 0.04

https://doi.org/10.1371/journal.pone.0329355.t008
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Fig 3. Violin plots of the F1-scores achieved by each method in the seven training organisms and the two val-
idation organisms with more than 10 non-operon labels.We used OpDetect data leakage-free result (Table 8).
For each method, calculations excluded their missing results. That is, for Operon-mapper and Operon Finder the
distribution is on eight organisms instead of nine, as these two methods could not predict operons in C. elegans. Red
circles indicate the average F1-score and blue diamonds the median F1-score per method.

https://doi.org/10.1371/journal.pone.0329355.g003

AUROC than the other methods (Figs 3 and 4) while achieving higher F1-score and AUROC.
This indicates that OpDetect is able to balance precision and recall. Although Operon Finder
showed the second-best performance in terms of AUROC and F1-score overall (Figs 3 and 4),
it is limited to making predictions for specific species due to its reliance on features obtained
from external data sources. For example, Operon Finder could predict only four out of seven
species in our validation data (Table 7).

We employed the Friedman non-parametric statistical test that is suitable for comparing
multiple classifiers over multiple datasets to assess the statistical significance of AUROC dif-
ferences between the methods [47]. To do this, we ranked each model based on the AUROC
obtained on all seven training organisms and two validation organisms, C. elegans and P. pro-
fundum SS9. The model with the highest AUROC was assigned rank one, while ties received
the same rank. Missing values were ranked last. The Friedman test yielded a p-value of
1.89× 10–5, indicating that the mean AUROC rank obtained by certain classifiers significantly
deviates from the others. To find out which models differ in terms of AUROC, we used sev-
eral pairwise post hoc tests as recommended in [48]; namely, Quade, Miller, Nemenyi, and
Siegel post hoc tests. All statistical tests were carried out in R (version 4.4.2) using the pack-
ages PMCMRplus (version 1.9.12) [49] and scmamp (version 0.3.2) [50]. We observed that
two groups of classifiers with similar ranks emerged, as illustrated in Fig 5. OpDetect’s ranks
are comparable to those of Operon Finder and OperonSEQer. All pairwise post hoc tests
agreed that OpDetect’s AUROC ranks are statistically better (adjusted p-values <0.002) than
those of Operon-mapper and Rockhopper. There were no statistically differences consistently
found among the AUROC ranks of the other four methods.

Case study: Detecting noncontiguous operons
Noncontiguos operons (NcOs) [51] are a special case of operons where genes belonging to the
same transcription unit (i.e., co-transcribed) are separated by an antisense gene. Iturbe et al.
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Fig 4. Violin plots of the AUROC achieved by each method in the seven training organisms and the two val-
idation organisms with more than 10 non-operon labels.We used OpDetect data leakage-free result (Table 8).
For each method, calculations excluded their missing results. That is, for Operon-mapper and Operon Finder the
distribution is on eight organisms instead of nine, as these two methods could not predict operons in C. elegans. Red
circles indicate the average AUROC and blue diamonds the median AUROC per method. Horizontal dashed line
indicates the AUROC of a random classifier.

https://doi.org/10.1371/journal.pone.0329355.g004

Fig 5. Critical Difference plot for AUROC, over seven training organisms and two validation organisms. Clas-
sifiers that do not show significant differences according to the Nemenyi test at a significance level of 0.05 are
connected with a horizontal line. The methods with the best performance are to the right.

https://doi.org/10.1371/journal.pone.0329355.g005

(2024) [52] stated that NcOs were not detected by then-current operon identification tools,
and showed how 18 NcOs in Staphylococcus aureus could be detected by Nanopore direct
RNA sequencing technology. We confirmed that OperonSEQer and Operon-mapper did not
predict any of these NcOs. Thus, we decided to further test OpDetect on this challenge. To
do this, we used the chromosome sequence and genome annotation of Staphylococcus aureus
subsp. aureus NCTC 8325 (NC_007795.1), and Illumina NovaSeq 6000 RNA-seq data for this
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bacterium (GEO accession ID GSE265954, “WT No calprotectin” samples). In these 18 NcOs,
there were 49 pairs of genes and 18 of these 49 gene pairs jumped over an antisense gene (see
Figure 1B of [52]). Out of the 31 pairs of genes separated by an intergenic region (instead of
an antisense gene), OpDetect identified 28 (or 90%) as belonging to the same operon. The
three gene pairs not identified have a predicted probability of being an operon of 0.2, 0.41 and
0.46. Out of the 18 gene pairs separated by an antisense gene (Table 9), OpDetect identified
five (or 28%). Two more of these gene pairs have a probability of being an operon greater than
0.2. As future work, it might be worth optimizing the confidence threshold instead of using
the default of 0.5.

Additionally, we looked at whether there were other gene pairs (not detected in [52])
predicted by OpDetect as belonging to the same operon that are separated by an antisense
gene. There were eleven such gene pairs (Table 10). Further research is needed to confirm
these gene pairs as being in a NcOs. The results of this case study indicate that OpDetect can
identify NcOs, opening the door to the computational identification of this special type of
operons.

Conclusion
In this work, we introduce OpDetect, a species-agnostic method for operon identification
from RNA-seq data. OpDetect is, in fact, the only method we evaluated capable of precise

Table 9. Eighteen S. aureus gene pairs identified in [52] as belonging to the same operon while being separated by
an antisense gene. As criteria to deem these gene pairs NcOs, Iturbide et al. have the restriction that the average
read depth coverage at three consecutive nucleotides in the intergenic region (i.e., the intervening antisense gene)
does not fall below 0.1 reads per nucleotide.The SAOUHSC_ preceding the NCBI gene symbols is omitted in the
table. Highlighted are those gene pairs predicted by OpDetect as belonging to the same operon with a probability
of at least 0.2.
Gene pair Strand OpDetect’s Max. probability

probability in ensemble
00208 - 00211 → 0.01 0.02

00472 - 00474 → 0.87 0.94

00693 - 00695 → 0.01 0.02
00825 - 00827 → 0.03 0.10
00979 - 00981 → 0.00 0.01

01073 - 01071 ← 0.23 0.51

01072 - 01074 → 0.42 0.66

01199 (fabB) - acpP → 0.19 0.32

01330 - 01332 → 0.92 0.96

01352 - 01354 → 0.59 0.75

01915 (menC) - 01913 (ytkD) ← 0.13 0.39
02109 - 02107 ← 0.00 0.01

02379 - 02377 ← 0.71 0.92

02529 - 02527 (fmhB) ← 0.18 0.37
02534 - 02532 ← 0.05 0.12

02544 (moaB) - 02542 (moeA) ← 0.77 0.93

02833 (strA) - 02836 ← 0.02 0.04
02995 - 02991 ← 0.00 0.00

https://doi.org/10.1371/journal.pone.0329355.t009
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Table 10. Eleven S. aureus gene pairs predicted by OpDetect as belonging to the same operon while being sep-
arated by an antisense gene.The SAOUHSC_ preceding the NCBI gene symbols is omitted in the table. These
genes were not identified in [52].
Gene pair Strand OpDetect’s Max. probability

probability in ensemble
00025 - 00027 → 0.53 0.78
00287 - 00290 → 0.56 0.82
00912 - 00914 → 0.51 0.75
02232 - 02235 → 0.50 0.75
02658 - 02656 ← 0.67 0.84
01938 - 01936 ← 0.85 0.96
01583 - 01580 ← 0.50 0.67
01490 - 01488 ← 0.54 0.75
01447 - 01441 ← 0.69 0.90
00155 - 00153 ← 0.86 0.99
00028 - 00026 ← 0.61 0.90

https://doi.org/10.1371/journal.pone.0329355.t010

and sensitive identification of operons in an eukaryote, C. elegans. OpDetect has the follow-
ing advantages: i) By exclusively relying on genome annotations and RNA-seq data, OpDetect
makes operon detection accessible for more species. ii) By using a new feature representation
for RNA-seq data, OpDetect can use a CNN-LSTM architecture. This architecture captures
both spatial and sequential patterns in the RNA-seq data. iii) By using experimentally eval-
uated operons and conservatively labelling non-operons, we reduced the number of poten-
tially mislabeled gene pairs in OpDetect training data. It is well-known in machine learning
that the cleaner the training data the better the generated model. iv) OpDetect outperforms
four state-of-the-art operon prediction methods in terms of F1-score and AUROC. For future
work, we propose exploring the inclusion of promoter and terminator data, as they have been
reported to have a significant influence on operon detection [5]. Finally, based on our results
on assessing the effect of data leakage, we recommend having a strict partition of organisms
for training and validation of machine learning-based methods to avoid overestimating their
generalizability.
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