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Abstract

As a core component of the fully mechanized mining face, intelligent control of the
shearer is fundamental to achieving unmanned mining and improving equipment
reliability. To address the limitations of traditional optimization and deep reinforcement
learning algorithms in achieving rapid and accurate self-adaptive control, this study
proposes a novel shearer drum height control strategy based on the Deep Determin-
istic Policy Gradient (DDPG) algorithm. The 4602 workface at Yangcun Coal Mine
and the MG2 x 55/250-BWD shearer model were used as engineering cases. A hybrid
SVD-CWT and AlexNet transfer learning method was employed to identify coal and
rock cutting states, achieving an accuracy of 95.06%. A DDPG-based self-adaptive
hydraulic height adjustment model was then developed and validated through Matlab/
Simulink and AMESim co-simulation, as well as a similarity-based physical test plat-
form. Results show that the proposed method significantly outperforms conventional
and fuzzy PID controls, reducing response time to 0.091s and steady-state error to
0.00052 mm. Compared with TD3 and SAC algorithms, the system exhibited faster
response, higher stability, and stronger anti-interference capability. The mean maxi-
mum error between simulation and experimental results was only 3.14%, confirming
the feasibility and robustness of the proposed control strategy. This study provides a
reliable approach for intelligent, adaptive height control of shearers under complex
coal seam conditions.

1 Introduction

As a core piece of equipment in fully mechanized mining faces, intelligent control of
the shearer lays the foundation for unmanned, intelligent mining operations. Due to
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geological activity, coal seam thickness often varies significantly across the mining
face, requiring continuous adjustment of the shearer drum height along the coal-
rock interface to maximize extraction rates and minimize rock cutting. Self-adaptive
height adjustment of the shearer is therefore essential for effective intelligent control.
This requires accurate real-time identification of coal and rock cutting states, using
these states as a basis to adjust drum height dynamically in response to changes in
coal seam thickness. This capability enables the front and rear drums to adaptively
adjust height as the shearer moves forward, optimizing coal extraction while avoiding
contact with the roof and floor. Consequently, achieving environment-self-adaptive
drum height adjustment is a prominent focus in this research area, both domesti-
cally and internationally. Research in this field can be categorized into three main
directions:® studying the height adjustment system’s performance through software
simulation. Zhang et al. [1] conducted a co-simulation study on system dynamics
using AMESim and ADAMS to analyze and improve the arm vibration phenomenon,
implementing a PID-based electro-hydraulic proportional control system for precise
drum height adjustment. Zhang et al. [2] used Automation Studio software to simulate
the drum height adjustment process and examined the advantages and disadvan-
tages of different neutral functions in the directional control valve, providing insights
for the design of shearer hydraulic height adjustment systems.@ Improving the height
adjustment system’s performance through analysis of its mathematical model. Su

et al. [3] analyzed the effects of cylinder stroke on the dynamic characteristics and
stability of the hydraulic height adjustment system by developing a dynamic model for
the shearer’s hydraulic height adjustment system. Ren et al. [4] proposed an opti-
mized trajectory for memory cutting by developing a memory cutting model based on
research into shearer posture and position tracking.® Enhancing the height adjust-
ment control system’s performance through improved control algorithms. References
[5-9] have integrated optimization algorithms into traditional PID control strategies,
forming modified PID control strategies. Comparative results with traditional control
strategies indicate that this approach effectively addresses issues of slow response
speed and low accuracy in shearer drum height adjustment control systems. Liu et al.
[10] proposed a hybrid trajectory-tracking control strategy based on Linear Quadratic
Regulator-Extended Boundary Conditions(LQR-EBC), which was validated experi-
mentally for feasibility and performance advantages. In recent years, rapid advances
in 10T, big data, Al, and 5G technology have provided advanced research tools for
promoting intelligent, unmanned mining at fully mechanized faces. Liu et al [11] intro-
duced an indirect self-adaptive prescribed performance control method using a novel
neural network observer to achieve automatic height adjustment for the shearer.
Additionally, Cui [12] developed an intelligent shearer height adjustment and speed
control system based on 5G and cloud-edge collaborative technology, with industrial
testing verifying its feasibility.

An analysis of the aforementioned literature reveals several limitations in previ-
ous approaches to studying the control performance of hydraulic height adjustment
systems using classical control algorithms (such as conventional PID and fuzzy PID
control). While enhancing the performance of hydraulic components can improve
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the overall performance of the hydraulic height adjustment system to a certain extent, it does not provide environmental
adaptability and thus fails to meet the basic requirements of intelligent and unmanned mining. Traditional control algo-
rithms also have drawbacks to varying degrees; for instance, conventional PID control can achieve good results when its
parameters are properly tuned, but it struggles to maintain the original control effect and tracking accuracy under complex
coal seam occurrence conditions, and parameter tuning is both difficult and low in precision [13]. Although PID controllers
with parameters tuned via fuzzy controllers, neural networks, or optimization algorithms have improved adaptability to
some extent, the dynamic adaptive adjustment of fuzzy rules and neural network parameters is difficult to achieve [14],
resulting in a lack of self-learning and self-improvement capabilities, which limits their suitability for working conditions
with complex occurrence conditions. Deep reinforcement learning algorithms, which continuously update their learning
strategies based on rewards or penalties obtained from interactions with the environment, are more adaptable to chang-
ing environments and have been widely applied in fields such as UAV path planning, robot posture control, autonomous
driving [15-23], achieving favorable control effects. Furthermore, In proton exchange membrane fuel cells, self-regulation
methods have successfully addressed dynamic operating conditions [24]. Current typical deep reinforcement learning
algorithms include DQN, DDPG, SAC, and TD3. However, the shearer’s hydraulic height adjustment system is a strongly
nonlinear dynamic system with a continuous action space, requiring a balance between “control precision” and “real-time
performance”. Therefore, determining an algorithm suitable for this system is particularly crucial. DQN struggles with
large action spaces, especially continuous action scenarios, and has low sensitivity to environmental changes, making it
unable to respond promptly to dynamic environmental changes [25]. The SAC algorithm introduces an entropy regulariza-
tion mechanism to enhance exploration, encouraging the agent to try more actions by maximizing policy entropy, but this
may also cause the policy to fall into a “suboptimal strategy” in complex coal seam conditions-over-exploring non-optimal
actions and struggling to converge to a precise control strategy [26]. The TD3 algorithm addresses the “Q-value overesti-
mation” issue in DDPG by introducing a dual Critic network and a delayed policy update mechanism. While this improves
stability, it increases the number of network layers and parameter scale, leading to a significant increase in computational
load and reduced computational efficiency, which severely affects the real-time performance of the adjustment process
[27]. As one of the deep reinforcement learning algorithms, DDPG is a deep reinforcement learning algorithm that com-
bines value iteration and policy iteration [28,29]. It can perform self-learning, self-tuning, and adaptive adjustment accord-
ing to complex working conditions, while balancing the requirements of “control precision” and “real-time performance”.

To achieve self-adaptive height control for a shearer, it is essential to address the issue of identifying the coal-rock
cutting state. Over the years, researchers domestically and internationally have proposed various coal-rock recognition
methods, which can be categorized into the following types:® Radiographic detection, based on differences in radioac-
tive element content between roof and floor rocks that result in distinct radiation energy and intensity levels, allowing
for estimation of coal seam thickness [30]; ® Operational state detection, using cutting force signals, vibration signals,
or cutting motor current to identify coal-rock interfaces [31-33]; ® Acoustic emission and radar detection, which extract
characteristic acoustic signals generated during coal-rock cutting for identification [34,35]; @ Image recognition, includ-
ing visible and infrared image processing [36—38]. However, these methods often struggle to achieve high recognition
accuracy.

In response to this challenge, this study proposes a technique that denoises the time-domain vibration acceleration
signals of the cutting drum using SVD-CWT, converts them to time-frequency spectrograms, and inputs them into an Alex-
Net transfer learning model to recognize the coal-rock cutting state. This recognition result serves as the basis for shearer
height control, for which we propose a DDPG-based self-adaptive height control strategy. The feasibility and effectiveness
of this control strategy are verified through system modeling, simulation analysis of control performance, co-simulation of
control strategy, and physical testing, indicating that the strategy is highly suitable for self-adaptive height control systems
in nonlinear, complex conditions with continuous action spaces. This approach is expected to advance intelligent shearer
cutting control.
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2 Theoretical background
2.1 The mathematical model of the height adjustment control system

The structure of the shearer’s self-adaptive height adjustment hydraulic system is shown in Fig 1.

controller

| 7

Fig 1. Structure diagram of the self-adaptive height adjustment hydraulic system of the shearer. 1-Height adjusting hydraulic cylinder; 2-balance
valve; 3-electro-hydraulic proportional directional valve; 4-height adjusting oil pump; 5-overflow valve; 6-filter; 7-oil tank; 8-detecting device; 9-rocker arm.

https://doi.org/10.1371/journal.pone.0329347.9001
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The control system for increasing the electromechanical-hydraulic ratio in shearers typically consists of a proportional
amplifier, electro-hydraulic directional valve, lifting hydraulic cylinder, interference signals, and signal detection and pro-
cessing devices [8]. The system’s structure is illustrated in Fig 2.

The transfer functions of the components in the system shown in Fig 2 are determined based on the block diagram.

The proportional amplifier outputs a current that is proportional to the input voltage, and can be considered a propor-
tional element:

Gm (S) =Km (1)

Where, K, is proportional amplification factor, A/V.
In engineering, the proportional direction valve is generally considered a second-order element, with the transfer func-
tion given by:

Ky
= %G
op T s+l 2)

Wy

G, (S) =

Where, K, is the flow gain of the proportional direction valve, m3 - s~ - A~"; w, is the natural frequency of the propor-
tional direction valve, rad - s7" ¢, is the damping ratio of the proportional switching valve.

In engineering, when the elastic load is neglected, the actuator and controlled object are generally considered as a
combination of an integrator and a second-order element, with the transfer function given by:

Kh
S(S+Zs+1)

Gn(S) =

Where, K}, is the gain of the actuator hydraulic cylinder, K, = 1/Ap; Ap is the effective working area of the hydraulic
cylinder, m?, Depending on the direction of the piston rod movement, either the piston area A, or the annular area A, is
considered.; ¢, is the damping ratio of the hydraulic cylinder-load mass system; wj, is the natural frequency of the hydrau-
lic cylinder-load mass system, rad - s™",

The input of the displacement sensor is the displacement signal of the hydraulic cylinder’s piston rod, and the output is
a voltage signal fed back to the comparator. This can be simplified as a proportional element:

Gt (S) = Ky (4)

Interference
Signal

A 4

Signal Setting Proportional Proportional Lifting Hydraulic X(@) _
Device Amplifier Directional Valve Cylinder
Position
Sensor

Fig 2. The block diagram of the height adjustment control system for the shearer.

https://doi.org/10.1371/journal.pone.0329347.9002
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Where, K; is the gain coefficient of the displacement sensor, V/m.

Based on the above analysis and in conjunction with reference [39], the transfer function block diagram of the system

can be derived, as shown in Fig 3.

The rationality of the height adjustment system parameters and the validity of AMEsim-Simulink co-simulation support
have been verified in the project team’s prior research [8], and thus are not elaborated herein. The simulation parameters
for each component are selected as shown in Table 1, F; is the external disturbance force acting on the piston, kN; V, is

equivalent total volume, m?.

2.2 Geometric model of shearer height adjustment system

A simplified diagram of the geometric structure of the shearer’s height adjustment system is shown in Fig 4. In this dia-
gram, solid and dashed lines represent the drum’s two extreme positions: lowest and highest, respectively. Here, « is the
adjustment cylinder angle at the two extreme positions, (o); v is the piston rod extension speed (mm/s); L, is the length

S
i

As) -

2
—'s+1_’®_’

Ky XG5)
2 2 >
's(s—2+ﬁs +1)
7 W,

F Kw[
— 1+
4
UG) t _ AUG) 1(s) 2
_ o?
U,(s)

h

h

Fig 3. Transfer function block diagram of the self-adaptive height adjustment control system.

https://doi.org/10.137 1/journal.pone.0329347.9003

Table 1. Simulation parameters.

Parameter Value

Ar 2.0106 x 1072m?
Ay 1.2252 x 1072m?

¢h 0.7

K 2.25AV

Ky 6.56Vm-"!

Ky 4.8 x 107*m3s A
wy 157rads”

Cv 0.2

Kee 4.74 x 107?m% /N - S
Pe 0.9 x 10°Pa?

FL 5kN

wh 127 2rads”’

Ch 0.1

7 0.1803 x 1072m?

https://doi.org/10.1371/journal.pone.0329347.t001
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Fig 4. Simplified schematic diagram of shearer height adjustment hydraulic system.

B

https://doi.org/10.1371/journal.pone.0329347.9004

of the minor rocker arm (mm); L, is the length of the major rocker arm (mm); L, is the distance between the two hinge
points (mm);the angles «; and as are the angles between the piston and the minor rocker arm when the drum is at its
two extreme positions (); a3 is the rotation angle of the major and minor rocker arms, (c); Vi a,, Vja,, V14, @nd v, are

the speed components of the piston rod extension v along and perpendicular to the minor rocker arm at the drum’s two
extreme positions (mm/s); va, v, and v, are the total movement speed of the drum, and its horizontal and vertical speed

components (mm/s), respectively, when the drum is at its highest position; H is the maximum adjustable height of the
drum in the vertical direction (mm).
Fig 4 shows that the vertical adjustment speed of the shearer drum height v is:

Vo1 = Vo - COS a3

Vo _ Vi,
L, Ly
From Equation (6), we obtain:
Via, - L
Vo = Ll

Via, is:

Via, = V-8Sinas

2 2 2
Sino@\/l_(u L oL

Qa3 = Q5 — 0y (10)
Ly 24 La%—(L4vt)2
Cosas = *——— 1 —— +§L1L( V)
COS g = Li24le™L*
1= 500 (1)
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From equations (5)-(11), the relationship between the piston extension speed v and the vertical adjustment speed v,
of the shearer drum height can be derived as follows:

- cos (a5 — ay)

2L, (L + Vi) (12)

Lyv L2 4 (L4 vt)> = L5?
Vo = T, /1=

Li24L3%—(L+vt)?
2L1L3

) L2+ (L £)% = 132
= o=t [ I

L 2414212

Where, a5 = arccos TRy

, (i = arccos

(13)

Where, piston displacement: x = [v
Using equations (12) and (13), the relationship between the extension and retraction displacement of the height adjust-
ing hydraulic cylinder piston and the change in drum height can be determined.

2.3 Deep deterministic policy gradient algorithm

The core concept of Deep Reinforcement Learning (DRL) is to use deep neural networks to approximate the value and
policy functions within reinforcement learning, with the objective of maximizing cumulative rewards to enable accurate envi-
ronmental perception and precise control over the targeted system [40]. The Deep Deterministic Policy Gradient (DDPG)
algorithm is a model-free DRL approach designed for continuous action spaces [41,42]. It achieves controller training and
analysis solely based on the input-output data of the controlled system. The DDPG framework consists of an agent, rewards,
an environment, an action space, and a state space. The agent comprises policy and learning algorithms, with its functions
implemented through an Actor-Critic network structure. The Actor network models a function that maps control variables to
actions, while the Critic network seeks an optimal policy by approximating the state-action value function Q™ (st, a;). Using
the Bellman equation, the Critic network calculates the cumulative reward for executing a specific action a; in a given state s;.

Q" (s, @) = Ersiy o5 [ (St @) + VEay  ~on [Q7 (Stt1, @t11)]] (14)

Where, s, is the initial state; s¢; is the state at the next time interval; a; is a randomly chosen action taken in the initial
state; aty; is the optimal action taken in the subsequent state; r(s;, a;) is the immediate reward for an action a; taken in a
given state s;; v is the discount factor; Q™ (s;, &) is the state-action value function; E is the expected value.

Since the policy in DDPG is time-invariant, it can be expressed as: a = 1 (s), Consequently, we have:

QM (St’ at) = Ert,3(+1NS [r(St, at) + ’YQM (StJrlv M (strl))] (1 5)

The Critic network is parameterized using neural network weight parameters 9, and the loss function is defined based
on mean squared error as follows:

L (90) o [(yt— Q (Sz, a| 00))2}

(16)
Here, the estimated value of the action-value function y; is:

yi=r(sua) +1Q (sen s (sia] 0 0) (17)
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w (st+1| 9“/) M (3t+1= w (st+1| 9“’) ’ 90/) are the target networks of the Actor and Critic, respectively, using a soft target
update strategy.

09 =799 + (1-7) 0% (18)
or =1t + (1-71) or (19)

Where, 7 the momentum update rate.

Ultimately, the Critic network is updated by minimizing the loss function L (GQ), yielding an optimal policy evaluation
value Q for assessing the action.

The Actor network is parameterized using neural network weight parameter 6#, and its iterative updates are performed
using the sample gradient method as follows:

a=pu(slo") (20)

Voup| st = Estus {vao (sualo9)| o, Vot (3167)

a=p (21)
Where, VQ;LM| st is the policy gradient for updating the Actor network.
A policy noise mechanism is introduced to explore improved policies.
' (st) = p (s 6) + N (22)

Where, 1/ (s;) is the target policy obtained through exploration, u (st| 0{‘) is the original Actor policy, N is the policy noise.
During the agent’s search for the optimal policy, ‘State-Action’ pairs, represented as (s, a;, 11, St+1), are stored in the
experience replay buffer. These pairs provide sample data for training and updating the Actor and Critic networks.

3 Proposed method

Taking the 4602 working face coal seam of the Yanzhou Coal Mining Group Yangcun Coal Mine and the MG2 x 55/250-
BWD shearer spiral drum as the engineering objects, typical operating parameters were obtained. A method was
proposed that utilizes Singular Value Decomposition (SVD) combined with Continuous Wavelet Transform (CWT) to
denoise the vibration acceleration time-domain signals of the drum and convert them into time-frequency spectrograms,
which are then input into the AlexNet transfer learning model for coal-rock cutting state recognition. Based on the rec-
ognition results, the current operating condition is determined, and the required displacement for adjusting the piston of
the hydraulic cylinder is calculated using Equation (13). During this adjustment process, the Deep Deterministic Policy
Gradient (DDPG) algorithm is employed as the controller for the self-adaptive height adjustment system of the shearer.
A corresponding simulation environment, reward mechanism, and RL agent are designed. The DDPG controller contin-
uously adjusts the system to minimize the error between the target and actual piston displacement, thereby achieving
precise adjustment of the drum height. The technical route of the adaptive height adjustment control process for the
shearer is shown in Fig 5.

3.1 Typical working condition technical parameters

Self-adaptive height adjustment of the shearer is a critical measure to enhance production efficiency, prevent unnecessary
energy consumption, and protect the equipment by adjusting the drum height based on coal-rock cutting state recognition.
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Fig 5. Technical route of the adaptive height adjustment control process for the shearer.

https://doi.org/10.1371/journal.pone.0329347.9005

This study focuses on the MG2 x 55/250-BWD thin-seam shearer, whose model is shown in Fig 6, and main structural
parameters are listed in Table 2. According to the shearer’s structure, the hydraulic cylinder piston has an extension range
of 0—150 mm, enabling drum height adjustment within an 800 mm vertical range. The application scenario is based on the
geological conditions of the 4602 working face at Yangcun Coal Mine operated by Yankuang Group, where the coal seam
thickness ranges from 0.5 to 1.39 m. Durinode concretions are present in the seam, and, in some areas, coal seam sliding
results in coal-rock faults, causing the drum to cut the roof layer, with random sliding magnitudes. Considering these con-
ditions, this study analyzes and evaluates the performance of the self-adaptive height adjustment system for the shearer
under four typical working conditions, as listed in Table 3. The relationship between the hydraulic cylinder piston retraction
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Fig 6. 3D solid model of shearer height adjustment mechanism.

https://doi.org/10.1371/journal.pone.0329347.9006

Table 2. The main structural parameter values of the shearer and drum.

Drum Parameter Value Unit Drum Parameter Value Unit
Drum Diameter 800 mm Drum Hub Outer Diameter 465 mm
Spiral Blade Height 68 mm Drum Hub Inner Diameter 425 mm
Spiral Blade Thickness 90 mm Tooth Arrangement Type Sequential

Spiral Blade Pitch Angle 14 ° Drum Cutting Depth 630 mm
Number of Spiral Blades 2 Number of Teeth per Blade Line 2

Length of Small Rock Arm 260 mm
Length of Drum Rock Arm 1400 mm
Distance from Lower Pivot of the Body to Upper Pivot of Rock Arm 712 mm
Distance from Drum’s Lowest Point to Hydraulic Cylinder Pivot 635 mm

https://doi.org/10.1371/journal.pone.0329347.t002

Table 3. Typical working conditions.

Condition Number Coal Wall Type Hydraulic Cylinder Piston Retraction Spiral Drum Corresponding Down-
Distance (mm) ward Adjustment Height (mm)

1 Coal—Roof +Coal 20 100

2 Coal—Roof +Coal 40 214

3 Coal—Roof +Coal 60 325

4 Coal—Roof + Coal + Durinode 50 270

https://doi.org/10.1371/journal.pone.0329347.t003

distance and the corresponding lowering height of the spiral drum can be calculated using the data in Table 2, in conjunc-
tion with Equations (12) and (13). Fig 7 illustrates the coal wall model under working condition 4.

3.2 Identification of coal and rock cutting status

The vibration characteristics of the spiral drum vary with different operational conditions. This variation in vibration char-
acteristics contains substantial information that can represent the properties of the cut coal-rock material. Based on the
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https://doi.org/10.1371/journal.pone.0329347.9007

EDEM-RecurDyn coupled simulation technique, which was previously employed and validated by the project team to
extract spiral drum vibration acceleration data [43], vibration acceleration signals from the spiral drum over a continuous
3 seconds period are used as coal-rock cutting state perception data. The sampling interval during the cutting process is
0.002 seconds. Under cutting conditions with a traction speed of 4.0 m/min and a drum speed of 90 r/min, the vibration
acceleration curves in the directions of the drum’s centroid traction resistance (X), lateral force (Y), and cutting resistance
(Z) are shown in Fig 8. The characteristic values of the vibration acceleration time-domain signals are listed in Table 4.
From the values in Table 4, it is evident that the characteristic values of the time-domain vibration acceleration signals

in all three directions are similar for both coal and coal-plus-roof cutting. The maximum, minimum, peak, and Root Mean
Square (RMS) values have maximum variation rates of 3.19%, 2.62%, 4.94%, and 4.31%, respectively. This suggests
that when the coal-rock material’s hardness coefficient is similar, relying solely on the time-domain response of vibration
signals is insufficient for distinguishing between coal and coal-rock cutting states. Additionally, the time-domain signals
are contaminated with redundant noise, which impacts the accuracy of coal-rock cutting state recognition. Therefore, a
method based on Singular Value Decomposition (SVD) and Continuous Wavelet Transform (CWT) is proposed to denoise
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Fig 8. Vibration acceleration curves of the spiral drum under cutting conditions of f=3.5 coal and f=3.5 Roof +coal.

https://doi.org/10.1371/journal.pone.0329347.9008

PLOS One | https://doi.org/10.1371/journal.pone.0329347  January 22, 2026 12/38



https://doi.org/10.1371/journal.pone.0329347.g007
https://doi.org/10.1371/journal.pone.0329347.g008

PLO\Sﬁ\\.- One

Table 4. The signal characteristic value of vibration of drum X, Y and Z.

Coal-Rock Type | Direction | Vibration Acceleration Time-Domain Signal Features
Maximum Value (mm/s?) | Minimum Value (mm/s?) | Peak Value (mm/s?) | Root Mean Square (RMS) Value (mm/s?)

Coal X 30833.40 -27985.46 6093.81 7839.54

Y 15413.99 -16024.58 4095.37 1687.04

z 39874.25 -38761.63 9764.92 3782.99
Roof+Coal X 31587.43 -28739.32 5883.71 7562.82

Y 15921.43 -16239.43 3902.43 1617.32

z 40195.22 -39758.31 9597.41 3654.28

https://doi.org/10.1371/journal.pone.0329347.t004

the vibration acceleration time-domain signals and convert them into time-frequency spectrograms. These spectrograms
are then input into the AlexNet transfer learning model for coal-rock cutting state recognition [44].

Singular Value Decomposition (SVD) is an effective method for feature extraction. The singular values obtained through
decomposition can represent the intrinsic characteristics of data or signals, exhibiting strong stability and invariance.
By truncating the singular value matrix, dimensionality reduction and compression can be achieved while retaining the
primary information [45]. Based on SVD theory, the moving sliding-window method is applied to continuously segment the
time-domain vibration acceleration signal of the helical drum, which is then transformed into a two-dimensional Hankel
maitrix (Ap). Its expression is given as:

al 82 cee an
dz as - ant1
Ay =
8m 8my+1 - an (23)

In this expression, a_denotes the n-th collected vibration acceleration data point, measured in mm/s?. N represents the
total number of collected vibration acceleration data points, where N=n+m-1. When N is even, n = N/2(m = N/2 + 1;
when Nisodd, n=(N+1)/2(m= (N+1) /2.

By performing a mathematical transformation on the matrix Ay, the following result is obtained:

Ay = USVT (24)

In this expression, U € R™ ™ and V € R™" are the left and right singular orthogonal matrices, respectively, and S is a
diagonal matrix, expressed as:

A1
A2

A (25)

In this expression, ); denotes the singular value, which satisfies Ay > Ay > --- > ;.

The magnitude of the singular values can indirectly reflect the degree of energy concentration. In general, significant
singular values correspond to effective signals, whereas small singular values correspond to noise and interference. By
selecting an appropriate number of singular values for data reconstruction, noise can be effectively eliminated. The princi-
ple is illustrated in Fig 9.
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Fig 9. Basic principle of SVD denoising.
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Determining the threshold that distinguishes noise from signal singular values is crucial for SVD-based denoising.
Considering the characteristics of the helical drum vibration acceleration signals, the energy proportion method (EPM)
is employed to determine the number of significant singular values. The core of this method is to calculate the propor-
tion of each singular value’s squared magnitude relative to the total energy, with larger singular values corresponding to
effective signals contributing more prominently to the total “energy.” The total energy of the vibration signal, the singular
value energy proportion, and the cumulative energy proportion are determined based on the Frobenius norm, as shown in
Equations (26)—(28). In this study, the energy threshold is set to 90%.

Total energy:

2\ e
”AH”F = Zi:l Ai (26)
Energy proportion of singular values:
2
k
i A (27)

Cumulative energy proportion of the first r singular values:

= Y N
r= ek
Xia N (28)

The Continuous Wavelet Transform (CWT) is a time-frequency analysis method derived from the Fourier Transform
(FT) and Short-Time Fourier Transform (STFT) theories. It uses a more suitable basis function for signal processing,
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making it particularly effective for non-stationary signals and self-adaptive to varying signal characteristics. The process of
converting the denoised drum vibration acceleration time-domain signal into a time-frequency spectrogram using CWT is
illustrated in Fig 10. The parameter settings of the CWT are shown in Table 5. The resulting time-frequency spectrograms
based on CWT are shown in Figs 11 and 12.

The time-frequency spectrograms reveal that under the f=3.5 pure coal condition, the dominant frequencies are around
60 Hz and 180 Hz, with a narrow frequency band distribution. In contrast, under the f=3.5 roof+coal condition, the domi-
nant frequencies are around 80 Hz, 170 Hz, and 240 Hz. Moreover, over time, the width and brightness of the frequency
bands continuously change, indicating that the energy distribution and intensity of the two conditions differ. The time-
frequency spectrograms contain rich varying features, allowing for a clear distinction between coal-rock cutting states.

As a typical convolutional neural network (CNN) model, AlexNet has been trained on 1.2 million images across 1000
categories, endowing it with robust image feature extraction capabilities. Reference [46] demonstrates that AlexNet

Time domain signal input of drum vibration
acceleration based on SVD denoising

v

Remove baseline drift processing

v

Determine the mother wavelet and scale

v

Calculate the center frequency of the mother wavelet

v

Scale conversion to frequency

v

Find continuous wavelet coefficients

v

Draw the time-frequency spectrum of drum vibration
acceleration

Fig 10. Generation of frequency spectrum of drum vibration acceleration.

https://doi.org/10.1371/journal.pone.0329347.9010

Table 5. Parameter setting of CWT.

Parameter Parameter selection
Wavelet Basis cmor

Bandwidth 1

Center frequency 100

Scale 300

Pixel 227%227

Boundary treatment symmetric extension

https://doi.org/10.1371/journal.pone.0329347.t005
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Fig 11. Time-frequency spectrogram under the f=3.5 pure coal condition.
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Fig 12. Time-frequency spectrogram under the f=3.5 roof+coal condition.

https://doi.org/10.1371/journal.pone.0329347.9012

achieved accurate recognition of characters on Qin bamboo slips, with a recognition accuracy as high as 99.89%.
Reference [47] utilized AlexNet for real-time automatic recognition of plant leaves usable as livestock feed, yielding a
recognition accuracy of 98.38%. Reference [48] conducted research on the recognition of crop disease images in complex
backgrounds using AlexNet, and the results showed that the recognition accuracy was close to 90%. Additionally, Refer-
ence [49] pointed out that AlexNet is the most suitable deep neural network for coal-gangue separation. These studies
provide theoretical guidance for the application of the AlexNet model in coal-rock cutting state recognition. However,
considering the limited number of acquired time-frequency images, a network transfer learning technique is proposed to
train model parameters with a small sample set. This technique has been proven feasible in References [50] and [51].
According to the classification of typical working conditions, the source domain and target domain are adapted by fine-
tuning the network structure. The trained transfer network is employed as a feature extractor, and training is performed
using time-frequency images obtained under different working conditions to adapt to the task of coal-rock cutting state
recognition. The structure of the transfer learning model is illustrated in Fig 13, which mainly consists of an input layer, 5
convolutional layers, 3 pooling layers, 3 fully connected layers, and an output layer. In the transfer model, the convolution
kernel sizes of CONV1 and CONV2 are 11 %11 and 5 x 5, respectively, while those of CONV3, CONV4, and CONV5 are
all 3x 3. Shallow convolution utilizes large-dimensional kernels to extract shallow features of images, effectively reducing
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Fig 13. AlexNet transfer learning model.

https://doi.org/10.1371/journal.pone.0329347.9013

the image dimension and the number of parameters; deep convolution adopts small-dimensional kernels to extract more
abstract deep features of images, with key parameter values listed in Table 6.

To quantitatively evaluate the recognition performance of the proposed AlexNet transfer learning model, the recognition
accuracy (accuracy) is introduced as the performance metric. The specific calculation formula is given in Equation (29).

TP+ TN
TP+ TN+ FP+ FN (29)

accuracy=

In this equation, TP represents the number of true positives, FP represents false positives, FN represents false nega-
tives, and TN represents true negatives.

To obtain hyperparameters that enable the AlexNet transfer learning network to achieve optimal recognition accuracy,
and based on the selection of the training network solver as SGDM and Dropout set to 0.5 [52-53], the orthogonal experi-
ment method is employed to analyze the effects of three factors—MaxEpochs, MiniBatchSize, and InitialLearnRate—
on the model’s recognition accuracy. These three experimental factors are denoted as A, B, and C, respectively. According
to the reasonable value ranges for each hyperparameter, a three-factor, four-level orthogonal experiment is conducted,
and the factor-level table is presented in Table 7.

Table 6. Main parameter assignment.

Layer Structure |Input Channels | Output Channels |Input Feature | Output Feature Map Size | Kernel/Pool Size | Stride |Padding Value
Map Size
Conv1 3 96 227 %227 55x55 11x11 4 0
Max Pooling1 96 96 55x55 27 %27 3x3 2 0
Conv2 96 256 27 %27 27 %27 5x5 1 2
Max Pooling2 256 256 27 %27 13x13 3x3 2 0
Conv3 256 384 13x13 13x13 3x3 1 1
Conv4 384 384 13x13 13x13 3x3 1 1
Conv5 384 256 13x13 13x13 3x3 1 1
Max Pooling3 256 256 13x13 6x6 3x3 2 0

https://doi.org/10.1371/journal.pone.0329347.t006
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Table 7. Factor level table.

Level A (MaxEpochs) B (MiniBatchSize) C (InitialLearnRate)
1 5 16 1x 1072
2 10 32 1x1073
3 15 64 1x 1074
4 20 128 1x 107

https://doi.org/10.1371/journal.pone.0329347.t007

An L (43) orthogonal table was selected to obtain 16 orthogonal experimental schemes, and the AlexNet transfer
learning model was trained and tested using the training and testing datasets for each scheme. The characteristic val-
ues of the model’s recognition accuracy were calculated under each level of every factor. The experimental configuration
schemes, orthogonal experiment results, and analysis of factor influence are presented in Tables 8 and 9. Using MaxEp-
ochs, MiniBatchSize, and InitialLearnRate as the horizontal axes and the model recognition accuracy as the vertical axis,
the influence trends of each factor on the model’s recognition accuracy were plotted, as shown in Fig 14.

From the analysis of model recognition accuracy in Table 9, the results indicate R, >R,>R,, S,>S,>S§,, showing that
among the three factors—MaxEpochs, InitialLearnRate, and MiniBatchSize—InitialLearnRate has the most significant
impact on model recognition accuracy, followed by MiniBatchSize, while MaxEpochs has the least influence. From the

Table 8. Test configuration scheme and orthogonal test results.

Test Factor coding Recognition accuracy (%) Test Factor coding Recognition accuracy (%)
A B (o A B C

1 1 1 1 83.76 9 3 1 3 91.96
2 1 2 2 87.71 10 3 2 4 93.63
3 1 3 3 94.09 11 3 3 1 88.61
4 1 4 4 92.41 12 3 4 2 89.21
5 2 1 2 87.31 13 4 1 4 92.26
6 2 2 1 86.32 14 4 2 3 93.55
7 2 3 4 95.36 15 4 3 2 91.19
8 2 4 3 93.30 16 4 4 1 86.65
https://doi.org/10.1371/journal.pone.0329347.t008
Table 9. Table of factor influence degree analysis.

Recognition accuracy (%)

A B Cc
K1 357.97 355.29 345.34
K2 362.29 361.21 355.42
K3 363.41 369.25 372.90
K4 363.45 361.57 373.66
k1 89.49 88.81 86.34
k2 90.57 90.30 88.86
k3 90.85 92.31 93.23
k4 90.86 90.39 93.42
R 1.37 3.50 7.08
S 0.32 1.54 8.99

https://doi.org/10.1371/journal.pone.0329347.t009
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curve of factor Ain Fig 14, the recognition accuracy initially increases and then stabilizes as MaxEpochs increases, even-
tually reaching 90.86%. The curve of factor B shows that recognition accuracy first increases and then decreases with
increasing MiniBatchSize, achieving the maximum accuracy of 92.31% at level 3. The curve of factor C demonstrates that
recognition accuracy continually improves with increasing InitialLearnRate, though the growth rate varies: when moving
from level 1 to levels 2 and 3, accuracy rises significantly to 88.86% and 93.23%, respectively, while the increase from
level 3 to level 4 is minimal, reaching 93.42%. Considering the above analysis and the need to reduce training time, the
optimal hyperparameter combination is determined as MaxEpochs =10, MiniBatchSize =64, InitialLearnRate =1 x 1074,
with sgdm as the solver and Dropout=0.5.

Based on the constructed AlexNet network for transfer learning, the time-frequency spectrograms obtained under differ-
ent operating conditions were divided into training and testing sets at a ratio of 4:1 for training and evaluation [54]. The rec-
ognition accuracy for the test samples was measured over five iterations, and the results are summarized in Table 10. As
shown in Table 10, the average recognition accuracy reached 95.06%, which provides reliable data support for the precise
control of the coal mining machine’s self-adaptive height adjustment.

To compare the performance superiority of the AlexNet transfer learning model, VGG-16, GoogLeNet, and AlexNet
transfer learning models were selected for comparative experimental analysis. Based on the principle of controlled vari-
ables, the parameters of all network models were standardized. The recognition performance of each model was evalu-
ated by the recognition accuracy on the training and testing datasets and the time consumed for recognition. The results
are presented in Table 11.

A comparison of the recognition accuracy data in Table 11 shows that the training set accuracy of the VGG-16 and
GoogleNet transfer learning models is slightly higher than that of the AlexNet transfer learning model, but the difference
is minimal. However, the testing set recognition accuracies of VGG-16 and GooglLeNet are 2.86% and 4.05% lower than

Table 10. AlexNet network migration learning model recognition accuracy.

Experiment Number Recognition Accuracy (%) Average Recognition Accuracy (%)
95.33 95.06

94.97
95.02
95.51
94.48

https://doi.org/10.1371/journal.pone.0329347.t010
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Table 11. Recognition accuracy and recognition time under different models.

Model classification Training set recognition accuracy (%) Test set recognition accuracy (%) The recognition time consumed (ms)
VGG-16 96.11 92.23 1884

GooleNet 96.34 91.04 1896

AlexNet 95.32 95.09 461

https://doi.org/10.1371/journal.pone.0329347.t011

that of AlexNet, respectively. This outcome can be attributed to the deeper and wider network architectures of VGG-16
and GooglLeNet, which provide stronger feature extraction capabilities and superior performance on the training set.
Nevertheless, the increased network depth significantly raises the number of parameters and complicates weight updates
in shallow layers, resulting in decreased recognition accuracy. Additionally, deeper networks require larger datasets to
avoid overfitting, and insufficient sample sizes can further degrade performance. Regarding recognition time, VGG-16 and
GoogleNet require substantially longer times than AlexNet due to the increased computational demands of their deeper
structures. Overall, these analyses indicate that the AlexNet transfer learning model demonstrates stable recognition
performance on both training and testing datasets while requiring less recognition time, thereby effectively enhancing the
real-time capability of information transmission and processing.

3.3 Design of the self-adaptive height adjustment control for the shearer based on DDPG

The algorithm architecture of the shearer hydraulic height adjustment system based on DDPG is shown in Fig 15. In order
for the DDPG algorithm to learn the optimal control strategy that meets expectations, the design of the control process
needs to be combined with the controlled object and control objectives. This includes the selection of action space and

action strategy-: B Actor network Critic network
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Fig 15. Algorithm architecture of the hydraulic height adjustment system for the shearer based on DDPG.

https://doi.org/10.1371/journal.pone.0329347.9015
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state space, the establishment of the height adjustment system Simulink model, the creation of the RL Agent model, and
the design and selection of the reward function.

Guided by the algorithm architecture shown in Fig 15, a DDPG-based self-adaptive hydraulic height adjustment model
for the shearer was built. This model continuously extracts the actual displacement of the hydraulic cylinder piston, com-
pares it with the target displacement derived from the coal-rock cutting state recognition results, and calculates the error
signal. Additionally, inspired by the concept of reducing steady-state error in a PID controller through historical tracking
errors, the model uses the error (the difference between the actual and target displacement) at the current and previous
time steps, along with the actual displacement value, as a 2D state space for the RL agent at each time step.

st = [error(distance]” (30)
Based on the transfer function block diagram of the hydraulic height adjustment system, a Simulink model was con-
structed, as shown in Fig 16. The input is the voltage signal controlling the opening of the electro-hydraulic proportional
valve, while the output is the displacement of the hydraulic cylinder piston.
For the hydraulic height adjustment system of the shearer, as shown in Fig 15, the control input is a voltage signal,
Therefore, the action space for the RL agent is defined accordingly:
ar=u (31)

The DDPG-based self-adaptive controller, implemented in the Simulink environment, requires control commands
written in MATLAB files to interface with the neural network modules and build the RL agent. The RL agent should consist
of a deep neural network with two inputs for simulating the Critic network, and a single-input, single-output deep neural
network for simulating the Actor network, as shown in Figs 17 and 18.

The Critic network structure, as shown in Fig 17, includes two input layers: one for the state variable a; and the other
for the action output variable u. The network consists of two hidden layers, with 100 and 50 neurons, respectively. The
input layer for the action output variable is directly connected to the second hidden layer, and all hidden layers are fully
connected. The output layer consists of a single neuron to evaluate the quality of actions, represented by the Q-value . All
hidden layers use the Rectified Linear Unit (Relu) activation function.

The Actor network structure, as shown in Fig 18, includes an input layer for the state variable a; and two hidden
layers. The number of neurons in the hidden layers matches that of the Critic network, and the hidden layers are fully con-
nected. The output layer consists of a single neuron to represent the action output variable. Similar to the Critic network,
all hidden layers use the Relu activation function. Details of the Critic/Actor networks and other parameters of the RL
Agent are provided in Tables 12 and 13.
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Fig 16. Simulink model of height adjustment system.

https://doi.org/10.1371/journal.pone.0329347.9016
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Table 12. Parameter setting of deep neural network.

Learning Rate

Gradient Threshold Method

Gradient Threshold

Network Parameters 1x10™ 12norm 1
Critic/Actor Optimizer L2 Regularization Facto Use Device
Adam 1x 104 CPU

https://doi.org/10.1371/journal.pone.0329347.t012

The reward signal measures the agent’s contribution toward achieving the task goal. During training, the agent updates
its policy based on the reward. By carefully designing the reward function, the controller’s performance can be enhanced,
and the steady-state error in the adjustment process can be reduced. For the self-adaptive height adjustment control of
the shearer, the reward function is defined and adjusted based on the error between the target and actual displacement of
the hydraulic cylinder piston. Three types of reward functions-discrete, continuous, and hybrid-are designed, as shown in

equations (32)-(33).
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Table 13. Agent parameter settings.

Agent Target Network | Target Network Update Delay Factor | Target Network Update Frequency | Noise Mechanism
Parameters | Update Method Variance | Variance Decay Rate
Smoothing 1x1073 1 0.5 1x107°
Sampling Time Reward Discount Factor Batch Size Experience Replay
Pool Size
0.05s 0.9 64 1 x 10°

https://doi.org/10.1371/journal.pone.0329347.t1013

Discrete reward function ry:

rn=0(lerrorl <0.1)-0.5(0.1 < lerrorl <1)—1(1 < |errorl <5)—4 (5 < |error| < 10)
—7(10 < lerrorl < 17)—10 (17 < lerror < 25) —15 (lerrorl > 25) (32)

Where, error is between the actual and target displacement of the hydraulic cylinder piston, mm.

The discrete reward function divides the reward interval into seven sections: |error| < 0.1, 0.1 < |error| <1,
1 <errorl <5,5 < |error| <10, 10 < |error| < 17,17 < |error| < 25, |error| > 25. As indicated in equation (30), when the
error exceeds a specified range, the reward value becomes negative.

Continuous reward function r; is as follows:

ry = —lerror (33)

The continuous reward function is one that varies continuously with the hydraulic cylinder’s error value, where the
reward decreases as the error increases.
Hybrid reward function rs:

r3=n-+rn (34)

The hybrid reward function combines both discrete and continuous reward functions.

In the process of shearer, the core of the automatic adjustment of the drum height is the precise control of the hydrau-
lic cylinder’s piston extension distance. By randomizing the reference value for the hydraulic cylinder’s piston extension
distance using Equation (35), the agent is encouraged to periodically learn and continuously update its optimal control
strategy to adapt to changing operational conditions.

distan ce = 150 x rand (35)

Where, rand is a random number between 0 and 1, 150 is the extension stroke of the hydraulic cylinder’s piston.

The DDPG-based self-adaptive lifting control model was trained using reward functions ry, r; and rs, to ensure that the
training performance of the DDPG-based self-adaptive height adjustment control model meets the requirements of actual
coal mining operations, the training termination condition was defined as follows: the steady-state error of the hydrau-
lic cylinder piston displacement must remain below 0.5 mm for five consecutive training episodes, and the convergence
behavior and speed were statistically analyzed, as shown in Table 14.

By comparing the characteristic parameters shown in Table 14, it is evident that the hybrid reward function exhibits a
significantly faster convergence speed compared to the other two functions.

Based on the Simulink environment model of the height adjustment system and the DDPG controller model established
in Fig 16, the final self-adaptive hydraulic height adjustment system model for the shearer based on DDPG (Model I) is
obtained, as shown in Fig 19. In this model, the data for the Desired Distance Level comes from the target value of the height
adjustment hydraulic cylinder piston displacement, which corresponds to the coal-rock cutting state recognition results.
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Table 14. Characteristic parameters of different reward functions.

Reward Function Type Convergence Training Episodes to Satisfy Termination Condition Training Time(s)
Discrete Reward Function r, Convergence 2460 5283.1
Continuous Reward Function r, Convergence 1226 30571
Hybrid Reward Function r, Convergence 542 1271.7
https://doi.org/10.1371/journal.pone.0329347.t1014
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Fig 19. The DDPG-based self-adaptive hydraulic height adjustment system model for the shearer (Model I).
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Using this model, a step signal with an amplitude of 20 is applied as the system input to compare the control performance
of the hydraulic height adjustment system trained using the three types of reward functions, as shown in Figs 20—22.

Through comparative analysis, it is observed that the systems trained with discrete, continuous, and hybrid reward
signals all exhibit fast response speeds. The time required to reach steady state is 0.16s, 0.12s, and 0.085s, respec-
tively, while the steady-state errors are 0.33mm, 0.26 mm, and 0.0005mm. Compared to the systems trained with
discrete and continuous reward signals, the system trained with the hybrid reward signal demonstrates superior per-
formance in both speed and accuracy. Therefore, this paper selects the hybrid reward function as the training reward

function for the agent.

4 System simulation and analysis
Using the established DDPG-based self-adaptive hydraulic height adjustment system model for the shearer (Model I),
harmonic signals, square wave signals, and step signals with disturbances are employed to simulate the displacement
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Fig 20. Shows the system’s control performance under reward function r,.

https://doi.org/10.1371/journal.pone.0329347.9020
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Fig 21. Shows the system’s control performance under reward function r,.
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Fig 22. Shows the system’s control performance under reward function r,.
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variations of the hydraulic cylinder piston rod. The system’s tracking characteristics, anti-interference performance,
environmental adaptability, and the control performance comparison of different algorithms are analyzed to evaluate the
superiority of the DDPG control algorithm.

4.1 System tracking performance analysis

The hydraulic cylinder piston displacement was simulated with harmonic signals of amplitude 10, offset 20, and angular
velocity w=3 rad/s, and square wave signals with amplitude 40, period T=2.5s, and duty cycle 50%. These signals were
used to simulate continuous and abrupt changes in the piston displacement, in order to validate the tracking performance
of the adaptive control system. A simulation time of 5 seconds was set. The simulation results are shown in Figs 23

and 24. From Fig 23, it can be seen that when the hydraulic cylinder piston displacement undergoes continuous changes
simulated by a harmonic signal, the system tracking delay and steady-state error are 0.08s and 0.12mm, respectively.
Fig 24 shows that when the hydraulic cylinder piston displacement experiences abrupt changes simulated by a square
wave signal, the system steady-state error is only 0.02mm when the displacement remains constant. When the displace-
ment undergoes a sudden change at 1.25s, the system responds rapidly and re-enters steady state after approximately
0.158s. Overall, the system can effectively track different input signals with a quick response and small steady-state error,
demonstrating good tracking performance.
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4.2 System anti-interference analysis

The height adjustment system must maintain strong anti-interference capability in the event of sudden external distur-
bances. To validate the system’s anti-interference performance, a disturbance is simulated to reflect the sudden loading
change encountered when the coal cutter unexpectedly encounters pyrite nodules during the coal-rock cutting process.
A step signal with an amplitude of 5kN is added at the 3s mark as a disturbance signal, with the system response shown
in Fig 25. Following the disturbance, the system reacts immediately and returns to a steady state within 0.13s, indicating
a high level of anti-interference capability. Additionally, minimal oscillation is observed, demonstrating the system’s stable
performance under such conditions.

4.3 System environmental self-adaptability analysis

To verify the environmental self-adaptability of the height adjustment system, as well as its self-learning and self-
improvement capabilities during training, simulations were conducted under three typical conditions presented in Table 3.
Step signals with amplitudes of 20, 40, and 60 were applied to simulate the variation in hydraulic cylinder piston rod dis-
placement required for each condition. The system response curves are shown in Fig 26. As illustrated, the times needed
to reach steady state for step responses with amplitudes of 20, 40, and 60 were 0.085s, 0.08s, and 0.092s, respectively,
with steady-state errors of 0.005mm, 0.0046 mm, and 0.0055mm. The time required to reach steady state and the steady-
state errors are nearly identical across different conditions, with relative steady-state errors of 0.025%, 0.012%, and
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0.009%. These results indicate that the system exhibits strong environmental self-adaptability and effective self-learning
and self-improvement capabilities under varying conditions.

4.4 Comparision and validation analysis of algorithms

To evaluate the effectiveness of the DDPG-based self-adaptive height control for the shearer proposed in this study, a
comparative analysis was conducted against conventional control algorithms and typical deep reinforcement learning
algorithms.

Using the shearer self-adaptive height control system with conventional PID control, fuzzy PID control, and DDPG con-
trol, simulations were conducted to analyze the control performance of each method. Step signals with amplitudes of 20
and 50 were applied as system inputs. To simulate cutting through a hard durinode, a disturbance signal with an amplitude
of 3 and a duration of 0.1s was introduced at 1s into the simulation. The results comparing the control performance of
these three methods are presented in Fig 27.

Fig 27 shows that, when a step signal with an amplitude of 20 is applied, the systems controlled by conventional PID,
fuzzy PID, and DDPG controllers reach steady-state in 0.135s, 0.11s, and 0.085s, respectively, all demonstrating good
response speeds. The steady-state errors for each controller are 0.11 mm, 0.07 mm, and 0.0005 mm, respectively, with
the DDPG controller achieving the highest control accuracy. When the step signal amplitude is increased to 50, without
manual adjustment to controller parameters, the systems reach steady-state in 0.254s, 0.12s, and 0.091s, respectively,
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Fig 27. Comparison of control effects between DDPG and classical controllers.
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with steady-state errors of 0.48 mm, 0.27 mm, and 0.00052mm. The DDPG controller again provides the best control
performance, largely due to its adaptive capability, which is absent in the fixed-parameter design of the conventional PID
controller.

Under a 0.1s disturbance signal applied at the 1s mark, the system controlled by the conventional PID and fuzzy PID
controllers returned to steady-state in 1.27s and 1.22s, respectively. In contrast, the DDPG-controlled system required
only 0.52s to stabilize, significantly reducing the adjustment time due to the limitations of conventional PID and fuzzy PID
controllers in adapting to sudden disturbances.

In addition, the DQN, SAC, and TD3 controllers were trained using the same parameters as the DDPG controller. The
shearer adaptive height adjustment system controlled by these four controllers was then simulated, with a step signal of
amplitude 20 applied as the system input, and a disturbance signal of amplitude 3 and duration 0.1s introduced at 1s
of simulation time. Performance metrics such as rise time, steady-state adjustment time, steady-state error, and time to
recover from disturbance were analyzed, Based on the above analysis, the control performance of the six methods is
evaluated, The results are shown in Table 15.

As shown in Table 15, when a step input signal with an amplitude of 20 is applied, the rise times of the system under
conventional PID, fuzzy PID, DQN, SAC, TD3, and DDPG controllers are 0.037s, 0.039s, 0.038s, 0.043s, 0.091s, and
0.041 s, respectively. Only the TD3-controlled system exhibits a significantly longer rise time, which can be attributed to
the greater number of layers and hyperparameters in the TD3 deep neural network, resulting in higher computational
demand. The rise times for conventional PID, fuzzy PID, DQN, SAC, and DDPG controllers are comparable. The settling
times for these controllers are 0.135s, 0.11s, 0.093s, 0.079s, 0.138s, and 0.085s, respectively. Notably, DDPG reduces
the adjustment time by 66.5% compared with conventional PID and by 38.4% compared with TD3, slightly exceeding

Table 15. Comparison of control performance of DDPG and other algorithms.

Algorithm Performance Metric
Rise Time (s) Adjustment Time (s) Steady-State Error (mm) Recovery Time after Disturbance (s)

Conventional PID 0.037 0.135 0.11 1.27
Fuzzy PID 0.039 0.11 0.07 1.22
DQN 0.038 0.093 0.0014 0.92
SAC 0.043 0.079 0.0824 0.55
TD3 0.091 0.138 0.0004 1.13
DDPG 0.041 0.085 0.0005 0.52

https://doi.org/10.1371/journal.pone.0329347.t015
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SAC (0.079s) in speed, while achieving a steady-state error of 0.0005mm, significantly better than SAC (0.0824 mm).
The steady-state errors for the six controllers are 0.11mm, 0.07 mm, 0.0014 mm, 0.0824 mm, 0.004 mm, and 0.0005mm,
respectively. Among the deep reinforcement learning algorithms, SAC exhibits a larger steady-state error due to its ten-
dency to converge to suboptimal policies when searching for the optimal control strategy [26]. The steady-state error of
DDPG is only 0.1% of that of conventional PID and 0.18% of fuzzy PID, comparable to TD3 (0.0004 mm), while its distur-
bance recovery time (0.52s) is only 46% of that of TD3. After disturbance, the adjustment times for the six controllers are
1.27s, 1.22s, 0.92s, 0.55s, 1.13s, and 0.52s, respectively. Among the deep reinforcement learning algorithms, DQN and
TD3 exhibit longer adjustment times under disturbance, because DQN is suitable for discrete systems and TD3 involves
substantial computation. In contrast, DDPG’s adjustment time under disturbance is only 40.9% of conventional PID and
42.6% of fuzzy PID, comparable to SAC (0.55s), while achieving a steady-state error of 0.0005mm, only 0.6% of SAC'’s
error (0.0824 mm). Overall, the system controlled by the DDPG controller demonstrates superior comprehensive perfor-
mance compared with systems controlled by conventional PID, fuzzy PID, DQN, SAC, and TD3 controllers.

5 Feasibility verification of height control strategy based on AMESim-simulink co-simulation

The electro-hydraulic proportional height control system models established using classical control theory primarily simu-
late linear time-invariant systems. However, the self-adaptive height adjustment process in shearers is subject to external
influences such as geological conditions, which results in a nonlinear and time-varying behavior. To address the limitations
of classical control theory in accurately modeling the dynamic performance of hydraulic systems and to make the research
more reflective of engineering realities, a hydraulic height control system model was developed in the AMESim environ-
ment, as shown in Fig 1. By integrating AMESim and Simulink through an interface, the transfer-function-based model from
the height control model in Fig 28 was replaced by the AMESim model shown in Fig 28, yielding a nonlinear, time-varying
DDPG-based self-adaptive hydraulic height control system model (Model II) for shearers, as illustrated in Fig 29.

To verify the feasibility of controlling the nonlinear and time-varying system, simulations were conducted using both
the fuzzy PID controller and the DDPG controller on the model shown in Fig 29. The piston displacement tracking

To Simulink

=

Fig 28. The AMEsim model of the hydraulic system of the shearer electro-hydraulic proportional height adjustment.

https://doi.org/10.1371/journal.pone.0329347.9028
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Fig 29. Self-adaptive hydraulic height adjustment model of shearer based on DDPG (Model II).
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performance, steady-state error, and piston velocity were extracted to analyze the control effects of both methods. The
results are shown in Figs 30 and 31.

From the data presented in Figs 30 and 31, it is evident that the systems controlled by fuzzy PID and DDPG exhibit
different performance characteristics. In the pre-lift steady state, the displacement steady-state errors for the fuzzy PID
and DDPG controllers are 0.2mm and 0.0018 mm, respectively, with the latter showing more stable piston motion speed.
During the lifting phase, the steady-state errors for the piston displacement are 0.32 mm for fuzzy PID and 0.002mm for
DDPG. Compared to the pre-lift steady phase, the fuzzy PID-controlled system exhibits a significant increase in piston
motion speed fluctuations, whereas the DDPG-controlled system shows minimal variation, indicating superior self-
adaptability of the latter.

Based on this analysis, simulations and control experiments were conducted using the DQN, SAC, TD3, and DDPG
controllers on the model shown in Fig 29. The steady-state error and adjustment time for the hydraulic cylinder piston
displacement were extracted, and the results are presented in Table 16.

As shown in Table 16, the steady-state errors in the piston displacement of the hydraulic cylinder for the DQN, SAC,
TD3, and DDPG controllers are 0.0093mm, 0.1027 mm, 0.0018 mm, and 0.0021 mm, respectively. The adjustment times
for each controller are 0.104s, 0.087s, 0.172s, and 0.093s, respectively. The performance trends of the four controllers in
the adjustment process are consistent with the analysis in Table 15, with slight increases in the values due to the addi-
tional data transmission and computation time involved in the co-simulation process.
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Table 16. Comparison of control performance between DDPG and typical deep reinforcement learn-
ing algorithms in the joint simulation environment.

Algorithm Performance Indicators
Steady-State Error (mm) Adjustment Time (s)
DQN 0.0093 0.104
SAC 0.1027 0.087
TD3 0.0018 0.172
DDPG 0.0021 0.093

https://doi.org/10.1371/journal.pone.0329347.t016

Based on the analysis above, compared to classical control algorithms (fuzzy PID) and typical deep reinforcement
learning algorithms (DQN, SAC, TD3), the DDPG control strategy clearly demonstrates superior performance. It pos-
sesses the capabilities of self-learning, self-tuning, and self-adaptive. Furthermore, the DDPG-based control strategy
exhibits rapid response and small steady-state errors, making it suitable for the adaptive height self-adjustment of shear-
ers under complex operating conditions, contributing to intelligent and efficient coal mining.

6 Physical experiment verification
6.1 Experimental validation

To accurately simulate the actual cutting process of the shearer prototype, the test model and coal wall construction must
adhere to similarity criteria. In the derivation of these criteria, both the structural and kinematic parameters of the shearer,
as well as the physical and mechanical properties of the coal wall, must be similar. Based on the technical route outlined
in Fig 32, Using the MG2 x 55/250-BWD thin-seam shearer as the prototype, and guided by the principles of similarity
theory, parameters such as drum diameter, drum speed, traction speed, force, torque, cutting power, vibration accelera-
tion, density, and strength are selected as similarity parameters. Using the Mass Length Time(MLT) dimensional analy-
sis method and the second similarity theorem, the similarity coefficients for the test rig and coal wall are determined, as
shown in Table 12. Based on this, a comprehensive test rig for adaptive cutting control with a geometric similarity ratio of
1:2 is constructed, as shown in Fig 33.
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A measurement and control system for the upper computer is established based on LabVIEW. By utilizing hybrid pro-
gramming between LabVIEW and Matlab, the former calls the Simulink dynamic link library files. The PLC control system
is built using OPC technology, ensuring communication between the PLC control system and the LabVIEW measurement
and control system. The complete measurement and control system is then assembled. Using this experimental setup, a
comparison is made to evaluate the superiority of five control strategies-fuzzy PID, DDPG, SAC, DQN, and TD3-in imple-
menting hydraulic height adjustment for the shearer.

The physical experiment is conducted under typical operating condition 1, where durinode are introduced. A coal wall
model is constructed to match the mechanical properties of the 4602 working face at Yangcun Coal Mine, Yanzhou Coal
Mining Group, as shown in Fig 34. The consistency of the mechanical properties of the coal wall model is validated using
uniaxial compression tests.
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Based on the optimal drum speed (90 r/min) and traction speed (4.5 m/min) of the MG2 x 55/250-BWD thin -seam
shearer, and using the similarity coefficients in Table 17, the drum speed was set to 108 r/min and the traction speed to 2.7
m/min for the simulated cutting test. The displacement data of the hydraulic cylinder piston rod was then extracted, and the
experimental results were back-calculated using similarity principles. These results, shown in Fig 35, were compared with
the results from the AMEsim-Simulink coupled simulation, yielding the maximum error, as presented in Table 18.

From the error results in Table 18, the maximum relative error between the AMEsim-Simulink simulation results and the
experimental back-calculation is 6.58% when using the Fuzzy PID controller, while the minimum relative error is 3.21%
with the TD3 controller and 3.33% with the DDPG controller. These findings indicate that the five adaptive height control
strategies for the shearer can accurately control the physical prototype. Moreover, they further validate the superiority of
the DDPG control strategy over classical control algorithms and other typical deep reinforcement learning algorithms.

6.2 Analysis of error sources and uncertainty quantification

To further verify the stability of the AlexNet transfer learning model and the reliability of the experimental results, five
repeated tests were conducted on the hoisting system controlled by the AlexNet transfer learning model (based on Typical
Condition 1). The simulation and experimentally inferred errors of the hydraulic cylinder piston rod displacement were
recorded, and the results are presented in Table 19.

Based on the results of five repeated tests in Table 19, the mean relative error between the simulation and experimen-
tally inferred results is 3.14%, with a standard deviation of 0.29% and a coefficient of variation of 9.2%. These values
indicate a concentrated error distribution and demonstrate the good stability of the experimental results. Considering the
characteristics of the experimental system, the main sources of error are as follows: (1) measurement errors from dis-
placement sensors, data acquisition cards, and other measurement devices; (2) discrepancies between the simulated
coal wall and the actual physical and mechanical properties of the coal seam; and (3) scale effect errors arising from the
similitude physical test bench.

Table 17. Similarity coefficient of test bench and coal wall.

Parameter Unit Prototype Similar model Parameter Unit Prototype Similar model
Drum diameter mm D D/2 Force N F 0.09F

Drum speed r/min n 1.2n Torque N/m T 0.045T
Traction speed m/min Vq 0.6v, Cutting power Kw P 0.054 P
Density kg/m?3 p p Vibration acceleration m/s? a 0.72 a
Strength MPa o 0.360 Time s t 0.83t
https://doi.org/10.1371/journal.pone.0329347.t1017
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Fig 35. Hydraulic cylinder piston displacement test results and back deduction results data.
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Table 18. Simulink mean error of model simulation and test platform test results.

Comparison and Analysis of Experimental Results DDPG Fuzzy PID SAC DQN TD3
The displacement limit of the hydraulic cylinder piston rod 20.0001 20.0005 20.0005 20.0002 20.0005
during the simulation(mm)

The displacement limit of the hydraulic cylinder piston rod 19.3325 18.6853 21.1504 19.0834 19.3586
during the experimental back-calculation(mm)

The maximum relative error between the simulation and experi- | 3.33 6.58 5.75 4.58 3.21

mental back-calculation results(%)

https://doi.org/10.1371/journal.pone.0329347.t018

7 Conclusion

In response to the challenges faced by classical optimization control algorithms in achieving self-adaptive control for
the hydraulic height adjustment of shearer drums, as well as the slow response and poor tracking performance of cer-
tain typical deep reinforcement learning algorithms, this study focuses on the MG2 x 55/250-BWD shearer and the coal
seams of the 4602 working face at Yangcun Coal Mine, Yanzhou Coal Mining Group. The study introduces a method
for distinguishing coal-rock cutting states based on a DDPG algorithm, using the SVD-CWT technique to denoise

the drum vibration acceleration signals, which are then transformed into time-frequency spectrograms and input

into the AlexNet transfer learning model. The following conclusions can be drawn from the simulations and physical
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Table 19. Verification of the stability and reliability of experimental results for the AlexNet transfer learning model.

Number of trials Simulated value (mm) Experimentally inferred value (mm) Absolute error (mm) Relative error (%)
1 20.0001 19.3325 0.6676 3.33

2 20.0001 19.4102 0.5899 2.95

3 20.0001 19.2876 0.7125 3.56

4 20.0001 19.3751 0.6250 3.12

5 20.0001 19.4528 0.5473 2.74

Statistical value Mean=0.6285 Mean=3.14

Standard deviation=0.0621 Standard deviation=0.29

https://doi.org/10.1371/journal.pone.0329347.t1019

experiments comparing the proposed DDPG-based control strategy with classical control algorithms and other typical
DRL algorithms:

(1) The drum vibration acceleration signals were denoised using SVD-CWT, and then converted into time-frequency spec-
trograms. The significant differences in energy distribution and intensity allowed for effective differentiation of coal-
rock cutting states. These spectrograms were used as input to a trained AlexNet transfer learning model, achieving a
recognition accuracy of 95.06%.

(2) By simulating the continuous and sudden displacement changes of the hydraulic cylinder’s piston rod with sine and
square wave signals, the system exhibits tracking lag times of 0.08s and 0.158s, respectively, demonstrating good
tracking performance. After being subjected to disturbance, the system returns to a stable state in just 0.13s, indicating
strong robustness against external disturbance signals. The system’s environmental self-adaptability is further ana-
lyzed by simulating different working conditions with step signals of varying amplitudes. The maximum difference in
the time required to reach steady state is only 0.007s, and the maximum steady-state error is just9 x 10~*mm, confirm-
ing the system’s strong environmental self-adaptability.

(3) The self-adaptive height control system based on the DDPG algorithm outperformed the classical control systems in
several aspects. The response time was reduced by up to 0.163s, the steady-state error decreased by 0.47948 mm,
and the time required to return to steady state after external disturbances was shortened by up to 0.75s. Compared
to the TD3 algorithm, the DDPG-based system showed reductions in rise time and adjustment time by 121.95% and
62.35%, respectively. When compared to the SAC algorithm, the DDPG-based system reduced the steady-state error
from 0.0824 mm to 0.0005mm. These results indicate that the DDPG algorithm better meets the requirements for envi-
ronmental self-adaptability, fast system response, stability, and accuracy, with superior disturbance rejection capability.

(4) The feasibility of the proposed control strategy was also validated through AMEsim-Simulink co-simulations. Com-
pared to the TD3 algorithm, the DDPG algorithm resulted in an 84.95% reduction in adjustment time, and when
compared to the SAC algorithm, the steady-state error was reduced from 0.1027 mm to 0.0021 mm. This highlights
the DDPG controller’s ability to adapt effectively to the uncertainties associated with complex coal seam conditions.
Physical experiments confirmed that the proposed self-adaptive control strategy could accurately control the physical
prototype, with the mean of maximum error between the simulation and experimental results being only 3.14%. Simul-
taneously, a quantitative analysis of the uncertainty was performed. The results indicate that the standard deviation
between the simulation and experimentally inferred results is 0.29%, with a coefficient of variation of 9.2%. These
values demonstrate a concentrated error distribution and confirm the good stability of the experimental results. These
findings further validate the superiority of the DDPG control strategy, offering a novel approach for achieving precise
adaptive height adjustment in shearers.
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