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Abstract 

As a core component of the fully mechanized mining face, intelligent control of the 

shearer is fundamental to achieving unmanned mining and improving equipment 

reliability. To address the limitations of traditional optimization and deep reinforcement 

learning algorithms in achieving rapid and accurate self-adaptive control, this study 

proposes a novel shearer drum height control strategy based on the Deep Determin-

istic Policy Gradient (DDPG) algorithm. The 4602 workface at Yangcun Coal Mine 

and the MG2 × 55/250-BWD shearer model were used as engineering cases. A hybrid 

SVD-CWT and AlexNet transfer learning method was employed to identify coal and 

rock cutting states, achieving an accuracy of 95.06%. A DDPG-based self-adaptive 

hydraulic height adjustment model was then developed and validated through Matlab/

Simulink and AMESim co-simulation, as well as a similarity-based physical test plat-

form. Results show that the proposed method significantly outperforms conventional 

and fuzzy PID controls, reducing response time to 0.091 s and steady-state error to 

0.00052 mm. Compared with TD3 and SAC algorithms, the system exhibited faster 

response, higher stability, and stronger anti-interference capability. The mean maxi-

mum error between simulation and experimental results was only 3.14%, confirming 

the feasibility and robustness of the proposed control strategy. This study provides a 

reliable approach for intelligent, adaptive height control of shearers under complex 

coal seam conditions.

1  Introduction

As a core piece of equipment in fully mechanized mining faces, intelligent control of 
the shearer lays the foundation for unmanned, intelligent mining operations. Due to 
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geological activity, coal seam thickness often varies significantly across the mining 
face, requiring continuous adjustment of the shearer drum height along the coal-
rock interface to maximize extraction rates and minimize rock cutting. Self-adaptive 
height adjustment of the shearer is therefore essential for effective intelligent control. 
This requires accurate real-time identification of coal and rock cutting states, using 
these states as a basis to adjust drum height dynamically in response to changes in 
coal seam thickness. This capability enables the front and rear drums to adaptively 
adjust height as the shearer moves forward, optimizing coal extraction while avoiding 
contact with the roof and floor. Consequently, achieving environment-self-adaptive 
drum height adjustment is a prominent focus in this research area, both domesti-
cally and internationally. Research in this field can be categorized into three main 
directions:① studying the height adjustment system’s performance through software 
simulation. Zhang et al. [1] conducted a co-simulation study on system dynamics 
using AMESim and ADAMS to analyze and improve the arm vibration phenomenon, 
implementing a PID-based electro-hydraulic proportional control system for precise 
drum height adjustment. Zhang et al. [2] used Automation Studio software to simulate 
the drum height adjustment process and examined the advantages and disadvan-
tages of different neutral functions in the directional control valve, providing insights 
for the design of shearer hydraulic height adjustment systems.② Improving the height 
adjustment system’s performance through analysis of its mathematical model. Su 
et al. [3] analyzed the effects of cylinder stroke on the dynamic characteristics and 
stability of the hydraulic height adjustment system by developing a dynamic model for 
the shearer’s hydraulic height adjustment system. Ren et al. [4] proposed an opti-
mized trajectory for memory cutting by developing a memory cutting model based on 
research into shearer posture and position tracking.③ Enhancing the height adjust-
ment control system’s performance through improved control algorithms. References 
[5–9] have integrated optimization algorithms into traditional PID control strategies, 
forming modified PID control strategies. Comparative results with traditional control 
strategies indicate that this approach effectively addresses issues of slow response 
speed and low accuracy in shearer drum height adjustment control systems. Liu et al. 
[10] proposed a hybrid trajectory-tracking control strategy based on Linear Quadratic 
Regulator-Extended Boundary Conditions(LQR-EBC), which was validated experi-
mentally for feasibility and performance advantages. In recent years, rapid advances 
in IOT, big data, AI, and 5G technology have provided advanced research tools for 
promoting intelligent, unmanned mining at fully mechanized faces. Liu et al [11] intro-
duced an indirect self-adaptive prescribed performance control method using a novel 
neural network observer to achieve automatic height adjustment for the shearer. 
Additionally, Cui [12] developed an intelligent shearer height adjustment and speed 
control system based on 5G and cloud-edge collaborative technology, with industrial 
testing verifying its feasibility.

An analysis of the aforementioned literature reveals several limitations in previ-
ous approaches to studying the control performance of hydraulic height adjustment 
systems using classical control algorithms (such as conventional PID and fuzzy PID 
control). While enhancing the performance of hydraulic components can improve 
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the overall performance of the hydraulic height adjustment system to a certain extent, it does not provide environmental 
adaptability and thus fails to meet the basic requirements of intelligent and unmanned mining. Traditional control algo-
rithms also have drawbacks to varying degrees; for instance, conventional PID control can achieve good results when its 
parameters are properly tuned, but it struggles to maintain the original control effect and tracking accuracy under complex 
coal seam occurrence conditions, and parameter tuning is both difficult and low in precision [13]. Although PID controllers 
with parameters tuned via fuzzy controllers, neural networks, or optimization algorithms have improved adaptability to 
some extent, the dynamic adaptive adjustment of fuzzy rules and neural network parameters is difficult to achieve [14], 
resulting in a lack of self-learning and self-improvement capabilities, which limits their suitability for working conditions 
with complex occurrence conditions. Deep reinforcement learning algorithms, which continuously update their learning 
strategies based on rewards or penalties obtained from interactions with the environment, are more adaptable to chang-
ing environments and have been widely applied in fields such as UAV path planning, robot posture control, autonomous 
driving [15–23], achieving favorable control effects. Furthermore, In proton exchange membrane fuel cells, self-regulation 
methods have successfully addressed dynamic operating conditions [24]. Current typical deep reinforcement learning 
algorithms include DQN, DDPG, SAC, and TD3. However, the shearer’s hydraulic height adjustment system is a strongly 
nonlinear dynamic system with a continuous action space, requiring a balance between “control precision” and “real-time 
performance”. Therefore, determining an algorithm suitable for this system is particularly crucial. DQN struggles with 
large action spaces, especially continuous action scenarios, and has low sensitivity to environmental changes, making it 
unable to respond promptly to dynamic environmental changes [25]. The SAC algorithm introduces an entropy regulariza-
tion mechanism to enhance exploration, encouraging the agent to try more actions by maximizing policy entropy, but this 
may also cause the policy to fall into a “suboptimal strategy” in complex coal seam conditions-over-exploring non-optimal 
actions and struggling to converge to a precise control strategy [26]. The TD3 algorithm addresses the “Q-value overesti-
mation” issue in DDPG by introducing a dual Critic network and a delayed policy update mechanism. While this improves 
stability, it increases the number of network layers and parameter scale, leading to a significant increase in computational 
load and reduced computational efficiency, which severely affects the real-time performance of the adjustment process 
[27]. As one of the deep reinforcement learning algorithms, DDPG is a deep reinforcement learning algorithm that com-
bines value iteration and policy iteration [28,29]. It can perform self-learning, self-tuning, and adaptive adjustment accord-
ing to complex working conditions, while balancing the requirements of “control precision” and “real-time performance”.

To achieve self-adaptive height control for a shearer, it is essential to address the issue of identifying the coal-rock 
cutting state. Over the years, researchers domestically and internationally have proposed various coal-rock recognition 
methods, which can be categorized into the following types:① Radiographic detection, based on differences in radioac-
tive element content between roof and floor rocks that result in distinct radiation energy and intensity levels, allowing 
for estimation of coal seam thickness [30]; ② Operational state detection, using cutting force signals, vibration signals, 
or cutting motor current to identify coal-rock interfaces [31–33]; ③ Acoustic emission and radar detection, which extract 
characteristic acoustic signals generated during coal-rock cutting for identification [34,35]; ④ Image recognition, includ-
ing visible and infrared image processing [36–38]. However, these methods often struggle to achieve high recognition 
accuracy.

In response to this challenge, this study proposes a technique that denoises the time-domain vibration acceleration 
signals of the cutting drum using SVD-CWT, converts them to time-frequency spectrograms, and inputs them into an Alex-
Net transfer learning model to recognize the coal-rock cutting state. This recognition result serves as the basis for shearer 
height control, for which we propose a DDPG-based self-adaptive height control strategy. The feasibility and effectiveness 
of this control strategy are verified through system modeling, simulation analysis of control performance, co-simulation of 
control strategy, and physical testing, indicating that the strategy is highly suitable for self-adaptive height control systems 
in nonlinear, complex conditions with continuous action spaces. This approach is expected to advance intelligent shearer 
cutting control.
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2  Theoretical background

2.1  The mathematical model of the height adjustment control system

The structure of the shearer’s self-adaptive height adjustment hydraulic system is shown in Fig 1.

Fig 1.  Structure diagram of the self-adaptive height adjustment hydraulic system of the shearer. 1-Height adjusting hydraulic cylinder; 2-balance 
valve; 3-electro-hydraulic proportional directional valve; 4-height adjusting oil pump; 5-overflow valve; 6-filter; 7-oil tank; 8-detecting device; 9-rocker arm.

https://doi.org/10.1371/journal.pone.0329347.g001

https://doi.org/10.1371/journal.pone.0329347.g001
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The control system for increasing the electromechanical-hydraulic ratio in shearers typically consists of a proportional 
amplifier, electro-hydraulic directional valve, lifting hydraulic cylinder, interference signals, and signal detection and pro-
cessing devices [8]. The system’s structure is illustrated in Fig 2.

The transfer functions of the components in the system shown in Fig 2 are determined based on the block diagram.
The proportional amplifier outputs a current that is proportional to the input voltage, and can be considered a propor-

tional element:

	 Gm (S) = Km	 (1)

Where, Km is proportional amplification factor, A/V.
In engineering, the proportional direction valve is generally considered a second-order element, with the transfer func-

tion given by:

	
Gv (S) =

Kv
S2

ωv
2 + 2ζv

ωv
s+ 1 	 (2)

Where, Kv  is the flow gain of the proportional direction valve, m3 · s–1 · A–1; ωv is the natural frequency of the propor-
tional direction valve, rad · s–1; ζv is the damping ratio of the proportional switching valve.

In engineering, when the elastic load is neglected, the actuator and controlled object are generally considered as a 
combination of an integrator and a second-order element, with the transfer function given by:

	

Gh (S) =
Kh

S
(

S2

ωh
2 + 2ζh

ωh
s+ 1

)
	 (3)

Where, Kh is the gain of the actuator hydraulic cylinder, Kh = 1/Ah; Ah is the effective working area of the hydraulic 
cylinder, m2, Depending on the direction of the piston rod movement, either the piston area A1 or the annular area A2 is 
considered.; ζh is the damping ratio of the hydraulic cylinder-load mass system; ωh is the natural frequency of the hydrau-
lic cylinder-load mass system, rad · s–1.

The input of the displacement sensor is the displacement signal of the hydraulic cylinder’s piston rod, and the output is 
a voltage signal fed back to the comparator. This can be simplified as a proportional element:

	 Gf (S) = Kf 	 (4)

Fig 2.  The block diagram of the height adjustment control system for the shearer.

https://doi.org/10.1371/journal.pone.0329347.g002

https://doi.org/10.1371/journal.pone.0329347.g002
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Where, Kf  is the gain coefficient of the displacement sensor, V/m.
Based on the above analysis and in conjunction with reference [39], the transfer function block diagram of the system 

can be derived, as shown in Fig 3.
The rationality of the height adjustment system parameters and the validity of AMEsim-Simulink co-simulation support 

have been verified in the project team’s prior research [8], and thus are not elaborated herein. The simulation parameters 
for each component are selected as shown in Table 1, FL is the external disturbance force acting on the piston, kN; Vt is 
equivalent total volume, m3.

2.2  Geometric model of shearer height adjustment system

A simplified diagram of the geometric structure of the shearer’s height adjustment system is shown in Fig 4. In this dia-
gram, solid and dashed lines represent the drum’s two extreme positions: lowest and highest, respectively. Here, α is the 
adjustment cylinder angle at the two extreme positions, (◦); v is the piston rod extension speed (mm/s); L

1
 is the length 

Fig 3.  Transfer function block diagram of the self-adaptive height adjustment control system.

https://doi.org/10.1371/journal.pone.0329347.g003

Table 1.  Simulation parameters.

Parameter Value

A1 2.0106× 10–2m2

A2 1.2252× 10–2m2

ζh 0.7

Km 2.25AV-1

Kf 6.56Vm-1

Kv 4.8× 10–4m3s–1A–1

ωv 157rads-1

ζv 0.2

Kce 4.74× 10–12m5
/
N · S

βe 0.9× 109Pa2

FL 5 kN

ωh 127.2rads-1

ζh 0.1

Vt 0.1803× 10–2m3

https://doi.org/10.1371/journal.pone.0329347.t001

https://doi.org/10.1371/journal.pone.0329347.g003
https://doi.org/10.1371/journal.pone.0329347.t001
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of the minor rocker arm (mm); L
2
 is the length of the major rocker arm (mm); L

3
 is the distance between the two hinge 

points (mm);the angles α1 and α2 are the angles between the piston and the minor rocker arm when the drum is at its 
two extreme positions (◦); α3 is the rotation angle of the major and minor rocker arms, (◦); v⊥A1

, v∥A1
, v⊥A2

 and v∥A2
 are 

the speed components of the piston rod extension v along and perpendicular to the minor rocker arm at the drum’s two 
extreme positions (mm/s); v2, v2∥ and v2⊥ are the total movement speed of the drum, and its horizontal and vertical speed 
components (mm/s), respectively, when the drum is at its highest position; H is the maximum adjustable height of the 
drum in the vertical direction (mm).

Fig 4 shows that the vertical adjustment speed of the shearer drum height v2⊥ is:

	 v2⊥ = v2 · cosα3	 (5)

	

v2
L2

=
v⊥A2

L1 	 (6)

From Equation (6), we obtain:

	
v2 =

v⊥A2
· L2

L1 	 (7)

v⊥A2
 is:

	 v⊥A2
= v · sinα2	 (8)

	
sinα2 =

√
1 – (

L1
2 + (L+ vt)2 – L3

2

2L1 (L+ vt)
)
	 (9)

	 α3 = α5 – α4	 (10)

	

{
cosα5 = L1

2+L3
2–(L+vt)2

2L1L3

cosα4 = L1
2+L3

2–L2

2L1L3 	 (11)

Fig 4.  Simplified schematic diagram of shearer height adjustment hydraulic system.

https://doi.org/10.1371/journal.pone.0329347.g004

https://doi.org/10.1371/journal.pone.0329347.g004
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From equations (5)-(11), the relationship between the piston extension speed v and the vertical adjustment speed v2⊥ 
of the shearer drum height can be derived as follows:

	
v2⊥ =

L2v
L1

·

√
1 –

L1
2 + (L+ vt)2 – L3

2

2L1 (L+ vt)
· cos (α5 – α4)

	 (12)

Where, α5 = arccos L1
2+L3

2–(L+vt)2

2L1L3
, α4 = arccos L1

2+L3
2–L2

2L1L3
.

	

H =

∫
(v2⊥) =

L2
∫
v

L1
·

√√√√1 –
L1

2 +
(
L+

∫
v·t

)2
– L3

2

2L1
(
L+

∫
v·t

) · cos (α5 – α4)

	 (13)

Where, piston displacement: x =
∫
v .

Using equations (12) and (13), the relationship between the extension and retraction displacement of the height adjust-
ing hydraulic cylinder piston and the change in drum height can be determined.

2.3  Deep deterministic policy gradient algorithm

The core concept of Deep Reinforcement Learning (DRL) is to use deep neural networks to approximate the value and 
policy functions within reinforcement learning, with the objective of maximizing cumulative rewards to enable accurate envi-
ronmental perception and precise control over the targeted system [40]. The Deep Deterministic Policy Gradient (DDPG) 
algorithm is a model-free DRL approach designed for continuous action spaces [41,42]. It achieves controller training and 
analysis solely based on the input-output data of the controlled system. The DDPG framework consists of an agent, rewards, 
an environment, an action space, and a state space. The agent comprises policy and learning algorithms, with its functions 
implemented through an Actor-Critic network structure. The Actor network models a function that maps control variables to 
actions, while the Critic network seeks an optimal policy by approximating the state-action value function Qπ (st, at). Using 
the Bellman equation, the Critic network calculates the cumulative reward for executing a specific action at in a given state st.

	 Qπ (st, at) = Ert,st+1∼S
[
r (st, at) + γEat+1∼A [Qπ (st+1, at+1)]

]
	 (14)

Where, st is the initial state; st+1 is the state at the next time interval; at is a randomly chosen action taken in the initial 
state; at+1 is the optimal action taken in the subsequent state; r (st, at) is the immediate reward for an action at taken in a 
given state st; γ  is the discount factor; Qπ (st, at) is the state-action value function; E is the expected value.

Since the policy in DDPG is time-invariant, it can be expressed as: a = µ (s), Consequently, we have:

	 Qµ (st, at) = Ert,st+1∼S [r (st, at) + γQµ (st+1,µ (st+1))]	 (15)

The Critic network is parameterized using neural network weight parameters θQ , and the loss function is defined based 
on mean squared error as follows:

	
L
(
θQ

)
= Est∼S,at∼A,rt∼Rt

[(
yt –Q

(
st, at

∣∣ θQ
))2

]

	 (16)

Here, the estimated value of the action-value function yt is:

	
yt = r (st, at) + γQ′

(
st+1, µ′

(
st+1

∣∣ θµ′
)∣∣∣ θQ′

)
	 (17)
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µ′
(
st+1

∣∣ θµ′
)
 和Q′

(
st+1, µ′

(
st+1

∣∣ θµ′
)∣∣∣ θQ′

)
 are the target networks of the Actor and Critic, respectively, using a soft target 

update strategy.

	 θQ
′
=τθQ + (1 – τ) θQ

′

	 (18)

	 θµ
′
=τθµ + (1 – τ) θµ

′

	 (19)

Where, τ  the momentum update rate.
Ultimately, the Critic network is updated by minimizing the loss function L

(
θQ

)
, yielding an optimal policy evaluation 

value Q for assessing the action.
The Actor network is parameterized using neural network weight parameter θµ, and its iterative updates are performed 

using the sample gradient method as follows:

	 a = µ (s∣ θµ)	 (20)

	
∇θµµ

∣∣ st = Est∼S

[
∇aQ

(
st, a

∣∣ θQ
)∣∣∣

a=µ(st)
∇θµµ

(
st
∣∣ θµ)

]

	 (21)

Where, ∇θµµ
∣∣ st is the policy gradient for updating the Actor network.

A policy noise mechanism is introduced to explore improved policies.

	 µ′ (st) = µ
(
st
∣∣ θµt

)
+ Nt 	 (22)

Where, µ′ (st) is the target policy obtained through exploration, µ
(
st
∣∣ θµt

)
 is the original Actor policy, Nt  is the policy noise.

During the agent’s search for the optimal policy, ‘State-Action’ pairs, represented as (st, at, rt, st+1), are stored in the 
experience replay buffer. These pairs provide sample data for training and updating the Actor and Critic networks.

3  Proposed method

Taking the 4602 working face coal seam of the Yanzhou Coal Mining Group Yangcun Coal Mine and the MG2 × 55/250-
BWD shearer spiral drum as the engineering objects, typical operating parameters were obtained. A method was 
proposed that utilizes Singular Value Decomposition (SVD) combined with Continuous Wavelet Transform (CWT) to 
denoise the vibration acceleration time-domain signals of the drum and convert them into time-frequency spectrograms, 
which are then input into the AlexNet transfer learning model for coal-rock cutting state recognition. Based on the rec-
ognition results, the current operating condition is determined, and the required displacement for adjusting the piston of 
the hydraulic cylinder is calculated using Equation (13). During this adjustment process, the Deep Deterministic Policy 
Gradient (DDPG) algorithm is employed as the controller for the self-adaptive height adjustment system of the shearer. 
A corresponding simulation environment, reward mechanism, and RL agent are designed. The DDPG controller contin-
uously adjusts the system to minimize the error between the target and actual piston displacement, thereby achieving 
precise adjustment of the drum height. The technical route of the adaptive height adjustment control process for the 
shearer is shown in Fig 5.

3.1  Typical working condition technical parameters

Self-adaptive height adjustment of the shearer is a critical measure to enhance production efficiency, prevent unnecessary 
energy consumption, and protect the equipment by adjusting the drum height based on coal-rock cutting state recognition. 
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This study focuses on the MG2 × 55/250-BWD thin-seam shearer, whose model is shown in Fig 6, and main structural 
parameters are listed in Table 2. According to the shearer’s structure, the hydraulic cylinder piston has an extension range 
of 0–150 mm, enabling drum height adjustment within an 800 mm vertical range. The application scenario is based on the 
geological conditions of the 4602 working face at Yangcun Coal Mine operated by Yankuang Group, where the coal seam 
thickness ranges from 0.5 to 1.39 m. Durinode concretions are present in the seam, and, in some areas, coal seam sliding 
results in coal-rock faults, causing the drum to cut the roof layer, with random sliding magnitudes. Considering these con-
ditions, this study analyzes and evaluates the performance of the self-adaptive height adjustment system for the shearer 
under four typical working conditions, as listed in Table 3. The relationship between the hydraulic cylinder piston retraction 

Fig 5.  Technical route of the adaptive height adjustment control process for the shearer. 

https://doi.org/10.1371/journal.pone.0329347.g005

https://doi.org/10.1371/journal.pone.0329347.g005
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distance and the corresponding lowering height of the spiral drum can be calculated using the data in Table 2, in conjunc-
tion with Equations (12) and (13). Fig 7 illustrates the coal wall model under working condition 4.

3.2  Identification of coal and rock cutting status

The vibration characteristics of the spiral drum vary with different operational conditions. This variation in vibration char-
acteristics contains substantial information that can represent the properties of the cut coal-rock material. Based on the 

Fig 6.  3D solid model of shearer height adjustment mechanism.

https://doi.org/10.1371/journal.pone.0329347.g006

Table 2.  The main structural parameter values of the shearer and drum.

Drum Parameter Value Unit Drum Parameter Value Unit

Drum Diameter 800 mm Drum Hub Outer Diameter 465 mm

Spiral Blade Height 68 mm Drum Hub Inner Diameter 425 mm

Spiral Blade Thickness 90 mm Tooth Arrangement Type Sequential

Spiral Blade Pitch Angle 14 ° Drum Cutting Depth 630 mm

Number of Spiral Blades 2 Number of Teeth per Blade Line 2

Length of Small Rock Arm 260 mm

Length of Drum Rock Arm 1400 mm

Distance from Lower Pivot of the Body to Upper Pivot of Rock Arm 712 mm

Distance from Drum’s Lowest Point to Hydraulic Cylinder Pivot 635 mm

https://doi.org/10.1371/journal.pone.0329347.t002

Table 3.  Typical working conditions.

Condition Number Coal Wall Type Hydraulic Cylinder Piston Retraction 
Distance (mm)

Spiral Drum Corresponding Down-
ward Adjustment Height (mm)

1 Coal→Roof + Coal 20 100

2 Coal→Roof + Coal 40 214

3 Coal→Roof + Coal 60 325

4 Coal→Roof + Coal + Durinode 50 270

https://doi.org/10.1371/journal.pone.0329347.t003

https://doi.org/10.1371/journal.pone.0329347.g006
https://doi.org/10.1371/journal.pone.0329347.t002
https://doi.org/10.1371/journal.pone.0329347.t003
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EDEM-RecurDyn coupled simulation technique, which was previously employed and validated by the project team to 
extract spiral drum vibration acceleration data [43], vibration acceleration signals from the spiral drum over a continuous 
3 seconds period are used as coal-rock cutting state perception data. The sampling interval during the cutting process is 
0.002 seconds. Under cutting conditions with a traction speed of 4.0 m/min and a drum speed of 90 r/min, the vibration 
acceleration curves in the directions of the drum’s centroid traction resistance (X), lateral force (Y), and cutting resistance 
(Z) are shown in Fig 8. The characteristic values of the vibration acceleration time-domain signals are listed in Table 4. 
From the values in Table 4, it is evident that the characteristic values of the time-domain vibration acceleration signals 
in all three directions are similar for both coal and coal-plus-roof cutting. The maximum, minimum, peak, and Root Mean 
Square (RMS) values have maximum variation rates of 3.19%, 2.62%, 4.94%, and 4.31%, respectively. This suggests 
that when the coal-rock material’s hardness coefficient is similar, relying solely on the time-domain response of vibration 
signals is insufficient for distinguishing between coal and coal-rock cutting states. Additionally, the time-domain signals 
are contaminated with redundant noise, which impacts the accuracy of coal-rock cutting state recognition. Therefore, a 
method based on Singular Value Decomposition (SVD) and Continuous Wavelet Transform (CWT) is proposed to denoise 

Fig 7.  Coal wall model of working condition 4.

https://doi.org/10.1371/journal.pone.0329347.g007

Fig 8.  Vibration acceleration curves of the spiral drum under cutting conditions of f = 3.5 coal and f = 3.5 Roof +coal. 

https://doi.org/10.1371/journal.pone.0329347.g008

https://doi.org/10.1371/journal.pone.0329347.g007
https://doi.org/10.1371/journal.pone.0329347.g008
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the vibration acceleration time-domain signals and convert them into time-frequency spectrograms. These spectrograms 
are then input into the AlexNet transfer learning model for coal-rock cutting state recognition [44].

Singular Value Decomposition (SVD) is an effective method for feature extraction. The singular values obtained through 
decomposition can represent the intrinsic characteristics of data or signals, exhibiting strong stability and invariance. 
By truncating the singular value matrix, dimensionality reduction and compression can be achieved while retaining the 
primary information [45]. Based on SVD theory, the moving sliding-window method is applied to continuously segment the 
time-domain vibration acceleration signal of the helical drum, which is then transformed into a two-dimensional Hankel 
matrix (AH). Its expression is given as:

	

AH =




a1 a2 · · · an
a2 a3 · · · an+1

· · · · · ·
. . . · · ·

am am+1 · · · aN



	 (23)

In this expression, an denotes the n-th collected vibration acceleration data point, measured in mm/s2. N represents the 
total number of collected vibration acceleration data points, where N = n + m-1. When N is even, n = N/2(m = N/2 + 1; 
when N is odd, n = (N+ 1) /2(m = (N+ 1) /2.

By performing a mathematical transformation on the matrix AH, the following result is obtained:

	 AH = USVT 	 (24)

In this expression, U ∈ Rm×m and V ∈ Rn×n are the left and right singular orthogonal matrices, respectively, and S is a 
diagonal matrix, expressed as:

	

S =




λ1

λ2

. . .
λi



	 (25)

In this expression, λi  denotes the singular value, which satisfies λ1 > λ2 > · · · > λi.
The magnitude of the singular values can indirectly reflect the degree of energy concentration. In general, significant 

singular values correspond to effective signals, whereas small singular values correspond to noise and interference. By 
selecting an appropriate number of singular values for data reconstruction, noise can be effectively eliminated. The princi-
ple is illustrated in Fig 9.

Table 4.  The signal characteristic value of vibration of drum X, Y and Z.

Coal-Rock Type Direction Vibration Acceleration Time-Domain Signal Features

Maximum Value (mm/s²) Minimum Value (mm/s²) Peak Value (mm/s²) Root Mean Square (RMS) Value (mm/s²)

Coal X 30833.40 −27985.46 6093.81 7839.54

Y 15413.99 −16024.58 4095.37 1687.04

Z 39874.25 −38761.63 9764.92 3782.99

Roof+Coal X 31587.43 −28739.32 5883.71 7562.82

Y 15921.43 −16239.43 3902.43 1617.32

Z 40195.22 −39758.31 9597.41 3654.28

https://doi.org/10.1371/journal.pone.0329347.t004

https://doi.org/10.1371/journal.pone.0329347.t004
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Determining the threshold that distinguishes noise from signal singular values is crucial for SVD-based denoising. 
Considering the characteristics of the helical drum vibration acceleration signals, the energy proportion method (EPM) 
is employed to determine the number of significant singular values. The core of this method is to calculate the propor-
tion of each singular value’s squared magnitude relative to the total energy, with larger singular values corresponding to 
effective signals contributing more prominently to the total “energy.” The total energy of the vibration signal, the singular 
value energy proportion, and the cumulative energy proportion are determined based on the Frobenius norm, as shown in 
Equations (26)–(28). In this study, the energy threshold is set to 90%.

Total energy:

	
∥AH∥2F =

∑k

i=1
λ2
i 	 (26)

Energy proportion of singular values:

	
ηj =

λ2
j∑k

i=1 λ
2
i 	 (27)

Cumulative energy proportion of the first r singular values:

	
ηr =

∑r
j=1 λ

2
j∑k

i=1 λ
2
i 	 (28)

The Continuous Wavelet Transform (CWT) is a time-frequency analysis method derived from the Fourier Transform 
(FT) and Short-Time Fourier Transform (STFT) theories. It uses a more suitable basis function for signal processing, 

Fig 9.  Basic principle of SVD denoising.

https://doi.org/10.1371/journal.pone.0329347.g009

https://doi.org/10.1371/journal.pone.0329347.g009
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making it particularly effective for non-stationary signals and self-adaptive to varying signal characteristics. The process of 
converting the denoised drum vibration acceleration time-domain signal into a time-frequency spectrogram using CWT is 
illustrated in Fig 10. The parameter settings of the CWT are shown in Table 5. The resulting time-frequency spectrograms 
based on CWT are shown in Figs 11 and 12.

The time-frequency spectrograms reveal that under the f = 3.5 pure coal condition, the dominant frequencies are around 
60 Hz and 180 Hz, with a narrow frequency band distribution. In contrast, under the f = 3.5 roof+coal condition, the domi-
nant frequencies are around 80 Hz, 170 Hz, and 240 Hz. Moreover, over time, the width and brightness of the frequency 
bands continuously change, indicating that the energy distribution and intensity of the two conditions differ. The time-
frequency spectrograms contain rich varying features, allowing for a clear distinction between coal-rock cutting states.

As a typical convolutional neural network (CNN) model, AlexNet has been trained on 1.2 million images across 1000 
categories, endowing it with robust image feature extraction capabilities. Reference [46] demonstrates that AlexNet 

Fig 10.  Generation of frequency spectrum of drum vibration acceleration.

https://doi.org/10.1371/journal.pone.0329347.g010

Table 5.  Parameter setting of CWT.

Parameter Parameter selection

Wavelet Basis cmor

Bandwidth 1

Center frequency 100

Scale 300

Pixel 227*227

Boundary treatment symmetric extension

https://doi.org/10.1371/journal.pone.0329347.t005

https://doi.org/10.1371/journal.pone.0329347.g010
https://doi.org/10.1371/journal.pone.0329347.t005
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achieved accurate recognition of characters on Qin bamboo slips, with a recognition accuracy as high as 99.89%. 
Reference [47] utilized AlexNet for real-time automatic recognition of plant leaves usable as livestock feed, yielding a 
recognition accuracy of 98.38%. Reference [48] conducted research on the recognition of crop disease images in complex 
backgrounds using AlexNet, and the results showed that the recognition accuracy was close to 90%. Additionally, Refer-
ence [49] pointed out that AlexNet is the most suitable deep neural network for coal-gangue separation. These studies 
provide theoretical guidance for the application of the AlexNet model in coal-rock cutting state recognition. However, 
considering the limited number of acquired time-frequency images, a network transfer learning technique is proposed to 
train model parameters with a small sample set. This technique has been proven feasible in References [50] and [51]. 
According to the classification of typical working conditions, the source domain and target domain are adapted by fine-
tuning the network structure. The trained transfer network is employed as a feature extractor, and training is performed 
using time-frequency images obtained under different working conditions to adapt to the task of coal-rock cutting state 
recognition. The structure of the transfer learning model is illustrated in Fig 13, which mainly consists of an input layer, 5 
convolutional layers, 3 pooling layers, 3 fully connected layers, and an output layer. In the transfer model, the convolution 
kernel sizes of CONV1 and CONV2 are 11 × 11 and 5 × 5, respectively, while those of CONV3, CONV4, and CONV5 are 
all 3 × 3. Shallow convolution utilizes large-dimensional kernels to extract shallow features of images, effectively reducing 

Fig 11.  Time-frequency spectrogram under the f = 3.5 pure coal condition. 

https://doi.org/10.1371/journal.pone.0329347.g011

Fig 12.  Time-frequency spectrogram under the f = 3.5 roof+coal condition. 

https://doi.org/10.1371/journal.pone.0329347.g012

https://doi.org/10.1371/journal.pone.0329347.g011
https://doi.org/10.1371/journal.pone.0329347.g012
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the image dimension and the number of parameters; deep convolution adopts small-dimensional kernels to extract more 
abstract deep features of images, with key parameter values listed in Table 6.

To quantitatively evaluate the recognition performance of the proposed AlexNet transfer learning model, the recognition 
accuracy (accuracy ) is introduced as the performance metric. The specific calculation formula is given in Equation (29).

	
accuracy=

TP+ TN
TP+ TN+ FP+ FN 	 (29)

In this equation, TP represents the number of true positives, FP represents false positives, FN  represents false nega-
tives, and TN  represents true negatives.

To obtain hyperparameters that enable the AlexNet transfer learning network to achieve optimal recognition accuracy, 
and based on the selection of the training network solver as SGDM and Dropout set to 0.5 [52–53], the orthogonal experi-
ment method is employed to analyze the effects of three factors—MaxEpochs, MiniBatchSize, and InitialLearnRate— 
on the model’s recognition accuracy. These three experimental factors are denoted as A, B, and C, respectively. According 
to the reasonable value ranges for each hyperparameter, a three-factor, four-level orthogonal experiment is conducted, 
and the factor-level table is presented in Table 7.

Fig 13.  AlexNet transfer learning model.

https://doi.org/10.1371/journal.pone.0329347.g013

Table 6.  Main parameter assignment.

Layer Structure Input Channels Output Channels Input Feature
Map Size

Output Feature Map Size Kernel/Pool Size Stride Padding Value

Conv1 3 96 227 × 227 55 × 55 11 × 11 4 0

Max Pooling1 96 96 55 × 55 27 × 27 3 × 3 2 0

Conv2 96 256 27 × 27 27 × 27 5 × 5 1 2

Max Pooling2 256 256 27 × 27 13 × 13 3 × 3 2 0

Conv3 256 384 13 × 13 13 × 13 3 × 3 1 1

Conv4 384 384 13 × 13 13 × 13 3 × 3 1 1

Conv5 384 256 13 × 13 13 × 13 3 × 3 1 1

Max Pooling3 256 256 13 × 13 6 × 6 3 × 3 2 0

https://doi.org/10.1371/journal.pone.0329347.t006

https://doi.org/10.1371/journal.pone.0329347.g013
https://doi.org/10.1371/journal.pone.0329347.t006
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An L16
(
43
)
 orthogonal table was selected to obtain 16 orthogonal experimental schemes, and the AlexNet transfer 

learning model was trained and tested using the training and testing datasets for each scheme. The characteristic val-
ues of the model’s recognition accuracy were calculated under each level of every factor. The experimental configuration 
schemes, orthogonal experiment results, and analysis of factor influence are presented in Tables 8 and 9. Using MaxEp-
ochs, MiniBatchSize, and InitialLearnRate as the horizontal axes and the model recognition accuracy as the vertical axis, 
the influence trends of each factor on the model’s recognition accuracy were plotted, as shown in Fig 14.

From the analysis of model recognition accuracy in Table 9, the results indicate R
C
 > R

B
 > R

A
, S

C
 > S

B
 > S

A
, showing that 

among the three factors—MaxEpochs, InitialLearnRate, and MiniBatchSize—InitialLearnRate has the most significant 
impact on model recognition accuracy, followed by MiniBatchSize, while MaxEpochs has the least influence. From the 

Table 7.  Factor level table.

Level A (MaxEpochs) B (MiniBatchSize) C (InitialLearnRate)

1 5 16 1× 10–2

2 10 32 1× 10–3

3 15 64 1× 10–4

4 20 128 1× 10–5

https://doi.org/10.1371/journal.pone.0329347.t007

Table 8.  Test configuration scheme and orthogonal test results.

Test Factor coding Recognition accuracy (%) Test Factor coding Recognition accuracy (%)

A B C A B C

1 1 1 1 83.76 9 3 1 3 91.96

2 1 2 2 87.71 10 3 2 4 93.63

3 1 3 3 94.09 11 3 3 1 88.61

4 1 4 4 92.41 12 3 4 2 89.21

5 2 1 2 87.31 13 4 1 4 92.26

6 2 2 1 86.32 14 4 2 3 93.55

7 2 3 4 95.36 15 4 3 2 91.19

8 2 4 3 93.30 16 4 4 1 86.65

https://doi.org/10.1371/journal.pone.0329347.t008

Table 9.  Table of factor influence degree analysis.

Recognition accuracy (%)

A B C

K1 357.97 355.29 345.34

K2 362.29 361.21 355.42

K3 363.41 369.25 372.90

K4 363.45 361.57 373.66

k1 89.49 88.81 86.34

k2 90.57 90.30 88.86

k3 90.85 92.31 93.23

k4 90.86 90.39 93.42

R 1.37 3.50 7.08

S 0.32 1.54 8.99

https://doi.org/10.1371/journal.pone.0329347.t009

https://doi.org/10.1371/journal.pone.0329347.t007
https://doi.org/10.1371/journal.pone.0329347.t008
https://doi.org/10.1371/journal.pone.0329347.t009
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curve of factor A in Fig 14, the recognition accuracy initially increases and then stabilizes as MaxEpochs increases, even-
tually reaching 90.86%. The curve of factor B shows that recognition accuracy first increases and then decreases with 
increasing MiniBatchSize, achieving the maximum accuracy of 92.31% at level 3. The curve of factor C demonstrates that 
recognition accuracy continually improves with increasing InitialLearnRate, though the growth rate varies: when moving 
from level 1 to levels 2 and 3, accuracy rises significantly to 88.86% and 93.23%, respectively, while the increase from 
level 3 to level 4 is minimal, reaching 93.42%. Considering the above analysis and the need to reduce training time, the 
optimal hyperparameter combination is determined as MaxEpochs = 10, MiniBatchSize = 64, InitialLearnRate =1× 10–4, 
with sgdm as the solver and Dropout = 0.5.

Based on the constructed AlexNet network for transfer learning, the time-frequency spectrograms obtained under differ-
ent operating conditions were divided into training and testing sets at a ratio of 4:1 for training and evaluation [54]. The rec-
ognition accuracy for the test samples was measured over five iterations, and the results are summarized in Table 10. As 
shown in Table 10, the average recognition accuracy reached 95.06%, which provides reliable data support for the precise 
control of the coal mining machine’s self-adaptive height adjustment.

To compare the performance superiority of the AlexNet transfer learning model, VGG-16, GoogLeNet, and AlexNet 
transfer learning models were selected for comparative experimental analysis. Based on the principle of controlled vari-
ables, the parameters of all network models were standardized. The recognition performance of each model was evalu-
ated by the recognition accuracy on the training and testing datasets and the time consumed for recognition. The results 
are presented in Table 11.

A comparison of the recognition accuracy data in Table 11 shows that the training set accuracy of the VGG-16 and 
GoogLeNet transfer learning models is slightly higher than that of the AlexNet transfer learning model, but the difference 
is minimal. However, the testing set recognition accuracies of VGG-16 and GoogLeNet are 2.86% and 4.05% lower than 

Fig 14.  Factor trend analysis.

https://doi.org/10.1371/journal.pone.0329347.g014

Table 10.  AlexNet network migration learning model recognition accuracy.

Experiment Number Recognition Accuracy (%) Average Recognition Accuracy (%)

1 95.33 95.06

2 94.97

3 95.02

4 95.51

5 94.48

https://doi.org/10.1371/journal.pone.0329347.t010

https://doi.org/10.1371/journal.pone.0329347.g014
https://doi.org/10.1371/journal.pone.0329347.t010
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that of AlexNet, respectively. This outcome can be attributed to the deeper and wider network architectures of VGG-16 
and GoogLeNet, which provide stronger feature extraction capabilities and superior performance on the training set. 
Nevertheless, the increased network depth significantly raises the number of parameters and complicates weight updates 
in shallow layers, resulting in decreased recognition accuracy. Additionally, deeper networks require larger datasets to 
avoid overfitting, and insufficient sample sizes can further degrade performance. Regarding recognition time, VGG-16 and 
GoogLeNet require substantially longer times than AlexNet due to the increased computational demands of their deeper 
structures. Overall, these analyses indicate that the AlexNet transfer learning model demonstrates stable recognition 
performance on both training and testing datasets while requiring less recognition time, thereby effectively enhancing the 
real-time capability of information transmission and processing.

3.3  Design of the self-adaptive height adjustment control for the shearer based on DDPG

The algorithm architecture of the shearer hydraulic height adjustment system based on DDPG is shown in Fig 15. In order 
for the DDPG algorithm to learn the optimal control strategy that meets expectations, the design of the control process 
needs to be combined with the controlled object and control objectives. This includes the selection of action space and 

Fig 15.  Algorithm architecture of the hydraulic height adjustment system for the shearer based on DDPG.

https://doi.org/10.1371/journal.pone.0329347.g015

Table 11.  Recognition accuracy and recognition time under different models.

Model classification Training set recognition accuracy (%) Test set recognition accuracy (%) The recognition time consumed (ms)

VGG-16 96.11 92.23 1884

GooleNet 96.34 91.04 1896

AlexNet 95.32 95.09 461

https://doi.org/10.1371/journal.pone.0329347.t011

https://doi.org/10.1371/journal.pone.0329347.g015
https://doi.org/10.1371/journal.pone.0329347.t011
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state space, the establishment of the height adjustment system Simulink model, the creation of the RL Agent model, and 
the design and selection of the reward function.

Guided by the algorithm architecture shown in Fig 15, a DDPG-based self-adaptive hydraulic height adjustment model 
for the shearer was built. This model continuously extracts the actual displacement of the hydraulic cylinder piston, com-
pares it with the target displacement derived from the coal-rock cutting state recognition results, and calculates the error 
signal. Additionally, inspired by the concept of reducing steady-state error in a PID controller through historical tracking 
errors, the model uses the error (the difference between the actual and target displacement) at the current and previous 
time steps, along with the actual displacement value, as a 2D state space for the RL agent at each time step.

	 st = [error(distance]T 	 (30)

Based on the transfer function block diagram of the hydraulic height adjustment system, a Simulink model was con-
structed, as shown in Fig 16. The input is the voltage signal controlling the opening of the electro-hydraulic proportional 
valve, while the output is the displacement of the hydraulic cylinder piston.

For the hydraulic height adjustment system of the shearer, as shown in Fig 15, the control input is a voltage signal, 
Therefore, the action space for the RL agent is defined accordingly:

	 at = u	 (31)

The DDPG-based self-adaptive controller, implemented in the Simulink environment, requires control commands 
written in MATLAB files to interface with the neural network modules and build the RL agent. The RL agent should consist 
of a deep neural network with two inputs for simulating the Critic network, and a single-input, single-output deep neural 
network for simulating the Actor network, as shown in Figs 17 and 18.

The Critic network structure, as shown in Fig 17, includes two input layers: one for the state variable at and the other 
for the action output variable u. The network consists of two hidden layers, with 100 and 50 neurons, respectively. The 
input layer for the action output variable is directly connected to the second hidden layer, and all hidden layers are fully 
connected. The output layer consists of a single neuron to evaluate the quality of actions, represented by the Q-value . All 
hidden layers use the Rectified Linear Unit (Relu) activation function.

The Actor network structure, as shown in Fig 18, includes an input layer for the state variable at and two hidden 
layers. The number of neurons in the hidden layers matches that of the Critic network, and the hidden layers are fully con-
nected. The output layer consists of a single neuron to represent the action output variable. Similar to the Critic network, 
all hidden layers use the Relu activation function. Details of the Critic/Actor networks and other parameters of the RL 
Agent are provided in Tables 12 and 13.

Fig 16.  Simulink model of height adjustment system. 

https://doi.org/10.1371/journal.pone.0329347.g016

https://doi.org/10.1371/journal.pone.0329347.g016
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The reward signal measures the agent’s contribution toward achieving the task goal. During training, the agent updates 
its policy based on the reward. By carefully designing the reward function, the controller’s performance can be enhanced, 
and the steady-state error in the adjustment process can be reduced. For the self-adaptive height adjustment control of 
the shearer, the reward function is defined and adjusted based on the error between the target and actual displacement of 
the hydraulic cylinder piston. Three types of reward functions-discrete, continuous, and hybrid-are designed, as shown in 
equations (32)-(33).

Fig 18.  Deep neural network-Actor network.

https://doi.org/10.1371/journal.pone.0329347.g018

Table 12.  Parameter setting of deep neural network.

Learning Rate Gradient Threshold Method Gradient Threshold

Network Parameters
Critic/Actor

1× 10–4 l2norm 1

Optimizer L2 Regularization Facto Use Device

Adam 1× 10–4 CPU

https://doi.org/10.1371/journal.pone.0329347.t012

Fig 17.  Deep neural network-Critic network.

https://doi.org/10.1371/journal.pone.0329347.g017

https://doi.org/10.1371/journal.pone.0329347.g018
https://doi.org/10.1371/journal.pone.0329347.t012
https://doi.org/10.1371/journal.pone.0329347.g017
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Discrete reward function r1:

	

r1 = 0 (
∣error∣ < 0.1) – 0.5 (0.1 ≤ ∣error∣ < 1) – 1 (1 ≤ ∣error∣ < 5) – 4 (5 ≤ ∣error∣ < 10)

– 7 (10 ≤ ∣error∣ < 17) – 10 (17 ≤ ∣error∣ < 25) – 15 (
∣error∣ ≥ 25) 	 (32)

Where, error is between the actual and target displacement of the hydraulic cylinder piston, mm.
The discrete reward function divides the reward interval into seven sections: ∣error∣ < 0.1, 0.1 ≤ ∣error∣ < 1, 

1 ≤ ∣error∣ < 5, 5 ≤ ∣error∣ < 10, 10 ≤ ∣error∣ < 17, 17 ≤ ∣error∣ < 25, 
∣error∣ ≥ 25. As indicated in equation (30), when the 

error exceeds a specified range, the reward value becomes negative.
Continuous reward function r2 is as follows:

	 r2 = – ∣error∣	 (33)

The continuous reward function is one that varies continuously with the hydraulic cylinder’s error value, where the 
reward decreases as the error increases.

Hybrid reward function r3:

	 r3 = r1 + r2	 (34)

The hybrid reward function combines both discrete and continuous reward functions.
In the process of shearer, the core of the automatic adjustment of the drum height is the precise control of the hydrau-

lic cylinder’s piston extension distance. By randomizing the reference value for the hydraulic cylinder’s piston extension 
distance using Equation (35), the agent is encouraged to periodically learn and continuously update its optimal control 
strategy to adapt to changing operational conditions.

	 dis tan ce = 150 ∗ rand 	 (35)

Where, rand  is a random number between 0 and 1, 150 is the extension stroke of the hydraulic cylinder’s piston.
The DDPG-based self-adaptive lifting control model was trained using reward functions r1, r2 and r3, to ensure that the 

training performance of the DDPG-based self-adaptive height adjustment control model meets the requirements of actual 
coal mining operations, the training termination condition was defined as follows: the steady-state error of the hydrau-
lic cylinder piston displacement must remain below 0.5 mm for five consecutive training episodes, and the convergence 
behavior and speed were statistically analyzed, as shown in Table 14.

By comparing the characteristic parameters shown in Table 14, it is evident that the hybrid reward function exhibits a 
significantly faster convergence speed compared to the other two functions.

Based on the Simulink environment model of the height adjustment system and the DDPG controller model established 
in Fig 16, the final self-adaptive hydraulic height adjustment system model for the shearer based on DDPG (Model I) is 
obtained, as shown in Fig 19. In this model, the data for the Desired Distance Level comes from the target value of the height 
adjustment hydraulic cylinder piston displacement, which corresponds to the coal-rock cutting state recognition results.

Table 13.  Agent parameter settings.

Agent
Parameters

Target Network
Update Method

Target Network Update Delay Factor Target Network Update Frequency Noise Mechanism

Variance Variance Decay Rate

Smoothing 1× 10–3 1 0.5 1× 10–5

Sampling Time Reward Discount Factor Batch Size Experience Replay
Pool Size

0.05s 0.9 64 1× 105

https://doi.org/10.1371/journal.pone.0329347.t013

https://doi.org/10.1371/journal.pone.0329347.t013
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Using this model, a step signal with an amplitude of 20 is applied as the system input to compare the control performance 
of the hydraulic height adjustment system trained using the three types of reward functions, as shown in Figs 20–22.

Through comparative analysis, it is observed that the systems trained with discrete, continuous, and hybrid reward 
signals all exhibit fast response speeds. The time required to reach steady state is 0.16s, 0.12s, and 0.085s, respec-
tively, while the steady-state errors are 0.33 mm, 0.26 mm, and 0.0005 mm. Compared to the systems trained with 
discrete and continuous reward signals, the system trained with the hybrid reward signal demonstrates superior per-
formance in both speed and accuracy. Therefore, this paper selects the hybrid reward function as the training reward 
function for the agent.

4  System simulation and analysis

Using the established DDPG-based self-adaptive hydraulic height adjustment system model for the shearer (Model I), 
harmonic signals, square wave signals, and step signals with disturbances are employed to simulate the displacement 

Fig 19.  The DDPG-based self-adaptive hydraulic height adjustment system model for the shearer (Model I).

https://doi.org/10.1371/journal.pone.0329347.g019

Fig 20.  Shows the system’s control performance under reward function r1. 

https://doi.org/10.1371/journal.pone.0329347.g020

Table 14.  Characteristic parameters of different reward functions.

Reward Function Type Convergence Training Episodes to Satisfy Termination Condition Training Time(s)

Discrete Reward Function r
1

Convergence 2460 5283.1

Continuous Reward Function r
2

Convergence 1226 3057.1

Hybrid Reward Function r
3

Convergence 542 1271.7

https://doi.org/10.1371/journal.pone.0329347.t014

https://doi.org/10.1371/journal.pone.0329347.g019
https://doi.org/10.1371/journal.pone.0329347.g020
https://doi.org/10.1371/journal.pone.0329347.t014
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variations of the hydraulic cylinder piston rod. The system’s tracking characteristics, anti-interference performance, 
environmental adaptability, and the control performance comparison of different algorithms are analyzed to evaluate the 
superiority of the DDPG control algorithm.

4.1  System tracking performance analysis

The hydraulic cylinder piston displacement was simulated with harmonic signals of amplitude 10, offset 20, and angular 
velocity ω = 3 rad/s, and square wave signals with amplitude 40, period T = 2.5s, and duty cycle 50%. These signals were 
used to simulate continuous and abrupt changes in the piston displacement, in order to validate the tracking performance 
of the adaptive control system. A simulation time of 5 seconds was set. The simulation results are shown in Figs 23 
and 24. From Fig 23, it can be seen that when the hydraulic cylinder piston displacement undergoes continuous changes 
simulated by a harmonic signal, the system tracking delay and steady-state error are 0.08s and 0.12 mm, respectively.  
Fig 24 shows that when the hydraulic cylinder piston displacement experiences abrupt changes simulated by a square 
wave signal, the system steady-state error is only 0.02 mm when the displacement remains constant. When the displace-
ment undergoes a sudden change at 1.25s, the system responds rapidly and re-enters steady state after approximately 
0.158s. Overall, the system can effectively track different input signals with a quick response and small steady-state error, 
demonstrating good tracking performance.

Fig 21.  Shows the system’s control performance under reward function r2. 

https://doi.org/10.1371/journal.pone.0329347.g021

Fig 22.  Shows the system’s control performance under reward function r3. 

https://doi.org/10.1371/journal.pone.0329347.g022

https://doi.org/10.1371/journal.pone.0329347.g021
https://doi.org/10.1371/journal.pone.0329347.g022
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4.2  System anti-interference analysis

The height adjustment system must maintain strong anti-interference capability in the event of sudden external distur-
bances. To validate the system’s anti-interference performance, a disturbance is simulated to reflect the sudden loading 
change encountered when the coal cutter unexpectedly encounters pyrite nodules during the coal-rock cutting process. 
A step signal with an amplitude of 5 kN is added at the 3s mark as a disturbance signal, with the system response shown 
in Fig 25. Following the disturbance, the system reacts immediately and returns to a steady state within 0.13s, indicating 
a high level of anti-interference capability. Additionally, minimal oscillation is observed, demonstrating the system’s stable 
performance under such conditions.

4.3  System environmental self-adaptability analysis

To verify the environmental self-adaptability of the height adjustment system, as well as its self-learning and self-
improvement capabilities during training, simulations were conducted under three typical conditions presented in Table 3. 
Step signals with amplitudes of 20, 40, and 60 were applied to simulate the variation in hydraulic cylinder piston rod dis-
placement required for each condition. The system response curves are shown in Fig 26. As illustrated, the times needed 
to reach steady state for step responses with amplitudes of 20, 40, and 60 were 0.085s, 0.08s, and 0.092s, respectively, 
with steady-state errors of 0.005 mm, 0.0046 mm, and 0.0055 mm. The time required to reach steady state and the steady-
state errors are nearly identical across different conditions, with relative steady-state errors of 0.025%, 0.012%, and 

Fig 23.  Tracking simulation of harmonic signal.

https://doi.org/10.1371/journal.pone.0329347.g023

Fig 24.  Tracking simulation of square wave signal.

https://doi.org/10.1371/journal.pone.0329347.g024

https://doi.org/10.1371/journal.pone.0329347.g023
https://doi.org/10.1371/journal.pone.0329347.g024
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0.009%. These results indicate that the system exhibits strong environmental self-adaptability and effective self-learning 
and self-improvement capabilities under varying conditions.

4.4  Comparision and validation analysis of algorithms

To evaluate the effectiveness of the DDPG-based self-adaptive height control for the shearer proposed in this study, a 
comparative analysis was conducted against conventional control algorithms and typical deep reinforcement learning 
algorithms.

Using the shearer self-adaptive height control system with conventional PID control, fuzzy PID control, and DDPG con-
trol, simulations were conducted to analyze the control performance of each method. Step signals with amplitudes of 20 
and 50 were applied as system inputs. To simulate cutting through a hard durinode, a disturbance signal with an amplitude 
of 3 and a duration of 0.1s was introduced at 1s into the simulation. The results comparing the control performance of 
these three methods are presented in Fig 27.

Fig 27 shows that, when a step signal with an amplitude of 20 is applied, the systems controlled by conventional PID, 
fuzzy PID, and DDPG controllers reach steady-state in 0.135s, 0.11s, and 0.085s, respectively, all demonstrating good 
response speeds. The steady-state errors for each controller are 0.11 mm, 0.07 mm, and 0.0005 mm, respectively, with 
the DDPG controller achieving the highest control accuracy. When the step signal amplitude is increased to 50, without 
manual adjustment to controller parameters, the systems reach steady-state in 0.254s, 0.12s, and 0.091s, respectively, 

Fig 25.  Simulation analysis under disturbance condition.

https://doi.org/10.1371/journal.pone.0329347.g025

Fig 26.  Environmental self-adaptability simulation analysis.

https://doi.org/10.1371/journal.pone.0329347.g026

https://doi.org/10.1371/journal.pone.0329347.g025
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with steady-state errors of 0.48 mm, 0.27 mm, and 0.00052 mm. The DDPG controller again provides the best control 
performance, largely due to its adaptive capability, which is absent in the fixed-parameter design of the conventional PID 
controller.

Under a 0.1s disturbance signal applied at the 1s mark, the system controlled by the conventional PID and fuzzy PID 
controllers returned to steady-state in 1.27s and 1.22s, respectively. In contrast, the DDPG-controlled system required 
only 0.52s to stabilize, significantly reducing the adjustment time due to the limitations of conventional PID and fuzzy PID 
controllers in adapting to sudden disturbances.

In addition, the DQN, SAC, and TD3 controllers were trained using the same parameters as the DDPG controller. The 
shearer adaptive height adjustment system controlled by these four controllers was then simulated, with a step signal of 
amplitude 20 applied as the system input, and a disturbance signal of amplitude 3 and duration 0.1 s introduced at 1 s 
of simulation time. Performance metrics such as rise time, steady-state adjustment time, steady-state error, and time to 
recover from disturbance were analyzed, Based on the above analysis, the control performance of the six methods is 
evaluated, The results are shown in Table 15.

As shown in Table 15, when a step input signal with an amplitude of 20 is applied, the rise times of the system under 
conventional PID, fuzzy PID, DQN, SAC, TD3, and DDPG controllers are 0.037 s, 0.039 s, 0.038 s, 0.043 s, 0.091 s, and 
0.041 s, respectively. Only the TD3-controlled system exhibits a significantly longer rise time, which can be attributed to 
the greater number of layers and hyperparameters in the TD3 deep neural network, resulting in higher computational 
demand. The rise times for conventional PID, fuzzy PID, DQN, SAC, and DDPG controllers are comparable. The settling 
times for these controllers are 0.135 s, 0.11 s, 0.093 s, 0.079 s, 0.138 s, and 0.085 s, respectively. Notably, DDPG reduces 
the adjustment time by 66.5% compared with conventional PID and by 38.4% compared with TD3, slightly exceeding 

Fig 27.  Comparison of control effects between DDPG and classical controllers.

https://doi.org/10.1371/journal.pone.0329347.g027

Table 15.  Comparison of control performance of DDPG and other algorithms.

Algorithm Performance Metric

Rise Time (s) Adjustment Time (s) Steady-State Error (mm) Recovery Time after Disturbance (s)

Conventional PID 0.037 0.135 0.11 1.27

Fuzzy PID 0.039 0.11 0.07 1.22

DQN 0.038 0.093 0.0014 0.92

SAC 0.043 0.079 0.0824 0.55

TD3 0.091 0.138 0.0004 1.13

DDPG 0.041 0.085 0.0005 0.52

https://doi.org/10.1371/journal.pone.0329347.t015

https://doi.org/10.1371/journal.pone.0329347.g027
https://doi.org/10.1371/journal.pone.0329347.t015
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SAC (0.079 s) in speed, while achieving a steady-state error of 0.0005 mm, significantly better than SAC (0.0824 mm). 
The steady-state errors for the six controllers are 0.11 mm, 0.07 mm, 0.0014 mm, 0.0824 mm, 0.004 mm, and 0.0005 mm, 
respectively. Among the deep reinforcement learning algorithms, SAC exhibits a larger steady-state error due to its ten-
dency to converge to suboptimal policies when searching for the optimal control strategy [26]. The steady-state error of 
DDPG is only 0.1% of that of conventional PID and 0.18% of fuzzy PID, comparable to TD3 (0.0004 mm), while its distur-
bance recovery time (0.52 s) is only 46% of that of TD3. After disturbance, the adjustment times for the six controllers are 
1.27 s, 1.22 s, 0.92 s, 0.55 s, 1.13 s, and 0.52 s, respectively. Among the deep reinforcement learning algorithms, DQN and 
TD3 exhibit longer adjustment times under disturbance, because DQN is suitable for discrete systems and TD3 involves 
substantial computation. In contrast, DDPG’s adjustment time under disturbance is only 40.9% of conventional PID and 
42.6% of fuzzy PID, comparable to SAC (0.55 s), while achieving a steady-state error of 0.0005 mm, only 0.6% of SAC’s 
error (0.0824 mm). Overall, the system controlled by the DDPG controller demonstrates superior comprehensive perfor-
mance compared with systems controlled by conventional PID, fuzzy PID, DQN, SAC, and TD3 controllers.

5  Feasibility verification of height control strategy based on AMESim-simulink co-simulation

The electro-hydraulic proportional height control system models established using classical control theory primarily simu-
late linear time-invariant systems. However, the self-adaptive height adjustment process in shearers is subject to external 
influences such as geological conditions, which results in a nonlinear and time-varying behavior. To address the limitations 
of classical control theory in accurately modeling the dynamic performance of hydraulic systems and to make the research 
more reflective of engineering realities, a hydraulic height control system model was developed in the AMESim environ-
ment, as shown in Fig 1. By integrating AMESim and Simulink through an interface, the transfer-function-based model from 
the height control model in Fig 28 was replaced by the AMESim model shown in Fig 28, yielding a nonlinear, time-varying 
DDPG-based self-adaptive hydraulic height control system model (Model II) for shearers, as illustrated in Fig 29.

To verify the feasibility of controlling the nonlinear and time-varying system, simulations were conducted using both 
the fuzzy PID controller and the DDPG controller on the model shown in Fig 29. The piston displacement tracking 

Fig 28.  The AMEsim model of the hydraulic system of the shearer electro-hydraulic proportional height adjustment.

https://doi.org/10.1371/journal.pone.0329347.g028

https://doi.org/10.1371/journal.pone.0329347.g028
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performance, steady-state error, and piston velocity were extracted to analyze the control effects of both methods. The 
results are shown in Figs 30 and 31.

From the data presented in Figs 30 and 31, it is evident that the systems controlled by fuzzy PID and DDPG exhibit 
different performance characteristics. In the pre-lift steady state, the displacement steady-state errors for the fuzzy PID 
and DDPG controllers are 0.2 mm and 0.0018 mm, respectively, with the latter showing more stable piston motion speed. 
During the lifting phase, the steady-state errors for the piston displacement are 0.32 mm for fuzzy PID and 0.002 mm for 
DDPG. Compared to the pre-lift steady phase, the fuzzy PID-controlled system exhibits a significant increase in piston 
motion speed fluctuations, whereas the DDPG-controlled system shows minimal variation, indicating superior self-
adaptability of the latter.

Based on this analysis, simulations and control experiments were conducted using the DQN, SAC, TD3, and DDPG 
controllers on the model shown in Fig 29. The steady-state error and adjustment time for the hydraulic cylinder piston 
displacement were extracted, and the results are presented in Table 16.

As shown in Table 16, the steady-state errors in the piston displacement of the hydraulic cylinder for the DQN, SAC, 
TD3, and DDPG controllers are 0.0093 mm, 0.1027 mm, 0.0018 mm, and 0.0021 mm, respectively. The adjustment times 
for each controller are 0.104s, 0.087s, 0.172s, and 0.093s, respectively. The performance trends of the four controllers in 
the adjustment process are consistent with the analysis in Table 15, with slight increases in the values due to the addi-
tional data transmission and computation time involved in the co-simulation process.

Fig 29.  Self-adaptive hydraulic height adjustment model of shearer based on DDPG (Model II). 

https://doi.org/10.1371/journal.pone.0329347.g029

Fig 30.  Piston displacement tracking and error.

https://doi.org/10.1371/journal.pone.0329347.g030
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Based on the analysis above, compared to classical control algorithms (fuzzy PID) and typical deep reinforcement 
learning algorithms (DQN, SAC, TD3), the DDPG control strategy clearly demonstrates superior performance. It pos-
sesses the capabilities of self-learning, self-tuning, and self-adaptive. Furthermore, the DDPG-based control strategy 
exhibits rapid response and small steady-state errors, making it suitable for the adaptive height self-adjustment of shear-
ers under complex operating conditions, contributing to intelligent and efficient coal mining.

6  Physical experiment verification

6.1  Experimental validation

To accurately simulate the actual cutting process of the shearer prototype, the test model and coal wall construction must 
adhere to similarity criteria. In the derivation of these criteria, both the structural and kinematic parameters of the shearer, 
as well as the physical and mechanical properties of the coal wall, must be similar. Based on the technical route outlined 
in Fig 32, Using the MG2 × 55/250-BWD thin-seam shearer as the prototype, and guided by the principles of similarity 
theory, parameters such as drum diameter, drum speed, traction speed, force, torque, cutting power, vibration accelera-
tion, density, and strength are selected as similarity parameters. Using the Mass Length Time(MLT) dimensional analy-
sis method and the second similarity theorem, the similarity coefficients for the test rig and coal wall are determined, as 
shown in Table 12. Based on this, a comprehensive test rig for adaptive cutting control with a geometric similarity ratio of 
1:2 is constructed, as shown in Fig 33.

Fig 31.  Piston motion speed.

https://doi.org/10.1371/journal.pone.0329347.g031

Table 16.  Comparison of control performance between DDPG and typical deep reinforcement learn-
ing algorithms in the joint simulation environment.

Algorithm Performance Indicators

Steady-State Error (mm) Adjustment Time (s)

DQN 0.0093 0.104

SAC 0.1027 0.087

TD3 0.0018 0.172

DDPG 0.0021 0.093

https://doi.org/10.1371/journal.pone.0329347.t016

https://doi.org/10.1371/journal.pone.0329347.g031
https://doi.org/10.1371/journal.pone.0329347.t016
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A measurement and control system for the upper computer is established based on LabVIEW. By utilizing hybrid pro-
gramming between LabVIEW and Matlab, the former calls the Simulink dynamic link library files. The PLC control system 
is built using OPC technology, ensuring communication between the PLC control system and the LabVIEW measurement 
and control system. The complete measurement and control system is then assembled. Using this experimental setup, a 
comparison is made to evaluate the superiority of five control strategies-fuzzy PID, DDPG, SAC, DQN, and TD3-in imple-
menting hydraulic height adjustment for the shearer.

The physical experiment is conducted under typical operating condition 1, where durinode are introduced. A coal wall 
model is constructed to match the mechanical properties of the 4602 working face at Yangcun Coal Mine, Yanzhou Coal 
Mining Group, as shown in Fig 34. The consistency of the mechanical properties of the coal wall model is validated using 
uniaxial compression tests.

Fig 32.  Technical route as determined by similar parameters.

https://doi.org/10.1371/journal.pone.0329347.g032

Fig 33.  Self-adaptive height adjustment test system platform.

https://doi.org/10.1371/journal.pone.0329347.g033

https://doi.org/10.1371/journal.pone.0329347.g032
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Based on the optimal drum speed (90 r/min) and traction speed (4.5 m/min) of the MG2 × 55/250-BWD thin -seam 
shearer, and using the similarity coefficients in Table 17, the drum speed was set to 108 r/min and the traction speed to 2.7 
m/min for the simulated cutting test. The displacement data of the hydraulic cylinder piston rod was then extracted, and the 
experimental results were back-calculated using similarity principles. These results, shown in Fig 35, were compared with 
the results from the AMEsim-Simulink coupled simulation, yielding the maximum error, as presented in Table 18.

From the error results in Table 18, the maximum relative error between the AMEsim-Simulink simulation results and the 
experimental back-calculation is 6.58% when using the Fuzzy PID controller, while the minimum relative error is 3.21% 
with the TD3 controller and 3.33% with the DDPG controller. These findings indicate that the five adaptive height control 
strategies for the shearer can accurately control the physical prototype. Moreover, they further validate the superiority of 
the DDPG control strategy over classical control algorithms and other typical deep reinforcement learning algorithms.

6.2  Analysis of error sources and uncertainty quantification

To further verify the stability of the AlexNet transfer learning model and the reliability of the experimental results, five 
repeated tests were conducted on the hoisting system controlled by the AlexNet transfer learning model (based on Typical 
Condition 1). The simulation and experimentally inferred errors of the hydraulic cylinder piston rod displacement were 
recorded, and the results are presented in Table 19.

Based on the results of five repeated tests in Table 19, the mean relative error between the simulation and experimen-
tally inferred results is 3.14%, with a standard deviation of 0.29% and a coefficient of variation of 9.2%. These values 
indicate a concentrated error distribution and demonstrate the good stability of the experimental results. Considering the 
characteristics of the experimental system, the main sources of error are as follows: (1) measurement errors from dis-
placement sensors, data acquisition cards, and other measurement devices; (2) discrepancies between the simulated 
coal wall and the actual physical and mechanical properties of the coal seam; and (3) scale effect errors arising from the 
similitude physical test bench.

Fig 34.  Simulated coal wall model.

https://doi.org/10.1371/journal.pone.0329347.g034

Table 17.  Similarity coefficient of test bench and coal wall.

Parameter Unit Prototype Similar model Parameter Unit Prototype Similar model

Drum diameter mm D D/2 Force N F 0.09F

Drum speed r/min n 1.2n Torque N/m T 0.045T

Traction speed m/min vq 0.6vq Cutting power Kw P 0.054 P

Density kg/m3 ρ ρ Vibration acceleration m/s2 a 0.72 a

Strength MPa σ 0.36σ Time s t 0.83t

https://doi.org/10.1371/journal.pone.0329347.t017

https://doi.org/10.1371/journal.pone.0329347.g034
https://doi.org/10.1371/journal.pone.0329347.t017
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7  Conclusion

In response to the challenges faced by classical optimization control algorithms in achieving self-adaptive control for 
the hydraulic height adjustment of shearer drums, as well as the slow response and poor tracking performance of cer-
tain typical deep reinforcement learning algorithms, this study focuses on the MG2 × 55/250-BWD shearer and the coal 
seams of the 4602 working face at Yangcun Coal Mine, Yanzhou Coal Mining Group. The study introduces a method 
for distinguishing coal-rock cutting states based on a DDPG algorithm, using the SVD-CWT technique to denoise 
the drum vibration acceleration signals, which are then transformed into time-frequency spectrograms and input 
into the AlexNet transfer learning model. The following conclusions can be drawn from the simulations and physical 

Fig 35.  Hydraulic cylinder piston displacement test results and back deduction results data.

https://doi.org/10.1371/journal.pone.0329347.g035

Table 18.  Simulink mean error of model simulation and test platform test results.

Comparison and Analysis of Experimental Results DDPG Fuzzy PID SAC DQN TD3

The displacement limit of the hydraulic cylinder piston rod 
during the simulation(mm)

20.0001 20.0005 20.0005 20.0002 20.0005

The displacement limit of the hydraulic cylinder piston rod 
during the experimental back-calculation(mm)

19.3325 18.6853 21.1504 19.0834 19.3586

The maximum relative error between the simulation and experi-
mental back-calculation results(%)

3.33 6.58 5.75 4.58 3.21

https://doi.org/10.1371/journal.pone.0329347.t018

https://doi.org/10.1371/journal.pone.0329347.g035
https://doi.org/10.1371/journal.pone.0329347.t018


PLOS One | https://doi.org/10.1371/journal.pone.0329347  January 22, 2026 35 / 38

experiments comparing the proposed DDPG-based control strategy with classical control algorithms and other typical 
DRL algorithms:

(1)	 The drum vibration acceleration signals were denoised using SVD-CWT, and then converted into time-frequency spec-
trograms. The significant differences in energy distribution and intensity allowed for effective differentiation of coal-
rock cutting states. These spectrograms were used as input to a trained AlexNet transfer learning model, achieving a 
recognition accuracy of 95.06%.

(2)	 By simulating the continuous and sudden displacement changes of the hydraulic cylinder’s piston rod with sine and 
square wave signals, the system exhibits tracking lag times of 0.08s and 0.158s, respectively, demonstrating good 
tracking performance. After being subjected to disturbance, the system returns to a stable state in just 0.13s, indicating 
strong robustness against external disturbance signals. The system’s environmental self-adaptability is further ana-
lyzed by simulating different working conditions with step signals of varying amplitudes. The maximum difference in 
the time required to reach steady state is only 0.007s, and the maximum steady-state error is just9× 10–4mm, confirm-
ing the system’s strong environmental self-adaptability.

(3)	 The self-adaptive height control system based on the DDPG algorithm outperformed the classical control systems in 
several aspects. The response time was reduced by up to 0.163s, the steady-state error decreased by 0.47948 mm, 
and the time required to return to steady state after external disturbances was shortened by up to 0.75s. Compared 
to the TD3 algorithm, the DDPG-based system showed reductions in rise time and adjustment time by 121.95% and 
62.35%, respectively. When compared to the SAC algorithm, the DDPG-based system reduced the steady-state error 
from 0.0824 mm to 0.0005 mm. These results indicate that the DDPG algorithm better meets the requirements for envi-
ronmental self-adaptability, fast system response, stability, and accuracy, with superior disturbance rejection capability.

(4)	 The feasibility of the proposed control strategy was also validated through AMEsim-Simulink co-simulations. Com-
pared to the TD3 algorithm, the DDPG algorithm resulted in an 84.95% reduction in adjustment time, and when 
compared to the SAC algorithm, the steady-state error was reduced from 0.1027 mm to 0.0021 mm. This highlights 
the DDPG controller’s ability to adapt effectively to the uncertainties associated with complex coal seam conditions. 
Physical experiments confirmed that the proposed self-adaptive control strategy could accurately control the physical 
prototype, with the mean of maximum error between the simulation and experimental results being only 3.14%. Simul-
taneously, a quantitative analysis of the uncertainty was performed. The results indicate that the standard deviation 
between the simulation and experimentally inferred results is 0.29%, with a coefficient of variation of 9.2%. These 
values demonstrate a concentrated error distribution and confirm the good stability of the experimental results. These 
findings further validate the superiority of the DDPG control strategy, offering a novel approach for achieving precise 
adaptive height adjustment in shearers.

Table 19.  Verification of the stability and reliability of experimental results for the AlexNet transfer learning model.

Number of trials Simulated value (mm) Experimentally inferred value (mm) Absolute error (mm) Relative error (%)

1 20.0001 19.3325 0.6676 3.33

2 20.0001 19.4102 0.5899 2.95

3 20.0001 19.2876 0.7125 3.56

4 20.0001 19.3751 0.6250 3.12

5 20.0001 19.4528 0.5473 2.74

Statistical value Mean = 0.6285 Mean = 3.14

Standard deviation = 0.0621 Standard deviation = 0.29

https://doi.org/10.1371/journal.pone.0329347.t019

https://doi.org/10.1371/journal.pone.0329347.t019
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