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Abstract

The icing failures of wind turbine blades are critical factors that affect both power
generation efficiency and safety. To improve the diagnostic accuracy and speed,

an improved weighted kernel extreme learning machine (IWKELM) optimized by
multi-strategy adaptive coati optimization algorithm (MACOA) for icing fault diagnosis
model is proposed, i.e., MACOA-IWKELM. Firstly, in order to improve the model opti-
mization performance, the MACOA is proposed by introducing chaotic mapping Lévy
flights, nonlinear inertial step factors, an improved coati vigilante mechanism, and an
improved objective function. Secondly, the weighted kernel extreme learning machine
(WKELM) is optimized by improved weighted parameters considering the influence
of the internal distribution of samples on the diagnostic model. Finally, the MACOA

is applied to the IWKELM and combined with the random forest (RF) dimensionality
reduction technique to form the icing diagnostic model. The method is based on two
sets of real SCADA data of wind turbine blade icing for comparison experiments with
other models. In the two sets of experiments, the accuracy reaches 92.22% and
96.94% respectively, and the standard deviation of the accuracy in 50 experiments is
2.53% and 1.92% respectively. Keywords: Multi-strategy adaptive coati optimization
algorithm; Improved weighted extreme learning machine; Wind turbine blade icing
fault detection; Fault detection.

Introduction

Wind energy is commonly used in various applications, including power generation,
heating, and water pumping [1]. However, during the process of wind power gener-
ation, the turbine blades are susceptible to icing due to low-temperature conditions.
Consequently, it is essential to study icing fault diagnosis. Currently, there are two
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primary categories of methods for diagnosing icing faults in wind turbine blades:
mechanistic models and data-driven approaches [2].

Mechanistic models are based on physical and engineering principles to investi-
gate the operational mechanisms and failure modes of wind turbines. However, these
models tend to be complex, incur high computational costs, and pose challenges in
terms of maintenance and updates. On the other hand, data-driven methods involve
constructing intelligent models based on extensive datasets to detect and analyze
the operational conditions of wind turbine blades, thereby assessing their operational
status. This approach requires less specialized knowledge and has proven effective
in actual predictive scenarios [3].

Common data-driven fault diagnosis methods are based on classifiers such
as BP, ELM, KNN, SVM, and DT, among others [4]. While these methods have a
well-established theoretical foundation and are cost-effective and widely applicable,
they often depend on expert knowledge and face challenges in real-time monitor-
ing, as well as the risk of misdiagnosis and omissions [5]. The Extreme Learning
Machine (ELM) [6], proposed by Huang, is frequently employed in fault diagnosis
due to its remarkable characteristics, including strong learning capability, effective
testing performance, rapid training speed, and robust generalization ability. How-
ever, ELM exhibits limited generalization in nonlinear systems and is particularly
sensitive to noise. To address these nonlinear issues, the Kernel-Based Extreme
Learning Machine (KELM) was introduced [7]. Additionally, to tackle the problem of
imbalanced data, Weighted Kernel-Based Extreme Learning Machine (WKELM) was
proposed [8]. However, WKELM only applies weights to the two types of samples as
a whole, overlooking the distribution within the samples, indicating that there is still
room for improvement.

Since optimization algorithms can screen initial solutions for traditional models
and improve their optimization search process, it is highly feasible and good diag-
nosis to use them to optimize fault diagnosis methods. Yan Y et al. [9] proposed
an On-Load Tap-Changer fault diagnosis method based on the Weighted Extreme
Learning Machine optimized by Improved Grey Wolf Algorithm. Guo X Y et al. [10]
used an ELM model optimized by the Genetic Algorithm. In literature [11], the Grey
Wolf Optimization-Ant Lion Optimizer-Extreme Learning Machine model was pro-
posed. In the literature [12], a Kernel Extreme Learning Machine optimized by Grey
Wolf Optimization was presented. The Coati Optimization Algorithm (COA) is a heu-
ristic algorithm that simulates the natural behaviour of long-nosed coatis [13], has a
strong optimization ability, which makes it competitive among similar algorithms. Jia
et al. [14] proposed the introduction of a sound-based search encirclement strategy
as well as a physical exertion strategy to improve the COA but failed to take into
account the optimization of the generation of the initial population. Zhang et al. [15]
improved the COA by applying it to real engineering problems, such as the three-
bar truss design problem, but only a simple nonlinear strategy was used. Barak [16]
proposed to combine the COA with the grey wolf optimization algorithm for active
suspension linear quadratic regulator controller tuning. Bas [17] et al. proposed a
nonlinear optimization algorithm ECOA (Enhanced Coati Optimization Algorithm).
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ECOA improved the COA by balancing exploitation capacity and exploration capacity but failed to consider eliminating
the imbalance by optimizing the exploitation phase.

With the development of ELM, more and more models based on extreme learning machines have appeared. Tong R
et al [18] proposed a new ellipsoid nearest neighbour graph computation strategy and fused ELM to form the ESS-ELM
model. A short-term load forecasting model for distributed energy systems is introduced by the KELM optimized Fireworks
Algorithm combining with Kernel Principal Component Analysis [19]. Vijaya et al [20] proposed a prediction model, which
was combined with Variational Mode Decomposition and Multi Kernel Extreme Learning Machine Auto Encoder. Shang
S et al [21] optimized the ELM by Improved Zebra Optimization Algorithm (IZOA). Pustokhina IV et al [22] used WELM
model optimized by multi-objective rainfall optimization algorithm. Wang C L et al [23] proposed a sound quality prediction
model based on ELM optimized by fuzzy adaptive Particle Swarm Optimization.

To address the issue of imbalanced wind turbine blade icing data, weighted parameters that vary according to the
internal distribution of samples are introduced into the traditional Weighted Kernel Extreme Learning Machine (WKELM)
model. This leads to the proposal of the Improved Weighted Kernel Extreme Learning Machine (IWKELM). In addition,
to improve the performance of parameter optimization, this paper proposes a multi-strategy adaptive coati optimization
algorithm (MACOA). The proposed MACOA uses a chaotic mapping mechanism to enhance the diversity and quality of
the initial population. MACOA introduces a nonlinear inertial step size factor during the global optimization process to
improve optimization efficiency. During the local optimization process, MACOA incorporates an improved sparrow vigilante
mechanism to prevent the algorithm from falling into local optima. Additionally, an improved objective function is intro-
duced during algorithm iteration to provide solutions for escaping local optima. Finally, MACOA is employed to optimize
the parameters of the IWKELM model, resulting in the development of the MACOA-IWKELM icing diagnostic model. This
model is compared with the BP, ELM, and KELM models, and experiments are conducted using the CEC2017 dataset,
12 publicly available datasets, and two sets of real turbine operation SCADA datasets to validate the effectiveness of the
proposed method.

Fundamental theories

X ., is aninput data matrix which consists of n samples with m features. The x; denotes the jth feature value of the ith
sample. The output matrix is definedas Y, .

Weighted kernel extreme learning machine
According to the literature [6], the ELM is modelled as shown in Eq. (1) and Eq. (2):

Y = f(x)= { h(x)H'(I/C + HH)™' T, whenn < L
T h()(1/C+ HTH) ' H'T, whenn > L »

gwy-xq+by) - g(wp-x;+by)

g(wy - Xp+b1) - gwL-Xat+br) |, 2)
where, the hidden layer output is defined as h(x). the hidden layer matrix is /, whereas, H expresses the output matrix of
the hidden layer neurons. C indicates the regularization parameter.

T=[t,t,..t]" expresses the desired output of training sets. L represents the number of hidden layer neurons, and the
internal parameters of the hidden neurons (w, and b)) are randomly generated.

The kernel function K(x, xj) is employed to solve the nonlinear mapping problem, shown in Eq. (3) [7]:
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-0 (L)

where, the kernel matrix is Q=H"H, Q,.j expresses the element located in the ith row and jth column, and K{x, xj.) is the
Gaussian kernel function as shown in Eq. (4).

When samples are trained using the traditional Kernel-Based Extreme Learning Machine (KELM), each sample is
assigned equal importance. This approach significantly impacts the classification performance, particularly when there is
interference from noise and outliers, or when the distribution of sample classes is highly imbalanced. To solve the prob-
lem, the WKELM model [8] is produced as shown in Eq. (5):

K(x, x1)
Y= f=hxa=| K (X f‘g) (I/C+ W) 'wr
K(X, XN) (5)
[ Wi (1) |
_ Wi (n)
W= e
i  Weny) 1 (6)

where W is the weighted matrix, the formula is shown in Eq. (6). W (/) = 6, and W (i) = 6, denote the weights of the posi-
tive and negative class samples, respectively.

Coati optimization algorithm

The COA is a population intelligence optimization algorithm based on the behaviour of long-nosed coatis in nature [13]. In
the COA, each individual coati is a candidate solution. They have two natural behaviours in the hunting period: (1) Hunting
for iguana, (2) Escaping from predators. It can be interpreted in the algorithm as two phases: exploration and exploitation.

Hunting for iguana (exploration). During the exploration phase, the coatis initiate a hunt and attack on the iguana,
with a part of coatis climbing a tree in order to get close to the iguana. Other coatis wait beneath the tree to hunt the
iguana once it fell to the ground. This strategy enables individual coatis to relocate to various positions within the search
space, which demonstrates the global search capability of the COA within the problem space, i.e., Exploration.

During the exploration phase, xf)es, denotes the position of the best individual in population, corresponds to the position
of the iguana. Half of the coatis will ascend the tree, while the other half will remain on the ground, waiting for the iguana
to fall. The position of the coati on the tree is shown in Eq. (7).

X ) = X0) 47 (o) = RI- X)) 1= 1,2, 0 j= 1,2, M -
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where x{(j) is the position of an individual, t denotes the current iteration number, and r denotes a random number
between [0,1]. RI denotes a random integer from {1,2}. N denotes the population size. M expresses the dimension.

After the iguana’s falling, it is placed randomly. Then, the coatis, which stay on the ground, move through the space,
searching for the iguana. The position is updated by Eq. (8) and Eq. (9) below:

Iguana’,,.q(j) = Ibj + r- (ubj— b)) (8)

1i:N+1;g+2!"'1N

X)) = X(j) + r- (Iguana,,.q4() — 1 - x,?(j)) ,iffitness(Iguanal, ) < fitness(x;)
' t(j) — Iguanat () ,else 2
X/ (j) g ground !

x,t-(l) +r- (9)
where Ibj and ubj expresses the lower and upper limit of the jth dimensional variable. fitness(:) is the formula for calcu-
lating fitness. Iguana;,ound expresses the new position of the iguana after falling. x!(j) is the value of the ith dimensional
variable for the ith individual under the current iteration.

If the new position improves the fitness value, it is accepted as the new position. Otherwise, the coati remains in previ-
ous position, indicating that a greedy selection is performed shown in Eq. (10).

N { xi“, iffitness(xi™1) < fitness(x)
! X;, else (10)

Escaping from predators (exploitation). During the exploitation phase, the updating of the coati’s location is
modeled after the natural behavior of a coati escaping from a predator. This action allows the coati to move closer to a
safer position nearby, reflecting the local search capability of the COA, which is indicative of exploitation.

During the exploitation phase, random positions are generated near every coati’s location, as shown in Eqg. (11) and Eq.

(12):

Ib; ub;
[b’,oca/:J, b{ocaI: j,t:l,2,~--,T
j ;o Ub; { (11)
X = Xj) = (L=2n) - (107 4 r- (ub™ ~16P°)) i = 1,2, -+, N (12)

where T represents the maximum iteration count. t denotes the current number of iterations. ubj’.°°a’ and ij’.""a’ express the
upper and lower bounds of the jth dimensional variable, which are updated with each iteration. r denotes a random num-
ber in the range of [0,1].

Finally, one more greedy choice is made, i.e., Eq. (10).

Multi-strategy adaptive COA and improved weighted kernel ELM
Multi-strategy adaptive coati optimization algorithm

Chaos mapping for Levi’s flight. The chaotic mapping mechanism is characterized by high uncertainty and
sensitivity. It can produce complex and unpredictable dynamic behaviors, allowing for a broader exploration of the search
space [24,25]. Levy Flight is a specialized random walk model that describes movement patterns characterized by long-
tailed distributions [26]. Levy flights are incorporated into the initialization process of the MACOA, as illustrated in Egs.

(13), (14) and (15):
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@ Levi(B) ~ o.mﬁ ()?(t) —ﬁ(t))

(13)

_[raspsncp]t
TlrEs e (14
X(t+ 1) = X(t) +adb Levi(ﬁ) (15)

where X(t) denotes the position of the ith coati, @ expresses point-to-point multiplication, and a is the weight of the control
step. u ~ N(0,02). v ~ N(0,c2). B is the shape parameter of the step distribution, which is set to 1.5 in this paper.
Nonlinear inertia step size factor. The introduction of a nonlinear inertia step size factor can significantly improve
search efficiency and convergence performance, allowing the COA to dynamically adjust the search behavior. This
mechanism maintains a high level of exploration capability during the initial stages, while the gradual reduction of weights
in later stages encourages a more focused local search. Considering that updating a coati’s position is influenced by its
current position, a nonlinear inertia step size factor is introduced. This factor adjusts the relationship between the coati’s
position update and the current position information based on the individual coati’s location. The factor is then calculated

using Eq. (16):

()7 +1=1) (16)

where Cn is a constant greater than 1 to control the degree of nonlinearities, which is taken as 2.

Initially, the value of w is small, which means that position updates are less influenced by the current position. This
allows for a broader search range for the algorithm and enhances its global exploration capability. As the search process
progresses, the value of w increases over time, resulting in a greater influence from the current coati position. This adjust-
ment helps the algorithm in finding the optimal solution and also improves its convergence speed and local exploration
ability.

The improved formula for modelling coati positions in the first stage is shown in Eq. (17):

X = w - X(G) + r- (%est(j)—/-xf(f))="=1=2=""g

(17)

Improved sparrow vigilante mechanism. The Sparrow Search Algorithm is inspired by the behavior of sparrows
while foraging for food, where some individuals act as vigilantes, responsible for monitoring their surroundings and
sounding an alarm when a potential threat is detected. This approach enables the COA to maintain a higher degree of
flexibility and dynamism in exploring the solution space, thereby enhancing its ability to adapt to uncertain problems [27].

Introducing the sparrow vigilante mechanism during the exploitation phase enhances the vigilance capability of the
COA to search within an optimal range. Coatis at the edge of the population will quickly move away to find a safe area
when they sense danger. Meanwhile, the coatis located in the center will move randomly to get closer to others in the
population. The formula for the Sparrow Vigilante Mechanism is presented in Eq. (18):

- Xi)est"’ B ’X;‘J_Xgest Iiff; > fg
f,j = )(t K ‘X;‘/Fxlworst ff _ f
ij TR e )T =g (18)

PLOS One | https://doi.org/10.137 1/journal.pone.0329332  August 28, 2025 6/33




PLO\Sﬁ\\.- One

where Xf)est represents the global optimal position in the current iteration, B8 represents the step control parameter.
B~N(0,1). Kiis a random number with values between [-1,1]. f is the fitness value. fg is the global greatest fitness value,
and f_is the worst one. ¢ is a very small constant.

In order to escape from predation, coatis in the middle stay close to each other.

The Eq. (18) can be optimized to attack the problem of the global search capability. A dynamically adjusted step factor
[28] is introduced shown in Eq. (19):

Xfaest + 6(0 ’ ‘)(;‘J_%est Iiff; > fg
ij ! = ‘X;JFthorst .
X KO ( (Tay+e ) Hh=te (19)
T-—t
B(t) =fg—(fg—1fw) - (?)1'5 (20)
K(t) = (fy—f) - €20 (D* (2. rand—1) 1)

where f(f) is a dynamically adjusted step factor as shown in Eq. (20). K(t) is a dynamically adjusted step factor as shown
in Eq. (21). rande[0,1].

The introduction of dynamic step factors B(f) and K(f) allows the algorithm to adjust its search behavior dynamically. In
the initial stages of the algorithm, the focus is on exploration, while the later phases emphasize exploitation. These opti-
mizations enhance the adaptability and robustness of the COA, particularly in complex and high-dimensional problems,
enabling it to find the global optimal solution more efficiently.

Improved objective function. Traditional objective functions often exhibit sensitivity to initial values, a tendency to
converge on local optimal solutions, and a lack of robustness. Therefore, an improved objective function is proposed.
In general, the dataset is divided into three subsets: the training set, the validation set, and the test set. Alternatively,
it can be divided into two subsets: the training set and the test set. When the dataset is split into a training set and
a test set, the objective function used to optimize the model parameters is either the number of classification errors
(ERROR) or the root mean square error (RMSE) of the test results. ERROR and RMSE are calculated as shown in
Egs. (22) and (23).

FP+ FN
ERROR = TP+ TN+ FP+ FN (22)
1 N
RMSE = 1\| >~ (¥i=T)
i=1 (23)

When ERROR is used as the objective function, the particle can be viewed as approaching a decreasing extreme value
during the reduction of the ERROR. However, there may be instances where, after reaching a certain extreme value, the
particle fails to find a more optimal direction, leading to convergence at a local extreme value.

When RMSE is used as the objective function, it is possible for the RMSE value to decrease while the ERROR value
increases. Although the overall direction of optimization is correct, the iteration may reduce the RMSE for the overall
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samples, resulting in most test samples being classified correctly. However, some samples may be misclassified in the
next iteration, causing their classification results to change from correct to incorrect.
Therefore, an improved objective function is proposed, i.e., Eq. (24):

ERROR + ERMSE (24)

where ERMSE is the value of the root mean square for the error sample.
Multi-strategy adaptive coati optimization algorithm. The specific flowchart of the MACOA is shown in Fig 1.The
pseudo-code for MACOA is shown in Table 1.

Improved weighted kernel extreme learning machine

In the traditional Weighted Kernel Extreme Learning Machine (WKELM) model, the weighted parameter only influences
the overall weight of each class of positive and negative samples. This approach results in the algorithm treating the two
classes of samples as a whole during the optimization process, without considering the internal distribution of the sam-
ples. As a result, the information provided by the internal distribution is overlooked, which may negatively impact the
model’s classification performance. To address this issue, the Improved Weighted Kernel Extreme Learning Machine
(IWKELM) model is proposed. This model not only takes into account the overall weight distribution of the two types of
samples but also focuses on the weights within each class, which vary according to their distribution, thereby enhancing
the weighting of both types of samples.

For all positive sample weights, the formula was modified to Eq. (25):

W..(i) = (d (i) /max(ds.) = 61 + 1) = 6 (25)

For all negative sample weights, the formula was modified to Eq. (26):

W_(i) = (d_(i)/max(d_) * 63 + 1) * (1= d3) (26)

where d (/) and d (i) denote the Euclidean distance of the positive and negative samples to the centre of the respective
two samples, and the formulae for the calculation of the respective centres of the two samples are given in Eq. (27) and
Eq. (28).

1 &
d+ (i) = Xcentenn = n lei
1 (27)

. 1 &
d—(’) = Xcenterz = n ZXQi
2= (28)

For example, in the weighted formula for positive class samples, a term of (d,(/)/max(d,)*5,+1) is introduced into the prod-
uct, in addition to the weighted factor &,, which affects all positive class samples. The term d (/)/max(d,) is used to normal-
ize the distances between the centers and all positive class samples. Meanwhile, the term (d,(/)/max(d,)*5,+1) maps the
normalized distances into the range of [1+6,,1]. When multiplied by §,, the distances between the centers and all positive
class samples can be adjusted to [(1+6,)*5,,6,].

Clearly, 8, represents the upper limit of the weights for the positive class samples, while (1+6,)*6, serves as the lower
limit. &, is proportional to the total weights of the positive class samples and inversely proportional to the total weights of
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Input information of optimization problem.

v

Initialize parameters: i=j=f=1

v

Create the initial population by Eqs.(13) , (14) and (15)

v

Calculate the weight factor @ by Eq.(16)

|I Calculate X, by Eq.(17). || I

||| v |||

I|-— Update X; by Eq.(10). |||
J

|F___—_______________—__________ETE:E:Eﬁ'| |

I: Generate position of the iguana at random by Eq.(8). |« I : |

| y |

I] Calculate X7 by Eq.(9). | |

l

[ & |
Update X; by Eq.(10). ] I

l

l: Calculate X by Eq.(19) |
I ¥ I
I Update X, by Eq.(10). :|
| : Yes/':> ]
i J |
T - o o )
Save the best candidate solution found so far. |
Yes |

No

Output the best solution found by MACOA

Fig 1. Flow chart of the MACOA.

https://doi.org/10.1371/journal.pone.0329332.9001
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Table 1. Pseudo-code of MACOA.

Algorithm 1. Pseudo-code of MACOA.

Start MACOA.
Input the optimization problem information.
Set the number of iterations T and the number of coatis N.
Initialization of all coatis and evaluation of the objective function for the population using Egs. (13), (14)
and (15).
Fort=1:T
Update location of the iguana based on the location of the best member of the population.
Phase 1: Hunting and attacking strategy on the iguana (Exploration Phase)
Calculate the weighted factor w using Eq. (16)
Fori=1:[N/2]
Calculate new position for the ith coati using Eq. (17).
Update position of the ith coati using Eq. (10).
End for
fori=N/2+1:N
Calculate random position for the iguana using Eq. (8).
Calculate new position for the ith coati using Eq. (9).
Update position of the ith coati using Eq. (10).
End for
Phase 2: The process of escaping from predators (Exploitation Phase)
Fori=1:N
Calculate the new position for the ith coati using Eq. (19).
Update the position of the ith coati using Eq. (10).
End for
Save the best candidate solution found so far
End for
Output of the best obtained solution by MACOA for given problem.
End MACOA.

https://doi.org/10.1371/journal.pone.0329332.t001

the negative class samples. Consequently, the closer a sample is to the center of the positive class, the closer its weight is
to §,. Conversely, as the distance increases, the weights of the edge-positive class samples approach (1+6,)*5,.

For positive class samples, the relationship between the size of the sample weights and the distances from the sam-
ples to the sample centres is shown in Fig 2.

In Fig 2, after fixing &, it is evident that the closer the value of 6, is to 0, the weights of all positive samples approach
6., indicating that the internal distribution of the positive samples becomes less significant. Conversely, as the value of
6, approaches -1, the weights of samples closer to the center of the positive class remain near §,, while those further
away from the center tend toward 0. This suggests that the influence of the internal distribution of positive samples still
requires further consideration. Similarly, for negative samples, 6, is related to the degree of influence exerted by the
distribution of positions within the negative samples, and the overall weights of all negative samples are adjusted by
controlling 6,.

To test the performance of IWKELM in handling the internal distribution of samples, marginal samples were taken from
the KEEL dataset based on Z-score for experimentation. The specific experimental results are shown in Table 2.

The experimental results show that the diagnostic performance of the IWKELM model far exceeds that of traditional
models. Furthermore, the diagnostic accuracy of COA-IWKELM is 0.15% and 0.69% higher than that of COA-WKELM in
the two marginal data sets, respectively. The diagnostic accuracy of MACOA-IWKELM is 0.08% and 0.85% higher than
that of MACOA-WKELM, respectively. The results show that IWKELM has a significant advantage in handling the internal
distribution of samples.

The specific structure of the modelling of the IWKELM is shown in Fig 3, and the flowchart is shown in Fig 4.
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Fig 2. The relationship between the sample weight and the distance from the sample to the sample center.

https://doi.org/10.1371/journal.pone.0329332.9002

Table 2. Experimental results for marginal sample sets.

titanic_marginal phoneme_marginal
BP 84.62% 71.77%
ELM 85.38% 72.54%
KELM 85.15% 79.15%
KNN 84.08% 77.46%
SVM 78.38% 66.85%
DT 85.62% 76.54%
COA-WKELM 86.08% 84.46%
MACOA-WKELM 86.69% 84.69%
COA-IWKELM 86.23% 85.15%
MACOA-IWKELM 86.77% 85.54%

https://doi.org/10.1371/journal.pone.0329332.t002

Experiments for the multi-strategy adaptive coati optimization algorithm

This section presents simulation studies and evaluations of the optimization efficiency of the Multi-strategy Adaptive Coati
Optimization Algorithm (MACOA). Given that the individual coatis in the proposed MACOA possess strong optimization
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Fig 3. Structure chart of the IWKELM.

https://doi.org/10.1371/journal.pone.0329332.9003
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Output the result of the IWKELM

Fig 4. Flow chart of the IWKELM.

https://doi.org/10.1371/journal.pone.0329332.9004
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Table 3. Experiment condition.

Item Parameter

CPU AMD R7-5800H
RAM 16GB

Software MATLAB R2018a
Population 20

Max iteration 1000

https://doi.org/10.1371/journal.pone.0329332.t003

capabilities, there is no need to set a large population for the algorithm. However, certain requirements exist regarding the
number of iterations. Therefore, the experimental conditions, including the population size and the maximum number of
iterations, are outlined in Table 3.

Benchmark functions and compared algorithms

Twenty-nine standard benchmark functions from the IEEE CEC-2017 [29] have been utilized to evaluate MACOA’s capa-
bility in addressing various objective functions. A comparison of MACOA's performance with eleven well-known algorithms
is performed in order to assess its quality in providing optimal solutions, namely COA [13], SABO [30], WSO [31], SCSO
[32], GJO [33], TSA [34], WOA [35], GWO [36], TLBO [37], GSA [38] and PSO [39]. The results are displayed using four
metrics: mean, standard deviation (std), rank, and execution time (ET). The value of control parameters for all competing
algorithms are detailed in Table 4.

Experimental results and analysis

CEC-2017 includes thirty standard benchmark functions of various types, as shown in Table 5.

The test function F2 from the CEC-2017 is not used in this paper because of its unstable performance (same as other
authors in their paper [15]). Complete information and details for these test functions can be found in literature [29].

The proposed Multi-strategy Adaptive Coati Optimization Algorithm (MACOA) and baseline algorithms were subjected
to 29 independent experiments at CEC-2017, each consisting of 200,000 function evaluations (FEs). The experiments
utilized three dimensions of test functions: 30, 50, and 100. The ranking results for the experiments are presented in
Tables 6-8. The results for the 30-dimensional case (m=30) indicate that the MACOA is the best algorithm for solving the
F4, F10, F11, F22, F24—-F26, F28, and F29 functions.

The results for the 50-dimensional case (m=>50) clearly indicate that MACOA is the best optimization algorithm for
solving the F1, F4, F10, F11, F16, F18, F22—F26, and F29 functions. Similarly, the results for the 100-dimensional case
(m=100) demonstrate that MACOA excels in solving the F1, F4, F10, F12, F14, F16, F17, F22—-F26, F29, and F30 func-
tions. A comparison of the experimental results shows that MACOA outperforms the competing algorithms for most of the
tested functions. Overall, MACOA consistently delivers the best performance across different dimensions (30, 50, and
100) of the CEC-2017 test functions.

Compared with other 11 algorithms, the MACOA proposed has strong exploration, exploitation and search capability. It
has superior performance compared to other optimization algorithms.

Wind turbine blade icing fault diagnosis model based on MACOA-IWKELM

To enhance the diagnostic correctness of the IWKELM. A wind turbine blade icing diagnosis model based on MACOA-
IWKELM is proposed. The specific process of modelling the model is as follows below:
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Table 4. Values set for control parameters of compared algorithms.

Algorithm Parameter Value
COA r. random number re[0,1]
I: random number 1€[0,1]
SABO v:random vector ve[1,2]
r. random number r.obeys a normal distribution
WSO fon 0.07
fo 0.75
T 4.11
a, 6.25
a, 100
a, 0.0005
SCSO A Linear reduction from 2 to 0.
S, 2
GJO c, 1.5
E,: random number Ee[-1.1]
B 1.5
TSA P 1
P o 4
€,,C,C, Random numbers stand in the interval[0,1]
WOA a Linear reduction from 2 to 0.
r- random vector re[0,1]
- random number le[-1,1]
GWO a Linear reduction from 2 to 0.
TLBO T, teaching factor T, = round[(1+rand)]
r. random number re[0,1]
GSA Alpha 20
Rnower 1
norm 2
G, 100
PSO Topology Fully connected.
C.: Cognitive constant 2
C,: Social constant 2
Inertia weight Linear reduction from 0.9 to 0.1.
Velocity limit 10% of the dimensions range of the variables.

https://doi.org/10.1371/journal.pone.0329332.t004

(1) All wind turbine blade SCADA point data is adjusted and grouped out, overpowered samples are removed, some attri-
butes are averaged, and then all data is normalized by the minimum-maximum standardization method.

(2) All data are processed using the Random Forest algorithm for dimensionality reduction to avoid too high dimensional-
ity leading to too poor training results.

(3) The MACOA-IWKELM model is used for wind turbine blade icing fault diagnosis among the dataset obtained after the
dimensionality reduction process, and a compared classification model is set up for experimentation.

The framework of MACOA-IWKELM is shown in Fig 5.
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Table 5. Summary of the CEC-2017 test functions.

Name No. Functions Fi=Fi(x*)
Unimodal 1 Shifted and Rotated Bent Cigar Function 100
Functions 3 Shifted and Rotated Zakharov Function 200
Simple 4 Shifted and Rotated Rosenbrock’s Function 300
Multimodal 5 Shifted and Rotated Rastrigin’s Function 400
Functions 6 Shifted and Rotated Expanded Scaffer's F6 Function 500
7 Shifted and Rotated Lunacek Bi_Rastrigin Function 600
8 Shifted and Rotated Non-Continuous Rastrigin’s Function 700
9 Shifted and Rotated Levy Function 800
10 Shifted and Rotated Schwefel’s Function 900
Hybrid 11 Hybrid Functions 1(N=3) 1000
Functions 12 Hybrid Functions 2(N=3) 1100
13 Hybrid Functions 3(N=3) 1200
14 Hybrid Functions 4(N=4) 1300
15 Hybrid Functions 5(N=4) 1400
16 Hybrid Functions 6(N=4) 1500
17 Hybrid Functions 6(N=5) 1600
18 Hybrid Functions 6(N=5) 1700
19 Hybrid Functions 6(N=5) 1800
20 Hybrid Functions 6(N=6) 1900
Composition 21 Composition Functions 1(N=3) 2000
Functions 22 Composition Functions 2(N=3) 2100
23 Composition Functions 3(N=4) 2200
24 Composition Functions 4(N=4) 2300
25 Composition Functions 5(N=5) 2400
26 Composition Functions 6(N=5) 2500
27 Composition Functions 7(N=6) 2600
28 Composition Functions 8(N=6) 2700
29 Composition Functions 9(N=3) 2800
30 Composition Functions 10(N=3) 2900

Search Range:[-100,100]°

https://doi.org/10.1371/journal.pone.0329332.t005

Model diagnostic experiments

Introduction to the datasets and models

All the experimental conditions are performed in a test environment with AMD R7 CPU, 3.20GHz, 16GB RAM, and Win-
dows 11 64-bit. PCA method is performed using SPSSPRO software. BP neural network, Support Vector Machine (SVM),
and Decision Tree (DT) model training are performed using MATLAB toolkit. The k-nearest neighbour (KNN), ELM and
their derived models are programmed using MATLAB 2018a.
12 datasets are used in the experiment, which includes datasets 1—4 from UCI and datasets 5-12 from KEEL. All
datasets are normalized. The experimental dataset is shown in Table 9: it contains the sample name, source, number of
sample features, total number of samples, and number of positive and negative class samples.
A total of 12 models, BP, ELM, KELM, KNN, SVM, DT, COA-KELM, MACOA-KELM, COA-WKELM, MACOA-WKELM,
COA-IWKELM, MACOA-IWKELM are used for the comparison experiments in this experiment. Where COA-KELM is the
KELM optimized by COA, MACOA-WKELM is the WKELM optimized by MACOA, and so on.
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Table 6. Rank results of the CEC-2017 objective functions (the dimension m=30).

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO
F1 2 11 7 5 6 8 9 12 4 1 3 10
F3 2 10 4 7 5 8 6 12 3 1 11 9
F4 1 11 8 7 5 6 9 12 4 3 2 10
F5 2 11 7 3 6 4 9 12 1 8 5 10
F6 2 10 7 4 6 3 8 11 1 12 5 9
F7 2 1 7 6 5 4 9 12 1 8 3 10
F8 3 10 7 2 6 5 9 12 1 11 4 8
F9 4 10 7 9 6 5 11 12 1 2 3 8
F10 1 10 9 4 5 6 7 11 3 12 2 8
F11 1 11 8 3 5 7 9 12 4 2 6 10
F12 2 11 6 7 5 8 9 12 4 1 3 10
F13 3 12 6 5 7 8 10 11 4 1 2 9
F14 3 11 9 4 5 7 10 12 6 2 8 1
F15 4 1 7 1 8 9 10 12 6 2 3 5
F16 3 11 9 1 5 4 8 12 2 6 7 10
F17 5 12 9 1 4 2 8 11 3 6 7 10
F18 2 1 9 3 8 6 10 12 7 4 5 1
F19 3 11 7 2 8 9 10 12 5 1 4 6
F20 3 10 8 1 5 4 6 12 2 9 7 11
F21 2 9 6 4 5 3 8 11 1 12 7 10
F22 1 11 4 7 5 6 9 12 2 3 8 10
F23 2 8 6 5 4 3 7 10 1 9 11 12
F24 1 11 5 8 4 3 7 9 2 12 6 10
F25 1 11 7 5 4 6 8 12 3 9 2 10
F26 1 1 8 6 5 3 9 12 2 4 7 10
F27 3 11 7 8 6 5 9 2 4 10 12 1
F28 1 12 9 7 6 8 1 3 5 10 4 2
F29 1 1 9 3 5 4 6 12 2 8 7 10
F30 2 11 7 3 6 8 10 12 5 1 4 9
Sum rank 63 311 209 131 160 162 251 319 89 170 158 239
Mean rank 2172 10.724 7.207 4.517 5.517 5.586 8.655 11 3.069 5.862 5.448 8.241
Total rank 1 11 8 3 5 6 10 12 2 7 4 9

https://doi.org/10.1371/journal.pone.0329332.t006

100 training samples and 100 test samples are randomly selected in the data set for each experiment, with
half of the samples in each of the positive and negative categories. In each experiment, all models use this
randomly selected data at the same time. A total of 50 experiments are conducted, and the experimental results are
averaged.

In this experiment, because the data used is test data set, the test function in MACOA experiment has higher complex-
ity, so the maximum number of iterations need not be set too high. The experimental hardware conditions are shown in
Table 3. The population size and maximum number of iterations are set to 20 and 200. The model fixed parameters and
particle optimization ranges are shown in Table 10.
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Table 7. Rank results of the CEC-2017 objective functions (the dimension m=50).

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO
F1 1 1 6 8 5 7 9 12 4 2 3 10
F3 6 1 9 4 1 3 2 12 5 8 10 7
F4 1 11 7 8 5 6 9 12 4 2 3 10
F5 2 1 8 4 6 5 10 12 1 7 3 9
F6 2 9 7 4 6 3 10 11 1 12 5 8
F7 2 1 6 7 5 3 9 12 1 8 4 10
F8 2 1 8 4 6 5 10 12 1 7 3 9
F9 3 10 8 9 4 6 11 12 2 5 1 7
F10 1 10 9 4 5 6 7 11 3 12 2 8
F11 1 11 5 3 6 7 8 12 4 2 9 10
F12 2 12 6 8 5 7 9 11 4 1 3 10
F13 2 12 6 8 5 7 9 11 4 1 3 10
F14 2 12 8 7 5 6 10 11 4 1 9 3
F15 2 1 5 7 6 8 10 12 4 1 3 9
F16 1 12 8 4 7 6 9 11 2 5 3 10
F17 2 1 8 3 6 4 9 12 1 7 5 10
F18 1 1 9 4 6 8 10 12 5 2 3 7
F19 3 12 7 4 5 8 10 11 6 1 2 9
F20 3 10 9 1 5 4 7 12 2 11 6 8
F21 2 10 7 4 5 3 8 12 1 11 6 9
F22 1 9 8 3 5 6 7 11 2 12 4 10
F23 1 10 6 5 4 3 7 9 2 8 11 12
F24 1 12 5 8 3 4 6 11 2 9 7 10
F25 1 1 8 6 5 7 9 12 4 2 3 10
F26 1 1 7 5 4 3 9 12 2 8 6 10
F27 3 1 7 8 6 5 9 1 4 10 12 2
F28 3 12 11 8 7 9 10 2 5 4 6 1
F29 1 1 9 3 6 4 8 12 2 5 7 10
F30 2 1 8 5 6 7 9 12 4 1 3 10
Sum rank 55 317 215 156 150 160 250 315 86 165 145 248
Mean rank 1.897 10.931 7.414 5.379 5.172 5.517 8.621 10.862 2.966 5.690 5 8.552
Total rank 1 12 8 5 4 6 10 11 2 7 3 9

https://doi.org/10.1371/journal.pone.0329332.t007

Results of diagnostic experiments on the dataset

In order to confirm that MACOA and IWKELM can improve the classification effect when optimizing the model parameters,
datasets 1-12 are selected for the experiment. The experimental results are presented in Tables 11 and 12. Among them,
the distribution of 50 experiments is shown in the box plot Fig 6.

In this experiment, since there are more models and more combinations, a side-by-side comparison is needed, so
some of the models are combined to facilitate the comparison, and the groups set are as follows:

Group 1: BP, ELM, KELM, KNN, SVM, DT, COA-KELM

Group 2: COA-KELM, MACOA-KELM

Group 3: COA-WKELM, MACOA-WKELM

PLOS One | https://doi.org/10.1371/journal.pone.0329332  August 28, 2025

17133


https://doi.org/10.1371/journal.pone.0329332.t007

PLO\S\%- One

Table 8. Rank results of the CEC-2017 objective functions (the dimension m=100).

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO
F1 1 11 6 8 4 9 5 12 3 2 7 10
F3 5 6 4 3 1 7 10 12 9 11 8 2
F4 1 11 7 8 4 5 6 12 3 2 9 10
F5 2 10 8 4 6 5 11 12 1 7 3 9
F6 2 9 8 4 6 5 10 11 1 12 3 7
F7 2 1 6 8 5 3 9 12 1 7 4 10
F8 2 11 8 4 6 5 10 12 1 7 3 9
F9 2 9 7 8 3 5 11 12 4 10 1 6
F10 1 10 9 4 5 6 7 11 3 12 2 8
F11 4 11 9 6 2 7 3 12 5 1 8 10
F12 1 11 5 7 4 6 9 12 3 2 8 10
F13 2 11 6 8 4 7 9 12 3 1 5 10
F14 1 11 9 6 3 8 7 12 4 2 5 10
F15 2 1 5 8 6 7 9 12 3 1 4 10
F16 1 11 9 4 6 5 8 12 2 3 7 10
F17 1 11 6 7 4 5 9 12 3 2 8 10
F18 2 1 9 6 5 7 8 12 4 1 3 10
F19 2 11 6 7 4 8 9 12 3 1 5 10
F20 2 10 9 1 4 6 7 12 3 1 5 8
F21 2 10 9 5 4 3 6 11 1 7 8 12
F22 1 10 9 3 5 6 7 11 4 12 2 8
F23 1 11 7 5 4 3 8 9 2 6 12 10
F24 1 12 8 6 3 4 7 10 2 5 11 9
F25 1 11 7 9 4 8 6 12 3 2 5 10
F26 1 1 9 5 4 3 6 12 2 8 7 10
F27 3 12 8 10 5 6 9 2 4 7 11 1
F28 3 12 9 1 6 8 7 2 5 4 10 1
F29 1 1 7 5 4 6 8 12 3 2 9 10
F30 1 11 5 7 4 6 9 12 3 2 8 10
Sum rank 51 308 214 177 125 169 230 319 88 150 181 250
Mean rank 1.759 10.621 7.379 6.103 4.310 5.828 7.931 11 3.034 5.172 6.241 8.621
Total rank 1 11 8 6 3 5 9 12 2 4 7 10

https://doi.org/10.1371/journal.pone.0329332.t008

Group 4: COA-IWKELM, MACOA-IWKELM
Group 5: COA-KELM, COA-WKELM, COA-IWKELM
Group 6: MACOA-KELM, MACOA-WKELM, MACOA-IWKELM

It can be concluded from the results of classification correctness in Table 11, and classification accuracy variance in
Table 12, and box plot in the Fig 6.

Group 1 is selected for comparison, and the results indicate that the BP, ELM, KELM, KNN, SVM, and DT models do
not achieve a high classification accuracy. The highest average accuracy reaches only 81.86%, with the lowest aver-
age standard deviation at just 3.49%. In contrast, the average accuracy of the COA-KELM model is 87.54%, signifi-
cantly higher than the KELM model’'s accuracy of 79.96%. This discrepancy arises because the traditional model lacks
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Fig 5. Framework of MACOA-IWKELM.

https://doi.org/10.1371/journal.pone.0329332.9005

optimization of its parameters, which hinders improvements in classification performance and reduces stability. Addition-
ally, as shown in the box plot in Fig 6, the traditional model exhibits more outliers and larger classification errors.

The comparisons in groups 2, 3, and 4 reveal that the average accuracy of MACOA-KELM reaches 87.71%, which is
0.17% higher than the average accuracy of COA-KELM. Additionally, the average standard deviation is only 2.68%, which
is 0.14% lower than that of the COA-KELM model. Furthermore, the average accuracy of MACOA-WKELM is 88.53%,
representing a 0.35% improvement over the average accuracy of COA-WKELM, with an average standard deviation of
just 2.57%. The MACOA-IWKELM model achieves an average accuracy of 88.88%, which is 0.48% higher than the aver-
age accuracy of COA-IWKELM, and an average standard deviation of only 2.32%, which is 0.24% lower than that of the
COA-KELM model.

Overall, the MACOA demonstrates a higher correct classification rate and a smaller standard deviation compared to
the COA, effectively improving stability. This improvement is attributed to the initial population generated by the Lévy
flight, which is more conducive to optimization, and the optimization speed is significantly enhanced by the nonlinear
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Table 9. The source and details of the datasets.

No. Name Source Feature Count Positive Sample Count Negative Sample Count
1 blood_transfusion UCl 4 570 178
2 banknote_authentication (0]¢]] 4 762 610
3 Statlog (Heart) ucCl 13 150 120
4 Vertebral_Column UCl 6 210 100
5 Pima KEEL 8 500 268
6 ionosphere KEEL 33 225 126
7 magic KEEL 10 12322 6688
8 phoneme KEEL 5 3818 1586
9 ring KEEL 20 3736 3664
10 spambase KEEL 57 2785 1812
11 twonorm KEEL 20 3703 3697
12 wdbc KEEL 30 357 212

https://doi.org/10.1371/journal.pone.0329332.t009

Table 10. Values set for control parameters of compared model.

Model Parameter Value

BP epochs 1000
goal 0.0001
n 0.001
LL:Number of hidden layers 5

ELM LL:Number of hidden layers 100
C 100

KELM LL:Number of hidden layers 100
g 1

KNN k 3

SVM Kernel function gaussian
Box Constraint 1
Kernel Scale 1

DT Max NumSplits Inf
Min Leaf Size 1
Max Depth Inf
Splitcriterion gdi

COA-KELM r.random number [0,1]

COA-WKELM l:random number {0,1}

COA-IWKELM

MACOA-KELM

MACOA-WKELM

MACOA-IWKELM

https://doi.org/10.1371/journal.pone.0329332.t010

factor. Additionally, the proposed coati vigilance mechanism ensures that the algorithm can escape local optima and avoid
missing the global optimum. Furthermore, the optimized objective function enhances the optimization logic and provides a
solution when the original iteration fails to yield a better value. The box plot also illustrates that MACOA exhibits significant

superiority and stability.

From the comparative models in groups 5 and 6, COA-WKELM achieves an average accuracy of 88.18%, which is
0.64% higher than the average accuracy of COA-KELM. The average standard deviation is only 2.53%, which is 0.29%
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Table 11. Accuracy of the compared models for Dataset1-12 in diagnostic experiment.

Name No. Average
1 2 3 4 5 6 7 8 9 10 1" 12

BP 65.00% | 98.17% |73.93% |81.43% |67.23% |78.83% |70.10% |71.37% |70.63% |79.53% |89.77% |91.97% |78.16%
ELM 67.27% 98.10% | 77.10% |83.50% |71.43% | 82.60% |76.40% |74.33% |77.87% |83.87% |95.37% |94.50% |81.86%
KELM 60.57% | 98.77% | 72.40% |80.17% |68.50% | 72.30% |76.47% |77.37% |96.40% |86.47% |91.07% |79.07% |79.96%
KNN 63.67% | 98.40% |76.70% |73.83% |67.23% | 80.90% |72.17% |76.87% |55.60% |78.60% |94.63% |94.83% |77.79%
SVM 62.93% 96.37% |80.87% |75.73% |71.97% | 83.80% |73.87% |74.33% |71.07% |81.70% |97.07% |95.63% |80.44%
DT 61.83% | 91.57% |72.20% |79.23% |67.07% | 85.63% |70.63% |72.87% |73.33% |80.80% |73.33% |89.90% |76.53%
COA-KELM 69.57% 99.43% |82.70% |84.77% |74.87% | 94.07% | 81.07% |81.83% |97.87% |90.70% |97.13% |96.43% |87.54%
MACOA-KELM 69.73% 99.40% | 83.67% |85.10% |75.47% |93.90% |81.37% |81.97% |97.87% |90.63% |97.07% |96.40% |87.71%
COA-WKELM 70.83% |99.77% |83.13% |85.83% |76.10% |94.57% |81.50% |82.50% |98.13% |91.20% |97.57% |97.00% |88.18%
MACOA-WKELM | 71.43% |99.80% |84.57% |86.20% | 76.77% |94.60% |82.40% |82.67% | 98.03% |91.13% |97.70% |97.07% |88.53%
COA-IWKELM 71.10% |99.83% |84.10% |85.73% |76.33% |94.53% |82.03% |82.90% |98.10% |91.20% |97.73% |97.17% |88.40%
MACOA-IWKELM | 72.73% |99.80% | 84.80% | 86.17% |77.33% |94.50% |82.87% |83.57% |98.27% |91.40% |97.80% |97.33% | 88.88%
https://doi.org/10.1371/journal.pone.0329332.t011
Table 12. Standard deviation of the compared models for Dataset1-12 in diagnostic experiment.
Name No.

1 2 3 4 5 6 7 8 9 10 11 12 Average
BP 557% |1.62% 8.01% |4.34% |7.84% |723% 881% |824% |6.02% |6.26% |4.30% |5.03% [6.11%
ELM 3.49% |1.75% 3.42% |3.65% |569% |4.68% |3.54% |3.77% |3.82% 4.83% |211% |2.01% |3.56%
KELM 567% |1.19% 3.16% |3.38% |6.06% [3.31% |4.55% [3.93% [1.99% 3.43% |1.95% |3.29% |3.49%
KNN 5.00% |1.45% 3.97% |297% |569% |514% |4.82% |4.80% |247% 3.97% |[2.11% 1.78% | 3.68%
SVM 535% |1.81% 3.23% |4.12% |5.18% |4.45% |4.45% |3.74% |4.09% 4.32% |1.28% [1.81% |3.65%
DT 561% |3.45% 3.93% |387% |536% |4.15% 4.88% |3.79% |4.50% 4.34% |4.40% |3.14% |4.29%
COA-KELM 3.87% |0.82% 3.34% |317% |4.94% |246% |3.27% |359% [1.41% [3.58% |1.59% |[1.74% |2.82%
MACOA-KELM 3.69% |081% 3.39% |293% |4.21% |247% 3.23% |3.45% [1.41% [3.34% |1.46% |[1.81% |2.68%
COA-WKELM 3.80% |050% 3.22% |2.74% |3.21% |242% 3.27% |3.16% [1.36% 3.42% |1.43% |1.78% |2.53%
MACOA-WKELM | 3.55% |0.48% |3.16% |248% |4.11% |240% 3.18% |3.31% |1.25% [3.54% |1.60% |[1.72% |2.57%
COA-IWKELM 3.88% |0.46% 3.02% |2.78% |3.76% |245% |3.27% |3.28% |1.24% [3.64% |1.34% [1.64% |2.56%
MACOA-IWKELM | 3.30% |0.28% 2.88% |244% |4.09% |2.32% |2.50% |3.04% [1.03% 3.27% |1.22% [1.43% |2.32%

https://doi.org/10.1371/journal.pone.0329332.t012

lower than that of COA-KELM. COA-IWKELM achieves an average accuracy of 88.40%, which is 0.22% higher than the
average accuracy of COA-WKELM. The average accuracy of MACOA-WKELM reaches 88.53%, representing an increase
of 0.82% over the accuracy of MACOA-KELM, while the average standard deviation of MACOA-WKELM is only 2.57%,

which is 0.11% lower than that of MACOA-KELM. Furthermore, the average accuracy of MACOA-IWKELM reaches

88.88%, which is 0.35% higher than that of MACOA-WKELM, and the average standard deviation of MACOA-IWKELM is

only 2.32%, which is 0.25% lower than that of MACOA-WKELM.

Therefore, the weight parameters introduced into the IWKELM can further enhance classification accuracy. Additionally,
the box plot demonstrates that IWKELM significantly increases the stability of multiple predictions, with very few outliers.
However, in some models, the average standard deviation of WKELM was nearly equal to that of IWKELM. This similar-
ity can be attributed to the limitations of certain datasets and the instability caused by the chaotic mapping mechanism.
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Fig 6. Box plot of the compared models for Dataset1-12 in diagnostic experiment.

https://doi.org/10.137 1/journal.pone.0329332.9006

These issues could be mitigated by utilizing more datasets, increasing the number of iterations, and conducting extensive
experimentation. Overall, MACOA-IWKELM exhibits superior optimization search speed and convergence compared to
the other models.

Wind turbine blade icing diagnostic experiment. The experimental data presented in this paper is sourced from the
Industrial Big Data Innovation Competition. The dataset records operational data from November 1, 2015, to January 1,
2016, for two turbines, identified as Turbine 15 and Turbine 21, each containing 20 features.

Before conducting the experiments, the wind turbine operation data were processed to remove duplicates, average the
samples with the same timestamp, and eliminate samples with power outputs greater than 2 kW. This resulted in 39,465
normal samples and 2,841 icing samples for Turbine 15, and 17,602 normal samples and 1,274 icing samples for Turbine
21. Subsequently, the blade pitch angle, blade pitch speed, and pitch motor temperature data were averaged to yield a
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total of 20 features. The dataset information is summarized in Table 13, while the corresponding attribute numbers for the

wind turbine blade operation data are detailed in Table 14.

Random forest dimensionality reduction. Random Forest (RF) Dimensionality Reduction is a feature selection and
dimensionality reduction technique based on the Random Forest algorithm [40]. In terms of dimensionality reduction,
Random Forest effectively identifies and selects the features that have the greatest impact on the target variable, thereby
reducing the dimensionality of the data.

The SCADA data of wind turbine blades are processed by RF dimensionality reduction. The specifics of the attribute
scores of the SCADA data for turbine 15 and 21 operation under the use of the RF method are shown in Figs 7 and 8. The

feature importance heat map drawn based on feature importance is shown in Figs 9 and 10.

Table 13. The source of the fan datasets and details.

No. Name Source Feature Sample Positive Sam- Negative
Count Count ple Count Sample Count

1 15wind The First Industrial Big Data Innovation Competition 20 13607 10766 2841

2 21wind 20 5058 3784 1274

https://doi.org/10.1371/journal.pone.0329332.t013

Table 14. Number of corresponding attributes of fan operation data.

Feature No. 1 2 3 4 5

Feature name | Wind Generator RPM Output Wind Direction Wind Direction (25s)
Speed Power

Feature No. 6 7 8 9 10

Feature name | Yaw Yaw Average Average Average Pitch Motor emperature
Position Rate Pitch Angle Pitch Rate

Feature No. 11 12 13 14 15

Feature name | Acceleration in X Direction | Acceleration in Y Direction | Ambient Temperature | Cabin Temperature | 1_ng5_tmp

Feature No. 16 17 18 19 20

Feature name | 2_ng5_tmp 3_ng5_tmp 1_ng5_DC 2_ng5_DC 3_ng5_DC

https://doi.org/10.1371/journal.pone.0329332.t014
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Fig 7. Importance of the attributes of fan No.15.
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https://doi.org/10.1371/journal.pone.0329332.9007
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Fig 8. Importance of the attributes of fan No.21.
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Fig 9. Feature importance heat map of fan No.15.
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Fan No.21 Feature Importance Heatmap
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Fig 10. Feature importance heat map of fan No.21.

https://doi.org/10.1371/journal.pone.0329332.9010

Based on the results presented in Figs 7—10, the importance of the top 8 attributes for Turbines 15 and 21 is sig-
nificantly greater than that of the other attributes. In particular, the importance of the eighth-ranked feature, Generator
RPM, is three times that of the ninth-ranked feature. Therefore, experiments were conducted on datasets with 8 or fewer
extracted features.

Therefore, based on the experimental results in Tables 15 and 16, this paper selects the top 8 features with the high-
est scores as the input feature vectors for each experimental model, while the other attributes are disregarded. The top
8 highest-scoring features are wind speed, yaw position, average pitch motor temperature, ambient temperature, output
power, cabin temperature, average pitch angle, and generator RPM.

Diagnostic results and comparative analysis of MACOA-IWKELM. The SCADA data from two turbines were
downscaled and then processed using the SMOTE oversampling technique, resulting in 39,465 normal samples and
2,841 icing samples for Turbine 15, and 17,602 normal samples and 1,274 icing samples for Turbine 21.

The processed data is then fed into the classification models for experimentation. The experimental comparison models
include BP, ELM, KELM, SVM, KNN, COA-KELM, MACOA-KELM, COA-WKELM, MACOA-WKELM, COA-IWKELM, and
MACOA-IWKELM, totaling 12 models.

The fixed parameters for the experimental models and the optimization algorithm’s search range are consistent with
those in Section 6.1. The experimental hardware conditions are shown in Table 3. The population size and maximum
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Table 15. The impact of the number of selected features in diagnostic experiments for Fan No.15.

Model Number of features
1 2 3 4 5 6 7 8

BP 50.33% 52.42% 55.83% 58.17% 55.83% 54.50% 55.00% 81.76%
ELM 51.00% 53.92% 59.67% 64.50% 64.83% 59.83% 63.33% 84.72%
KELM 52.42% 58.92% 60.50% 66.25% 64.33% 61.25% 63.92% 87.44%
KNN 50.92% 55.00% 54.50% 55.58% 57.25% 53.42% 61.33% 76.96%
SVM 50.67% 53.58% 52.42% 54.42% 54.33% 52.00% 53.58% 75.06%
DT 51.83% 56.33% 56.92% 62.67% 56.42% 59.17% 58.08% 76.66%
COA_KELM 59.33% 65.00% 66.67% 70.42% 69.92% 67.75% 70.00% 90.32%
MACOA_KELM 60.00% 65.25% 66.50% 70.42% 69.92% 67.50% 70.17% 90.20%
COA_WKELM 59.92% 66.00% 67.00% 71.42% 71.00% 68.58% 70.42% 91.00%
MACOA_WKELM 59.50% 66.08% 66.92% 71.58% 70.75% 69.08% 70.83% 90.84%
COA_IWKELM 61.00% 66.58% 67.25% 71.67% 70.92% 69.08% 70.42% 91.10%
MACOA-IWKELM 60.75% 66.33% 67.75% 72.25% 71.42% 69.25% 71.08% 91.22%

https://doi.org/10.1371/journal.pone.0329332.t015

Table 16. The impact of the number of selected features in diagnostic experiments for Fan No.21.

Model Number of features
1 2 3 4 5 6 7 8

BP T4.77% 76.77% 81.15% 81.31% 78.69% 79.46% 76.38% 85.84%
ELM 76.38% 77.00% 80.23% 79.69% 79.23% 81.46% 79.23% 89.54%
KELM 70.31% 80.00% 85.77% 87.31% 89.62% 86.54% 85.15% 92.82%
KNN 70.62% 78.15% 80.15% 80.77% 81.46% 81.08% 79.62% 81.76%
SVM 76.38% 77.54% 78.31% 78.92% 76.69% 78.23% 17.77% 78.28%
DT 69.15% 79.23% 83.08% 83.38% 82.15% 83.69% 81.38% 87.42%
COA_KELM 77.38% 85.38% 88.85% 90.00% 91.69% 89.46% 88.54% 95.52%
MACOA_KELM 77.31% 85.38% 88.77% 89.85% 91.69% 89.38% 88.46% 95.48%
COA_WKELM 77.31% 86.31% 89.15% 90.77% 92.15% 90.38% 89.08% 96.00%
MACOA_WKELM 78.00% 86.23% 89.54% 90.69% 92.46% 90.31% 88.85% 95.86%
COA_IWKELM 77.31% 87.08% 89.38% 90.85% 92.54% 90.31% 89.46% 96.06%
MACOA-IWKELM 77.77% 86.77% 89.77% 90.85% 92.54% 90.31% 89.15% 96.94%

https://doi.org/10.1371/journal.pone.0329332.t016

number of iterations are set to 20 and 200. The model fixed parameters and particle optimization ranges are shown in
Table 10.

The diagnostic accuracy of the experiment for wind turbine No.15 and No.21 is shown in Tables 17-19, where the
distribution of the 50 experiments is shown in the box plot Figs 11 and 12, and the confusion matrices generated by the
diagnostic experiments for wind turbine 15 and wind turbine 21 out of the 50 experiments are shown in Figs 13 and 14.

According to the evaluation indicators in Table 18, in the experiment of fan No.15, the indicators of the COA_KELM
model exceeded those of all traditional models. Meanwhile, the F1 score of MACOA_WKELM is 1.32% higher than that
of MACOA_KELM, while the F1 score of MACOA_IWKELM is 0.36% higher than that of MACOA_WKELM. In addition, in
the experiment of fan No. 21, all indicators of COA_KELM were superior to those of the traditional model. The F1 score of
COA_WKELM was 0.50% higher than that of COA_KELM. The F1 score of COA_IWKELM was 0.07% higher than that of
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Table 17. Results of the compared models for Fan No.15 and Fan No.21 in diagnostic experiment.

Model Fan No.15 Fan No.21

TP TN FP FN TP TN FP FN
BP 2037 2051 463 449 2208 2084 292 416
ELM 2039 2197 461 303 2297 2180 203 320
KELM 2187 2185 313 315 2367 2274 133 226
KNN 2047 1801 453 699 2220 1868 280 632
SVM 2017 1736 483 764 1938 1976 562 524
DT 1946 1887 554 613 2209 2162 291 338
COA_KELM 2286 2230 270 214 2349 2427 73 151
MACOA_KELM 2288 2222 278 212 2357 2417 83 143
COA_WKELM 2331 2219 281 169 2371 2429 71 129
MACOA_WKELM 2321 2221 279 179 2367 2426 74 133
COA_IWKELM 2325 2230 270 175 2376 2427 73 124
MACOA-IWKELM 2327 2234 266 173 2411 2436 44 109
https://doi.org/10.1371/journal.pone.0329332.t017
Table 18. Evaluation of the compared models for Fan No.15 and Fan No.21 in diagnostic experiment.
Model Fan No.15 Fan No.21

precision recall F1-score precision recall F1-score

BP 81.48% 81.94% 81.71% 88.32% 84.15% 86.18%
ELM 81.56% 87.06% 84.22% 91.88% 87.77% 89.78%
KELM 87.48% 87.41% 87.45% 94.68% 91.28% 92.95%
KNN 81.88% 74.54% 78.04% 88.80% 77.84% 82.96%
SVM 80.68% 72.53% 76.39% 77.52% 78.72% 78.11%
DT 77.84% 76.05% 76.93% 88.36% 86.73% 87.54%
COA_KELM 89.44% 91.44% 90.43% 96.99% 93.96% 95.45%
MACOA_KELM 89.17% 91.52% 90.33% 96.60% 94.28% 95.43%
COA_WKELM 89.24% 93.24% 91.20% 97.09% 94.84% 95.95%
MACOA_WKELM 89.27% 92.84% 91.02% 96.97% 94.68% 95.81%
COA_IWKELM 89.60% 93.00% 91.27% 97.02% 95.04% 96.02%
MACOA-IWKELM 89.74% 93.08% 91.38% 98.21% 95.67% 96.92%

https://doi.org/10.1371/journal.pone.0329332.t018

COA_WKELM. This proves the effectiveness of IWKELM’s improvements. In addition, in both experiments, the F1 score
of MACOA_IWKELM was 0.11% and 0.90% higher than that of COA_IWKELM, respectively. This proves the superiority of

MACOA over COA.

From the results presented in Tables 17 and 19 and the box plot of the distribution of 50 experiments shown in Fig 11
and 12. The prediction accuracy of MACOA-KELM for Turbine No. 15 and Turbine No. 21 reach 90.20% and 95.48%,
respectively, both of which are significantly higher than those of traditional models such as BP and ELM. Moreover, the
standard deviations of the 50 predictions for Turbines No. 15 and No. 21 are only 2.86% and 2.33%, respectively, which
are much smaller than those of the traditional models. The accuracy of MACOA-IWKELM is 0.12% and 0.88% higher
than that of COA-IWKELM for Turbines 15 and 21, respectively. Additionally, the standard deviations of the 50 predictions
for MACOA-IWKELM are only 2.53% and 1.92%, which are lower than the standard deviations of the 50 experiments for
COA-IWKELM on Turbines 15 and 21 by 0.28% and 0.31%, respectively. Therefore, it can be concluded that MACOA
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Table 19. Accuracy and standard deviation of the compared models for Fan No.15 and No.21.

Model Fan No.15 Fan No.21
Accuracy Standard Deviation Accuracy Standard Deviation

BP 81.76% 5.52% 85.84% 4.72%
ELM 84.72% 4.53% 89.54% 2.87%
KELM 87.44% 3.23% 92.82% 3.24%
KNN 76.96% 4.85% 81.76% 4.07%
SVM 75.06% 5.12% 78.28% 3.96%
DT 76.66% 5.10% 87.42% 3.81%
COA_KELM 90.32% 2.94% 95.52% 2.31%
MACOA_KELM 90.20% 2.86% 95.48% 2.33%
COA_WKELM 91.00% 2.87% 96.00% 2.24%
MACOA_WKELM 90.84% 2.87% 95.86% 2.26%
COA_IWKELM 91.10% 2.81% 96.06% 2.23%
MACOA-IWKELM 91.22% 2.53% 96.94% 1.92%

https://doi.org/10.1371/journal.pone.0329332.t019
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Fig 11. Box plot of the compared models for Fan No.15 in diagnostic experiment.
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Fig 12. Box plot of the compared models for Fan No.21 in diagnostic experiment.
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significantly improves prediction accuracy by applying the chaotic mapping mechanism, nonlinear inertia weighting fac-
tors, an improved sparrow vigilante mechanism, and an enhanced objective function. Regardless of whether the optimized
model is KELM, WKELM, or IWKELM, both the correct classification rate and the stability of the experimental data are
significantly improved compared to using the original COA.

The experimental results indicate that in the Fan No. 15 experiment, the prediction accuracy of MACOA-IWKELM
is 0.38% higher than that of MACOA-WKELM, while the standard deviation is 0.28% lower. Additionally, in the Fan
No. 21 experiment, the prediction accuracy of MACOA-IWKELM is 0.88% higher than that of MACOA-WKELM, with
a standard deviation that is 0.31% lower. Therefore, IWKELM can significantly enhance prediction accuracy when
handling data with more features, thanks to the inclusion of a weight parameter that varies according to the individ-
ual samples. In conclusion, both MACOA and IWKELM improve the accuracy and stability of fault diagnosis for wind
turbine blade icing.

Conclusion and future prospects

To improve diagnostic accuracy, a wind turbine blade icing fault diagnosis model based on MACOA-IWKELM is pro-
posed. Firstly, weight parameters are introduced into the method, allowing them to be adjusted according to the internal
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Fig 13. Confusion Matrix of the compared models for Fan No.15 in diagnostic experiment.
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distribution of samples, thereby leading to the development of the IWKELM model. Additionally, to enhance the conver-
gence performance and stability of the Coati Optimization Algorithm (COA), chaotic mapping Lévy flight is employed to
optimize the initial population, and nonlinear inertia weight factors are added to improve convergence speed. The vigilante
mechanism of the improved sparrow optimization algorithm is utilized to enhance stability. The performance of the Coati
Optimization Algorithm is significantly improved by incorporating the enhanced objective function during the iteration
process.

The effectiveness of MACOA is validated through comparative experiments, which demonstrate that the multi-strategy
adaptive Coati Optimization Algorithm outperforms the other 11 comparison algorithms. MACOA is used to optimize
IWKELM, resulting in the proposed MACOA-IWKELM model. Experiments conducted with 12 publicly available data-
sets from UCI and KEEL indicate that the model significantly enhances classification accuracy and stability. Finally, the
MACOA-IWKELM model is applied to diagnose faults in two sets of real turbine operation data. Based on the experimen-
tal results, the improved model shows a significant increase in fault diagnosis accuracy and stability.

However, the proposed model does have some limitations, primarily related to the parameter settings for population
size and maximum number of iterations, which are based on empirical values. In the future, further optimization of the
model will be necessary to achieve even better diagnostic results.
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