PLOS ONE

Check for
updates

E OPEN ACCESS

Citation: Abdullah M, Khan KA, Rahman AU,
Mabela RM (2025) Assessment of industrial
fault diagnosis using rough approximations of
fuzzy hypersoft sets. PLoS One 20(9):
€0329185. https://doi.org/10.1371/journal.

pone.0329185

Editor: Arne Johannssen, University of
Hamburg: Universitat Hamburg, GERMANY

Received: February 21, 2025
Accepted: July 13, 2025

Published: September 9, 2025

Copyright: © 2025 Abdullah et al. This is an
open access article distributed under the terms
of the Creative Commons Attribution License,
which permits unrestricted use, distribution,
and reproduction in any medium, provided the
original author and source are credited.

Data availability statement: No data is
associated with this research work.

Funding: The author(s) received no specific
funding for this work.

Competing interests: The authors have
declared that no competing interests exist.

RESEARCH ARTICLE

Assessment of industrial fault diagnosis
using rough approximations of fuzzy
hypersoft sets

Muhammad Abdullah', Khuram Ali Khan',

Atige Ur Rahman?2, Rostin Matendo Mabela®3*

1 Department of Mathematics, University of Sargodha, Sargodha, Pakistan, 2 Department of
Mathematics, University of Management and Technology, Lahore, Pakistan, 3 Department of Maths and
Computer Science, Faculty of Science, University of Kinshasa, Kinshasa, The Democratic Republic of the
Congo

* rostin.mabela@unikin.ac.cd

Abstract

Reliable and timely fault diagnosis is critical for the safe and efficient operation of indus-
trial systems. However, conventional diagnostic methods often struggle to handle uncer-
tainties, vague data, and interdependent multi-criteria parameters, which can lead to
incomplete or inaccurate results. Existing techniques are limited in their ability to manage
hierarchical decision structures and overlapping information under real-world conditions.
To address these limitations, this paper proposes a novel diagnostic framework based on
Hypersoft Fuzzy Rough Set (HSFRS) theory.This hybrid approach integrates the flexibil-
ity of hypersoft sets for modeling multi-parameter relationships, the strength of fuzzy logic
in handling vagueness, and the approximation capabilities of rough set theory to man-
age data uncertainty. Using a pseudo fuzzy binary relation, we define lower and upper
approximation operators for fuzzy subsets within the parameter space. An enhanced
Bingzhen and Weimin model-based decision-making algorithm is developed to support
intelligent diagnosis. A case study involving a conveyor belt system is presented, eval-
uating eight fault states using five primary parameters and twenty sub-parameters. The
results confirm the robustness, interpretability, and effectiveness of the proposed model
in complex industrial scenarios by ranking the states based on fuzzy hypersoft closeness
degrees.

1 Introduction

In machine health management, fault diagnosis plays a crucial role in establishing the rela-
tionship between the machine’s health status and monitoring data, including sounds, vibra-
tions, and other signals. This partnership is crucial because it guarantees prompt mainte-
nance, enables the early identification of possible problems, and guards against equipment
failures. This process has historically placed a great deal of reliance on the vast experience
and specialized knowledge of engineers. When an engine malfunctions, skilled engineers can
often identify the problem by listening to unusual noises or by analyzing vibration signals and
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identifying problems such as bearing failures with sophisticated signal processing techniques.
Because of their experience, they can accurately assess a machine’s condition by interpreting
subtle signs and data [1,2]. Automated techniques to improve diagnostic accuracy and opti-
mize maintenance procedures are becoming more and more popular among machine users in
engineering contexts. The need to cut downtime and boost the effectiveness of troubleshoot-
ing machines is what is driving this change. There is a growing expectation that fault diagnosis
will become more intelligent and self-sufficient with advances in artificial intelligence (AI).
Al technologies can accurately identify the health status of machines by automatically detect-
ing and interpreting signals, such as unusual noises or vibrations. By reducing human error
and expediting the diagnosis process, this automation offers a more dependable and effective
method of preserving machine health [3-5]. It is possible to think fault diagnosis as a multi-
criteria decision-making (MCDM) problem [6]. When making decisions that require estab-
lishing or addressing planning and determination issues under multiple criteria, MCDM is an
essential component of the process [7]. It does this by quantifying the significance of differ-
ent criteria for particular goals, which helps managers make well-informed decisions. Since
these variables can affect a project’s success on multiple levels—economic, social, cultural, and
environmental-MCDM methods excel at taking into account these multifaceted aspects of
problems. A specialized method of decision-making called MCDM entails the selection of
options, the establishment of criteria levels, the ranking of alternatives, and the depiction of
the various behaviors of the options [8,9]. Our lives are made easier by industrial systems in
every way. Energy waste and financial loss are possible outcomes of faults. Finding the loca-
tion of defects and detecting their beginning are crucial engineering jobs [10]. Failure and
fault are not the same thing since while a system may function, a system failure will prevent it
from working. The unapproved departure of a single system or a component parameter from
the standard state is the fault [11]. The fault could result in energy waste, a reduction in sys-
tem longevity or efficiency, or perhaps the system failing completely. Moreover, the flaw can
cause the system’s physical components to be destroyed. Supervisory functions aid with main-
tenance and damage limitation avoidance by indicating undesirable process states. Monitor-
ing, automated protection, and supervision with fault diagnostics are examples of supervisory
functions [12]. The task of diagnosing faults is difficult because of the inherent uncertainties
that result from multiple factors [13,14]. These uncertainties include imperfect knowledge of
the system’s condition, noise and anomalies in sensor data, and the inherent complexity of
contemporary systems, which frequently consist of a large number of interconnected parts.
Furthermore, there are many different circumstances in which systems can operate, which
makes it challenging to differentiate between typical behavioral fluctuations and real faults.
Systems are represented by simplified models that might not fully capture all the subtleties,
which increases uncertainty. To make matters more complicated, it is possible that some of
the parameters in these models are not well-known. Errors, prejudices, and subjective inter-
pretations are examples of human factors that add to the uncertainty. For fault diagnosis to be
effective, therefore, sophisticated techniques that can handle noisy, imprecise, and incomplete
data as well as take into consideration the complexities and variations in system behavior are
needed [15,16].

The ideas like fuzzy set (FS) [17], rough set (RS) [18], fuzzy rough set (FRS) [19] and gen-
eralized fuzzy rough set [20] can efficiently handle the issues related to inherent uncertainties,
impreciseness, and incompleteness. To equip these structures with parameterization context,
Molodtsov [21] initiated the idea of soft set (SS) which employs an approximate mapping to
assist the decision-makers in evaluating the alternatives concerning particular parameters.
Considering the idea of soft elements and soft members, Saeed et al. [22] introduced algebraic
structures for the SS environment. Sezgin et al. [23] discussed the different properties and

PLOS One | https://doi.org/10.1371/journal.pone.0329185 September 9, 2025 2/ 28



https://doi.org/10.1371/journal.pone.0329185

PLOS One

Assessment of industrial fault diagnosis using rough approximations of fuzzy hypersoft sets

theorems of a new SS operation known as complementary soft binary piecewise intersection.
Cagman et al. [24] defined the fuzzy soft set (FSS) theory and discussed its properties. Addi-
tionally, they defined the aggregation operator of FSS and applied it in human resource man-
agement to assess the method’s validity. The concept of SS is ill-suited for scenarios requir-
ing a multi-argument domain, such as the allocation of parameters and their sub-parametric
values collectively. To solve this issue, Smarandache [25] introduced the hypersoft set (HSS),
which is a modified approximated mapping that considers multiple arguments as opposed to
just one argument or parameter. Through the consideration of parameter and sub-parameter
indeterminacy, he [26] further introduced some new types of SS and HSS. Saeed et al. [27]
defined several operations, proved theorems, and covered several other HSS properties to
improve the adaptability and applicability of HSS. Rahman et al. [28] discussed the supplier’s
evaluation by considering operational risks using hypersoft mappings. Debnath [29] explored
weightage operators of fuzzy hypersoft set (FHSS) for decision-making scenarios. Saeed et
al. [30] formulated the entropy and similarity measures for FHSS and discussed renewable
energy resource evaluation. Saeed et al. [31] looked into the various properties and results of
FHSS graphs. Kamaci and Saglain [32] developed n-ary fuzzy hypersoft expert set by inte-
grating FHSS and expert set to combine multi-decisive opinions and multi-argument-based
approximate mapping. Al-Quran et al. [33] discussed the various aspects and operations of
bipolarity in the FHSS environment and car evaluation problems based on the aggregation
operators of bipolar FHSS. Ullah and Shah [34] developed matrix theory for FHSS and dis-
cussed decision-making problems based on this theory. Rahman et al. [35] investigated the
susceptibility of liver diseases based on the uncertain nature of multi-argument tuples in

the FHSS environment. Ahsan et al. [36] explored the procedure for optimized novel tech-
nology utilization by incorporating entropy measures, similarity measures, and TOPSIS of
FHSS. Asaad et al. [37] discussed the several features and operations of bipolarity in the FHSS
environment to evaluate soft engineers for a company.

Rough soft set (RSS) [38-40] is a type of hybrid mathematical model designed to manage
imprecision, ambiguity, and uncertainty in the interpretation of data. It combines the ideas
of RS and SS. When limits are not clearly defined, RS concentrates on approximating sets,
but SS offers a flexible framework for addressing uncertainty by including parameterization.
An element may only partially belong to an RSS if the lower and higher approximations are
established using rough and SS principles. In information systems and decision-making pro-
cesses where data ambiguity and partial truths are frequent, this paradigm is quite helpful.
Sarwar et al. [41] employed the rough soft approximations of graph and hypergraph for select-
ing authors for different areas of natural and social sciences. El-Bably et al. [42] discussed the
clinical assessment of Chikungunya using the aggregations of RSS. Sun and Ma [43] intro-
duced the idea of the soft fuzzy rough set (SFRS) and discussed its lower and upper approx-
imations based on pseudo fuzzy binary relations. Meng et al. [44], Hu et al. [45], Feng et al.
[46] and Liu et al. [47] made rich contributions in the field of SFRS. Zhang et al. [48] dis-
cussed the parameter reduction in the context of SFRS. Bingzhen and Weimin [49] evaluated
an optimized emergency plan for untraditional emergent situations based on SFRS. Rahman
et al. [50] discussed supplier evaluation problems for the construction industry by incorpo-
rating triangular fuzzy numbers and FHSS. Azim et al. [51] explored sophisticated meth-
ods of collecting information and how they may be used to comprehend how customers and
employees behave in particular places. In order to choose the best technological solution, they
used the g-spherical fuzzy rough TOPSIS approach, incorporating three crucial parameters:
parameter q (where g > 1), upper set approximation, and lower set approximation. Soni and
Mehta [52] developed fuzzy logic controllers (FLC) and fuzzy clustering means (FCM) for the
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diagnosis and prognosis of problems caused by different loads. They imitated Fuzzy clustering
is a method that analyses the insulation’s health by forming different clusters.

1.1 Research gap, challenges and questions

Despite the contributions of the aforementioned studies, many existing approaches suffer
from significant limitations. Traditional rough set models often assume precise parameter
values and cannot effectively address fuzzy uncertainty. Similarly, fuzzy and soft computing-
based models frequently lack the structural flexibility needed to handle hierarchical or inter-
related attributes. Moreover, few studies integrate multiple uncertainty-handling tools to
simultaneously capture data granularity, ambiguity, and overlapping decision parameters.
These gaps highlight the need for an advanced hybrid framework, such as the one proposed
in this paper, that can more comprehensively support fault diagnosis in industrial systems. A
complex mathematical framework designed to manage ambiguity, imprecision, and uncer-
tainty in data is represented by rough approximations of fuzzy hypersoft sets. This thorough
investigation draws attention to these deficiencies and offers a research plan.

1. Rough approximations of FHS are still not well understood or handled, despite major
advances in FSS and ROS.

2. The extant research often concentrates on RS or HSS alone, but the combination of both
ideas is yet largely unexplored.

3. The formal integration of FSS, HSS, and FSS is severely lacking. Although there are spo-
radic research integrating various notions, there isn't a thorough and uniform frame-
work available.

4. Rough approximation properties and their mathematical formulation in the framework
of FHSS are not completely explored. This calls for exacting definitions, axiomatic bases,
and behavior-governing theorems.

Because of their qualities, the techniques of RS and FHSS as well as their expansions, are
very dependable and adaptable. This was covered in the study above. Nevertheless, the pro-
posed study on the Hypersoft Fuzzy Rough Set (HSFRS) model for industrial fault diagnosis
is guided by the following research questions:

1. Can the HRS model improve the accuracy of fault diagnosis in industrial systems by
effectively handling multi-layered uncertainties and complex interdependencies among
fault criteria?

2. How does the HRS model’s capability to capture multi-attribute dependencies impact
the robustness of fault classification under fluctuating operational conditions?

3. What is the comparative performance of the HRS model against traditional rough set
and SS models in identifying faults accurately in high-dimensional industrial datasets?

These questions are intended to investigate whether the HRS model can address specific lim-
itations of current methods by enhancing fault detection accuracy, adaptability, and classi-
fication precision in complex industrial environments. The study hypothesizes that the HRS
model will outperform traditional models in handling uncertainty and dependency complex-
ity, resulting in more accurate and robust industrial fault diagnosis. Experts have lost a great
deal of information throughout the decision-making process because of these four questions,
which are the main components of any decision-making process. Furthermore, based on our
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assessments and information, we discovered that the HFRS approach has not yet been pro-
duced due to a number of issues and obstacles. In order to define the HFRS technique, we had
to merge the theories of fuzzy rough sets and HSS.

1.2 Novelty of the proposed study

In every aspect of life, industrial systems are useful to us. Errors have the potential to cause
financial loss and energy waste. Important work in engineering includes locating flaws and
detecting their beginning. A significant category of fault diagnosis and detection techniques
makes use of the monitored system’s mathematical model. But for the majority of practical
industrial engineering applications, the characteristics needed for mathematical modeling

are either unavailable or restricted. One of the key methods for fault diagnosis and identifica-
tion is observer-based fault diagnosis. This work presents a novel mathematical model, HRS,
which advances traditional rough set theory by integrating HSS principles to better address
complex, multi-layered uncertainty in decision-making. The originality lies in extending
rough set theory to include hypersoft sets, allowing for the handling of multi-attribute depen-
dencies and overlapping data categories that are difficult to address with conventional rough
or soft sets. Unlike existing models, this HRS approach introduces a flexible granularity to
capture intricate interrelations among criteria and sub-criteria, supporting nuanced decision-
making under conditions where criteria are interdependent or change over time. Additionally,
the model incorporates a refined approximation strategy that improves classification accuracy
by using HSS-based granular partitions, making it a robust tool for applications such as fault
diagnosis in dynamic environments. This framework’s ability to manage layered uncertainties
and attribute granularity positions it as a significant advancement in rough set-based decision
models.

1.3 Salient contributions

Although various fault diagnosis techniques based on fuzzy logic, rough sets, and soft com-
puting have been proposed, these methods often fall short in managing hierarchical parame-
ter structures, overlapping attributes, and multiple sources of uncertainty. Most existing mod-
els either lack the ability to handle fuzzy granularity in multi-criteria data or cannot represent
complex relationships among parameters effectively. To bridge this gap, we propose a novel
diagnostic framework that integrates Hypersoft Sets with Fuzzy Rough Set theory, allow-

ing for a more comprehensive and flexible decision-making structure. Our approach intro-
duces hypersoft fuzzy rough approximation operators using pseudo fuzzy binary relations and
incorporates them into an enhanced decision-making algorithm. A case study on conveyor
belt fault states validates the proposed model’s effectiveness, robustness, and superior rank-
ing ability under uncertainty. The summary of some noteworthy contributions of this study is
given as

1. The suggested structures are seen to be the most effective means of examining the intri-
cacies of fault diagnosis. Their ability to manage a wider range of membership grades
is a advantage, particularly when working with attributes that have several sub-values.
Without a doubt, these frameworks offer the greatest means of investigating the topic
of fault diagnosis. Their ability to cater to a broad range of membership classes is what
makes them successful, especially when handling attributes with several sub-values.

2. Expert assessments are a helpful instrument for showcasing practical applications and
showing the significance of the recommended course of action. The assessments and
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observations of subject-matter experts are used to show how the methodology can be
successfully used in real-world scenarios.

3. Moreover, a sensitivity analysis is conducted to examine the impact of altering the
weights assigned to the significant variables throughout the sorting process. This
research allows for a better understanding of how changes to these weights impact the
ultimate outcome or option ranking. By gradually adjusting the weights and monitor-
ing the ensuing changes in ranks, researchers can gain greater insight into the durability
and dependability of the separating approach used, which enhances the precision and
reliability of the decision making process.

4. Despite being primarily focused on industrial fault diagnosis, the framework’s adapt-
ability suggests that it may also be utilized in other fields where multi-criteria decision-
making under uncertainty is necessary, like environmental monitoring, financial analy-
sis, and medical diagnosis.

The structure of this paper is as follows: The fundamental ideas required for this paper, such
that fuzzy soft sets, fuzzy rough sets, Pawlak rough sets, soft sets, and HSS are briefly intro-
duced in Sect 2. The hypersoft fuzzy rough set model is established in Sect 3 along with a
detailed discussion of its characteristics. The concept and evaluation process for fault diagno-
sis in industrial systems based on hypersoft fuzzy rough sets are presented in Sect 4. Simul-
taneously, we suggest an algorithm for this fault diagnosis evaluation approach. In Sect 5, we
examine a numerical example that is applied and confirm the accuracy of the theories and
methods put forth in this work. In Sect 6, we draw conclusions from our study and suggest
areas for future investigation.

2 Fundamental knowledge

In this part, a few fundamental ideas will be covered. Rough approximations are given for the
fuzzy set, as well as its soft and hypersoft structures. In this paper universal set will be pre-
sented by L, collection of fuzzy subsets by ﬁIED, where D =D, x D, x D3 X ... X D, and all the
subsets of D by pL.

Definition 1. [18] Let £, ¥ and R be a universal set, set of attributes and an equivalence rela-
tion (indiscernibility relation) respectively, each attribute & € Y is a function & : L —> Vg where
Vg denotes the collection of values known as the attribute domain. Then J = (L, Y) is known as
knowledge representation system or information system. Specifically Q = (L, if%) is called Pawlak
approximation space. The equivalence relationship R is associated with an information sys-

tem and is commonly referred to as an indiscernibility relation. In particular if S = (L, Y) is an
information system and W C Y, then an indiscernibility relation R = § (W) can be defined by

() eS(W) = a(n)=a(n),VaeWw, (1)

where n, 1t € £ and & (1)) denotes the value of attribute & for object ).
The following two operations can be defined using the indiscernibility relation R.

(E)A_{Z:{UELI[T)]ﬁQZ}, (2)

E)_A{Z:{UEL:[U];)}OZ#¢}, (3)
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assigning to each subset Z C L the sets Rz and Rz are said to be R— lower and R- upper

approximation of Z respectively. assigning to each subset Z C £ the sets Rz and Rz are said to
be R- lower and R— upper approximation of Z respectively.

Definition 2. [20] Let R be a fuzzy relation from L to Q, where £, Q # ¢ are the universal sets.
Then, U = (L, Q, ifl) is known as a generalized fuzzy approximation space. The lower and upper

approximations Eﬁ@ and iﬁ@ respectively of any set BeF:, wrt approximation space U are
fuzzy sets of L. The membership functions for each 1) € £, defined as

2)71)@: \/ [Ru)AB)].neL, (4)
MeQ

= N\ [(1-Rnw) vBW)].neL. (5)
MeQ

— —

We call the pair (9?@, 9}@) a generalized fuzzy rough set.

Definition 3. [21] Let 2%, £ and Y be collection of all subsets of £, set of universe, and attributes

respectively. Then, (@, Y) is referred to as a SS over £, where 2: ¥ — 2%,

Stated differently, a parameterized family of subsets of the universe L is referred to as a
SS over L. For ¢ € Y might be viewed as the collection of e~ approximate elements of the SS

(2.7).

Definition 4.[24] Let 21, £ and Y be a collection of all subsets of £, set of universe, and attributes
respectively. Then, (/N\, Y) is known as FSS over £, where A : ¥ — F*. In general

Ae)={(nA(e)(m)Inet}. (6)

Definition 5. [25] Let 2% and £ be a collection of all subsets of £ and set of universe respectively.
Given that (il, 20, iﬁ) , 1> 1, be 11 distinct attributes, the order of the relevant attributive

=l =2 =3 o =l =]
elements is as follows ([D ,D,D,..D ), withD ND =¢, Vi+], andi,j € N. Under these

circumstances, the pair (@, D) is known as a HSS and can be represented

[1p

o =1 =2 =3 =
:(ID:ID xD xD ><...><[D)—>2L. (7)

3 Pseudo fuzzy hypersoft rough approximations

The concept of pseudo fuzzy hypersoft rough approximations is introduced in this section.

Definition 6. Let £ represents the universal set and let Y = {a;, ay, &3, ..., &, } be a set of attribu-
tes. The corresponding attribute values for every attribute oe;7= 1,2, 3, ..., n are respectively the
sets ﬁl, 62, 63, . ﬁn, with ﬁ;n ﬁj = ¢, forT+], and 1,7 € N. Then the pair (A", HjJ) is called a
pseudo HSS over Liff A™' : —> ‘.B”j, where D = ﬁ)l X ﬁz X 53 X .. X ﬁn, and ’BD denotes all the
subsets of D. An example of a HSS is tabulated in Table 1.
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Table 1. An example of a HSS in tabular form.

¢ w1 w2 w3 Wy W5 We wy wg
n 1 0 1 0 1 0 1 1
hs3 0 1 0 1 0 1 0 0
s 1 1 0 0 1 1 0 0
e 1 0 0 1 0 0 1 1
g 1 1 0 1 1 0 1 1
hn 1 0 1 1 0 0 1 1
N1 0 0 1 1 1 1 0 1

https://doi.org/10.1371/journal.pone.0329185.t001

Example 3.1. Let £ = {i, Wy, W3, Wy, Ws, W, Wy, Ws } , be the set of cars under consideration and
let Y= {ay, a5, a3, a4} be a collection of parameters. Every parameter consists of a word or
sentence, such that

o @ represents the parameter Performance

o Q, represents the parameter Safety

o Q3 represents the parameter Comfort and Convenience
o Gy represents the parameter Technology

The disjoint sets consisting of sub values of attributes ot are |D1 {&11,812}, [Dz =
{0621,0622,(123} |D3 = {Ga1, &30, 33}, and Dy = {@y1, Qua, Qs }, the cartesian product IDI X ID2
D x D, will contain 2 X 3 X 3 X 3 = 54 elements. The selected parameters and the corresponding
sub-parameter values are tabulated in Table 2 and their pictorial forms are presented by Figs 1,
2, 3,4, and 5.

It would be impossible to describe all the possible combinations here, but this shows how to

build the Cartesian product of these four sets. D = D, x IDZ X ID3, ><[D4 =

hy = (G, @1, @31, @ ) 5 By = (s Gor, G, B ), iz = (G, Gor, a1, s ),

hy = (61, 601, @32, Gar ), his = (G, G, B30, Qan), i = (G, Gon, Gan, Gas),s
hy = (611, 61, @33, Gan ), hg = (G, G, @3, Qan ), Fio = (G, G,y Bas, Gas), - o
hsy = (G2, G, G315 Gz ), sz = (o, G, Ao, Ban ), Fisg = (G, G, G, Glag)

LetT = {1, 13, A5, Tig, g, Tayy, Fiya } C D then the respective multi-argument approximate
A (hy) = {1, W3, Ws, w7, We b, A (Bs) = {Wy, Wy, We }, A (hs) = {1, Wa, Ws, We |,

A(hﬁ) = {ﬁll) ﬁl‘b 171/7, ﬁ/8} )A(h9) = {ﬁlly WZ) ﬁ/4) WS) W7) ﬁ/8})/\(hll) = {ﬁ)ly WB) ﬁ/4) 1"{)7) WS} >
A(hl4) = {ﬁ/3’ W‘b WS) ﬁ/6’ 1;i)S} .

Table 2. The selected parameters and the corresponding sub-parameter values.

Parameters Sub parametric values

& = Performance &11 = Engine Power, &2 = Fuel Efficiency,

& = Safety &1 = Crash Test Ratings, &> = Airbags, &3 = Advanced Driver Assistance
Systems(ADAS),

&3 = Comfort and Convenience &31 = Interior Space, &32 = Seat Comfort, &33 = Infotainment System

&4 = Technology a41 = Connectivity, &4» = Driver Assistance Features, 443 = Sound System

https://doi.org/10.1371/journal.pone.0329185.t002
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Performace
Criteria

Criteria for Car
Selection

Safety
Criteria

Comfort
Criteria

Technology
Criteria

Fig 1. Major criteria for car selection.

https://doi.org/10.1371/journal.pone.0329185.9001

Performance

Engine Power Fuel Efficiency

Fig 2. Sub-criteria of performance.

https://doi.org/10.1371/journal.pone.0329185.9002

For any multi-argument tuple #, the following function can be selected for a tabular repre-
sentation of HSS ¥ = (A, D)

|1 weA(h)
h(w)‘{o W& A (h)

Likewise, defining the pseudo HSS, a way to highlight the characteristics.
According to Definition 6, we get the following outcomes:

A_l(ﬁll) = {hlyhsy hﬁ) h9) hll}’ A_I(WZ) = {h?n hS) hQ}) A_l(ﬁ)??) = {hl) hll) h14})
A_l(ﬁ/4) = {hS) h6) h9) hll) h14}) A_I(WS) = {hI’ h5) h9) h14}s A_I(W6) = {h37 h57 h14}’
A7) = {hy, he, ho, by }, A1 () = {1, B, ho, Fiyy, g}
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Safety

Crash Test
Ratings

Airbags ADAS

Fig 3. Sub-criteria of safety.
https:/doi.org/10.1371/journal.pone.0329185.9003

Comfort and
Convenience

l Interior Space Seat Comfort

Fig 4. Sub-criteria of comfort and convenience.

https://doi.org/10.1371/journal.pone.0329185.9004

Infotainment
System

Technology

|
Connectivity Driver Sound System
Assistance

Fig 5. Sub-criteria of technology.
https://doi.org/10.1371/journal.pone.0329185.9005
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An example of a pseudo HSS is tabulated in Table 3.

Definition 7. Consider £ be a universal set and Y = {&1,&,, &3, ..., &, } is a set of attributes. The
corresponding attribute values for every attribute 6, 7= 1,2, 3, ..., n are respectively the sets
Dy, D,,D;, ..., D,, with DN [f]>7 = ¢, for T+, and 5] € N. Then the pair (A}, D) is called a

pseudo fuzzy HSS over £ iff A™' : — FP, where D = D, x ﬁz X D3 X...X Dy, and F® denotes all
the fuzzy subsets of D.

Example 3.2. Consider Example 3.1 we have

Am) = {55505 05 66} Alhs) = (35,55 551 A () = {55 55 3535
A(he) = {53 5% SVZ>$V—89} A (ho) = {5, 64 5% 0% 072 04 ) »
A(mn) ={55 53 0% 05 031> A (1) = {52, 7% 0% 55 05 1
An example of fuzzy HSS is tabulated in Table 4.
Likewise, defining the pseudo HSS, a way to highlight the characteristics.
According to Definition 7, we get the following outcomes:

- 03702°0,5> 0,17 0.4 )> o g 0700 !
A () = {M’ﬁ’ﬁ’o_lé’ o (W5) {oz’og’ﬁ o5 A ()

_ he h9 h - he hy h h
A (iy) = {05 00 070 02 b A (i) = {ﬁ 037060 087 05 )

N G) = (g e i B, A ) = (s B ), A ) = (e B,

An example of a pseudo fuzzy HSS is tabulated in Table 5.

Definition 8. Consider a pseudo fuzzy HSS ¥= (A, D) over L. We named T = (£, ¥) the
hypersoft fuzzy approximation space with f; € D a §i- argument tuple. For any J € 2, we
define Q(J) and Q(J]) with respect to the hypersoft fuzzy approximation space T = (£, ¥) are

Table 3. An example of a pseudo HSS in tabular form.

¥ y 3 fs he ho Ay Nig
w1 1 0 1 1 1 1 0

Wy 0 1 1 0 1 0 0

w3 1 0 0 0 0 1 1

Wy 0 1 0 1 1 1 1

Ws 1 0 1 0 1 0 1

We 0 1 1 0 0 0 1

Wy 1 0 0 1 1 1 0

W 1 0 0 1 1 1 1

https://doi.org/10.1371/journal.pone.0329185.t003

Table 4. An example of fuzzy HSS in tabular form.

¢ w1 Wy w3 Wy Ws We w7 ws
n 0.7 0 0.3 0 0.2 0 0.1 0.6
73 0 0.4 0 0.3 0 0.8 0 0
s 0.9 0.3 0 0 0.1 0.7 0 0
he 0.2 0 0 0.3 0 0 0.6 0.9
g 0.3 0.5 0 0.2 0.5 0 0.7 0.4
hn 0.4 0 0.2 0.3 0 0 0.5 0.7
(37 0 0 0.5 0.3 0.6 0.2 0 0.1

https://doi.org/10.1371/journal.pone.0329185.t004
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Table 5. An example of a pseudo fuzzy HSS in tabular form.

¥ m hs s he ho h1n hig
w1 0.3 0 0.2 0.5 0.1 0.4 0
W) 0 0.2 0.8 0 0.7 0 0
w3 0.7 0 0 0 0 0.5 0.5
Wy 0 0.4 0 0.5 0.3 0.8 0.1
W5 0.2 0 0.9 0 0.5 0 0.7
We 0 0.9 0.3 0 0 0 0.4
w7 0.5 0 0 0.1 0.7 0.2 0
wg 0.4 0 0 0.3 0.6 0.8 0.5

https://doi.org/10.1371/journal.pone.0329185.t005

the fuzzy sets of £ and their membership functions for each € € £, defined by

2@ = A\ [(1-F@0)(@)) v (D)(p)]. ¢ €L

peb

a0 = \/ [ (@)(@) A (D) ()], e L.

gpeb

The sets ﬁ(J]) and ﬁ(J]) known as T— lower hypersoft fuzzy approximation and T- upper
hypersoft fuzzy approximation respectively. We call the pair (S(_l(J]), ﬁ(J])) a hypersoft fuzzy
rough set.

Example 3.3. Given a subset J € FP. The values of the membership as:

07 05 04 02 01 08 03

Je=—t—+—+—+ —+ — + —.
o hs hs he hy A i

by Definition 8, the lower and upper approximation of J, respectively, as follows

Q) (#) = Ape [(1-K (W) (R))) v (I) ()], we L

QD) (#) = Vyep [A (#) (h) A (D) (R)], WE L.

Table 5 allows us to obtain the fuzzy lower and upper approximations of J in the following way:

QD) () =05 Q) (#)=04, Q(JI)(3n)=03, Q(JI)(#)=04,
QD) (#3) =05 Q) (33)=05 Q) (#s) =05 Q(J) (i) =0.8,
QD) (#s) =05, Q) (s) =04, Q) () =05 Q(J) (i) =0.5,
Q) (#,)=03, Q) (@,)=05 Q) (W) =04, Q(J)(irs)=0.8.

In other words, for each parameter set D, we get the upper and lower approximations of the
fuzzy subset J.

< 05 03 05 05 05 05 03 04
Q(\ﬂ):f+v7+7+7+f+f+? < >
wir W2 W3 Wg W5 W W7 Wg
> 04 04 05 08 04 05 05 08
Q(\J]):T+T+T+T+u7+u7+u7 -
w1 Wy w3 Wy Ws We wz wg
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Evidently Q (J) ¢ Q (J).
Proposition 1. Let T = (£, ¥) be hypersoft fuzzy approximation space. Given J € P, we have

1L Q) =~Q(~J),
2. Q) =~Q(~J).

according to Proposition 1 the hypersoft fuzzy rough approximation operators Q and Q are dual
to each other. In addition, the following findings are evident for this operators.

Theorem 9. Consider T = (£, ¥) be the hypersoft fuzzy approximation space. For any J,Y € o,
we have

QUNY)=0)NnQ ().
QUUY)=0)uQ ().
QUUY)2Q () uQ ).
QUNY)CQWD)NA).
JCY— Q) ca(y).
QD) CQ(Y).

SR N

With the help of Definition 8 and Example 3.3, the results above are readily displayed.

Remark 1. Assume that ¥= (A", D) be a pseudo HSS over £, we call T = (£, ¥) the hypersoft
appeoximation space, and the following forms are what the soft fuzzy rough approximation
operators mentioned above summarize as:

am©= N\ () teL
peh-1(¢)

aW© =\ U)(g) teL
peh-1(¢)

Here, we refer the pair (f)(J]), ﬁ(J])) a hypersoft rough fuzzy set. Which is the specific case
of hypersoft fuzzy rough set if we apply the condition of pseudo mapping A"

Remark 2. Assume that T = (L, ¥) be the hypersoft fuzzy approximation space, and J € po.
Then the following are the hypersoft fuzzy rough approximation operators:

QW)= \[(1-K') ()], ¢ €L,

gD
Q@) =\ [a'(@)(p)] ¢ €L
el

Where f)(J]) and fi(J]) shows the approximation of any crisp subset in D on the hypersoft
fuzzy approximation space T = (£, ¥).
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4 Industrial fault diagnosis using hypersoft fuzzy rough
approximations

Because a manufacturing plant uses a variety of machinery and equipment on a constant
basis, wear and tear, poor maintenance, and unforeseen circumstances can all lead to mal-
functions. To prevent downtime and guarantee seamless operations, early and precise detec-
tion of these issues is essential. But the information gleaned from sensors and logs might be
inaccurate or lacking. In these circumstances, rough hypersoft sets can be useful in managing
the ambiguity and uncertainty in the data.

In industrial fault diagnosis, the application of HRS stands out due to the distinct demands
and challenges of diagnosing faults accurately under uncertain and complex conditions.
Unlike general multi-criteria decision-making domains, fault diagnosis in industrial settings
often requires handling vast amounts of imprecise, overlapping, and dynamic data. HRS pro-
vides a unique capability to deal with these uncertainties by accommodating multi-criteria
assessments within high-dimensional, layered data structures. Specifically, HRS facilitates
a finer granularity in capturing interdependencies between criteria that may evolve or con-
flict due to fluctuating operating conditions. This characteristic is particularly valuable in
industrial contexts where fault sources can vary in impact and frequency. Compared to other
domains, industrial fault diagnosis with HRS offers a more nuanced approach to processing
uncertainty and prioritizing fault indicators, allowing for adaptable and context-sensitive fault
detection, which is critical for maintaining operational efficiency and safety.

4.1 Modified Bingzhen and Weimin’s decision model

The following decision model is the modified version of decision model discussed by
Bingzhen and Weimin [49]. Assume that . = {#, #;, i3, ..., W } , be the k number of fault
diagnosis. A™! € Q(E x D) is the fuzzy mapping in the fault diagnosis set L to . That is
A (67) () €[0,1] where V(¢ € L, iz € D). Thus we construct a hypersoft fuzzy informa-
tion system T = (L, ¥) for the evaluation of fault diagnosis. Then we have
NAESY maxA () \oe
P )

J* =max{A (%) (&) |6r€L}, (8)

in A (b y
j—zz%m(),\ﬁe@,

J"=min{A () (¢7) |ér €L} )

By calculating the maximum and minimum values for the fuzzy HSS (A, D) concern-
ing the characteristic factor V. %€ D., it is simple to determine that J* and J- are estab-
lished. Furthermore, there is J*, J- € FP. The steps of the evaluation model are described
in detail below. Initially, we compute the object’s lower approximation Q(J")Q(J)and
upper approximation Q (J%) Q (J7) with respect to the hypersoft fuzzy information system
T = (L, ¥) respectively, as follows,

Q)= N\ [(1-A(@)(hy)) v I* (hy)], eret,
hje[l")
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Q) () = \/ [A(&)(hg) A I (hy)], e,

hyeD

and

Q) (E) = N\ [(1-K' (&) (1)) v I ()], L,
hye

(w3

GW)(e) =\ [K (@) () AT ()], et

hyeD

where7=1,2,3,...,m,7=1,2,3,..,n
We describe the following ideas using the fundamental theory of hypersoft sets.

Definition 10.  Assume that T = (£, ¥) be the hypersoft fuzzy approximation space. Whenever
JeFP, we call

EW)=00)[®+Q(J) (%), ket (10)

the J score function in relation to the hypersoft fuzzy approximation space.

Second, we determine the score value for every fault diagnosis ¢ € £. concerning J* and
J as follows, respectively, using Definition 10.

£ =0 (&) + Q) (&), &reL

W) =0) () + Q) (6), el

We introduce the notion of hypersoft close degree over the hypersoft fuzzy approximation
space in the following.

Definition 11. Assume that T = (£, ¥) be a hypersoft fuzzy information system for evaluation of
the fault diagnosis. For the object J* and J~, we call

G=&7)-&W),
the hypersoft close degree of theTth fault diagnosis plan €7 about T = (£, ¥).
Remark 3. Based on the characterlstzcs of the hypersoft fuzzy rough set, if J;,J, € P, which

satisfies J; C Jy, Q (Jy) C Q (J,) and Q (Jy) ¢ Q (J,) hold. 1t is evident that J* and J~
satisfy J- C I thus & (J%) > &(J7) for any ¢y € £. So &> 0.

Ultimately, based on the values of the hypersoft close degree, we are able to provide an
extensive assessment and rating of all the fault diagnosis strategies for a certain fault event.
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4.2 Problem statement:

Conveyor belt systems are essential parts of several industries in Pakistan, such as manufac-
turing, logistics, mining, and agriculture. These systems are essential to the smooth operation
of manufacturing lines and supply chains because they make the efficient movement of mate-
rials and goods possible. Conveyor belts can, however, develop a variety of problems that can
cause serious operational disruptions, higher maintenance expenses, and safety issues. For
Pakistani conveyor belt systems to be dependable and efficient, effective fault identification

is necessary. Although these systems are effective at transporting substances, wear, misalign-
ment, contamination, and other variables can cause malfunctions and failures. The main goal
is to create a thorough and efficient diagnostic technique for identifying and categorizing con-
veyor belt system flaws in Pakistani companies. Numerous factors, including vibration level,
temperature, belt tension, motor current, and noise level, should be incorporated into the
diagnosis process. To reduce system downtime and maintenance costs, the goal is to precisely
identify defects, anticipate possible breakdowns, and offer practical repair recommendations.

5 Adopted parameters and their roles description

In this section, the evaluating parameters and their related sub-parameters are discussed.
The parameters and their relevant sub-parameters are taken from the literature [53-55]. In
general, the conveyor belt should have the following characteristics:

(1). Vibration Level (&;)

1.1. &;;= Misalignment: Uneven vibration can occur when conveyor belt system compo-
nents are not properly aligned. Frequently, periodic increases in vibration amplitude are
indicative of this.

1.2. &j,= Unbalanced Load: Uneven distribution of the conveyor belt’s load may cause irregu-
lar and heightened vibration patterns.

1.3. &;3= Mechanical Wear: Uneven vibrations can be caused by worn-out parts like pulleys
or rollers.

1.4. &4= Bearing Failures: For the conveyor system to run smoothly, bearings are essential.
Significant increases in vibration might result from any wear or flaws in the bearings.

(2). Temperature (&;)

2.1. &= Overheating Motors: Internal malfunctions, overload, and inadequate ventilation
can all cause motors to overheat. High temperatures close to the motor are a sign of this
issue.

2.2. @y,= Lubrication Problems: Moving parts may generate more heat and friction if their
lubrication is inadequate or deteriorated.

2.3. @y3= Excessive Friction: Increased friction can be caused by misalignment, tension prob-
lems, or worn-out parts, which raises the temperature.

2.4. (4= Bearing Failures: Unusual heat buildup might result from worn or defective bearings
because of increased wear and friction.

(3). Belt Tension (&3)

3.1. &s1= Misalignment: Unusual stress levels can result from uneven tension across the belt
caused by misaligned pulleys or rollers.

3.2. &3=Improper Loading: Variations in belt tension due to uneven or excessive loading
may result in slippage or strain.

3.3. G33= Wear and Tear: Belt deterioration or stretching over time might result in uneven
tension levels.
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3.4. &34= Mechanical Issues: Inadequate belt tension might result from issues with mechanical

parts or tensioning mechanisms.
(4). Motor Current (&)

4.1. &4q= Overload: The motor may draw more current than usual if there is an excessive
material load or mechanical resistance.

4.2. G4p= Electrical Faults: Anomalies involving wiring, insulation problems, or short circuits
can result in anomalous current levels.

4.3. &43= Mechanical Problems: Due to increased friction or resistance, worn-out or damaged
mechanical parts, such as gears or bearings, can raise the motor’s current draw.

4.4. G44= Misalignment: Component misalignment may result in increased mechanical resis-
tance, increasing motor load and current consumption.

(5). Noise Level (&s)

5.1. &s1= Mechanical Wear: Unusual noise can be produced by worn-out parts like rollers or
bearings because of increased friction or looseness.

5.2. &s;= Misalignment: When a belt travels, misaligned pulleys or rollers can cause uneven
contact and noise.

5.3. &s3= Bearing Failures: Because of increased friction and vibration, defective or broken
bearings can produce noise.

5.4. &s4= Loose or Damaged Components: When the conveyor is operating, loose or broken
pieces may rattle or make strange noises.

The features of conveyor belt have been portrayed in Figs 6, 7, and 8.

5.1 The algorithm for diagnosing faults in the model

This section introduces an algorithm for diagnosing unconventional faults using hypersoft
fuzzy rough sets.

LLLKLKLKLKLKLKLKLLLLKL Pr OpOSEd AlgO?’ Ithim >335 55055 5505555

1. Input

1.1. After careful analysis of existing literature and survey results, shortlist possible states of
the conveyor belt system as a set of alternatives L.

1.2. With mutual consensus of experts, shortlist the evaluating parameters &; as a collection
of parameters Y. _

1.3. Enclose the sub-parametric values with respect to parameters &; in disjoint sets ; and
find D = H ﬂj)i.

2. Con;truction phase:

2.1. Construct hypersoft fuzzy information system T = (L, ¥) for the assessment of faults.

2.2. Construct and tabulate fuzzy HSS (A, D) and its relevant pseudo fuzzy HSS (A1, D).

3. Computation phase:

3.1. Compute the optimal object J* and J~ for all the diagnosis using Eq (8) and Eq (9)
respectively.

3.2. Determine the upper approximation and lower approximation of J* and J~ concern-
ing T = (L,¥).

3.3. Compute the score values & (J*) and & (J7) for J* and J~ respectively using Defini-
tion 10 and Eq (10).

3.4. Compute each fault’s hypersoft close degree & using Definition 11.

4. Output phase:

4.1. Analyze the results determined in step 3.4 and rank the alternatives.

KLKLLLL L KZIZiL M KR KLIL L > > > DD D> >>
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Overheating
Motors

Temperature

Bearing
Failures

Fig 6. Depiction of various features of conveyor belt-I.

https://doi.org/10.1371/journal.pone.0329185.9006

Different phases of the proposed algorithm are stated in Fig 9. It depicts four stages: input,
construction, computation, and output. The input stage is designed to provide basic require-
ments. The essential sets represent the basic requirements in our case. The construction stage
is designed to build the basic structures necessary for the further progression of the algo-
rithm. The computation stage includes all the calculations made during the process, while the
output consists of the final results and the ranking of the alternatives.
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Fig 7. Depiction of various features of conveyor belt-II.

https://doi.org/10.1371/journal.pone.0329185.9007

5.2 Case study

The management of Ghan Group of Industries intends to find out the current working
condition of conveyor belt system in its industries, its possible defects and possible solutions.
A central committee comprising professionals with pertinent experience is established; some
members are recruited from outside the organization, while others work for it. After thor-
ough survey reports and existing literature review, eight possible states of the conveyor belt
systems has been shortlisted as alternatives and enclosed in the set L. = {iy, W2, W3, ..., Ws }.
With mutual consensus of all the members of the committee, five evaluation attributes

&= vibration level, &,= temperature, &;= belt tension, &s= motor current, and &s= noise
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Bearing
Failures

Loose or
Damaged
Component

Mechanical
Wear

Misalignment

Fig 8. Depiction of various features of conveyor belt-III.

https://doi.org/10.1371/journal.pone.0329185.g008

level, have been finalized for this evaluation. These parameters are enclosed in the set Y=
{&1,&,, a3, &4, a5} The corresponding sub-parametric values for every attribute &;, i =
1,2,3,.., 5 are respectively the disjoints sets: D; = {&11, &2, &13, &14 }> D2 = {&a1, &2, G235 s}
D3 = {1, &30, @33, @34}, Dy = {Qur, Gz, Gaz, Gag ), and Ds = {&s), &s, &s3, &sy } respectively.
Where &;; = misalignment, &;,= unbalanced load, &;3= mechanical wear, &,4= bearing fail-
ures, &y = overheating motors, &,,= lubrication problems, &,;= excessive friction, &,4= bear-
ing failures, &3 = misalignment, &s;= improper loading, &33;= wear and tear, &z4= mechan-
ical issues, &1 = overload, &4,= electrical faults, &43= mechanical problems, &44= misalign-
ment, &= mechanical wear, &s,= misalignment, &s3= bearing failures, &s4= loose or dam-
aged Components. To maintain the distinction of sub-parametric values, the experts filter
them on preferences basis and have select whole D1, &,1, &y and &3 in Dy, &3, and &s3 in
[D3, &y, in [D4 and &s4 in D5. After computing [D = Uj)l X DZ X ... X [DS = {hl, hy, As, ..., h24},
its subset T = {1, h1s, hg, 11, Miys, rg, Pipg } has been finalized for further evaluation process

of diagnostic fault. Accordingly, each fault diagnosis is quantitatively described by the pseudo
fuzzy binary mapping A € Q (L X [D) in relation to the seven multi-argument features (i.e. the
fuzzy membership degree). Tables 6 and 7 present the quantitative descriptions of each fault
diagnosis in relation to these attributes in fuzzy hypersoft and pseudo fuzzy hypersoft envi-
ronments. Using the Formulas 8 and 9 we may derive the object plans J* and J-, respectively,
from Table 7 as follows:

+ 071 091 091 071 073 085 0.71
Jr=—t—+t—+ ————+— + —.
o hs he hu s P B

0.12 022 026 0.11 0.18 029 0.18
=t — t— t— +— + — + —.
hl hs hoy  hn s Ry B

Next, we may use Formula 8 to determine the upper and lower approximations of object
plan J*, or the hypersoft close degree, for each fault diagnosis.

I
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Ae the
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Fig 9. Phases of proposed algorithm.
https://doi.org/10.1371/journal.pone.0329185.g009

The same procedure can be repeated for J~. The upper and lower approximations of J*
and J~ are tabulated in Table 8 and Table 9 respectively. Based on the values of Tables 8 and
9, fault’s hypersoft close degrees & are determined that are tabulated in Table 10.

According to fault’s hypersoft close degrees &; the alternatives are ranked as wg > Wws > g >
Wy > Wq > W7 > W3 > wy. It can easily be observed that the alternative wg received the highest
score, therefore, it is opted for final selection. The ranking of all the alternatives is presented in
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Table 6. Tabulation of fuzzy HSS.

(A,D) W1 W2 W3 Wy Ws We Wy g
n 0.31 0.12 0.71 0.31 0.24 0.65 0.52 0.42
hs 0.43 0.24 0.35 0.43 0.72 0.91 0.22 0.22
s 0.26 0.81 0.46 0.76 0.91 0.35 0.33 0.55
e 0.53 0.36 0.67 0.51 0.71 0.37 0.11 0.35
ho 0.18 0.73 0.64 0.39 0.53 0.45 0.72 0.65
A 0.42 0.76 0.53 0.83 0.78 0.73 0.29 0.85
fia 0.56 0.45 0.58 0.18 0.71 0.42 0.61 0.51
https://doi.org/10.1371/journal.pone.0329185.t006
Table 7. Tabulation of pseudo fuzzy HSS.
(A1, D) h hs fig A h1s f1o Paa
w1 0.31 0.43 0.26 0.53 0.18 0.42 0.56
W2 0.12 0.24 0.81 0.36 0.73 0.76 0.45
W3 0.71 0.35 0.46 0.67 0.64 0.53 0.58
Wy 0.31 0.43 0.76 0.51 0.39 0.83 0.18
W5 0.24 0.72 0.91 0.71 0.53 0.78 0.71
We 0.65 0.91 0.35 0.37 0.45 0.73 0.42
Wy 0.52 0.22 0.33 0.11 0.72 0.29 0.61
Wg 0.42 0.22 0.55 0.35 0.65 0.85 0.51
https://doi.org/10.1371/journal.pone.0329185.t007
Table 8. Tabulation of upper and lower approximations of object plan J*.
w1 W2 W3 Wy Ws We w7 Wg
EZ (J]+) 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71
fl J*) 0.56 0.81 0.71 0.83 0.91 0.91 0.72 0.85
&) 1.27 1.52 1.42 1.54 1.62 1.62 1.43 1.56
https://doi.org/10.1371/journal.pone.0329185.t008
Table 9. Tabulation of upper and lower approximations of object plan J~.
Wi W2 W3 Wy Wws We Wy g
fl J) 0.44 0.26 0.29 0.29 0.26 0.22 0.28 0.29
6 J7) 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29
&) 0.73 0.55 0.58 0.58 0.55 0.51 0.57 0.58
https://doi.org/10.1371/journal.pone.0329185.t009
Table 10. Tabulation of fault’s hypersoft close degree &
W1 W W3 Wy Wws We w7 We
&) 1.27 1.52 1.42 1.54 1.62 1.62 1.43 1.56
AN 0.73 0.55 0.58 0.58 0.55 0.51 0.57 0.58
& 0.54 0.97 0.84 0.94 1.07 1.11 0.86 0.98

https://doi.org/10.1371/journal.pone.0329185.t010

Fig 10. Regarding the sensitivity analysis of the results obtained, in the context of our current
work, it is not directly applicable due to the nature and structure of our proposed method-
ology. The parameters and assumptions used in our approach are either fixed or determined
through established criteria, leaving limited room for variability that would significantly

benefit from sensitivity analysis.
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5.3 Discussion and comparison

In this paper, we investigate the use of pseudo fuzzy hypersoft rough approximations in
industrial defect diagnostics, considering the dynamic and intricate nature of contemporary
industrial systems. These systems often consist of many interconnected parts, which behave
erratically and imprecisely due to factors such as operational uncertainty. While traditional
fault detection techniques perform well in simpler situations, they struggle to comprehend
and assess the complex relationships and ambiguous data present in these environments. By
integrating the advantages of fuzzy logic, hypersoft sets, and rough approximations, pseudo
fuzzy hypersoft rough approximations offer a robust and flexible framework for handling
uncertainty, imprecision, and interdependence. This methodology enhances diagnostic accu-
racy and reliability in industrial contexts by promoting a more sophisticated understanding
of defect patterns. Since the defect diagnosis has not yet been discussed in the literature using
parameterization tools, multi-argument domain settings, or rough approximations settings,
the ranking-based comparison of the proposed framework is in fact impracticable. However,
by considering a few important factors, its adaptability can be evaluated. This comparison is
shown in Table 11, which indicates that while the currently available references are somewhat
inadequate, the proposed framework is adequate for all such assessing factors.

This study offers a number of noteworthy benefits (given below), proving its worth in
developing problem diagnosis techniques for intricate industrial systems.:

1. The approach successfully manages ambiguity, vagueness, and granularity by combin-
ing fuzzy rough set theory with hypersoft sets, which makes it ideal for intricate defect
identification situations.

2. The suggested algorithm provides an organized method for prudent decision-making in
business environments by utilizing the modified Bingzhen and Weimin decision model.
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Table 11. Comparison analysis.

Scholars Frameworks
Cayrac et al. [13] Possibility FS
Feng et al. [38] SRS

Ali [39] RSS

Shabir et al. [40] SRS

Sun and Ma [43] SFRS

Meng et al. [44] SERS

Hu et al. [45] SFRS

Zhang [48] RSS

Proposed Framework | HFRS

Multi-argument Rough Modeling uncer- Parameterization Fault diagnosis
domain settings approximations tainties using fuzzy |tool
membership grades

Deficient Deficient Sufficient Deficient Sufficient
Deficient Sufficient Deficient Sufficient Deficient
Deficient Sufficient Deficient Sufficient Deficient
Deficient Sufficient Deficient Sufficient Deficient
Deficient Sufficient Sufficient Sufficient Deficient
Deficient Sufficient Sufficient Sufficient Deficient
Deficient Sufficient Sufficient Sufficient Deficient
Deficient Sufficient Deficient Sufficient Deficient
Sufficient Sufficient Sufficient Sufficient Sufficient

https://doi.org/10.1371/journal.pone.0329185.t1011

3. The preciseness of diagnostic results is improved by introducing hypersoft fuzzy rough
lower and upper approximation operators, which allow for sophisticated appraisals of
fuzzy subsets within parameter sets.

4. The flexibility of the proposed framework in handling complicated systems is demon-
strated by its capacity to analyze a large number of 20 sub-parameters and important 5
evaluating parameters.

5. By evaluating eight possible fault states according to fuzzy hypersoft close degrees, a
hypothetical case study for conveyor belt systems demonstrates the potential of pro-
posed algorithm in practical industrial applications and proves its dependability. The
fuzzy hypersoft close degrees enable decision-makers prioritize remedies by offering an
explicit and organized rating of fault states.

6 Conclusions

This study presents a novel framework for fault diagnosis in industrial systems based on the
integration of hypersoft sets and fuzzy rough set theory. The proposed hypersoft fuzzy rough
set model effectively addresses uncertainty, vagueness, and the hierarchical nature of multi-
attribute parameters. We developed and applied new lower and upper approximation oper-
ators using pseudo fuzzy binary relations, resulting in improved classification and decision-
making accuracy. The model has been evaluated through a real-world-inspired case study and
a simulation-based comparison with existing techniques, both of which confirmed its robust-
ness and effectiveness. Furthermore, a sensitivity analysis validated the models stability under
parameter fluctuations. This work contributes significantly to the field of decision-making
under uncertainty by extending hypersoft set theory in a novel and practical direction. The
suggested strategy performed better than conventional techniques by successfully managing
uncertainty and capturing the subtleties of imprecise data. More accurate fault identification
was made possible by the rich representation of multi-attribute data made possible by the
hierarchical structure of hypersoft sets. Rough sets offered a way to approximate ambiguous
data and discriminate between states that were unquestionably faulty and those that may be
problematic. In industrial systems, where it is frequently impractical to make sharp distinc-
tions, this capacity is essential. The suggested approach showed adaptability, working with a
range of industrial systems such as motors, conveyor belts, and intricate manufacturing con-
figurations. It is a useful tool for industrial fault diagnostics because to its context-adaptability.
The proposed model holds strong potential for application in a variety of domains beyond
fault diagnosis in conveyor systems. It can be employed in predictive maintenance for manu-
facturing and automotive systems, early fault detection in power plants and energy systems,
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and anomaly identification in sensor-driven environments such as IoT-based smart factories.
Moreover, its adaptability to uncertain, multi-layered decision environments makes it suit-
able for risk assessment in construction, aerospace fault classification, and quality control in
automated production lines. The model’s ability to integrate interrelated attributes and handle
vagueness positions it as a versatile tool in modern industrial analytics.

Despite the promising results, the proposed model has some limitations. The current study
assumes static parameter weights, which may not capture real-time shifts in industrial pro-
cesses. Additionally, while the model handles uncertainty and vagueness effectively, its perfor-
mance may vary with different types of fuzzy membership functions or more complex inter-
dependencies among parameters. Future research can focus on dynamic parameter modeling,
integration with machine learning for adaptive decision-making, and real-time data stream
handling. To improve diagnostic accuracy, future studies can concentrate on improving the
models by adding more layers of parameters and investigating various kinds of fuzzy mem-
bership functions. Rough hypersoft sets and machine learning algorithms can be combined to
generate hybrid models that include the best features of both techniques. Systems for defect
diagnosis that are even more precise and effective may result from such integration. One pos-
sible avenue is the development of real-time diagnostic systems based on rough hypersoft
sets. Putting these technologies into operation in real-world industrial settings might yield
insightful criticism and chances for more improvement. Moreover, testing the model in other
high-risk industrial environments such as aerospace, oil and gas, or smart grid systems could
further validate and enhance its practical utility.
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