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Abstract

A biomimetic model is presented to compute missing data imputation and reduce incon-
sistencies in pairwise comparisons matrices. The proposed regeneration method emu-
lates three primary phases of a biological process: identifying the most damaged areas
(by identifying inconsistencies in the pairwise comparison matrix), cell proliferation (filling
in missing data), and stabilization (optimization of global consistency). An iterative algo-
rithm is employed to correct inconsistencies and compute missing data imputations within
the pairwise comparison matrix. The results demonstrate that the biomimetic approach is
robust and reliably converges to a consistent solution.

1 Introduction

Nature has inspired numerous researchers to develop materials, structures, tools, mecha-
nisms, processes, algorithms, and methods.

Self-healing approaches are presented in [1]. A review of inspiration by nature for the
potential development of biomimicry appeared in [2]. The pairwise comparison method (PC
or PCs, depending on the context) plays a significant role in assessments, subjective mea-
surements, and decision-making. In various applied sciences, such as engineering, physics,
and medicine, physical measurements-like length, weight, area, volume, and temperature
are of fundamental importance. However, many researchers who rely on these physical mea-
surements may not realize how frequently subjective measurements are utilized in practice.
In fact, subjective measures can often be applied to a broader range of entities than objec-
tive measures. For example, evaluating student performance is necessary to award academic
degrees, which are crucial to our civilization. Most academic exams rely on rating scales, and
pairwise comparisons can enhance these scales used to assess the learning process. The most
important challenges to address for the pairwise comparison method include the following:

PLOS One | https://doi.org/10.1371/journal.pone.0329171

August 7, 2025 1/ 21



https://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0329171&domain=pdf&date_stamp=2025-08-07
https://doi.org/10.1371/journal.pone.0329171
https://doi.org/10.1371/journal.pone.0329171
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0009-7268-4986
https://orcid.org/0000-0002-8509-7512
mailto:wpedrycz@ualberta.ca
https://doi.org/10.1371/journal.pone.0329171

PLOS One

Biomimetic model pairwise comp. matrix

1. reduction of inconsistency (not necessarily to zero),
2. finding the nearest consistent PC matrix by optimization,
3. computing the imputation of missing data, known as the regeneration problem.

The importance of reducing inconsistency in pairwise comparisons (PC) matrices has led
to a search for methods to measure and locate it. The inconsistency concept is illustrated by
Fig 1.

Traditionally, values of pairwise comparisons are stored in square PC matrices (see [3]).
PC matrices have all strictly positive real elements. Each element of a matrix represents a ratio
between two entities. Entities may be physical objects (e.g., volumes of river rocks) or abstract
concepts (software attributes). More often than not, PCs are used for decision-making. The
quality of decisions can be compromised by two main issues: inconsistency in the evaluations
and missing PC matrix elements:

o inconsistency in a triad (i,j,k) is quantified by the index

Aik G- gk

1-

Kijx = min (

>‘1

)

which measures the deviation from the consistency condition a; = a;; - aj. Its value is non-
zero, when appropriate assessments within a PC matrix are intransitive. For example, if

aij * Ajk Aik

a;j =2 and aj; = 3, then the element a; should be a; - aj = 6. If ay differs from this value,
inconsistency arises.
o missing data imputation when some elements of the PC matrix are unknown.

The pairwise comparisons method tolerates or even utilizes inconsistency in assessments.
By analyzing inconsistency, we may improve data acquisition or replace the least probable
value in a triad by assuming that it is missing and using the proposed missing data imputation
approach.

) \\,,/--‘Ei?

3

Fig 1. Inconsistency concept for a triad (2, 5, 3).

https://doi.org/10.1371/journal.pone.0329171.9001
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Inconsistency is related to the number of comparisons. For a PC matrix M of the size , it
isn- (n-1)/2 in the upper triangle while the minimum number of comparisons is n-1 (for
details, see [4]). When there is more data than the required minimum, inconsistency may
occur. This principle was addressed in [4] and it is illustrated here in Fig 1. Values 2, 5, and 3
are labels for the arrows between entities. It shows our (subjective) assessment of the entity A
area when compared with B as 2. Value 3 shows that the area of B is three times bigger than
C. If the ratios between A and B and C were accurate, the ratio of areas A and C should be
2-3 = 6. However, our assessment is 5 and illustrates inconsistency. It is necessary to note the
use of the conditional phrase ”If the ratios between A and B and C were accurate” in the above
text. We do not assume that any of the ratios A/B, B/C or even A/C are accurate. This is why
ratio estimations can be inconsistent, and we need to compute the inconsistency.

Even when assessments are fully consistent, there is no guarantee that the resulting priority
vector will be accurate. For example, a PC matrix filled entirely with 1s is completely consis-
tent, but it does not provide useful prioritization information. To address this, recent research
has introduced the concept of entropy of the priority vector to measure the information con-
tent of inconsistent PC matrices (see [5]). This approach demonstrates that the entropy of
priority vectors for consistent matrices follows a normal distribution.

According to [6]:

biomimetic, also known as biomimicry, is defined as the imitation of biological processes
or models from nature aiming to solve various complex biological problems, such as
drug production in biomedical applications and the characterization of nanostructurated
biohybrid materials.

In practical terms, the use of pairs in biology is substantial. It is not only applicable to sex
but also to legs, hands, eyes, ears, and more. For this reason, we may consider the pairwise
comparisons method as a crown example of biomimicry. The pairwise comparisons method
has much to learn from biomimetics. This article serves as a call to action. Using biomimetics
in pairwise comparisons method is highly advisable.

We propose a model inspired by the process of biological tissue regeneration, in which an
organism repairs its damaged tissues. Tissue engineering (see, [7-18]) aims to regenerate or
replace damaged tissues with new cells. A crucial component of this process is the scaffold.

It is a three-dimensional structure that provides support for cells by mimicking the extracel-
lular matrix (ECM) (see [19]). The biomimetic approach in scaffold design enhances cellu-
lar integration, often inspired by biological mechanisms (see [20]) designed to achieve con-
trolled interactions, as seen in nanoparticle uptake models (see [13]). These scaffolds and
biomimetic devices address challenges in tissue repair and inflammation control, as explored
in the selective cytopheretic device for sepsis (see [12]). The application of these design prin-
ciples emphasizes collaborative efforts aimed at optimizing tissue regeneration and scaffold-
based therapies.

Several studies have addressed inconsistency reduction and missing data imputation in
PC matrices. Numerous methods (e.g., scaling techniques [21], inconsistency minimization
algorithms [22], or traditional statistical approaches [23]) focus on correcting inconsisten-
cies but do not simultaneously handle missing data imputation. Some recent approaches, such
as those based on non-linear optimization [24] and weighted least squares models [25], esti-
mate missing data imputation by minimizing inconsistency. However, they do not integrate
biological principles for a dynamic interaction between the two problems. Furthermore, clas-
sifications such as in [23] list categories of methods for PC matrices (e.g. scaling methods,
statistical methods) but do not include biomimetic approaches.
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Our approach differs from other approaches. It is inspired by the process of tissue regener-
ation, which allows us to address inconsistencies and missing data imputation simultaneously
and iteratively, ensuring convergence towards consistent solutions.

Recent advances in missing data imputation have explored diverse domains and method-
ologies. In the clinical setting, the DACMI Challenge [26] has demonstrated the effectiveness
of machine learning approaches such as:

« gradient boosting, LightGBM - (https://github.com/microsoft/LightGBM), documentation
available on https://lightgbm.readthedocs.io/en/stable/.

o statistical techniques (e.g., MICE, see [27], available as an R package at https://cran.
r-project.org/web/packages/mice/index.html).

They handle incomplete temporal data.

Missing data imputation methodologies, such as multiple imputation, MI, see as reference
[28], and maximum likelihood estimation, have been applied in numerous disciplines to fill
numerical and categorical gaps [29]. However, these approaches prioritize statistical plausi-
bility and scalability and do not address the specific challenges of PC matrices, where logical
consistency is critical despite missing or conflicting entries.

The proposed biomimetic regeneration model fills this gap by using iterative inconsistency
correction, inspired by biological repair mechanisms, and through dimensionality reduc-
tion approaches (such as PCA, see Appendix B), ensures consistency in PC matrices entries, a
requirement not satisfied by existing methods [30].

2 Tissue regeneration model for PC matrices

According to [31], regeneration, in biology, is the process by which some organisms replace or
restore lost or amputated body parts.

Biological concepts of regeneration

Tissue regeneration involves the following three main phases:

1. identification of the damaged area: the body identifies the damaged or missing areas of
the tissue,

2. cell proliferation: cells proliferate to replace damaged cells, following a controlled growth
process,

3. remodelling and stabilization of the new tissue integrates with the existing one, stabiliz-
ing and restoring the original functionality.

Mathematical transposition into an algorithm for PC matrices

Transposing the above-mentioned process into a mathematical context requires the following
iterative algorithm.

Algorithm: regeneration of a PC Matrix

1. Identify damaged areas in the matrix (inconsistencies),
2. Proliferate new values for missing entries,
3. Reshape and stabilize the matrix reducing global inconsistency.
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Tissue regeneration algorithm for PC matrices
Input: Pairwise comparison matrix A of size n X n, with missing and/or inconsistent

entries.

1. Step I (Identification of damaged areas): The inconsistent triads, representing the
“damaged” regions that need correction, are identified.
2. Proliferate new values for missing entries,

w

Reshape and stabilize the matrix reducing global inconsistency.
4. Step 2 (Cellular proliferation):
The missing data imputation a;; are initialized with the geometric mean of the

involved triads (e.g., ai(jo) = /Gik - axj). Subsequently, they are iteratively updated

by the formula ai(jm) = ai(jt) + N (ﬁ Dk a”‘u‘:k" - a,-j) until the value tends to
stabilize.

5. Step 3 (Matrix Stabilization):

The gradient method is applied to minimize )} (Kj)>. The algorithm contin-

ues to iterate until the overall inconsistency drops below a predefined threshold
or a maximum number of iterations is reached, ensuring convergence to a more
consistent matrix. For Kii, the 1/3 threshold is proposed as reasonable for most
applications. Similarly to p—value in statistics, it is an arbitrary value often found

by experimental research.

Output: Pairwise comparisons matrix A’, consistent and complete. The inconsistency in

the PC matrix and the previous three steps are discussed in the following.

Step 1: Identification of damaged areas

1. Computing of inconsistency index Kiiyy.: For each triad of elements (i,j,k) in matrix A, the
inconsistency index Kiijj is computed as:

or the equivalent exponential Koczkodaj-Szwarc formula (see, [32]):

aik

aij * Ajk

Kiij = min ( 1-

”1

dij * Ajk dik

Kii(x,y,2z) =1 - e linGe)!

This index quantifies the deviation from the ideal consistency condition a; = a;; - aj.
2. Identification of inconsistent triads: Identify the triads (i*,j*,k*) with the maximum
value of Kiijy, defining these areas as the most inconsistent in the matrix. These triads
correspond to the "damaged zones” to be corrected.

Step 2: Cell proliferation

i(jo) using
an estimate based on existing values. A possible estimate is the geometric mean of the
products of known pairs:

1. Initialization of missing entries: For each missing value aj;, initialize the value a

ai(jo)zw/aik-akj foreveryk#i,j and i#j, with ijk€l,2,.,n
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This is done for each triad with a missing value. Finally, a geometric mean of the val-
ues obtained is computed and inserted in place of the missing value. This is analogous
to the cell proliferation that fills the void created by the injury.

2. Iterative update: for each iteration t, update the values of missing entries and inconsis-
tent triads to reduce inconsistency:
0, ®
Yk M) o

(z) y

(t+1) _ () 1
a.. =a.’ + 77 . - Z
! ! kiyj a;

3

where 7) is a learning parameter controlling the update speed. This step is similar to the
controlled growth of new tissue to repair damage.

Step 3: Iteration and stabilization

1. Consistency optimization: The next step is to optimize the PC matrix to minimize global
inconsistency. An optimization algorithm, such as the gradient method, is used to
minimize the sum of the squares of the inconsistency indices:

L (D)
minimize Z Kii,

ijk
ijok

Calculating the gradient with respect to each element a;;:

ik
aij . ajk

. ajj - Aj
= —min|{ (1 - -2z
6aij 6aij

)’1

Aik

dKiiy 9 (

It updates the values of a;; accordingly.
2. Stabilization: The algorithm continues iterating until the overall inconsistency
oy ik Kiijj falls below a predefined threshold €y, or a maximum number of iterations
is reached. This step corresponds to the regenerated tissue, integrating it with the pre-
existing tissue.

3 Analysis of the convergence and robustness of the algorithm

Consider a matrix A € R™", whose elements a;; represent pairwise comparisons between
entities 7 and j. The goal of the algorithm is to correct the inconsistency in the matrix A. We
define the local inconsistency of a triad (i,j,k) by the index K, as:

)

The global inconsistency I(A) is then the sum of the local inconsistencies for all triads in

Aik Aijdjk

1-

)‘1_

Kijx = min
aijdjk aik

the matrix:

I(A) = ZKt'jk

ijok

We reduce I(A) for each iteration until the inconsistency is acceptable, i.e., I(A) < €min,
where ¢, is a stopping threshold.
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The elements a;; of the PC matrix are iteratively updated according to this rule:

i(jM) = ai(jt) +7-Aa

0)
a ij

®
i
ing rate that controls the magnitude of the update. The term Aa

where Aa;;’ represents a correction based on the local inconsistency and 7 is a positive learn-

t
1.(]. ) can be expressed as:
(OO
(t) _ 1 ik akj (1)
Aay’ =3 kz RONNN
*1,] ij

The goal of this update rule is to correct the elements of the PC matrix that contribute the
most to inconsistency, iteratively reducing I(A).

To demonstrate that the algorithm converges, we need to show that the function I(A) is
non-increasing, meaning that at each step the global inconsistency decreases:

I(AED) <1(AD)

In order to reduce I(A) at each iteration, the update of the matrix elements follows the
gradient descent method. The gradient of I(A) with respect to aj; is given by:

oI(A
v, 1(4) = 24

y aij
The update of a;; is done in the direction opposite to the gradient:

A =V, 1(A")

This ensures that the global inconsistency I(A) decreases as the update rule modifies a;; in
the direction that reduces I(A) as quickly as possible.

In order for the algorithm to converge, the variation 7 - Aa;; cannot be too large. If 7 is
too large, we might overshoot the minimum of the function I(A) in a single step, causing
instability or divergence.

Let us consider a second-order approximation for I(A) in terms of a;;:

j ij

1
1(ATD) 2 1(AD) + Vo, I(AD) - (af ™) - a{?) + SV I(4)- (ai™" —al)?

Substituting the update rule ai(jm) = al.(jt) AT (AM), we get:

IACD) % I(AD) -7 (Vo [(AD)) + %nZVZﬁI(A) (Ve I(A©))

In order for I(A®+1)) <I(A®™), the second term must be negative and dominate the third
term. This leads us to the condition:

7S i
max; Va,jI(A)
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where V2I(A) represents the second derivative of the function, specifically indicating how
quickly the gradient of I(A) changes as a function of the matrix elements a;;. The second
derivative provides insight into the local behaviour of the function and helps determine how
to update the matrix to reduce inconsistency. The second derivative of the function I(A) with
respect to a; is:

31(A)
da?

y

Vi, 1(4) =

This expression represents how the rate of change (the gradient) of the global inconsis-
tency function I(A) itself changes as we adjust a;;. In simpler terms, it tells us how sharply or
smoothly the function changes in response to variations in the matrix element a;;.

Interpretation of the Second Derivative:

- If Vﬁijl (A) >0, the function is locally increasing (convex behaviour), and a small change in
a;; will cause the function to increase in that direction.

- If Vﬁij[ (A) <0, the function is locally decreasing (concave behaviour), and a change in a;;
will cause the function to decrease.

iy 2
The condition n < maxs; V2 I(A)
) T ajj

ensures that the update step is approximately sized to avoid
overshooting the minimum or causing oscillations. This guarantees that each step of the algo-
rithm moves in a controlled way toward minimizing the inconsistency function I(A).
2
Since 7 is chosen to satisfy the above condition, the term -7 (V%I (A®) )) dominates the

second-order term. Therefore:
I(ATD) <1(AW)

which proves that the global inconsistency decreases or remains constant at each step.

The algorithm is robust to small perturbations in the initial values and parameters. Small
variations in the initial values afjo) lead to only small variations in the final behaviour of the
algorithm, as successive corrections gradually reduce the inconsistency until a stable solution
is reached.

The proposed algorithm converges under the conditions established for 7, ensuring a con-
tinuous reduction of the global inconsistency I(A) at each iteration. The parameter 7 must
be chosen based on the maximum curvature of the inconsistency function I(A) to ensure
stability and avoid oscillations.

The convergence properties of the algorithm are not only mathematically proven but also
have direct implications for real-world applications. In decision-making systems where con-
sistency is critical (e.g., medical diagnostics or engineering safety assessments), the guaran-
teed convergence ensures that the algorithm does not indefinitely oscillate between incon-
sistent states. For instance, in a robotic control system requiring real-time adjustments of
priorities (as in [33]), the bounded global inconsistency I(A) guarantees stable operational
parameters even in dynamic environments.

The learning rate 7) plays a dual role in balancing convergence speed and numerical stabil-

ity:

« Low7 (e.g., 1) = 0.05): Ensures smooth, stable updates but may require more iterations, suit-
able for scenarios where precision is prioritized over speed (e.g., clinical decision-making).
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 High 7 (e.g.,n = 0.2): Accelerates convergence but risks overshooting optimal values,
acceptable in non-critical applications (e.g., inventory prioritization) where computational
efficiency is paramount.

In applications, 7 must be calibrated based on the problem’s sensitivity to noise. For exam-
ple, in the medical example cited in [12], where tissue-regeneration-inspired matrices are
used to prioritize treatments, a conservative 7 prevents destabilizing fluctuations in critical
thresholds.

The lower bound of inconsistency

The global inconsistency I(A) is a sum of non-negative terms. It is bounded below by zero:

I(A) =) Ky >0
ijok

Therefore, there exists a lower bound €p,;, (fixed at will), such that I(A) cannot fall below
this threshold. If the algorithm continues to reduce inconsistency but cannot drop below €pin,
it must stop once I(A) approaches this value.

Convergence to a stable solution

To prove that the algorithm will converge to a stable solution, consider the sequence

{I(A™)} 5. We have already shown that this sequence is non-increasing and bounded below
by €min. By the convergence theorem of a bounded and monotonic sequence, {I(A())} will
converge to a limit value I"*.

The algorithm follows the gradient descent that minimizes I(A). We can conclude that the
algorithm converges to a PC matrix A* with an inconsistency level I*, which can be zero or an
arbitrary acceptable value:

lim I(A®) = I*
t—>o00

If the algorithm approaches I* by a small arbitrary value, we consider A* as a consistent or
nearly consistent matrix, resolving the inconsistency reduction problem.

The “arbitrary level” for inconsistency is similar to the concept of “p-value” in statistics. We
are aware that it is not an ideal solution, but it follows the “good enough is perfect” approach
proposed by Herbert A. Simon. It is a part of his bounded rationality principle that was a major
contribution to earning him both Turing and Nobel prizes.

Even if the initial estimates of the missing data imputation may not be perfect, the
biomimetic approach is robust and tends to correct them by regeneration. The initial inaccu-
racy is improved through iteration and optimization. It mimics the tissue regeneration of how
an organism corrects initial mistakes during tissue repair.

Computational complexity

The computational complexity of the proposed method is O(n*), where n represents the
dimension of the matrix (i.e., the number of elements being compared). It is determined by:

1. the algorithm computes inconsistencies for every triad in a PC matrix indexed by (i,j,k);
the number of all possible triads in an n X n PC matrix is (;’), which is O(n?),
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2. during each iteration, the values of the inconsistent elements in the matrix are updated
to reduce the global inconsistency. The number of elements in a matrix is O(n?), and in
each iteration, these values must be computed and updated.

Step 1 dominates the computational complexity, since each triad is evaluated in every iter-
ation. However, no other mathematically correct method can avoid processing all triads since
the number of all triads grows with n’. Fortunately, the PC matrix size is small (not exceeding
8 in most methodologies based on PC method).

The number of iterations required for convergence depends on the initial level of inconsis-
tency in the matrix and the threshold value €, chosen for acceptable inconsistency. A very
small threshold requires more iterations, increasing.

For PC matrices, the elements below the main diagonal are the reciprocals of the ele-
ments above the diagonal. Consequently, we can compute and update only the upper half
of the matrix, leading to savings in both computational time and memory usage. Fur-
thermore, for large matrices, optimization techniques based on approximation meth-
ods, such as iterative methods (e.g., gradient descent with momentum), low-rank approx-
imations (e.g., singular value decomposition or matrix factorization), can be applied
to accelerate convergence, or principal component analysis (PCA) for dimensionality
reduction.

While the proposed biomimetic algorithm exhibits O(n*) complexity due to triad evalu-
ation, this aligns with other specialized methods for PC matrix inconsistency reduction and
imputation. For example, nonlinear optimization approaches (e.g., [24]) and weighted least
squares models (e.g., [25]) also require O(n®) operations due to matrix inversion or gradient-
based steps. However, our iterative update rule avoids full matrix inversion, offering practical
efficiency gains for small-to-medium-sized PC matrices (1 < 8).

For large matrices (n>10), our method’s complexity can be reduced (via PCA, see Appendix
B), comparable to low-rank approximation techniques. In contrast, general-purpose imputa-
tion methods like MICE [30] or LightGBM [26], while offering O(n?) asymptotic efficiency,
fail to enforce PC matrix consistency constraints, a critical limitation for decision-making
applications. Table 1 summarizes the theoretical and practical trade-offs between methods,
highlighting the unique capability of our approach to simultaneously address inconsistency
reduction and missing data imputation without sacrificing scalability through dimensionality
reduction.

The presented biomimetic approach simultaneously computes inconsistencies and missing
data imputation. We are unaware of any other method capable to do it this way.

Table 1. Comparison of methods for inconsistency reduction and missing data imputation in pairwise
comparison matrices.

Method Complexity Consistency Handling

o(-) Guaranteed Missing Data
Biomimetic (Proposed) o(n?) Yes Yes
Nonlinear Optim. [24] o(n?) Yes No (requires initialization)
Wtd. Least Squares [25] o(n?) Yes No
MICE/LightGBM [26,30] O(n?) No Yes

https://doi.org/10.1371/journal.pone.0329171.t001
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4 A more comprehensive real-life example

There are two practical challenges associated with real-life examples of PC solutions.

1. Non-trivial problems, such as selecting a site for nuclear waste disposal, often take
several years to resolve and can easily cost millions of dollars.

2. These problems are highly specialized, making them understandable only to a small
group of domain experts.

For these reasons, we have used an example from [34]. It pertains to a crucial and urgent
research topic: autism in children, which aligns with the scope of PLOS ONE.

4.1 Method

To avoid self-plagiarism (by copying the same example here), we use different values. How-
ever, it is just a matter of the labels of rows and columns of the PC matrix that make it a real-
life example. Therefore, this research does not contain any studies on human participants or
animals conducted by the authors.

4.2 Example

Let us optimize an incomplete PC matrix A of the size 5 by 5 by estimating the missing data
imputation (based on the geometric means of the triads), and subsequently by applying the
iterative algorithm to minimize the inconsistency.

Consider the following 5x5 PC matrix with two missing data imputation, a4 and a,s:

N U= =
A QN = =
O = = (N Ul
W = N O\ v
— R [=O = A N =

A missing value is in three triads with the missing value a4 and three triads with a,5). The
missing data imputation will be estimated using the geometric mean of each triad.

The estimation of a,4 involved triads:

1. Triad (1, 2,4): \/a12 - d2a = /36 = /18 ~ 4.24

2. Triad (1, 3,4): \/ar; - a3 = /5-2=/10 % 3.16

3. Triad (1,5, 4): /a5 @i = /1 3= /2 2 0654

Taking the geometric mean of the three estimated values:

A ~/4.24-3.16-0.654 ~ 3/8.762 ~ 2.062

The estimation of a,5 involved the following three triads:
1. Triad (2, 4, 5): \ /a3 - a5 = \/a: V2~ 1414

2. Triad (2,3, 5): /A 435 = V/4-9=/36=6

3. Triad (1, 2, 5): /a5 - @15 = \/E: \/éz 0.654

PLOS One | https://doi.org/10.1371/journal.pone.0329171  August 7, 2025 11/ 21
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Taking the geometric mean of the three estimated values:

ays ~3/1.414-6-0.654 ~3/5.541 ~ 1.77

After estimating the missing data imputation, the updated matrix A©) becomes:

1 3 5 2062 1
1 4 6 177

0) _ 1 1 1

AV=1 s ¢ 1 2 3

B 1

2.062 ? 2 3

7 & 9 3 1

The iterative algorithm is executed to minimize the global inconsistency of the matrix,
progressively updating each element a;; of the matrix.
The update of each element is performed according to the formula:

Lo a® g0
(1) _ (6 2 i j (0
@ =TT 32 ® %
k#i,j a,‘j

where:

- 7 is the learning rate, set to ) = 0.1.
- The sum is computed for all k # 1, j, representing the correction based on the triads involv-
ing a;;.

The pseudocode for the iterative algorithm, which refers to python cod 1# in https://doi.
org/10.5281/zenodo.15267213, is the following, while the explicit calculations of the inconsis-
tencies obtained following this algorithm are present in Appendix A:

4.3 The final PC matrix and its global inconsistency

The final matrix, obtained at the end of the minimization process (discussed in subsection
A.1, see Appendix A), using the python code 2# (present in https://doi.org/10.5281/zenodo.
15267213), is the following:

1 1.17322357 2.40769248 2.55690073 1.56817393
0.85235246 1 2.05398016 2.44533255 1.36450547

Al = 1041533543 0.48685962 1 1.14086518 0.66451811
0.39109848 0.40894233 0.87652776 1 0.58520661
0.63768437 0.73286625 1.50484987 1.70879821 1

The global inconsistency I(A) converges to the value I(A) ~ 0.3.

The algorithm has significantly improved the global inconsistency with respect to the
matrix A®).

In fact, the inconsistencies of the triads of the matrix A are:

K3 = 0.177; K4 = 0.446; Kjp5~0.237; Kj34~0.281; Kj35 = 0.208;

K5 =~0.01; Kj34=~0.078; Ky35~0.145; Kus5~0.286; Ks45~0.094,

obtaining I(A) = 1.96.
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Algorithm 1. Biomimetic PCM optimization (pseudocode).

Input:

1: AER™": Initial PC matrix with missing/inconsistent entries

2: n: Learning rate

3: €: Convergence threshold

4: maxX_1iter: Maximum iterations

Output:

5: A’€R™": Optimized PC matrix

6: procedure BIOMIMETICREGENERATION (A,7,€,max_iter)

7: Initialize missing g; using geometric means of valid
triads:

1/(n-2)

() _
ay” = | [ ] anay

k#iyj
8: Acurrent < A
9: t<0
10: while f<max_iter do
11: Anew < COPY(Acurrent)
12: for i from 0 to n-1 do
13: for j from i+1 to n-1 do
14: sum_term« 0
15: for k from 0 to n-1 do
16: if k#ink#j then
17: sum_term«—sum_term4—A““aﬁigéiﬁﬁamwﬂ
18: end if
19: end for
20: Agjj—n- (2mtem A e [inf])
21: Update g; and enforce reciprocity:
Anew[i’j] « Acurrent[i>j] + Aaij
Aveulji] = —
e ’l Anew[i>j]

22: end for
23: end for
24: Compute difference between iterations:

diff « n}jlx |Anew[iaj] - Acurrent[i)j]‘
25: if diff<e then
26: return A,.,
27: end if
28: Acurrent < Aney
29: te—t+1
30: end while
31: return A yrrent

32: end procedure
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5 Conclusions and future research

The proposed biomimetic model for PCs represents a mathematically rigorous method for
computing inconsistencies and missing data (elements) PC matrices. By integrating biological
principles of tissue regeneration with numerical optimization techniques, the proposed algo-
rithm reduces inconsistencies in PC matrices, thereby enhancing the reliability of decisions
made based on them.

In future research, we plan to analyze the use of orthogonalization [21] as observed in bio-
logical systems such as the orthogonal positioning of plants. We will also explore adding a
rating scale to our biomimetic model presented in [35]. Furthermore, we intend to investi-
gate the application of tensors to simplify the computation of multidimensional relationships
within PC matrices. This could lead to substantial changes in the traditional approach of com-
paring only two elements at a time. By using tensors, we can model multiple dimensions,
such as the comparisons between three or more parameters of a biomimetic system, which
may include biological, mechanical, and environmental properties. The application of ten-
sors would also simplify computations needed to reduce inconsistency at multiple levels and
varijables.

In general, solving complex human problems through a biomimetic approach is of consid-
erable importance for our civilization. Our future research will focus on exploring the origins
of reasoning by leveraging biomimetic principles, as suggested in our previous work [36].
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Appendix A

1. Matrix update: At each iteration, the update-matrix function is called to compute the
new PC matrix Aey-

2. Difference checking: The difference between the current PC matrix and the updated PC
matrix is computed using the matrix-difference function. If this difference is less than the
convergence threshold ¢, the cycle stops (the matrix is considered converged).

3. Current PC matrix updating: If convergence is not reached, the updated PC matrix Apey
becomes the new current matrix A, and the iteration loop repeats.

4. Iteration increment: In each iteration loop, the iteration counter increases by 1. If the
maximum number of iterations (max-iterations) is reached, the cycle stops regardless of the
computed difference.

After nine iterations, the values of inconsistency Kj; drop to a very low level of inconsis-
tency. The final result of the matrix is as follows:

1 14679 25258 22416 1.4707
06812 1 20896 27550 1.3139
A® =[03959 04786 1 1.2240 0.7351
04461 03630 0.8170 1  0.6627
06799 0.7611 13604 15090 1
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1. Triad (1,2,3):

ap; =1.4679, ay;=2.0896, a;;=2.5258

a
B 1x0.177

Kii:‘l—

ap - azs
2. Triad (1,2,4):

ayp; =1.4679, ayy =2.7550, aj4=2.2416

a4

Kii = ‘1 - ~ 0.446

apz - a4
3. Triad (1,2,5):

app = 14679, dzs = 13139, ajs = 1.4707

5| ~0237

Kii:‘l—

a - azs
4. Triad (1,3,4):

aps = 25258, Aaszg = 1.2240, Ay = 2.2416

M4 | 0281

Kii:‘l—

a3 - as4
5. Triad (1,3,5):

a3 = 25258, Aass = 0.7351, a5 = 1.4707

ais

Kii= ‘1 - ~ 0.208

as - ass
6. Triad (1,4,5):

ayy = 22416, A4s5 = 0.6627, a5 = 1.4707

a4 g5

Kii= ‘1 ~0.01

ais
7. Triad (2,3,4):

ay; =2.0896, aszy=1.2240, ayy=2.7550

a3 - 34

Kii= ‘1 ~ 0.078

a4
8. Triad (2,3,5):

azs = 2.0896, Aass = 0.7351, ajzs = 1.3139

as

Kii:‘l— ~ 0.145

azs - ass
9. Triad (2,4,5):

axg = 2.7550, a45 = 0.6627, ajzs = 1.3139

95 | ~0.286

Kii:‘l—

Qo4 * Qg5
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10. Triad (3,4,5):

aszyg = 12240, Aa4s = 0.6627, ass = 0.7351

ass

Kii = ‘l - ~ 0.094

Q34 * a5

The iterative algorithm has significantly reduced the local inconsistency of the matrix
after a limited number of iterations. The limit of inconsistency was analyzed in [22] and the
number of iterations in [37].

A.1. Minimization of /(A) using gradient descent

We proceed with minimizing I(A) using gradient descent, applying this procedure until the
global inconsistency, I(A), drops to the threshold of approximately 0.3.
The update of each a;; follows this rule:

oI(A
a(.tﬂ) _ a(»t) -5 ( )

Y Y da,»j

3I(A)
6aij
tions of all triads involving a;;.

where is the derivative of I(A) with respect to a;;, obtained by summing the contribu-

Below is the pseudocode (which refers to the Python code 2# in https://doi.org/10.5281/
zenodo.15267213), for global inconsistency minimization I(A):

Appendix B: Dimensionality reduction with PCA for large
pairwise comparison matrices

This appendix demonstrates how Principal Component Analysis (PCA) can be used to reduce
the size of a large pairwise comparison (PC) matrix while preserving its essential structure.
The reduced matrix is then stabilized using the biomimetic algorithm described in the paper,
achieving low inconsistency (I(A)) in fewer iterations.

B.1. PCA-based reduction

The objective is reduce a n X n PC matrix to a smaller k X k matrix (k<n) while retaining key
priorities.
The steps are:

o 1. Symmetrize the matrix:

A+ AT
2

Asymmetric =

This ensures the matrix is symmetric, a requirement for PCA.
2. Apply PCA: Extract k principal components to capture the most variance in the data.
o 3. Cluster components: Use k-means clustering to group the original elements into k clus-
ters.
o 4. Form Reduced Matrix: For each pair of clusters (i,j), compute the geometric mean of all
pairwise comparisons between elements in clusters i and j.
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Algorithm 2. Global inconsistency minimization (pseudocode).

Input: Initial PC matrix A€R™", learning rate 7, maximum
iterations max_iter, stopping threshold ¢

Output: Optimized PC matrix A'€R™" with I(A’) <e

1: Initialization:

2: Acurrent <A

3: t«0

4: while t<max_iter do

5:  Anew < copY(Acurrent)

6: for i from 0 to n-1 do

7: for j from i+1 to n-1 do

8: sum_term<« 0

9: for k from 0 to n-1 do

10: if k+ink+j then A

11: term« ACU“e";E’u”ieic[irﬁent[kvj]

12: sum_term <« sum_term+ term

13: end if

14: end for

15: Compute correction term:

sum_term .
Aaij «n- (7 - Acurrent[la]])

n-2

16: Update ag;:

17: Anculirf] < Acurrent[if] + Aay

18: Enforce reciprocity:

19: Aneuljri] < m

20: end for

21: end for

22: Compute Liey < I(Aneyw)

23: if I,.,<€¢ then

24: return A..,, Ilheu

25: end if

26: Acurrent < Anew

27: te—t+1

28: end while
29: Compute Ifna1 < I(Acurrent)
30: return Acirrents Ifinal

B.2. Biomimetic algorithm on reduced matrix

The reduced k X k matrix is stabilized using the algorithm from the paper:

o 1. Update rule:

Z Acurrent i, k] Acurrent [kJ]
k’tl] Acurrent [1]]

n-2

new[ >]:| current[i’j] + 77 - Acurrent[i>j]

where 7) is the learning rate (set to 0.1), and # is the matrix size.
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o 2. Stopping condition: The algorithm stops when the difference between consecutive matri-
ces falls below ¢ = 0.03 or after max_iterations = 4.

B.3. Example with a 5 X 5 matrix from section Example of the paper

Original Matrix:

1 3 5 2062 1/7

1/3 1 4 6 177

Ass=| 1/5 /4 1 2 1/9
12062 1/6 12 1 1/3

7 1177 9 3 1

Using the following pseudocode, Algorithm 3, (referring to the Python 3# code, present
in https://doi.org/10.5281/zenodo.15267213), which involves the reduction of dimensional-
ity with PCA, the stabilization of the PC matrix through the iterative algorithm and finally the
minimization of the global inconsistency I(A), we obtain:

« Reduced Matrix (3x3):

1.00 4.24 3.03
024 1.00 0.49
0.33 2.03 1.00

with initial I(A) (3x3): 0.31
« Stabilization and minimization Process:

1.00 3.19 228
031 1.00 0.73
044 1.38 1.00

with final I(A): 0.002 (after 4 iterations).

B.5. Discussion

PCA-based dimensionality reduction is a viable strategy for large PC matrices. The
biomimetic algorithm efficiently stabilizes the reduced matrix, preserving the main priorities
while reducing the computational burden, in fact after only 4 iterations the matrix reaches an
inconsistency of 0.002. The Computational complexity has been reduced from O(5%) = 125 to
O(3?) =27, that is, from a cost of 1125 necessary operations (as seen in the Section Example)
to only 108.
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Algorithm 3. PCA-Based dimensionality reduction for PC matrices (pseudocode).

Input: Original PC matrix A€R™", target dimension k, learning

rate 7, stopping threshold €, maximum iterations max_iter

Output: Stabilized PC matrix A’ € R®™*, Final global inconsistency

o J o U b W N

e}

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

28:

29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42
43:

Iﬁnal

.
Symmetrize the matrix: Agym <« 22

2

: Compute top k eigenvectors of Asym, project to get transformed€

Rnxk
Apply K-means clustering to transformed, obtaining clusterseN”"
Initialize indicesgp,indicesi,...,indicesk; as empty lists
for p from 0 to n-1 do
c« clusters[p]
Add p to indices.
end for
Initialize Areducea as kXk matrix with diagonal entries 1

: for i from 0 to k-1 do
11:
12:

for j from i+1 to k-1 do
Collect elements {A[p,q]|p€ indices;,q€ indices;} from
original A
if elements non-empty then

Mij < (Heeelements e)lllen e
Areduced[i,j] « /Jl]
Areduced[j, l] <« 1/,uij
else
Areduced[i)j] <1, Areduced[j» 1] <1
end if
end for
end for
Acurrent « Areduced
t<0
while t<max_iter do
Anew « COpY(Acurrent)
for i from 0 to k-1 do
for j from i+1 to k-1 do

Acurrent[bM] - Acurrent[my]
Acurrent [i]

k-1

1
sum_term « = >
m=0
m+i,j

Aajj <1 - (sum_term - Acurrent[if])
Anew[ixj] « Acurrent[iyj] + Aazj
Enforce reciprocity: Anew[j,i] < 1/Anew[i]]
end for
end for
Compute Inew < I(Anew)
if [,y <€ then
Acurrent < Anew
break
end if
Acurrent < Anew
t—t+1
end while
Compute Ina1 < I(Acurrent)
return Acurrent, Ifinal
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