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Abstract 

This paper enhances prostate brachytherapy robot accuracy by developing a needle 

deflection prediction model and a controlled puncturing strategy, addressing current 

challenges and trends. The study addresses the challenges in needle deflection 

prediction by proposing a correction force-based prediction model. The puncture 

control strategy comprises two phases: preoperative needle trajectory planning and 

intraoperative approach adjustment, both relying on corrective force. During operative 

adjustment, a model predicting and counteracting needle tip deflection ensures accu-

rate corrective force application. An adaptive PID controller, utilizing Reinforcement 

Learning (RL), regulates corrective force for precise puncture accuracy. A dedicated 

experimental platform was constructed to validate the puncture control strategy for 

prostate seed implantation. The seed implantation’s average error was 1.96 mm, with 

a standard error of 0.56 mm. Experiments show that correction force in the strategy 

significantly reduces tip deflection, enhancing seed implantation precision.

Introduction

Among the incidence of malignant cancers in men, prostate cancer has risen to 
the second highest place and the fifth leading cause of cancer death in men [1]. 
At present, the treatment of prostate cancer is mainly radical resection, external 
radiation therapy (EBRT) and Low dose rate (LDR) prostate brachytherapy (BT), 
supplemented by other treatment methods to achieve the best surgical effect [2]. 
Compared with radical resection, prostate cancer particle implantation has the 
characteristics of less trauma, faster recovery, fewer complications, and low hos-
pital costs, and Ennis [3] concluded through a large number of clinical studies that 
BT can achieve similar treatment effects as radical resection, and has become the 
most desired treatment for patients. BT involves placing radiation sources inside 
or near the targeted treatment area. By utilizing the continuous radiation emitted 
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by the radioactive particles, the structure and activity of tumor cells are affected, 
thereby selectively eliminating the tumor cells. Compared to traditional surgeries 
such as radical resection, radioactive particle implantation treatment has lower risks 
of side effects and offers better prognosis and quality of life. Currently, radioactive 
particle implantation therapy has become the standard treatment for early-stage 
prostate cancer in the United States [4].

In clinical practice, BT is primarily performed by doctors manually using a percu-
taneous puncture technique. As shown in Fig 1, a puncture needle is guided along a 
planned path to implant radioactive particles such as Iodine-125 and Palladium-103 
into the tumor target area. Multiple small radiation sources emit continuous, short-
range radiation to irradiate the tumor tissue. During the brachytherapy process, the 
dose distribution requirements for the tumor target area are quantitative and non-
uniform, depending on the differences in the location of the tumor lesion in each 
patient. The position of each radioactive particle is adjusted to meet the radiation 
dose requirements of the tumor target area.

However, due to the steep radiation dose gradient [5–7], there are high precision 
demands for the placement of radioactive particles. Currently, due to limitations 
such as insufficient manual operation accuracy, unexpected organ movements, and 
physiological structures such as bones and blood vessels, it is often difficult in clinical 
settings to accurately place the radioactive particles in the predetermined position. 
This can result in incomplete coverage of the tumor target area, increasing the risk of 
tumor recurrence. Therefore, achieving precise implantation of radioactive particles 
into the target site has become a critical challenge that needs to be addressed in 
particle implantation therapy.

In clinical practice, doctors intermittently rotate the needle to control its linear 
progression. They rotate the needle to alter the direction of the needle tip’s bevel, 
enabling it to move in the opposite direction; however, manually controlling the 
precise path of the needle tip is challenging [4,5].Therefore, in recent years, robot-
assisted BT technology has increasingly gained attention [6]. Research institutions 
achieve precise puncturing by guiding needle rotation, developing needle-tissue 
interaction models, creating needle deflection prediction models, and improving 
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Fig 1.  Current clinical treatment methods of brachytherapy.
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needle steering control. The basic interactions between needle and tissue, including stiffness force, friction, and cutting 
force, have been studied [7–10].Needle deflection prediction models include mechanical models [8–14] and kinematic 
models [15–20]. However, current kinematic models have little correlation with the characteristics of the punctured tissue, 
leading to discrepancies between the model and the actual trajectory. Mechanics-based needle deflection models take 
into account tissue properties and have led to improved needle deflection prediction models [10,11,13,14,17,21], provid-
ing information for axial needle rotation steering in model-based controllers [8,14–22]. In clinical practice, doctors use two 
methods to adjust the needle tip position during surgery: 1) rotating the needle body; 2) applying corrective force near the 
insertion point [22].Rotating the needle body is a simple operation, but it can cause adhesion between the patient’s tissue 
and the needle, leading to secondary injury to the patient. Method 2 requires the doctor to apply a corrective force perpen-
dicular to the direction of needle insertion to steer the needle. However, the precision in the magnitude and timing of this 
force demands high skill from the doctor; improper application can lead to tearing of patient’s tissue. In recent years, the 
application of robotic technology in puncture procedures has become one of the hot topics in medical robotics research. 
Lehmann conducted puncture experiments on silicone tissue using a robot, studying the impact of corrective force on the 
precision of the puncture [23–25]. During the puncture process, the corrective force is applied directly to the needle body 
along the direction of needle deflection to reduce the deflection value. The advantage of this method is that the corrective 
force provides a continuous control input. The PID (Proportional, Integral, and Derivative) control used in the Ref. [25] is 
based on the calculation of proportional, derivative, and integral components. It exhibits a certain degree of lag, affecting 
operational efficiency. Research on the second method, the corrective force guidance technique, is currently in its initial 
stages. The control models based on this method need improvements in terms of accuracy and real-time performance.

Materials and methods

Needle deflection prediction model

As shown in Fig 2, the left side of the puncture needle is fixed by the fixed needle guide, so only the needle shaft part 
from point A to point C is considered for modeling, which simplifies the model complexity and improves the computational 

Fig 2.  Schematic diagram of corrective force affecting needle deflection.

https://doi.org/10.1371/journal.pone.0329065.g002
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efficiency of the mathematical model. During needle puncture, as the depth of puncture increases, the length of the needle 
from point A to point C is also increasing, so the length of the needle is a variable. At points B and C, the needle is sub-
ject to correction force and cutting force, respectively. The needle deflection prediction model is established by using the 
principle of minimum potential energy. Equations translate the functional work performed on the needle-tis sue system by 
energy and outside forces stored in the needle and the tissue during puncture into a linear equation system by applying 
the Rayleigh-Ritz approach [26]. Finally, by using the principle of minimum potential energy to solved the linear equations 
of the needle deflection.

The system energy 
∏
(u) for needle-tissue is expressed as:

	

∏
(u) = U(u) + V

= Us(u) + Ud(u) + Vl + Vt 	 (1)

Where: U(u) is the energy possessed by the system itself; V  is the energy generated on the system by the lateral driving 
force and the cutting reaction force; Us(u) is the elastic potential energy generated by the deflection of the needle; Ud(u) 
is the compression potential energy generated when the needle is inserted into the tissue and the tissue is compressed; 
Vl  is the energy generated by the work done by the corrective force Fl; Vt is the energy generated by the work done by the 
component Fcutting,x of the X-axis cutting force.

(1)	 Elastic potential energy of needle Us(u)

In this paper, the axial deflection of the needle can be ignored, and only the radial deflection of the needle is consid-
ered. Elastic potential energy generated by needle deflection Us(u) can be expressed as:

	
Us(u) =

∫ l

0

EI
2
(
∂2u(z)2

∂z2
)dz

	 (2)

Where: E is Young ‘s modulus of puncture needle; I is moment of inertia; l  is length of puncture needle; u(z) is deflection 
model of needle; z is depth of puncture

(2)	 Tissue compression potential energy Ud(u)

When the needle puncture into the tissue, the needle is deflected and occupies the space of original tissue, the tissue 
around the needle will be squeezed by the needle, and the energy Ud(u) in the compressed tissue is expressed as:

	
Ud(u) =

K
2

∫ l

l–dk

(u(z) – ut(z))
2dz

	 (3)

Where: ut(z) is measured needle tip path, the value of z ranges from 0 to l; dk is the final puncture depth of the needle and 
z is the depth of puncture.

When the needle puncture into the tissue, the compressed tissue can be represented by virtual springs that join into a 
needle-shaped trajectory as shown in Fig 3. According to Eq 3, the elongation of elastic spring is related to the deviation 
position of needle shaft after receiving correction force and the difference between path ut(z) of needle tip.

(3)	 Work done by corrective force Vl

Apply a correction force perpendicular to the needle axis to point B of the needle axis by a corrective force application 
mechanism, and work done by the corrective force Vl  can be expressed as:

	 Vl = Flu(c2)	 (4)
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Where: u(c2) represents the offset distance of needle at point B.

(4)	 Work done by Fcutting,x (component of cutting force along X-axis)

The X-axis component force Fcutting,x of the cutting force is the main cause of needle deflection during needle puncture 
into tissue and is caused by the asymmetric geometry of the oblique needle tip. Because of the asymmetry of the needle 
tip, the tissue is squeezed by the needle tip as it passes through the tissue. Therefore, the needle will bend in the same 
direction as the bevel. Therefore, the direction of the bevel is responsible for determining both the sign of Fcutting,x and the 
direction in which the needle will deflect.

The work done by Fcutting,x is shown as follows:

	 Vt = Fcutting,xu(l)	 (5)

Where: u(l) is the value of needle deflection
The meaning of u(l) is different from the meaning of ut(z). Needle tip path ut(z) is constituted by the tip deflection u(l) 

of the past puncture step and thus is dependent on the z-coordinate in the horizontal plane. In summary, the Eq 2–4 is 
substituted into Eq 1, and then the system energy 

∏
 can be expressed as:

	

Π(u) =




∫ l
o
EI
2 (

∂2u(z)2

∂z2 )dz+ K
2

∫ l
l–dk

(u(z) – ut(z))
2dz – Fcutting, xu(d, l) (z <dl)

∫ l
o
EI
2 (

∂2u(z)2

∂z2 )dz+ K
2

∫ l
l–dk

(u(z) – ut(z))2dz
–Flu(c2) – Fcutting, xu(d, l) (z >dl)

	 (6)

Where: dl is the puncture depth when applying corrective force to needle.
In attempt to solve the energy-based needle-tissue system model that was presented before, the Rayleigh-Ritz 

approach was applied in order to find an answer to the problem of the needle’s deflection variable. According to the 
Rayleigh-Ritz method, an approximation of a differential equation that takes the form of a function can be found by adding 
a finite weighted shape function to itself. Function of weighting for series that are finite:

	
un(z) =

n∑
i=1

qi(z)gi
	 (7)

Where: qi(z) refers to the i-th shape function; gi  refers to the weighting coefficient corresponding to the shape function. 
qi(z) can be calculated using the following equation [27]:

	
qi(z) =

1

ki
(sin(βi

z
l
) – sinh(βi

z
l
)) – γi[cos(βi

z
l
) – cosh(βi

z
l
)]

	 (8)

Fig 3.  Schematic of needle deflection when corrective force is applied.

https://doi.org/10.1371/journal.pone.0329065.g003
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Where: γi and ki can be calculated using the following formula:

	
γi =

sinβi + sinhβi
cosβi + coshβi	 (9)

	 ki = sinβi – sinhβi – γi(cosβi – coshβi)	 (10)

Where: βi  is the constant value in the cantilever model without clamping, when i > 4, β1 = 1.857, β2 = 4.695, β3 = 7.855, 

β4 = 10.996, βi ≈ π(i – 1/2).
Bringing Eq 8 into Eq 6, get the following formula:

	
Π(un) =

EI
2

∫ l

0

(
n∑
i=1

qi
(2)

(z)gi

)
2dz+

K
2

(∫ l

l–dk

n∑
i=1

qi(z)gi – ut(z)

)2

dz – Fl
n∑
i=1

qi(c2)gi – Ft,x
n∑
i=1

qi(l)gi
	 (11)

Where: qi(2)(z) represents the second derivative of qi(z) relative to z.
When ∂Π/∂gj = 0, and the value range of j is (1,n), Π(un) gets the minimum value. Based on this condition, a system of 

linear equations with a weighted coefficient gi  can be established and solved.
Then take the partial derivative of gi  for Π(un), and it can be seen from the Eq 8 that for any i and j values, there is 

qi(z)=qj(z)=1, and for any j value, the value of qj(c2) can be found, so the following results can be obtained:

	

∂Π(un)
∂gj

= EI
∫ l

0

(

n∑
i=1

qi′′(z)gi)qj′′(z)dz+ K
∫ l

l–dk

(

n∑
i=1

qi(z)gi
–ut(z)

)qj(z)dz – Flqj(z) – Fcutting,x = 0

	 (12)

Simplifying Eq 12, extracting gi  can get Eq 13, substituting and adding the values of i can get a simplified formula:

	

n∑
i=1

φjigi – ωj – γj – Ft,x = 0

	 (13)

Where:
φji(z) = EI

∫ l
0
qi′′(z)qj′′(z)dz+ K

∫ l
l–dk

qi(z)qjdz ; ωj(z) = K
∫ l
l–dk

ut(z)qj(z)dz ; γj = Flqj(c2).
According to the above equations analysis, you can write a matrix formula with Eq 13:

	




φ11 · · · φ1n
...

. . .
...

φn1 · · · φnm




︸ ︷︷ ︸
Φ

=




gl
...
gln




︸ ︷︷ ︸
g

= Fl




ql(c2)
...

qn(c2)




︸ ︷︷ ︸
q(c2)

+Fcutting,x1n×1 +



w1

...
wn




︸ ︷︷ ︸
Ω 	 (14)

Where:1n×1 represents a column vector of size n.
The unknown vector g can be solved according to Eq 14 as follows:
Where:1n×1 represents a column vector of size n.
The unknown vector g can be solved according to Eq 14 as follows:

	 g = Φ–1(Flq(c2) + Fcutting,x1n×1 +Ω)	 (15)

Substituting Eq 15 into Eq 7 calculates the deflection function un(z) of the needle.
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Puncture control strategy based on corrective force

This chapter builds a preoperative puncture control strategy based on the needle flexure deformation prediction model 
established in Chapter 2, because there is a certain error between the needle flexure deformation prediction model and 
the actual system, and the puncture operation is easily interfered by external factors, resulting in deviation between the 
needle tip position and the expected position, in order to overcome the adverse effects of model uncertainty and external 
interference, while considering the complex model characteristics of the system, it is difficult to apply the robust control 
algorithm usually based on the model, and the ordinary proportional integral derivative (Proportional-Integral-Derivative, 
PID) controller has poor robust performance and is difficult to meet the system requirements of this paper, so this paper 
will build an adaptive PID (RL-APID) control system based on reinforcement learning (RL), which adjusts the corrective 
force in real time so that the needle tip can reach the target point.

Preoperative needle trajectory planning

The puncture control strategy consists of two phases, as shown in Fig 4.

Fig 4.  Schematic diagram of the overall puncture control strategy.

https://doi.org/10.1371/journal.pone.0329065.g004

https://doi.org/10.1371/journal.pone.0329065.g004
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The phase 1 is the preoperative needle tip trajectory planning stage of the puncture needle. According to the nee-
dle deflection prediction model built in Chapter 2, the best needle tip path for the needle tip to reach the target point is 
obtained, and the corresponding puncture parameters-correction force Fl and puncture depth dk are obtained.

The phase 2 is the intraoperative puncture control strategy stage of the needle. After applying the correction force Fl, 
discrepancies arise between the intraoperative needle tip trajectory and the preoperative planned trajectory as the punc-
ture needle is inserted. To accurately monitor and mitigate these errors, Fiber Bragg Grating (FBG) sensors are embed-
ded within the needle(as shown in Fig 5), enabling precise sensing of the needle tip position in real-time. FBG sensors 
are mainly used to feedback forces, pressures and shapes, and the wavelength changes when the fibers elongate due to 
mechanical loads or changes in temperature. In this paper, the FBG sensor type is OSC1100−05. The main function of the 
FBG demodulator is to process the data collected by the FBG sensor in the corresponding software Enlight, which in turn 
converts it into the position information of the needle. Through the adaptive PID control strategy based on reinforcement 
learning, the size of the correction force is adjusted in real time to minimize the puncture error.

Before operation, first set the desired needle body line segment τ, As shown in Fig 6.
Based on the prediction model of needle deflection, the puncture parameters of the best needle tip trajectory were 

obtained. Based on the prediction model of needle deflection, the cost function to minimize Ae area is established. Ae is 
the area enclosed by the expected needle body line segment and the needle body line segment calculated by the model 
from ds to df. Considering that the search space of the correction force distribution function fl is generally infinite, the sim-
plified force distribution function fl is selected to reduce the search space.

Fig 5.  Structure diagram of FBG embedded needle.

https://doi.org/10.1371/journal.pone.0329065.g005

https://doi.org/10.1371/journal.pone.0329065.g005
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Fig 6.  Schematic diagram of preoperative needle tip trajectory planning.

https://doi.org/10.1371/journal.pone.0329065.g006

	 fl(d, dl.1, dl,2) = Fl,c[k(d – dl,1) – k(d – dl,2)]d ∈ (0, df)	 (16)

Where: k(·) is a step function.
Fl,c, dl,1 and dl,2 indicate the magnitude of the corrective force, as well as the starting and ending depths at which the 

corrective force is applied. As shown in Eq 16, the corrective force distribution function fl  is a function of d, dl,1,and dl,2. 
The cost function R(Fl,c, dl,1) constructed by Eq 16 is the sum of squares of the residual between the desired value τ of the 
needle body segment and the shape of the final puncture depth.

	
R(Fl,c, dl,1) =

∑
zτ∈(ds,df)

(u(df, zτ ,Fl,c, dl,1) – τ)
2

	 (17)

where: u(df, zτ ,Fl,c, dl,1) is the simulated deflection value of the needle at the final puncture depth obtained from the nee-
dle deflection prediction model.

The input of the cost function is the constant correction force Fl,c and the puncture depth dl,1.when Fl,c is applied that 
minimizes the value of R. Through the experiment, it is determined that the effective depth of the stop driven by the cor-
rection force Fl,c is 60 mm.The optimization algorithm is selected to find the optimal value of parameters. The optimization 
algorithm is selected to find the optimal value of parameters Fl,c and dl,1, so the optimal tip trajectory is the pattern search 
method. The Fl,c and dl,1 puncture parameters that make R(Fl,c, dl,1) the minimum are obtained, and the identified optimal 
needle tip trajectory is used as the reference trajectory of intraoperative puncture control strategy during the puncture 
process. Simulate the preoperative puncture control strategy algorithm. The origin is the starting point, and the expected 
needle body segment is the segment with curvature of 0. Calculate the optimal path and the size of Fl,c and dl,1. The result 
is that a correction force of 2.8N is applied at 19 mm, as shown in Fig 7.

Intraoperative puncture control strategy

1)	 Theoretical analysis of online adjustment

During puncture, the corrective force applied to the needle is adjusted according to the error between the pre-planned 
needle tip trajectory and the measured needle tip deflection value. In general, the corrective force predicted in the phase 
1 (preoperative puncture strategy stage) can be used to control the puncture of the puncture needle. However, due to the 
errors in the needle deflection prediction model and the possible changes in conditions in the physical system, the predic-
tion accuracy of the needle deflection prediction model cannot meet the requirements, so it is necessary to feed back the 
needle tip deflection value obtained from the FBG sensor and recalculate the corrective force online.

https://doi.org/10.1371/journal.pone.0329065.g006


PLOS One | https://doi.org/10.1371/journal.pone.0329065  August 13, 2025 10 / 23

In order to predict the corrective force required to bring the needle tip from the current position to the target point, a 
reverse needle deflection prediction model based on the required needle deflection value is required to reverse the cor-
rective force.

Reverse needle deflection prediction model:
δe = ue(d+∆d) is the expected tip deflection value,
which is achieved by applying an undetermined corrective force Fl*. Where, ∆d is the feed distance of the puncture 

needle when the corrective force is applied. Assume that the trajectory of the needle tip ut(d) to the current depth d is 
known through measurement.

In order to solve the unknown correction force Fl* to make the needle tip reach the ideal deflection value, first use vec-
tor Λ =

[
0n×1 δe

]T
 to expand the dimension of Eq 14, move Flq(c2) to the right, and combine qj(c2) in Flq(c2) into Φ,  

we can get:

	

[
Φ –qj(c2)

1n×1 0

]

︸ ︷︷ ︸
ΦΨ

=




g
...
F∗
l




︸ ︷︷ ︸
gΨ

=

[
Fcutting,x1n×1

0

]
+




Ω
...
0




︸ ︷︷ ︸
ΩΨ

+




0n×1

...
δe




︸ ︷︷ ︸
∧ 	 (18)

The final Eq 18 can be written as:

	 gΨ = ΦΨ–1(Fcutting,x1n×1 +ΩΨ + Λ)	 (19)

i.e., Fl
∗ = gΨn+1.

Fig 7.  Optimal tip path and corresponding correction force.

https://doi.org/10.1371/journal.pone.0329065.g007

https://doi.org/10.1371/journal.pone.0329065.g007
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With the above Equations, given the parameters K, Fcutting, x and measuring needle tip track ut(d), it is possible to pre-
dict the magnitude of the corrective force required to be the desired needle deflection value δe. The advantage of this 
corrective force calculation method is that it does not require time-consuming iterative searches, which is key to the time 
constraint of a given sample during real-time trajectory replanning. During puncture, the corrective force is removed when 
the following criteria are met: 1) the maximum corrective force limit Fl,max is exceeded (the maximum value in this article is 
4N);2) The limit of variation in corrective force between objects exceeds d > dl,2 (where the maximum dl,2 is 60 mm), and if 
any of these criteria are met, the reference force of the corrective force drive is set to 0. These conditions are all extreme 
cases that may exist when operating on the model. When extreme conditions occur, the reference force of the corrective 
force needle guide will be set to 0. The above is the modeling process of the reverse needle deflection deformation predic-
tion model.

2)	 Intraoperative needle tip position adjustment based on reinforcement learning adaptive PID(RL-APID) control

This paper will design an adaptive PID controller based on reinforcement learning technology, adopt the reinforcement 
learning technology in the form of Actor Critical structure, and respectively use the radial basis function neural network 
(RBFNN) to realize the Actor and Critical mechanisms, which can effectively reduce the storage requirements and avoid 
repeated calculations, Then a new adaptive update rule of PID control is designed based on Actor Critic structure of 
RBFNN.

The main contributions of this paper are as follows: First, the one-step prediction output is considered, and the 
enhanced signal is redefined. Therefore, temporal difference (TD) includes prediction error; Secondly, the new adaptive 
update rule can be calculated according to TD error. Finally, the proposed scheme is modelless design, which is very suit-
able for complex practical systems that are difficult to obtain accurate mathematical models.

(1)Math problem description
In order to more clearly explain the design idea and process of RL-APID, first consider the following general form of 

discrete time nonlinear dynamic model

	

x (t+ 1) = f (x (t)) + g (x (t)) u (t)
y (t) = h (x (t) , u (t – 1)) 	 (20)

where: System state x (t) ∈ Rm at time t, control input u (t) ∈ Rn, output y (t).
As the details of the allowable model are unknown in reinforcement learning technology, Eq 20 can be expressed in a 

more compact form as follows

	

x (t+ 1) = F (x (t) , u (t))
y (t) = h (x (t) , u (t – 1)) 	 (21)

In order to apply the reinforcement learning control technology to the Eq 21, the system first needs to meet the following 
two assumptions.

Assumptions 1: Because the state of Eq 21 at time t + 1 only depends on the state and input at time t, and has nothing 
to do with the historical state before time t and input information, Eq 21 satisfies the “memoryless” property of Markov 
chain. This assumption is defined in the framework of Markov Decision Process (MDP). The goal of MDP is to achieve 
specific goals through satisfactory control strategies. It is similar to the definition of reinforcement learning technology, so it 
has an important influence in the process of combining control problems with reinforcement learning technology.

Assumptions 2: The sign of partial derivatives of function h (·) with respect to all elements is known and the sign is 
the same as that of system Jacobian matrix. The sign of the partial derivative of a function with respect to all elements is 
known and is the same as the sign of the Jacobian matrix of the system.
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Since the puncture closed-loop control system in this paper is easily affected by the jump of PID derivative term, this 
paper proposes a speed type PID control structure to reduce the adverse effects caused by the jump of derivative term. 
The discrete time control structure is designed as follows.

	 u (t) = u (t – 1) + KI (t) e (t) – KP (t)∆y (t) – KD (t)∆2y (t)	 (22)

From the Eq 22, the control increment is

	

∆u (t) = KI (t) e (t) – KP (t)∆y (t) – KD (t)∆2y (t)
= K (t)Θ (t) 	 (23)

where: K (t) = [KI (t) ,KP (t) ,KD (t)] is the control parameter vector of the adaptive PID controller, define 
Θ(t) =

[
e (t) , –∆y (t) , –∆2y (t)

]T
 as the augmented system state, define ∆ = 1 – z–1 is the difference operation symbol, 

which means the difference between the current time variable and the previous time variable. Therefore ∆2y (t) can be 
further expanded and expressed as

	 ∆2y (t) = ∆y (t) –∆y (t – 1) = y (t) – 2y (t – 1) + y (t – 2)	 (24)

where: e (t) in Θ(t) is defined as the tracking error between the system reference input and the actual system output, that 
is, design e (t) is

	 e (t) = yd (t) – y (t)	 (25)

where: yd (t) is the reference input expected by the system.
The structure block diagram of the adaptive PID control method based on reinforcement learning proposed in this 

paper is shown in Fig 8. The input of the Actor Critical structure is Θ(t), which is converted from the trajectory tracking 
error e (t). The actuator Actor adjusts the controller online by using the observed system state, while the evaluator Critical 
not only receives the system state, but also receives the reward signal r (t+ 1), which evaluates the system performance 
and outputs the timing difference error.

Timing differential error δTD (t) is an important parameter in the design process. The purpose of this section is to design 
a PID control system with a new adaptive law using the Actor-Critic structure, while meeting the system tracking accuracy 
and robust performance requirements.

Fig 8.  Structure block diagram of adaptive PID control method based on reinforcement learning.

https://doi.org/10.1371/journal.pone.0329065.g008

https://doi.org/10.1371/journal.pone.0329065.g008
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Adaptive control system design process:
First, define a value function in the following form

	
V (t) =

∞∑
i=t

γ i–tr (x (i) , u (i))
	 (26)

where: 0 < γ ≤ 1 is the attenuation factor, u (t) is the control signal, Function r (x (i) , u (i)) is called a reward signal or rein-
forcement signal, it is generally designed as a quadratic function.

Rewrite Eq 26 as

	
V (t) = r (x (t) , u (t)) + γ

∞∑
i=t+1

γ i–(t+1)r (x (i) , u (i))
	 (27)

Eq 27 is still an infinite summation equation and is difficult to solve, so it is further expressed as follows

	 V (t) = r (x (t) , u (t)) + γV (t+ 1) ,V (0) = 0	 (28)

Eq 28 is also known as the Bellman equation.
Based on Bellman’s Eq 28, the timing difference error can be defined as

	 δTD (t) = r (x (t) , u (t)) + γV (t+ 1) – V (t)	 (29)

If the Bellman equation holds, then the timing difference error δTD (t) = 0, so the control signal at each moment can be 
considered the optimal control strategy.

RBF neural networks are widely used in parameter recognition due to their versatile approximation ability. In this paper, 
we will use the RBF neural network to implement the Actor-Critic structure, and the block diagram is shown in Fig 9.

The neural network structure consists of three layers of neuron nodes: input layer, hidden layer and output layer. The 
input layer is composed of trajectory tracking error and system output, RBF neural network transmits the system state 
from the input layer to the hidden layer, and constructs the hidden layer to the output layer in the form of weighted sum-
mation, and the output is the actuator and evaluator, that is, the adaptive control parameters and value functions defined 

Fig 9.  Block diagram of actor-critic structure.

https://doi.org/10.1371/journal.pone.0329065.g009

https://doi.org/10.1371/journal.pone.0329065.g009
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above. The input of the input layer is the augmented state vector Θ(t), which is passed to the hidden layer, and then the 
hidden layer uses Θ(t) to calculate the output information of the layer, and the weight function of the input layer to the 
hidden layer is a radial basis function, that is, Φ(t) = [ϕ1 (t) , · · · ,ϕh (t)], and

	
Φj (t) = exp

(
–
∥Θ(t) – µj (t)∥2

2σ2
j (t)

)
, j = 1, 2, 3, . . . ,h

	 (30)

where: µj andσj  are the center and width of the radial basis function, respectively, and the center vector is defined as 
follows

	 µj (t) = [µ1j,µ2j,µ3j]
T

	 (31)

The third layer is the output layer including Actor and Critic, which is constructed in the form of a simple and direct 
weighted summation, and the adaptive PID controller parameters of the output can be expressed as

	

KP (t) =
h∑
j=1

wP
j (t)Φj (t)

KI (t) =
h∑
j=1

wI
j (t)Φj (t)

KD (t) =
h∑
j=1

wD
j (t)Φj (t)

	 (32)

where: wP
j (t), w

I
j (t) and wD

j (t) are the weighting coefficients between the j-th hidden layer node and the corresponding 
output Actor. The value function of Critic can be expressed as:

	
V (t) =

h∑
j=1

vj (t)Φj (t)
	 (33)

where: vj (t) is the weighting coefficient between the j-th hidden layer node and the output layer Critic.
The weight matrices from the input layer to the hidden layer and the hidden layer to the output layer can be calculated 

by the learning algorithm based on gradient descent. First, the reward signal r (·) in this paper is defined as:

	
r (x (t) , u (t)) =

1

2
(yd (t+ 1) – y (t+ 1))

2

	 (34)

Then according to Eq 29, the timing differential error δTD (t) can be expressed as:

	
δTD (t) =

1

2
(yd (t+ 1) – y (t+ 1))

2
+ γV (t+ 1) – V (t)

	 (35)

According to the preceding definition, the cost function in this paper can be expressed as:

	
J (t) =

1

2
δ2TD (t)	 (36)
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Therefore, the partial differential equation of the cost function with respect to the individual output weight matrices can be 
described as follows

	

wP
j (t+ 1) = wP

j (t) – αPw
∂J (t)
∂wP

j (t)

wI
j (t+ 1) = wI

j (t) – αIw
∂J (t)
∂wI

j (t)

wD
j (t+ 1) = wD

j (t) – αDw
∂J (t)
∂wD

j (t)	 (37)

where: αPw , αIw  and αDw  are learning rates, and according to the defined cost function of Eq 36, the partial derivative in Eq 
37 can be obtained by finding the partial derivative one by one, and the solution process is expressed as:

	

∂J (t)
∂wP

j (t)
=

∂J (t)
∂δTD (t)

∂δTD (t)
∂y (t+ 1)

∂y (t+ 1)

∂u (t)
∂u (t)
∂KP (t)

∂KP (t)
∂wP

j (t)

= δTD (y (t) – y (t – 1))Φj (t)
∂y(t+1)
∂u(t) 	 (38)

	

∂J (t)
∂wI

j (t)
=

∂J (t)
∂δTD (t)

∂δTD (t)
∂y (t+ 1)

∂y (t+ 1)

∂u (t)
∂u (t)
∂KI (t)

∂KI (t)
∂wI

j (t)

= –δTDe (t)Φj (t)
∂y (t+ 1)

∂u (t) 	 (39)

	

∂J (t)
∂wD

j (t)
=

∂J (t)
∂δTD (t)

∂δTD (t)
∂y (t+ 1)

∂y (t+ 1)

∂u (t)
∂u (t)
∂KD (t)

∂KD (t)
∂wD

j (t)

= δTD (y (t) – 2y (t – 1) + y (t – 2))Φj (t)
∂y(t+1)
∂u(t) 	 (40)

From Eq 38 to Eq 40, it can be seen that the above partial derivatives all require prior knowledge of the Jacobian matrix of 
the known system, and according to assumptions 2, the sign of the Jacobian matrix is known, so this paper calculates the 
Jacobian matrix according to the equation established by the following identity.

	 ε =
∣
ε
∣ sign (ε)	 (41)

where: sign (·) is a symbolic function.

	

sign (ε) =




1, ε > 0
0, ε = 0
–1, ε < 0 	 (42)

Then let ∂y(t+1)
∂u(t)  be

	

∂y (t+ 1)

∂u (t)
=

∣∣∣∣
∂y (t+ 1)

∂u (t)

∣∣∣∣ sign
(
∂y (t+ 1)

∂u (t)

)

	 (43)

Since sign
(

∂y(t+1)
∂u(t)

)
 is known, for 

∣∣∣∂y(t+1)
∂u(t)

∣∣∣, it can
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be included in the learning rates such as αPw , αIw  and αDw  [28]. Similarly, the radial basis function center and width of the 
hidden layer of a neural network can be updated online by the following adaptive law.

	
µij (t+ 1) = µij (t) – αµ

∂J (t)
∂µij (t)

= µij (t) + αµδTD (t) vj (t)Φj (t)
Θi (t) – µij (t)

σ2
j (t) 	 (44)

	
σj (t+ 1) = σj (t) – ασ

∂J (t)
∂σj (t)

= σj (t) + ασδTD (t) vj (t)Φj (t)
∥Θi (t) – µij (t)∥2

σ3
j (t) 	 (45)

where: αµ and ασ are the learning rate parameter.
In addition, the output weight matrix of Critic under the RBF neural network structure can be updated online by the 

following adaptive law.

	
vj (t+ 1) = vj (t) – αv

∂J (t)
∂vj (t)

= vj (t) + αvδTD (t)Φj (t)
	 (46)

where: αv is the learning rate parameter that outputs the weight.
The design steps of reinforcement learning adaptive PID controller based on the Actor-Critic framework are shown in 

Table 1. The implementation process of Algorithm 1 requires setting some essential control parameters.
In this paper, given parameters K,Fcutting and measuring tip trajectory ut(d), the corrective force Fl* magnitude of the 

reference can be calculated according to Eq 19. Therefore, the reference corrective force is used as the input of the rein-
forcement learning adaptive PID controller, the correction force measured by the actual system is used as feedback, the 

Table 1.  Reinforcement learning adaptive PID controller design steps.

Algorithm 1. Design steps of reinforcement learning adaptive PID controller based on Actor-Critic framework

1. t = 0, Initialize control input signal u (0) and reference input signal yd (0)

2. Initialize the control parameters wP
j , wI

j, w
D
j , vj (0), µij (0) and σj (0), set the learning rates αw ,αv,αµ andασ

3. for t = 1:EndTime

4. The system output y (t) is measured and the output error is calculated according to e (t) = yd (t) – y (t)

5. Calculation of kernel radial basis function of the hidden layer of RBF neural network structure (equation (30))

6. Calculate the output of the Actor at t moment by equation (32) to obtain the PID controller parameters, and calculate the output value function V (t) of 
the Critic at t moment by equation (33).

7. Obtain the control increment ∆u (t) at the current moment by equation (33):

8. The control signal u (t) = u (t – 1) + ∆u (t) at the current time is calculated by equation (32), and it is input to the controlled puncture system, while the 
system output y (t+ 1) at the next time is generated

9. Based on the system output, build the next instantaneous expansion state:

θ (t+ 1) =
[
e (t+ 1) , –∆y (t+ 1) , –∆2y (t+ 1)

]T

10. Calculate the output value function V (t+ 1) of Critic at the time t + 1 according to equation (33)

11. Calculate the timing differential error δTD (t) according to equation (35)

12. Update the weight coefficients of the value function according to equation (37), (39), and (40) and the weight coefficients of the new PID parameter 
according to equation (45)

13. Update the center and width values of the RBF kernel function according to equation (44) and equation (45).

14. end for

15. End of Algorithm 1.

https://doi.org/10.1371/journal.pone.0329065.t001

https://doi.org/10.1371/journal.pone.0329065.t001
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Fig 10.  End effector closed-loop control system structure.

https://doi.org/10.1371/journal.pone.0329065.g010

controller output is converted into the correction force through the linear drive device, and the closed-loop control system 
structure of the end effector is shown in Fig 10.

In summary, the puncture control strategy of the transrectal prostate BT robot is shown in Fig 11.

Fig 11.  Puncture control strategy of prostate BT.

https://doi.org/10.1371/journal.pone.0329065.g011

https://doi.org/10.1371/journal.pone.0329065.g010
https://doi.org/10.1371/journal.pone.0329065.g011
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Results and discussion

In this chapter, the closed-loop control system experiment and comparative analysis study will be carried out to evalu-
ate the feasibility and robustness of the proposed control method. In this paper, a robotic puncture platform is set up, as 
shown in Fig 12.
The whole system consists of UR5e manipulator, end effector, upper computer and lower computer. The UR5e robotic 
arm is mainly used for the initial positioning of the actuator end. The structure of the robot control system is shown in 
Fig 13.
When the puncture objects are the same, the results of the experiments using different puncture strategies are compared 
and analyzed, and the traditional PID control method and the adaptive PID control method based on reinforcement learn-
ing proposed in this paper are used to carry out the puncture experiment, and the puncture depth of each puncture is 80 
mm. The first group: without corrective force, the rectum and beef tissue were punctured at a depth of 80 mm; The second 
group: puncture rectum and beef tissue with traditional PID control method, the puncture depth is 80 mm, and the initial 
PID control parameters are set as follows: K (0) = [0, 0, 0]T ; The third group: the adaptive PID control method of reinforce-
ment learning was used to puncture rectal and beef tissues with a puncture depth of 80 mm, and the main parameters of 
RL-APID were selected as follows: αw = 0.13,αv = 0.35,αµ = 0.027,ασ = 0.015, γ = 0.90 Each group of experiments was 
repeated 5 times, and the average value was taken as the final result, as shown in Figs 14 and 15. From Fig 16, it can be 
seen that the needle tip trajectory will gradually deviate from the reference trajectory when no corrective force is applied, 
and the deviation will be significantly reduced after the corrective force is applied.

Fig 13.  Control system block diagram.

https://doi.org/10.1371/journal.pone.0329065.g013

Fig 12.  Control system block diagram.

https://doi.org/10.1371/journal.pone.0329065.g012

https://doi.org/10.1371/journal.pone.0329065.g013
https://doi.org/10.1371/journal.pone.0329065.g012
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Fig 14.  Comparison of puncture experiments results.

https://doi.org/10.1371/journal.pone.0329065.g014

In addition, it can be seen that the RL-APID tracking error is smaller, the dynamic control performance is more stable 
when the reference trajectory jumps, there is no excessive overshoot or jitter, and the traditional PID will produce a rela-
tively large overshoot and jitter during the trajectory jump, which is not conducive to the smooth progress of the puncture, 
in addition, the trajectory tracking error Fig 16 shows that RL-APID also has higher trajectory tracking accuracy, and the 
lateral driving force of the RL-APID control output can significantly reduce the deviation of the needle puncture process. 
Fig 17 shows the process of adaptive adjustment of RL-APID parameters during the puncture process. From Fig 16, it can 

Fig 15.  Comparison between the predicted correction force of the model and the actually applied correction force.

https://doi.org/10.1371/journal.pone.0329065.g015

https://doi.org/10.1371/journal.pone.0329065.g014
https://doi.org/10.1371/journal.pone.0329065.g015
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be seen that piercing by adaptive PID control method of reinforcement learning can reduce the needle deflection value by 
90% at a puncture depth of 80 mm, and has higher puncture accuracy.

Since the material of the seeds in the real tissue could not be seen, the transparent biomimetic tissue-agar glue was 
used for the seed implantation experiment, as shown in Fig 18, the relative coordinate values of the seeds implantation 
points were obtained by image processing of the seeds implantation points by MATLAB, and 5 seeds were implanted 
each time, and the experiment was repeated 5 times to take the average of its data. By comparing the theoretical coor-
dinate values of particles with the actual coordinate values, the deviation value between the two is obtained, as shown in 

Fig 17.  Adaptive PID parameter variation.

https://doi.org/10.1371/journal.pone.0329065.g017

Fig 16.  Needle tip trajectory error.

https://doi.org/10.1371/journal.pone.0329065.g016

https://doi.org/10.1371/journal.pone.0329065.g017
https://doi.org/10.1371/journal.pone.0329065.g016
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Fig 18.  Biomimetic tissue seed implantation experiment.

https://doi.org/10.1371/journal.pone.0329065.g018

Table 2.  Seed implantation experiment results.

Scheme Theoretical coordinate value Actual coordinate value Deviation value

1 (3.0, 16.0) (3.8, 15.7) 1.2

2 (3.0, 32.0) (4.2, 33.2) 1.5

3 (3.0, 48.0) (4.6, 47.8) 1.8

4 (3.0, 64.0) (5.4, 65.2) 2.6

5 (3.0, 80.0) (5.6, 78.2) 2.8

https://doi.org/10.1371/journal.pone.0329065.t002

Table 2. Finally, the absolute error of average seeds implantation is 1.96 mm and the standard error is 0.56 mm, and the 
seeds implantation accuracy meets the clinical requirements of 3–6 mm [4].

Conclusions

In this paper, a corrective force-based puncture control strategy is proposed that uses only the corrective force drive to 
minimize the deflection value of the needle at the final puncture depth.The puncture control strategy is divided into two 
stages: the preoperative needle trajectory planning stage and the intraoperative puncture strategy adjustment stage. 
In the preoperative needle trajectory planning stage, the optimal needle tip trajectory and puncture parameters were 
obtained based on the needle deflection prediction model. In the stage of adjusting the intraoperative puncture strategy, 
a reverse needle tip deflection prediction model was constructed, and the value of the corrective force was compensated 
intraoperatively, and the traditional PID control and the adaptive PID control method based on reinforcement learning were 
used to control the application of the correction force to achieve accurate puncture. In addition, the effectiveness of the 
puncture control strategy is verified and compared based on the experimental platform o0066 prostate BT robot, and the 
puncture experimental results show that the adaptive PID control method based on reinforcement learning can effectively 
reduce the deflection value of the needle tip, and has smaller overshoot and jitter than the traditional PID control method, 
and has higher puncture accuracy. In the seeds implantation experiment, the average implantation error of seeds implan-
tation is 1.96 mm and the standard error is 0.56 mm, which can meet the clinical and design index requirements.

https://doi.org/10.1371/journal.pone.0329065.g018
https://doi.org/10.1371/journal.pone.0329065.t002


PLOS One | https://doi.org/10.1371/journal.pone.0329065  August 13, 2025 22 / 23

Supporting information

S1 File.   https://doi.org/10.6084/m9.figshare.28300652 (RAR).
(DOCX)

Author contributions

Conceptualization: Jianqiao Li.

Data curation: Jianqiao Li.

Formal analysis: Xuesong Dai.

Investigation: Jianqiao Li.

Methodology: Peng Li.

Validation: Xuesong Dai.

Writing – original draft: Jianqiao Li.

References
	 1.	 Taghizadeh S, Shvydka D, Shan A, Mian OY, Parsai EI. Optimization and experimental characterization of the innovative thermo-brachytherapy 

seed for prostate cancer treatment. Med Phys. 2024;51(2):839–53. https://doi.org/10.1002/mp.16920 PMID: 38159297

	 2.	 Xiao Y, Zeng Y, Han L, Lin G, Ke H, Xu S, et al. A novel simplified transperineal prostate biopsy guided by perineal ultrasound. Br J Radiol. 
2024;97(1159):1351–6. https://doi.org/10.1093/bjr/tqae097 PMID: 38781498

	 3.	 Stanberry B, Webber-Jones N. Low-dose-rate brachytherapy as a primary treatment for localised and locally advanced prostate cancer: a sys-
tematic review of economic evaluations. Prostate Cancer Prostatic Dis. 2025;28(1):23–36. https://doi.org/10.1038/s41391-024-00817-z PMID: 
38480973

	 4.	 Valerio M, Emberton M, Eggener SE, Ahmed HU. The challenging landscape of medical device approval in localized prostate cancer. Nat Rev Urol. 
2016;13(2):91–8. https://doi.org/10.1038/nrurol.2015.289 PMID: 26666364

	 5.	 Zhang Y, Zhang W, Liang Y, Xu Y. Research on mechanism and strategy of high accuracy puncture of prostate. Chinese J Sci Instrum. 
2017;38(6):1405–12. https://doi.org/CNKI:SUN:YQXB.0.2017-06-012

	 6.	 Li H, Wang Y, Li Y, Zhang J. A novel manipulator with needle insertion forces feedback for robot-assisted lumbar puncture. Int J Med Robot. 
2021;17(2):e2226. https://doi.org/10.1002/rcs.2226 PMID: 33452700

	 7.	 Dai X, Zhang Y, Jiang J, Li B. Image-guided robots for low dose rate prostate brachytherapy: Perspectives on safety in design and use. Int J Med 
Robot. 2021;17(3):e2239. https://doi.org/10.1002/rcs.2239 PMID: 33689202

	 8.	 Simone C, Okamura AM. Modeling of needle insertion forces for robot-assisted percutaneous therapy. In: Proceedings 2002 IEEE International 
Conference on Robotics and Automation (Cat. No.02CH37292). 2085–91. https://doi.org/10.1109/robot.2002.1014848

	 9.	 Okamura AM, Simone C, O’Leary MD. Force modeling for needle insertion into soft tissue. IEEE Trans Biomed Eng. 2004;51(10):1707–16. https://
doi.org/10.1109/TBME.2004.831542 PMID: 15490818

	10.	 Misra S, Reed KB, Schafer BW, Ramesh KT, Okamura AM. Observations and models for needle-tissue interactions. In: 2009 IEEE International 
Conference on Robotics and Automation, 2009. 2687–92. https://doi.org/10.1109/robot.2009.5152721

	11.	 Kataoka H, Washio T, Audette M, Mizuhara K. A Model for Relations Between Needle Deflection, Force, and Thickness on Needle Penetration. 
Lecture Notes in Computer Science. Springer Berlin Heidelberg. 2001. p. 966–74. https://doi.org/10.1007/3-540-45468-3_115

	12.	 Misra S, Reed KB, Schafer BW, Ramesh KT, Okamura AM. Mechanics of Flexible Needles Robotically Steered through Soft Tissue. Int J Rob Res. 
2010;29(13):1640–60. https://doi.org/10.1177/0278364910369714 PMID: 21170164

	13.	 Abolhassani N, Patel RV, Ayazi F. Minimization of needle deflection in robot-assisted percutaneous therapy. Int J Med Robot. 2007;3(2):140–8. 
https://doi.org/10.1002/rcs.136 PMID: 17619247

	14.	 Khadem M, Rossa C, Usmani N, Sloboda RS, Tavakoli M. A Two-Body Rigid/Flexible Model of Needle Steering Dynamics in Soft Tissue. IEEE/
ASME Trans Mechatron. 2016;21(5):2352–64. https://doi.org/10.1109/tmech.2016.2549505

	15.	 Webster RJ, Cowan NJ, Chirikjian G, Okamura AM. Nonholonomic Modeling of Needle Steering. Springer Tracts in Advanced Robotics. Springer 
Berlin Heidelberg. 2006. p. 35–44. https://doi.org/10.1007/11552246_4

	16.	 Glozman D, Shoham M. Image-Guided Robotic Flexible Needle Steering. IEEE Trans Robot. 2007;23(3):459–67. https://doi.org/10.1109/
tro.2007.898972

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0329065.s001
https://doi.org/10.6084/m9.figshare.28300652
https://doi.org/10.1002/mp.16920
http://www.ncbi.nlm.nih.gov/pubmed/38159297
https://doi.org/10.1093/bjr/tqae097
http://www.ncbi.nlm.nih.gov/pubmed/38781498
https://doi.org/10.1038/s41391-024-00817-z
http://www.ncbi.nlm.nih.gov/pubmed/38480973
https://doi.org/10.1038/nrurol.2015.289
http://www.ncbi.nlm.nih.gov/pubmed/26666364
https://doi.org/CNKI:SUN:YQXB.0.2017-06-012
https://doi.org/10.1002/rcs.2226
http://www.ncbi.nlm.nih.gov/pubmed/33452700
https://doi.org/10.1002/rcs.2239
http://www.ncbi.nlm.nih.gov/pubmed/33689202
https://doi.org/10.1109/robot.2002.1014848
https://doi.org/10.1109/TBME.2004.831542
https://doi.org/10.1109/TBME.2004.831542
http://www.ncbi.nlm.nih.gov/pubmed/15490818
https://doi.org/10.1109/robot.2009.5152721
https://doi.org/10.1007/3-540-45468-3_115
https://doi.org/10.1177/0278364910369714
http://www.ncbi.nlm.nih.gov/pubmed/21170164
https://doi.org/10.1002/rcs.136
http://www.ncbi.nlm.nih.gov/pubmed/17619247
https://doi.org/10.1109/tmech.2016.2549505
https://doi.org/10.1007/11552246_4
https://doi.org/10.1109/tro.2007.898972
https://doi.org/10.1109/tro.2007.898972


PLOS One | https://doi.org/10.1371/journal.pone.0329065  August 13, 2025 23 / 23

	17.	 Abayazid M, Roesthuis RJ, Reilink R, Misra S. Integrating Deflection Models and Image Feedback for Real-Time Flexible Needle Steering. IEEE 
Trans Robot. 2013;29(2):542–53. https://doi.org/10.1109/tro.2012.2230991

	18.	 Fallahi B, Khadem M, Rossa C, Sloboda R, Usmani N, Tavakoli M. Extended bicycle model for needle steering in soft tissue. In: 2015 IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS), 2015. 4375–80.

	19.	 Patil S, Burgner J, Webster RJ 3rd, Alterovitz R. Needle Steering in 3-D Via Rapid Replanning. IEEE Trans Robot. 2014;30(4):853–64. https://doi.
org/10.1109/TRO.2014.2307633 PMID: 25435829

	20.	 Zhao YJ, Liu ZH, Zhang YD, Liu ZQ. Kinematic model and its parameter identification for cannula flexible needle insertion into soft tissue. Adv 
Mech Eng. 2019;11(6):1687814019852185. https://doi.org/10.1177/1687814019852

	21.	 Lee H, Kim J. Estimation of Needle Deflection in Layered Soft Tissue for Robotic Needle Steering. Advances in Intelligent Systems and Computing. 
Springer International Publishing. 2015. p. 1133–44. https://doi.org/10.1007/978-3-319-08338-4_82

	22.	 Babaiasl M, Yang F, Swensen JP. Robotic needle steering: state-of-the-art and research challenges. Intel Serv Robotics. 2022;15(5):679–711. 
https://doi.org/10.1007/s11370-022-00446-2

	23.	 Lehmann T, Sloboda R, Usmani N, Tavakoli M. Model-Based Needle Steering in Soft Tissue via Lateral Needle Actuation. IEEE Robot Autom Lett. 
2018;3(4):3930–6. https://doi.org/10.1109/lra.2018.2858001

	24.	 Lehmann T, Rossa C, Usmani N, Sloboda R, Tavakoli M. Deflection modeling for a needle actuated by lateral force and axial rotation during inser-
tion in soft phantom tissue. Mechatronics. 2017;48:42–53. https://doi.org/10.1016/j.mechatronics.2017.10.008

	25.	 Lehmann T, Rossa C, Usmani N, Sloboda RS, Tavakoli M. Intraoperative Tissue Young’s Modulus Identification During Needle Insertion Using a 
Laterally Actuated Needle. IEEE Trans Instrum Meas. 2018;67(2):371–81. https://doi.org/10.1109/tim.2017.2774182

	26.	 Yongfeng Z, Ziyuan ZHU, Gang W. Thermal Modal Analysis of Doubly Curved Shell Based on Rayleigh⁃Ritz Method. Trans Nanjing Univ Aeronaut 
Astronaut.2022; 39(1).https://doi.10.16356/j.1005-1120.2022.01.006

	27.	 Kataoka H, Washio T, Chinzei K, Mizuhara K, Simone C, Okamura AM. Measurement of the Tip and Friction Force Acting on a Needle during Pen-
etration. Lecture Notes in Computer Science. Springer Berlin Heidelberg. 2002. p. 216–23. https://doi.org/10.1007/3-540-45786-0_27

	28.	 Cimolato A, Driessen JJM, Mattos LS, De Momi E, Laffranchi M, De Michieli L. EMG-driven control in lower limb prostheses: a topic-based system-
atic review. J Neuroeng Rehabil. 2022;19(1):43. https://doi.org/10.1186/s12984-022-01019-1 PMID: 35526003

https://doi.org/10.1109/tro.2012.2230991
https://doi.org/10.1109/TRO.2014.2307633
https://doi.org/10.1109/TRO.2014.2307633
http://www.ncbi.nlm.nih.gov/pubmed/25435829
https://doi.org/10.1177/1687814019852
https://doi.org/10.1007/978-3-319-08338-4_82
https://doi.org/10.1007/s11370-022-00446-2
https://doi.org/10.1109/lra.2018.2858001
https://doi.org/10.1016/j.mechatronics.2017.10.008
https://doi.org/10.1109/tim.2017.2774182
https://doi.10.16356/j.1005-1120.2022.01.006
https://doi.org/10.1007/3-540-45786-0_27
https://doi.org/10.1186/s12984-022-01019-1
http://www.ncbi.nlm.nih.gov/pubmed/35526003

