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Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most com-
mon cause of chronic liver disease worldwide, affecting over 30% of the global gen-
eral population. Its progressive nature and association with other chronic diseases
makes early diagnosis important. MRI Proton Density Fat Fraction (PDFF) is the
most accurate noninvasive method for quantitatively assessing liver fat but is expen-
sive and has limited availability; accurately quantifying liver fat from more accessible
and affordable imaging could potentially improve patient care. This proof-of-concept
study explores the feasibility of inferring liver MRI-PDFF values from contrast-
enhanced computed tomography (CECT) using deep learning. In this retrospective,
cross-sectional study, we analyzed data from living liver donor candidates who had
concurrent CECT and MRI-PDFF as part of their pre-surgical workup between April
2021 and October 2022. Manual MRI-PDFF analysis was performed following a stan-
dard of clinical care protocol and used as ground truth. After liver segmentation and
registration, a deep neural network (DNN) with 3D U-Net architecture was trained
using CECT images as single channel input and the concurrent MRI-PDFF images
as single channel output. We evaluated performance using mean absolute error
(MAE) and root mean squared error (RMSE), and mean errors (defined as the mean
difference of results of comparator groups), with 95% confidence intervals (Cls). We
used Kappa statistics and Bland-Altman plots to assess agreement between DNN-
predicted PDFF and ground truth steatosis grades and PDFF values, respectively.
The final study cohort was of 94 patients, mean PDFF =3.8%, range 0.2—22.3%.
When comparing ground truth to segmented reference (MRI-PDFF), our model had
an MAE of 0.56, an RMSE of 0.77, and a mean error of 0.06 (-1.75,1.86); when com-
paring medians of the predicted and reference MRI-PDFF images, our model had an
MAE, an RMSE, and a mean error of 2.94, 4.27, and 1.28 (-4.58,7.14), respectively.
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We found substantial agreement between categorical steatosis grades obtained from
DNN-predicted and clinical ground truth PDFF (kappa=0.75). While its ability to infer
exact MRI-PDFF values from CECT images was limited, categorical classification of

fat fraction at lower grades was robust, outperforming other prior attempted methods.

Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver
condition characterized by excessive accumulation of fat in hepatocytes (i.e., steato-
sis) which may lead to inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma
(liver cancer) [1]. MASLD is the most common cause of chronic liver disease world-
wide, affecting over 30% of the global general population and up to 75% of obese
individuals [1,2]. NAFLD is associated with metabolic syndrome, insulin resistance,
type 2 diabetes, cardiovascular disease, and increased mortality [3,4]. Until late in
the course of disease, NAFLD can be a silent condition with no specific symptoms.
Clinical suspicion of NAFLD, when present, may lead to diagnostic investigation, with
liver biopsy being the gold standard for diagnosis and staging. However, liver biopsy
is invasive, costly, and prone to sampling errors and complications [5], suggesting a
demand for non-invasive imaging biomarkers that can accurately diagnose and quan-
tify hepatic steatosis, as well as monitor its progression or response to treatment [6].

Magnetic resonance image (MRI) proton density fat fraction (PDFF) has emerged
as a safe, accurate, and noninvasive quantitative biomarker of liver fat that is highly
correlated with biopsy-obtained histological steatosis grades [7,8], and outperforms
other noninvasive imaging methods such as ultrasound and computed tomography
(CT) [9]. In brief, on MRI-PDFF images, pixel/voxel values represent the percentile
fraction of the MR signal attributable to fat that can be averaged for whole organ
fat fraction estimation. However, limitations of MRI-PDFF include susceptibility to
artifacts and noise, long acquisition time, high costs, and limited access [10]. To
address these limitations, researchers have focused on improving the accuracy of
other imaging methods like ultrasound [11] or inferring liver PDFF from less costly
and more widely available imaging modalities like Computed Tomography (CT) scans
[12], which are widely used for evaluation of abdominal pathology in both acute and
elective settings. Assessing liver steatosis using CT could potentially overcome the
limitations of MRI-PDFF as a screening tool, particularly when considering the high
prevalence of NAFLD in the general population. However, while non-contrast CT
attenuation values have a linear correlation with MRI-PDFF, most abdominal CT
exams are performed with intravenous contrast administration, which affects the
inherent attenuation (i.e., brightness) of the liver, and hence, represents a confounder
for accurate liver fat estimation. Further, current methods to diagnose and quantify
liver fat from imaging modalities other than MRI-PDFF have lower diagnostic perfor-
mance at lower liver fat fraction ranges (PDFF<20%) [13].

To address these limitations, we explored the feasibility of inferring liver MRI-PDFF
directly from contrast-enhanced computed tomography (CECT) using an automated
deep learning-based approach with a focus on lower fat fraction ranges.
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Methods
Study design and population

We conducted a retrospective, cross-sectional study. 171 consecutive living liver donor candidates with scheduled con-
current CECTs and MRIs between April 2021 and October 2022 scheduled as part of their pre-surgical workup were
identified. Of these, we selected 151 subjects who were at least 18 years old an who had CECTs of the abdomen and liver
MRIs performed no more than 48 hours apart from each other. Exclusion criteria were if imaging artifacts or omissions
resulted in preprocessing failure for automated segmentation, their MRIs did not have MRI-PDFF acquisitions, or their CT
were performed without intravenous contrast.

CECT exams

Patients were scanned in fasting state (6 hours) using multidetector CT scanners (GE Healthcare, Waukesha, WI).
Images were acquired monoenergetic at 120kV in the axial plane at different slice thicknesses (0.65—1.5 mm) after
intra-venous iodine-based contrast administration and analyzed using axial reconstruction of 2.5 mm. Post contrast imag-
ing phases were arterial, portal venous and hepatic venous phase following institutional weight-based dosing protocol with
an average injection flow rate of 3 mL/ second.

MRI exams

Liver MRIs were performed in either 1.5T or 3T scanners (Philips healthcare, Netherlands) using a surface phased array
coil. Multiplanar, multisequence acquisitions were performed, including a confounder corrected multi-echo sequence
(mDIXON quant) for PDFF estimation. Multiparametric quantitative maps (PDFF, T2* and R2*) were generated online for
analysis.

Image analysis

We used manual quantitative MRI-PDFF analysis as ground-truth for liver fat estimations and to assess the accuracy

of automated PDFF extraction. Manual PDFF analysis was performed following a standard of clinical care protocol, as
follows: on post-processed PDFF maps, an abdominal imaging clinical fellow (with 1 year experience) supervised by a
board-certified radiologist (with 13 years of experience) drew two regions of interest (ROI) in the right lobe and one in

left lobe of the liver to extract mean PDFF values; the three ROI PDFF values were averaged to describe each individual
patient’'s mean manual PDFF. A clinical PACS software (Visage 7, Visage Imaging) was used for this analysis. ROIs were
standardized in size and location across all subjects [14].

Image preprocessing

The image preprocessing pipeline consisted of three primary steps: segmenting CECT and MRIs to obtain liver masks,
isolating liver pixel data on CECT and MRIs using their corresponding masks (herein referred to as cropped liver) and
registering the cropped liver across CECTs and MRIs.

CECT liver segmentation was performed using an open-source deep learning segmentation model (livermask) [15].
Because no pre-trained model existed to segment the liver on MRI-obtained PDFF images, we used an indirect approach
by utilizing post-contrast T1-weighted images from the same MRI exam. First, T1-weighted MRIs were resized to the cor-
responding PDFF image and the liver was segmented from T1-weighted MRIs using a 3D liver segmentation extension of
a 2D U-net CNN segmentation tool [16]. Since PDFF and T1 images were part of the same exam (i.e., there was no differ-
ence in liver shape), the liver mask was then propagated onto the PDFF-MRI image by registering the whole T1 image to
the whole PDFF and then using the obtained transformation to propagate the mask only. Prior to this step, we performed
additional denoising of PDFF to reduce the effect of granular noise visible outside the abdomen using the N4 Bias Field
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Correction algorithm which is typically used to remove intensity inhomogeneity caused by the bias field [17]. Since this
method also alters the intensity values of the image, it is only done as an intermediate step to improve the registration of
the mask; original PDFF intensities are retained for the subsequent steps.

After propagating the liver mask onto the PDFF domain, we eroded the outer 1 cm of the mask to prevent anatomical
fat from causing PDFF overestimation. Using the refined 3D liver masks, we extracted the liver regions from both CECT
and PDFF images. To preserve the spatial context during subsequent registration, we applied a 20% padding (10% on
each side) in all three dimensions by adding zero-intensity voxels.

The padded liver regions were then resampled to 128 x 128 x 96 volumes to standardize input sizes. These prepro-
cessed images were used for liver segmentation via the deep learning model. Finally, for extracting liver PDFF from the
predicted PDFF-MRI images generated by the U-Net model, we applied the liver mask and computed mean and median
PDFF values.

During the registration process, we performed an additional denoising of the PDFF liver using histogram equalization to
enhance image contrast and improve registration quality; however, because PDFF images contain quantifiable information
(i.e., each voxel value represents a fat fraction value), once the registration steps were completed, the original PDFF vox-
els values were used for analysis. Thus, we ended up having paired 3D CECT and PDFF images containing livers only,
which represent the source and target of our proposed inference paradigm. All registration steps were performed using
ANTs tool and based on affine transformation which allows shearing and scaling in addition to translation and rotation.
Fig 1 presents a schematic that illustrates the image preprocessing pipeline.

U-Net model for inference

CECT images were used as input to a deep neural network (DNN) with 3D U-Net architecture with single channel input
and output (128 x 128 x 96 volumes), and the corresponding PDFF images were used as the outputs. This was done after
randomly splitting the dataset into two sets: 75% of subjects were used for training and the remaining 25% were used for
testing.

For training the neural network model, we explored three different loss functions that measure the distance between
the predicted PDFF liver volume pixels and the reference: mean squared error (MSE) loss; a robust version of MSE loss

CT Liver mask MRI PDFF Liver mask

Registered CT-MRI pair

Fig 1. A schematic overview of the preprocessing pipeline.

https://doi.org/10.1371/journal.pone.0328867.9001
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called Huber loss [18] that is less sensitive to large errors; and a weighted combination of MSE and cosine distance loss
[12]. We did not observe any noticeable benefits from using the other two losses over the comparatively simpler MSE
loss, and, hence used MSE loss for experiments.

Our model was implemented using the MONAI library with PyTorch backend. We used a stochastic gradient descent
optimizer for training with a learning rate of 5e-4 and randomly initialized weights. Experimentation was conducted on a
machine with 2 NVIDIA Tesla V100 GPUs. Training was performed for 100 epochs with a provision for early stopping if the
validation loss did not improve over a period of 10 epochs. In our experiments, the lowest validation loss was achieved
after 40 epochs.

Liver fat fraction predictions and analyses

We computed segmented liver PDFF references from the whole liver PDFF images by computing mean and median
PDFF values of the voxels included in the liver mask.

From the predicted PDFF-MRIs generated by the U-Net model, we estimated mean and median PDFF values after
applying the liver mask.

In clinical practice, steatosis grades are as follows: Normal (<5%), Mild (5.1-15%), or Moderate/severe (>15.1%) [19].
As a proof of concept to investigate the ability to quantify fat at lower grades overcoming limitations of other methods, cat-
egorical analysis was performed by combining normal and mild ranges of steatosis and stratified them into three groups:
Lower (<2%), Mid (2-5%), and Upper (5.1-15%).

Qualitative analysis

DNN-predicted PDFF images were visually compared to the ground-truth PDFF images by [name withheld for blinding
purposes]. In addition to visual similarity, we evaluated homogeneity of liver signal intensity, topographic distribution of
signal, and presence of imaging artifacts. To represent the 3D volume of these images in 2D, we calculated the average
intensity projection (AIP) using the average volume intensities in the axial direction.

Statistical analysis

To compare mean and median PDFF values from the DNN-predictions, segmented references, and ground truths, we
computed two error metrics—mean absolute error (MAE) and root mean squared error (RMSE) — in a pairwise fashion.
The error metrics are on the same percentage scale as the fat fractions, and a lower metric value indicates higher simi-
larity between images. MAE aggregates high and low voxel-wise differences in a linear fashion, while RMSE emphasizes
larger differences. To compare performance of different comparators (e.g., results of segmented reference vs. ground
truth), we calculated mean errors (defined as the error between those approaches) (and 95% confidence intervals (Cls)),
for both mean and median approaches. Lower values indicated more consistency across comparators. We used Cohen’s
Kappa statistics to assess the agreement between DNN-predicted steatosis categorical grades. Agreement was inter-
preted as follows: <0 none, 0.01-0.20 slight, 0.21-0.40 fair, 0.41-0.60 moderate, 0.61-0.80 substantial, and 0.81-1.00
nearly perfect agreement [20]. We used Bland-Altman plots to assess agreement between PDFF values.

Ethical considerations

On March 1, 2022, the institutional ethics review board of University of Washington approved this study and waived

the requirement for informed consent due to the retrospective nature of data collection and analysis (IRB ID STUDY
000015000). Data were collected and handled in accordance with the Health Insurance Portability and Accountability Act.
The authors had control of all the data and the information required for development of this paper. All the analyses in this
study were performed in accordance with the Declaration of Helsinki. Data was accessed for research between August 1,
2022 — October 31, 2022.
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Results
Study cohort

Of the 151 selected individuals in the eligible study cohort, 57 were excluded from the dataset due to: missing or non-
diagnostic images (n=3), CECT or MRI images segmentation failure (n=34), or CECT to MRI liver registration failure
(n=20). Overall, these exclusions were due to technical issues occurring after images acquisition, during image transfer
between clinical systems to the research environment or during postprocessing, and hence, with no association to individ-
ual patients’ characteristics. Hence, characteristics of excluded patients did not differ from included patients (S1 Table and
S2 Table). The final study population consisted of 94 patients. The high number of exclusions may be attributed to use of
indirect liver mask propagation in absence of liver segmentation model in PDFF space and high amount of noise artefacts
present in input and target both. The demographic information of the individuals is given in Table 1. Fig 2 is a study flow
diagram.

Qualitative analysis of inferred PDFF images

Qualitative assessment found that predicted PDFFs had similar signal intensity and signal topography as their references.
This particularly held true for large patterns and spots in the liver; however, smaller focal patterns were not as similar. We
found some noisy patterns in the predicted PDFF images which were absent both in the reference PDFF and the source
CECT images. We interpreted these patterns as artifacts of the CNN-based prediction model attempting to predict less
smooth intensity voxels of PDFF from smoother CECT images. Examples of our qualitative analysis of features are shown

in Fig 3.

Table 1. Demographic and ground truth statistics of the study participants.

Variable ' Statistics (n=94)

Demographic variables

Age (Years) mean: 36.11, SD:10.09, range: 18-56
Sex counts: (Male: 34, Female: 60)

Weight (kg) mean: 75.77, SD: 15.11, range: 44-120
Ground truth

Liver fat (%) ‘ mean: 3.87, SD: 3.52, range: 0-22.3

https://doi.org/10.1371/journal.pone.0328867.t001

171 living donors identified during the study period

¢

151 identified as potential study subjects (218 years old, CECT and MRI within 48 hours of each other)

57 subjects excluded because of:

Missing or nondiagnostic images (n=3)

Segmentation, mask propagation, or registration
failures (e.g., due to differences in FOV, patient motion
or position, incomplete coverage of the whole liver,

significant noise on PDFF images, etc.) (n-54)
94 subjects in the final study cohort

{

72 subjects for ¢ o— 22 subjects for

training testing

Fig 2. Study population diagram.

https://doi.org/10.1371/journal.pone.0328867.9002
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Fig 3. Average intensity projection (AIP) of the 3D volumes: Input CT image (left), PDFF inference as model output (middle), reference PDFF
images (right).

https://doi.org/10.1371/journal.pone.0328867.9003

Performance of fat quantification

The mean averaging method had moderate agreement between ground truths and segmented references with an MAE
of 1.53 and an RMSE of 2.62. In contrast, the median averaging method demonstrated a stronger agreement between
ground truths and segmented references, with lower MAE and RMSE values of 0.56 and 0.77, respectively. As PDFF
values range from 1 to 100, these errors are quite low. Table 2 provides a comparative analysis of mean and median
PDFF.

Comparing predicted fat fraction to segmented reference using mean averaging generated an MAE of 2.91 and an
RMSE of 4.23 while median averaging yielded an MAE of 2.94 and an RMSE of 4.27. Comparing predicted fat fraction to
manual ground truth generated an MAE of 2.96 and an RMSE of 4.70 using mean averaging and an MAE of 3.17 and an
RMSE of 4.60 using median averaging.

Table 3 shows mean errors and 95% confidence intervals when comparing three fat fraction quantities—predicted
fat fraction and the two ground truths. Consistent with the RMSE and MAE metric, we found smaller mean errors and
narrower mean error Cls when comparing segmented references and ground truths than when comparing the other
comparators.
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Table 2. Comparison between fat fraction (%) from predicted PDFF image and different ground truths using mean and median averaging. The
metrics reported are mean absolute error (MAE) and root mean squared error (RMSE).

Comparators Mean Median

MAE RMSE MAE RMSE
Ground truth — segmented reference fat fraction 1.53 2.62 0.56 0.77
Segmented reference fat fraction- predicted fat fraction 2.91 4.23 2.94 4.27
Ground truth — predicted fat fraction 2.96 4.70 3.17 4.60

https://doi.org/10.1371/journal.pone.0328867.t002

Table 3. Mean errors (calculated as the difference between the two comparators) and 95% confidence interval of mean errors of fat fraction
(%) from predicted PDFF image and different ground truths using mean and median averaging.

Comparators Mean Median

Mean error Cl Mean error Cl
Ground truth — segmented reference fat fraction 0.20 (-0.96,1.38) 0.06 (-1.75,1.86)
Segmented reference fat fraction- predicted fat fraction 0.64 (-2.12,4.40) 1.28 (—-4.58,7.14)
Ground truth — predicted fat fraction 1.84 (-2.83,8.51) 1.34 (—4.40,7.08)

https://doi.org/10.1371/journal.pone.0328867.t003

Fig 4 shows a confusion matrix that compares predicted categories based on median approach to manual ground truth
steatosis grades: the rows in the matrix represent manual ground truth (‘Ground truth’) and the columns represent pre-
dicted ground truth, with the counts shown in each cell. For example, the top-left cell indicates that there were 6 subjects
with ‘Lower’ manual ground truth fat fraction and ‘Lower’ predicted fat fraction. Most subjects were correctly grouped with

Confusion Matrix of Predicted and Ground Truth Fat Fractions (Stratified)

Lower

Ground truth
Mid

Upper
1
o
o
N
1
N

Lov:ler M‘id Up;l)er
Predicted
Fig 4. Confusion matrix of the predicted fat fraction using median averaging and the manual ground truth. Each row in the matrix corresponds to

a group based on the manual ground truth, labeled as ‘Ground truth’, and each column represents the groups as predicted by the model, labeled as ‘Pre-
dicted’. The intersection of a row and a column indicates the number of instances that belong to the respective ‘Ground truth’ and ‘Predicted’ categories.

https://doi.org/10.1371/journal.pone.0328867.9004
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only 3 errors out of 22 subjects, with an accuracy of 86.4% and Cohen’s kappa=0.75. Bland-Altman plots show outlier val-
ues with higher errors at higher PDFF value (S1 Fig and S2 Fig).

Discussion

This proof-of-concept work explored the feasibility of using deep learning to infer MRI-PDFF images and calculate fat
fractions from CECT images with a focus on lower steatosis grades. We found that inferring MRI-PDFF images from
CECT images using deep-learning is possible and, while agreement between absolute PDFF values was not perfect,
characterization of liver fat at lower steatosis grades were reliable, differently than other approaches for liver fat quantifi-
cation using CT.

Despite the different spatial and contrast resolution characteristics of CECT and MRIs, predicted liver PDFF images from
CECT images were qualitatively similar to original PDFF images: focal inconsistencies were attributed to DNN artifacts
when predicting higher spatial/lower contrast resolution CECT images to lower spatial/higher contrast resolution MRIs.
However, for clinical purposes, PDFF generates quantitative values, and, hence, qualitative similarities may be of little
clinical relevance. While quantitative error metrics were not low from a technical perspective, given the very large intervals
used to grade steatosis in clinical care, they are potentially of little clinical significance. Further, higher error was observed
in subjects with higher PDFF values which could potentially be clinically significant. We hypothesize that these errors are
due the fact that our study population was skewed towards lower PDFF values, hence, not exposing the model enough to
all fat fraction ranges, which may have impacted performance. Based on the results of this proof-of-concept study, however,
performance is likely to be improved in further iterations of our approach or in future independent validation studies adopt-
ing larger training datasets, ideally with more representative portions of the cohort at higher PDFF values.

When evaluating its ability of categorical stratification at lower fat fraction values our model achieved 86.4% accuracy,
with substantial agreement with ground truth measurements. This implies a strength of our method compared to other
approaches. A recent metanalysis on the diagnostic accuracy of CT for steatosis shows encouraging results and better
performance when diagnosis at least moderate steatosis (PDFF >20%), but limited sensitivity (0.66) when lower steatosis
grades are included [13]. For opportunistic screening - and given that most patients with NAFLD in the general population
have low to moderate steatosis grades in the low to moderate range [21] - detecting lower ranges may be advantageous
as it may relate to early detection and potentially easier reversal to normal than steatosis detected at higher ranges. Using
a median averaging as opposed to a mean averaging approach generated more accurate predicted fat fractions and seg-
mented reference fat fractions. This is likely because there is less impact of outliers’ voxel PDFF values (generated from
non-liver parenchyma anatomical structures) when using the median averaging approach. While liver segmentation seeks
to mitigate the impact of these outlier values by focusing the prediction on the liver, such segmentation is imperfect and
can still include outlier values.

In western societies, NAFLD is the fastest growing cause of liver disease and liver cancer [22]. Early intervention can
prevent the development of complications, but, as NALFD lacks specific symptoms, diagnosis is not straightforward.
Hence, there is demand for accessible and inexpensive ways to screen for NAFLD. While MRI-PDFF is an accurate and
reproducible biomarker, MRI use is in clinical practice is limited because due to relatively high cost and limited availabil-
ity. CT is among the most used imaging modalities for evaluating abdominal pathology, with over 20 million abdominal
CT scans being done in the US per year [23], most of which are contrast enhanced. Therefore, CECT offers a possibil-
ity of opportunistic screening of liver disease. Opportunistic screening in radiology refers to the practice of leveraging
imaging data acquired for unrelated clinical indications for diagnosis of incidental conditions [24]. In this context, an
accurate, opportunistic diagnosis of MASLD could be made in a patient undergoing CECT for abdominal pain in the
emergency department. Prior attempts have been made to infer liver PDFF from CECT; some, like our work, used deep
learning-based methods [25—-27]. While promising, these techniques relied on using other reference organs or structures
to control for the presence of intravenous contrast: for example, a ‘hepatosplenic’ approach [26], in which spleen CECT
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attenuation was used as a reference point, has been used in model development [10]. While an interesting concept,
spleens can be absent or affected by pathology which would impact attenuation values and limit the application of such a
model. Our work shows that direct DNN-based PDFF inference from CECT without reliance on reference organs is fea-
sible. Further, prior studies have shown satisfactory performance only when liver fat fraction is in the moderate to severe
clinical range, and, therefore, would potentially be less useful in the most common presentation of NAFLD: mild steato-
sis [21]. Our model accurately stratified patients at lower liver PDFF values, and, therefore, may be useful for screening
asymptomatic patients. Since the mere presence of steatosis has clinical relevance [28], detecting patients with mild early
NAFLD may have the biggest impact on population health outcomes.

Our work has several limitations. Same day CT and MRI data is not widely available in most centers, and while in a
transplant center like ours such data is accessible, the number of living liver transplants performed each year is still rela-
tively small. Further, as a proof of concept study, no commercial tools or turn-key solutions were available at the time of
study design, and challenges with imaging data preprocessing resulted in a high number of segmentation-to-registration
step failures as we created indirect approaches that added complexity and achieved limited success. The above resulted
in a small cohort, which possibly impacted model’s performance. Further, our population was comprised mostly of healthy
individuals, without comorbidities, including a history of liver disease. Hence, the generalizability of our results in patients
with liver disease cannot be ascertained, though most of such patients would not fall into a population where opportunistic
screening might have the highest impact.

Conclusion

This proof-of-concept study indicates that inferring liver MRI-PDFF directly from contrast-enhanced computed tomog-
raphy (CECT) using an automated deep learning-based approach with a focus on lower fat fraction ranges is feasible.
Categoric predictions were robust, its ability to characterize liver fat content at lower steatosis grades outperforms other
methods and makes it potentially clinically useful for screening of the most relevant patient populations. Further model
training could improve PDFF estimation accuracy, and machine learning modeling tools advance, they hold the promise of
becoming helpful in the early detection and management of NAFLD, ultimately contributing to better patient outcomes and
healthcare efficiency.
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